Zeitschrift: Schweizerische Zeitschrift für Vermessung, Kulturtechnik und

Photogrammetrie = Revue technique suisse des mensurations, du

génie rural et de la photogrammétrie

Herausgeber: Schweizerischer Verein für Vermessungswesen und Kulturtechnik =

Société suisse de la mensuration et du génie rural

Band: 46 (1948)

Heft: 7

Artikel: Die Anwendung der Rechenmaschine bei der Triangulation [Schluss]

Autor: Oettli, H.

DOI: https://doi.org/10.5169/seals-205593

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 10.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

VERMESSUNG UND KULTURTECHNIK

Revue technique Suisse des Mensurations et du Génie rural

Herausgeber: Schweiz, Verein für Vermessungswesen und Kulturtechnik. Offiz. Organ der Schweiz. Gesellschaft f. Photogrammetrie Editeur: Société Suisse de Mensuration et du Génie rural. Organe officiel de la Société Suisse de Photogrammétrie

REDAKTION: Dr. h. c. C. F. BAESCHLIN, Professor, Zellikon (Zürich)

Redaktionsschluß: Am 1. jeden Monats

Expedition, Administration und Inseratenannahme: BUCHDRUCKEREI WINTERTHUR AG.
Schluß der Inseratenannahme am 6. jeden Monats

NR. 7 . XLVI. JAHRGANG

der "Schweizerischen Geometer-Zeitung" Erscheinend am 2. Dienstag jeden Monats 13. JULI 1948

INSERATE: 25 Rp. per einspalt. mm-Zeile. Bei Wiederholungen Rabatt gemäß spez. Tarif

ABONNEMENTE:

Schweiz Fr. 15.—, Ausland Fr. 20.— jährlich Für Mitglieder der Schweiz. Gesellschaft für Photogrammetrie Fr. 10.— jährlich Unentgeltlich für Mitglieder des Schweiz. Vereins f. Vermessungswesen u. Kulturtechnik

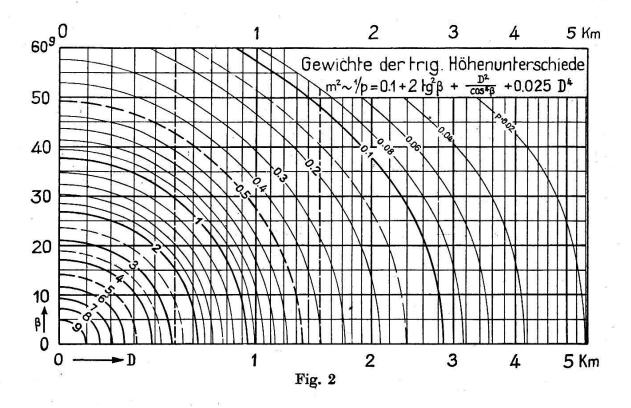
Die Anwendung der Rechenmaschine bei der Triangulation

(Schluß)

Gewicht des trigonometrischen Höhenunterschiedes

Im allgemeinen wird dafür die Formel $p=\frac{1}{D^2}$ verwendet. Der Feh-

ler eines Höhenunterschiedes ist aber nicht nur von dem des Höhenwinkels abhängig, sondern auch von allen übrigen Fehlern, welche sich in die
für die Höhenrechnung erforderlichen Größen einschleichen können. Dies
sind die Fehler der Instrumenten- und Signalhöhe, ferner die Fehler der
Distanz (hervorgerufen durch fehlerhafte Koordinaten, sowie durch
schrägstehende Signale), und schließlich kann auch noch der Refraktionskoeffizient eine andere Größe als die berücksichtigte haben. Um nun auch
bei großen Höhenunterschieden eine richtige Verteilung der Gewichte zu
erhalten, ist es notwendig diese als Funktion von 2 Größen (Distanz und
Höhenwinkel) darzustellen. Den Höhenunterschied erhält man aus der
Formel:


$$h = D \cdot \operatorname{tg} \beta + (E - R) + (I - S) = D \cdot \operatorname{tg} \beta + \frac{D^{2} \cdot (1 - k)}{2r} + (I - S)$$

Der Fehler des Höhenunterschiedes aus den verschiedenen Fehlern beträgt somit:

$$dh = \frac{D}{\cos^2 \beta} \cdot d\beta + \operatorname{tg} \beta \, dD - \frac{D^2}{2 \, r} \cdot dk + d \, (I - S)$$

Das Quadrat des mittleren Fehlers von h ergibt also:

$$m_h^2 = \frac{D^2}{\cos^4 \beta} \cdot m_\beta^2 + \operatorname{tg}^2 \beta \cdot m_D^2 + \frac{D^4}{4 r^2} \cdot m_k^2 + m_{(I-S)}^2$$

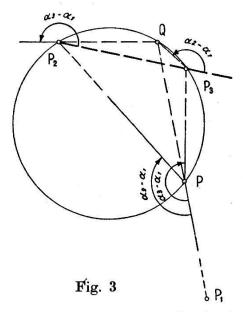
Da nun die verschiedenen mittleren Fehler meistens nicht getrennt werden können, so werden hier dafür Annahmen gemacht: Die mittleren Fehler seien z. B.:

für den Höhenwinkel
$$\beta$$
: $m_{\beta}=6$ ",4 für die Distanz D : $m_{D}=1,4$ cm für die Refraktion R : $m_{k}=0,02$ für $I-S$: $m_{(I-S)}=0,31$ cm

Diese Fehler sind alle eher zu klein gewählt; da es bei der Bestimmung des Gewichtes aber nur auf das Verhältnis der Fehler ankommt, spielt dies keine Rolle. Die Formel für den mittleren Fehler eines Höhenunterschiedes lautet nun:

$$m_h^2 \sim \frac{1}{p} = \frac{D^2}{\cos^4 \beta} \cdot 1 + tg^2 \beta \cdot 2 + \frac{D^4}{4r^2} \cdot 0,0004 + 0,1$$

oder:


$$m_h^2 \sim \frac{1}{p} = 0.1 + 2 \text{ tg}^2 \beta + \frac{D^2}{\cos^4 \beta} + 0.025 D^4$$

Dabei ist D in km einzusetzen, um m_h in cm zu erhalten.

Das Ergebnis dieser Formel läßt sich nun für praktische Zwecke am besten graphisch darstellen (s. Fig. 2). Man ersieht daraus, daß das Gewicht sehr stark vom Höhenunterschied abhängig ist; ohne dessen Berücksichtigung erhält man bei einer Neigung von $50^{\rm G}$ z. B. ein mehr als viermal zu großes Gewicht. Es ist deshalb gewiß angezeigt für Messungen im Gebirge nebst der Distanz auch den Höhenwinkel zu berücksichtigen. Sind die Höhenunterschiede aus gegenseitigen Messungen ermittelt worden, so kann für die Gewichtseinheit erfahrungsgemäß ein mittlerer Fehler von ca. 1,5 cm angenommen werden, sofern die Refraktion nicht abnormale Beträge erreicht wie z. B. bei bodennahen Visuren.

Mit der Azimutrechnung, dem Vorwärtsschnitt und der Höhenrechnung sind nun die wichtigsten Operationen für trigonometrische Berechnungen erläutert. Sie erfordern meist nur kleine Vorbereitungen, worauf sie dann auf der Maschine zu Ende gerechnet werden können. Nur bei der Azimut- und Distanzbestimmung ist es erforderlich während der Rechnung eine Größe herauszuschreiben. Sie benötigt, verglichen mit der logarithmischen Bestimmung, deshalb auch am meisten Zeit; dennoch kann sie aber im allgemeinen rascher durchgeführt werden.

Der Rückwärtsschnitt

Dieser soll gleich an Hand eines Beispieles in einer für die Berechnung geeigneten Anordnung erläutert werden; die dazu erforderlichen Rechnungen (Azimut und Vorwärtsschnitt) sind nun eingehend erklärt worden. Zwar existiert für den Rückwärtsschnitt eine für die Rechenmaschine spezielle Formel; da er aber relativ selten vorkommt, so ist es von Vorteil, wenn er mit den üblichen Operationen gerechnet werden kann.

Dies ist der Fall bei der Methode des Collinschen Hilfspunktes, wobei zwei Vorwärtsschnitte zu bestimmen sind, was nach einiger Übung mit der Maschine nur wenig Zeit beansprucht, so daß die erwähnte Methode auch in dieser Beziehung einer andern mindestens ebenbürtig ist.

	Y	X	$\varphi_1^P - \alpha_1$	399 01 45	$\phi_1^P = \phi_1^Q + \frac{0}{200}$
100000000000000000000000000000000000000	$egin{array}{c} +25 & 995,20 \\ +25 & 088,86 \\ +26 & 146,40 \end{array}$	The same that th	α2	0 0 0 161 56 29 214 74 69	The second secon
∆ ^Q Q	$+\ 862,85 \\ +25\ 951,71$	— 131,30 —35 589,93		161 56 29 214 74 69 124 36 04	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
⊿ ^P P: 256	+ 879,92 +25 968,78	— 1 234,51 —36 693,14		309 61 35	$tg \varphi_3^Q - 0.66 144$

Im angeführten Beispiel sind die gegebenen Größen fett und die zu berechnenden kursiv gedruckt. Der Rechnungsgang kann nun leicht verfolgt werden: Zuerst sind in Kolonne 3 die Größen $a_2 - a_1$, $a_3 - a_1$ zu bilden; dann wird φ_2 aus den Koordinaten gerechnet, und die Differenzen $\varphi_3^Q = \varphi_2^3 - (\alpha_2 - \alpha_1), \ \varphi_2^Q = \varphi_2^3 - (\alpha_3 - \alpha_1)$ werden in die untersten Zeilen dieser Kolonne eingetragen. Um mit dem ersten Vorwärtsschnitt die Koordinaten des Hilfspunktes Q zu erhalten, werden nun die Tangenten dieser letzten zwei Größen rechts davon in Kolonne 4 eingetragen und darunter die Differenz (tg φ_2^Q —tg φ_3^Q) gebildet. Sind dann die Koordinatendifferenzen Δ^Q von P_2 (ev. P_3) nach Q und damit Q selber bestimmt, so kann das Azimut φ_1^Q berechnet und in die erste Zeile von Kolonne 4 eingetragen werden. Über Kolonne 3 wird nun die Orientierungsgröße $(\varphi_1^P - \alpha_1)$ bestimmt, und die orientierten Richtungen φ_2^P und φ_3^P werden neben α_2 und a₃ gebildet. Werden darunter die entsprechenden Tangenten sowie deren Differenz (tg φ_2^P — tg φ_3^P) notiert, so erhält man den gesuchten Punkt P wiederum als Vorwärtsschnitt aus den Punkten P_2 und P_3 . Das Resultat wird nun am besten kontrolliert indem die Azimute φ^{P} aus den Koordinaten berechnet werden, wobei wenn nötig auch die Distanzen ermittelt werden können.

Bei der ganzen Rechnung ist vor allem folgendes zu beachten: Für beide Vorwärtsschnitte ist es nicht zum vornherein klar, ob die erhaltenen oder die um $200^{\rm G}$ verschiedenen Richtungen von den Punkten P_2 und P_3 nach Q (resp. P) führen. Meistens kann dies aus einer der Situation

1. Koordinaten-Verzeichnis

Punkt Signalhöhe	X H	H prov.	${\stackrel{\bf P}{P}}_1$	$\begin{array}{c} \operatorname{tg}\varphi_1 \\ \operatorname{tg}\varphi_2 \\ \operatorname{tg}\varphi_1 - \operatorname{tg}\varphi_2 \end{array}$	Punkt Signalhöhe	X	H. prov.	$\mathbf{P}_{\mathrm{K}}^{1}$	$\begin{array}{c} \operatorname{tg} \varphi_1 \\ \operatorname{tg} \varphi_2 \\ \operatorname{tg} \varphi_1 - \operatorname{tg} \varphi_2 \end{array}$
La. 0K = 1,27	615 117,46 242 527,42 1102,39		9		$\frac{H^*}{0K = 1,15}$	615 696,74 242 492,17 1066,99	7,01	La. 126	-16.439 -3.1522 $13,287$
$\frac{126}{0 \mathrm{K} = 0.64}$	614 964,04 242 724,60 1092,12				$\frac{127 \text{ S}}{0\text{K} = 2,80}$	$615 998,65 \\ 242 620,06 \\ 1077,97$	8,00 7,95 7,96	La. H 126	$^{+}$ 9,5116 $^{+}$ 2,36071 7 ,1509
$\frac{127}{0K = 1,44}$	615 524,77 242 288,13 1043,24		ı	1	$\frac{127 \text{ N}}{0 \text{K} = 2,45}$	$615 985,94 \\ 242 622,31 \\ 1076,19$	6,22 6,21 6,13	La. H 126	$^{+\ 9,1528}_{+\ 2,22231}_{6,9305}$

2. Berechnungen

Stat. Visur	$\frac{\text{Orient.}}{\text{Richt.} = \alpha}$	400 - Orient. or. Richt.	>	VΩ	VΧ	Azimut	Distanz	Stationshöhe β	tg β	E-R	Sig.	H prov.
La.	170 18 95	229 81 05				J.		1102,39		 	1,53	
127 N	322 88 25	93 07 20	5	+868,48	+94,89	93 07 18	873,65	— 1 87 30		5	2,45	1076,22
127 S	14		+ 3	+881,19	+92,64	93 33 16	886,04	-16646		ż	2,80	1078,00
Н	67	98	+13	*+579,18	*- 35,23	98	580,36	3 92 00		<i>c</i> 3	1,15	1062,01
127			-14	407,31	ě	133 81 52	472,40	94		cs .	1,44	1043,25
126	187 71 40	357 90 35	+13	9846,58(-104)		90	249,83	- 2 85 14	04 482	0	0,64	1092,08
126	90 78 22	309 21 78						1092,12		=	1,41	
127 N	15 57 11	106 35 33	-20	1021,90		106 35 13	1027,00	0 93 06		2	2,45	1076,13
127 S	63	41	-35	1034,61			1039,87	0 78 62	01 235	2~	2,80	1077,96
H	28 77 45	119 55 67	8	*732,60		22	768,68	-21061		7	I,I5	1066,98
La.	67 12 32	157 90 54	2	er e		157 90 52	249,83	+ 2 58 40	04 061	0	1,27	1102,41
Н	119 92 30	280 07 70	28					1066,99			1,44	
La.	183 94 62	ı	0	9420,72(-104)		98	580,36	+ 3 85 92		23	1,27	+35,42
126	63		+	9267,30(-104)	11	319 55 59	768,68	+ 2 00 90		4	79,0	+25,10
127 N	<u>.</u>	73 08 12	-10	289,20		73 08 02	317,13	2 05	03 226	0	2,45	1076,21
127 S	354 56 86	91 67 72	-I	301,91		74 49 15	327,88	2 39		0	2,80	1077,95
127	124 66 19	244 58 49	-14	9828,03(-104)		244 58 35	266,85	— 5 65 43	908 802	0	1,44	-23,76

* Die Koordinaten des Punktes H wurden aus La. und 126 bestimmt; bei der Kontrolle mit Visur $H \triangleright 127$ sind sie noch um +10 und -2 cm geändert worden

entsprechenden Figur entnommen werden. Eine andere Möglichkeit den Sinn der Richtung zu beurteilen, besteht darin, die Vorzeichen der Koordinatendifferenzen aus der Rechnung zu bestimmen, indem man beim Vorwärtsschnitt die Vorzeichen des Zählers und des Nenners berücksichtigt in der Formel:

$$X - X_1 = \frac{(Y_2 - Y_1) - (X_2 - X_1) \cdot \operatorname{tg} \varphi_2}{\operatorname{tg} \varphi_1 - \operatorname{tg} \varphi_2}$$

was beim gewöhnlichen Vorwärtsschnitt nicht notwendig ist.

Beispiel einer Kleintriangulation

Nach dem Rückwärtsschnitt, der glücklicherweise nicht alltäglich ist, sei nun auch noch ein Beispiel einer Punktbestimmung durch Vorwärtsschnitt gezeigt. Man benötigt dazu: 1. das Koordinatenverzeichnis, welches gleichzeitig die bestimmenden Punkte, sowie die für den Vorwärtsschnitt erforderlichen Tangenten enthält und 2. das Berechnungsformular, worin alle aus dem Feldbuch entnommenen Größen aufgeführt werden, sowie die durch die Rechnung zu ermittelnden Distanzen, Azimute und Höhen.

Die Methode und die für die Berechnung notwendigen kleinen Tabellen dürften damit wohl genügend dargestellt sein, um auch andere Berechnungen durchzuführen, sofern eine entsprechende trigonometrische Tafel zur Verfügung steht. Meines Wissens existiert nun aber keine solche mit sechsstelligen Werten, so daß für eine Triangulation IV. Ordnung leider eine 7- oder 8stellige Tafel verwendet werden muß. Es ist aber sehr zu hoffen, daß ein geeignetes 6stelliges Werk der Funktionen Sinus und Tangens in nicht allzu ferner Zeit in den Handel kommen werde. Eine Tabulierung dieser Werte ist ja schon weit günstiger als die Logarithmen derselben, weil die Tafeldifferenzen sehr gleichmäßig sind (mit der einzigen Ausnahme des Cotangens für kleine Winkel). Diese Tatsache wirkt sich vor allem beim Aufschlagen der Tangenten von Höhenwinkeln sehr günstig aus.

Natürlich gibt es bei dieser Berechnungsart nicht nur Vorteile; denn die Manipulation auf der Maschine erfordert ziemlich viel Übung und deren Lärm gehört ebenfalls nicht zu den angenehmen Seiten. Trotz diesen Nachteilen gestattete mir das Bureau Leupin und Schwank in Bern in verdankenswerter Weise alle die hier angegebenen Methoden zu erproben. Aus dieser Erfahrung zeigt sich eindeutig, daß man mit etwas Routine auf der Maschine rascher zum Resultat gelangt und daß sich vor allem die Rechnung bedeutend übersichtlicher gestaltet, was z.B. ein späteres Nachschlagen wesentlich erleichtert.

Vielleicht wird man nun da und dort diese neue Berechnungsart anwenden und ich hoffe, daß es dann nicht nur beim Versuch bleibe.