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Zwei Erweiterungen
der Theorie der vermittelnden Ausgleichung

von C. F. Baeschlin

(Schluß)

Unter Benutzung der Beziehungen (7) erhalten wir mit Hilfe einer
Taylor-Entwicklung

Fi (x, y, z, lh pi + Xi, qi) =- F; (x0, y0, z„. Z(, pb qi)

BF,

Setzen wir das Absolutglied nach (8) gleich fit während wir

TIl
dPi

setzen, so erhalten wir

(13) fi + at( + bi7)+ Cil + -n-iXi 0.



(14)
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Subtrahieren wir (9) von (13), so folgt

vi Vi — A/ Vi 0

Xt vt.

oder

Wir wollen für jede der n fingierten Beobachtungen pi ein fingiertes
Gewicht Gi einführen, so daß aus den aus (13) folgenden fingierten
Fehlergleichungen

Gewicht

Gii A;(13a)
ai c

bi sl^JlTT! 77;¦"i

blunter Zuhilfenahme der Minimumsbedingung

(15) [GAA] Minimum

dieselben Normalgleichungen für <f, y, £ (11) folgen wie aus den ursprünglichen

Fehlergleichungen (10).
Aus (13a) folgen unter Zuhilfenahme von (15) die Normalgleichungen

Wenn (11) und (16) dieselben Werte für die Unbekannten <f, ij, r,
wie auch denselben mittlem Fehler der Gewichtseinheit p nach der
bekannten Beziehung

(16)

// //

-v^resp.
n — 3

haben sollen, dann müssen die 13 Gleichheiten bestehen

HhWÏ
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Diese Gleichungen (17) sind erfüllt, wenn

9i Gi
(18) —.— für ieden Index i

A;2 m2
J

oder wenn also

(18a) Gi= -^ gt i 1, 2, n.

Wir erkennen daher, daß wir bei der Einführung einer fingierten
Beobachtung mit dem fingierten Gewicht Gi nach (18a) und der
Durchführung der vermittelnden Ausgleichung für diese fingierte Beobachtung
nach der Meth. d. kl. Qu. genau dieselben Werte für die Unbekannten
des Problems erhalten, wie wenn wir die eigentlichen Beobachtungen /;
zugrunde legen. Da auch der mittlere Fehler der Gewichtseinheit in beiden
Fällen gleich erhalten wird, fallen bei der Verwendung der fingierten
Beobachtungen auch die mittleren Fehler der Unbekannten und von
Funktionen derselben gleich aus, wie bei der Verwendung der ursprünglichen

Beobachtungen.
Man kann aber nicht nur Parameter, sondern auch Unbekannte als

fingierte Beobachtungen einführen. Das geschieht in der folgenden Weise.
Wir gehen aus von den Gleichungen (4a)

(4a) Fi (x, y, z, lt + vu ph qd 0 i 1,2, n.

Diese gingen durch Entwicklung über in

(12a) Fi (Xg, y„, z0, lh ph qt) + a; f + biv + ct £ + Aj v; 0.

Wenn wir z.B. die Unbekannte x als fingierte Beobachtung einführen
wollen, so müssen wir (4a) zum Stimmen bringen, indem wir /,•

unverändert lassen, dafür aber (x + <f,) an Stelle von x setzen. Wir haben dann
also

(19) Fi (x + ii, y, z, lu pi, qi) 0 i 1,2, n.

Das geht durch Entwicklung über in

(19a) Fi (xg, y0, z0, lu pt, qi) + at (£ + <f,) + bt v + c,- £ 0.

Bilden wir (19a) minus (12a), so finden wir

at tJi—AiVi 0

oder

(20) & -y Vi
ai

Aus (19a) folgt

aiti + fi + ai Ç + bi-q + CiC 0.
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Damit erhalten wir die fingierte Fehlergleichung

Gewicht

(21) Gft; ft= ><--£_ A,,_JL£.

Entsprechend (18a) erhalten wir mit den analogen Überlegungen,
die wir dort angestellt haben,

™ o(t - (l)'Sl.
Wir können aber die fingierten Beobachtungen nicht nur mit einem

Parameter oder irgendeiner Unbekannten zusammenfallen lassen,
sondern es ist auch zulässig, eine in Fi vorkommende Funktion eines
Parameters, oder einer Unbekannten, oder auch der Beobachtung als fingierte
Beobachtung wählen. Es sei z. B.

(23) Fi (cp(x), y, z, k -f Vu pu qi) 0.

Statt, wie hier, li durch »,• zu korrigieren, verändern wir cp(X) um
Bcpi und haben dann

(24) Fi (cp(x) + Scpi, y, z, lt, pi, qi) 0.

Daraus erhalten wir durch Entwicklung

ôFi
(24a) Fi (cp(Xa), y0, z0, lt, pt, qi) + I

—^—
I 8cpt

Die Entwicklung von (23) dagegen gibt

(23a) Fi (cp(xo), y0, z0, lt, Pi, qi) + ~7p- ~) è

+ bi -q + Ci £ + A,- Vi 0.

(24a) minus (23a) liefert

— ht— AiVi 0
o<p /o

oder

(25) dcp i /
'

N v,-

cfy> 0
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Danach wird

/ dFj V
G

V er j.
V ' -iftrr.ia A 2

Das Absolutglied der fingierten Fehlergleichungen wird nach (24a)

(27Ì — —
^xo> y<" z°' li' Pu qà

1 } " ' 8Fi
dtp

Dieses Absolutglied können wir auch noch auf eine andere Weise
erhalten, die dann besonders einfach wird, wenn man (23) oder (24) nach
cptx) auflösen kann, so daß man erhält

<P(x) ®i Ü/> z> h + vi> Pi, Qu-

Ersetzt man lt + Vi durch Zj, <p(X-a durch ^>(x) + Scpt, so wird

9(x) + hi ®i (.y, z, lt, pi, qi)

$. (y,, zo, U, Pi, qù + (-s^-j V + (sr-) £•
dz Z,

Es ist aber
x x_ + £

womit wir durch Entwicklung erhalten

m fw + (£)j
und damit

(28) 8<pi [0>i (i/0, z0, lt, pt, qi) — cpM]

Führen wir die Abkürzung ein

(29) <fy (»o» Zo, h, Pi, Qi) <P(xi)

so wird das Absolutglied von (28)

(30) Absolutglied von (28) cp(X{) — cp^-a

Bei dem Beispiel der Durchgänge mehrerer Sterne durch denselben
Almukantarat von der Zenitdistanz z erhalten wir

<f{x) cos z cos 0 cos pi + sin <t> sin pi cos (Ui + vt + u — ai)
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Wir setzen

cos Zi cos O0 cos pj + sin O0 sin pi cos ([/,• + u0 — ai)

Damit wird

d cos z \ _
8 COS Z; (COS Z; COS Z„) — I I dz + Sin Z0 COS Oj d<P

V dz /o

— sin O0 sin zo sin ai ^u
Das gibt

(31) S (cos zi) (cos Zj — cos z0) + sin z„ dz + sin z0 cos a,- d<I>

— sin 0„ sin z„ sin ai du.

Das kann man auch noch auf eine andere Form bringen/ Es ist

S cos Zi ¦— sin z0 S£,-.

Ferner wird nach einer Taylor-Entwicklung

cos Zj — cos z0 — sin z0 (z{ — z0).

Führen wir das in (31) ein, so finden wir nach Division durch — sin z0

8£i — dz — cos ai dO + sin O0 sin ai du + (zt — z0)
(oZ)

mit cos z; cos$ocos Pi + sin 0„ sin p; cos (Uj + u0 — ai)-

77. Behandlung einer vermittelnden Ausgleichung, wenn die Funktional-
d (Flt F2, F3)

determinante l^ 0 ist.
d (x, g, z)

Bei der Behandlung von Beobachtungsaufgaben mit und ohne
Ausgleichung kommt es hin und wieder vor, daß man nicht alle Unbekannten,
die sich bei der Aufgabe zeigen, bestimmen kann, trotzdem die notwendige

Zahl von Beobachtungen vorliegt.
Wir stellen uns ein Problem mit 3 Unbekannten x, y, z vor. Die

Beobachtungswerte Z1; l2, Z8 sind mit den 3 Unbekannten durch 3 Funktionen

verknüpft

(33) Fi Fi (x, y, z, lt) 0 i 1, 2, 3.

Führen wir für die Unbekannten die Näherungswerte x0, yQ, z0 und
die Verbesserungen>£, -q, £ ein, so erhalten wir durch Entwicklung

(34)

Fi (Xg, y0, z0, li) + a^ + b^-q + Cj£ 0

Fi (Xg, y0, z„, Z2) + a2| + b2r) + c2£ 0

F3 (Xg, y0, Zg, l3) + at$ + b3v + c3£ 0
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Wenn die Determinante aus den Koeffizienten der Unbekannten £,
¦q, £ verschwindet

(35)

ax bt cx

a2 b~ c» 0

dann kann man die Gleichungen (34) nicht nach den 3 Unbekannten Ç,

ij, £ auflösen. Beachten wir aber die Beziehungen (8), nämlich

BFt
Sx /o

so ist (35) identisch mit

(36)

bi
SFA
dy /o

Cl
SFj
dz

dF, dFt SF1

dx Sy dz

dF2 8F2 dF2
dx Sy dz

dF3 SF3 8F3
dx Sy dz

0

Die in (36) auftretende Determinante ist aber nichts anderes als die
Funktionaldeterminante

d (Ft, F„ F8)
8 tf, v, 0

Wir erhalten daher den Satz: Ein System von u Gleichungen mit u
Unbekannten, entsprechend Formel (33), kann nur dann nach den u
Unbekannten aufgelöst werden, wenn die Funktionaldeterminante

d(F1,F2,F3,...Fu)
8 (è, -q, £,•••">)

von Null verschieden ist.
Es stellt sich nun die Frage, ob, wenn die obige Funktionaldeterminante

gleich Null ist, man dann in einem System von n Gleichungen
(n>u)

(37) Fi (x, y, z, li + vh pi, qi) 0 i 1, 2, 3,.. .n

nach der Methode der kleinsten Quadrate, also unter Zuhilfenahme der
Bedingung

i-=n
(38) [gi vi vi] Minimum

i-l
die 3 (allgemein u) Unbekannten x, y, z,...u bestimmen kann?
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Es ist schon behauptet worden, es sei selbstverständlich, daß dies
nicht möglich sei. Ich bin aber der Ansicht, daß das bewiesen werden muß.

Entwickeln wir (37) nach der Taylor-Beihe, so erhalten wir

(37a) Fi (x„, y„, z„, lhpi, qi) + at <f + bt -q + ct % + AiVi 0

i 1, 2...n
oder

fi + ail + bi-r, +Cj£ + Ai»i 0

Daraus folgen die Fehlergleichungen

Gewicht

(38) *; „--^-f--^.,.
während die Normalgleichungen werden

Ai
4

At

(39)

['^]«4»^]'+['^]i+['^]-°

Für drei beliebige Indizes k, l, m aus der Beihe 1,2.. .n, besteht die
Beziehung

(35a)

ak bk ck

ai bi Ci 0

Nach (35a) sind alle dreireihigen Unterdeterminanten der Matrix

tfi a2 au

Z>i b2 bu

C-y C2 Cu

Null. Folglich gibt es 3 Zahlen x, y, z, die nicht alle drei gleich Null sind,
so daß die Gleichungen

(40) Xat + Ybt + Zct 0 i 1, 2, n

erfüllt sind. Es sei nun P (PM P2,... Pn) eine beliebige Zahlenreihe.
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Man multipliziere die /.te Gleichung (40) mit Pi und summiere über i;
man erhält

X [a P] + Y [b P] + Z [e P] 0;

dasselbe mache man mit irgend zwei andern Zahlenreihen Q und R. Dann
sieht man:

Das Gleichungssystem

(41)

[a P] X + [b P] Y + [c P] Z 0

[a Q] X + [b Q] Y + [c Q] Z 0

[a R] X + [b R] Y + [c R] Z 0

besitzt ebenfalls die Lösung (X, Y, Z); da nicht alle drei Zahlen X, Y, Z
gleich Null sind, ist daher die Determinante

0

[a P] [b P] [cP]
(42) [a Q] [b Q] [CO]

[a R] [b R] [cR]
Für den Spezialfall

Pi 9i a); öt= 9i
bi

Äi2'' Ri"

erhalten wir aber aus (4 2)

['£] ['^1 i9 El

[<£] ['£] [»¦£]

['El L'£] [•*]

9i Ay

womit gezeigt ist, daß, wenn (35a) für je 3 beliebige Indizes aus der
Beihe 1, 2,.. .n erfüllt ist, dann auch das Normalgleichungssystem (39),
das aus den n Fehlergleichungen (38) nach der Methode d. kl. Qu. hervorgeht,

auch nicht nach den drei Unbekannten aufgelöst werden kann.
Damit ist aber der Beweis, von dem wir oben gesprochen haben, geleistet.
Wir erkennen ohne weiteres, daß der obige Beweis auch für die Matrix

ai a2
Z>i Z>2

Ci c2 „ t n>u

u, u.

gilt. Damit haben wir den Satz gefunden:
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Wenn ein Gleichungssystem, bestehend aus so viel Gleichungen, wie
Unbekannte vorhanden sind, nicht aufgelöst werden kann, weil die
Funktionaldeterminante verschwindet, dann können auch bei mehr Beobachtungen
als notwendig sind, die Unbekannten nach der Methode d. kl. Qu. ebenfalls
nicht bestimmt werden.

Den Beweis zu diesem Satze verdanke ich Herrn Prof. Dr. 77. 77op/
von der E. T. H. Zürich.

Es ist in einem Falle verschwindender Funktionaldeterminante zu
empfehlen, u—1 neue Unbekannte einzuführen, für die die
Funktionaldeterminante für u—1 Funktionen Fi nicht mehr verschwindet.

Ein sehr interessantes Beispiel der besprochenen Art ist das folgende,
das Th. Niethammer in seinem kürzlich, wenige Wochen nach seinem
Tode erschienenen Lehrbuch „Die genauen Methoden der
astronomischgeographischen Ortsbestimmung", Basel 1947, behandelt hat.

Wir beobachten die Durchgangszeit Ui mehrerer Sterne durch
denselben Vertikal vom unbekannten Südazimut, a auf einer Station, deren
Zenitdistanz des Poles 0 ist, während die Uhrkorrektion der Beobachtungsuhr

u beträgt.
Im sphärischen Dreieck Pol-Zenit-Stern haben wir gemäß der Figur 1

nach einer Kotangentengleichung die Beziehung

(43) Fi cotg a sin U,- + vt + u — ai)

+ cotg pi sin <!> — cos O cos Ui + Vi + u — ai) 0

Wir erhalten

dFi

(44)

Ai

Bi

d

du

8Fj
da

SFj
00)

cos <I> sin Zi + sin <]> cos Z[ cos a cos qi

sin a sin p; sin a

sm Z;

sm a sm pt

cos zi cos zi sin a

sin pi sin a sin p,-

Es ist leicht zu beweisen, daß die Determinante

(45)

indem

ist oder

Ai B, C,

fl*
0

— cos 0 Bi + sin 0 cotg a Ci A,-

1 At + cos (J> Bi — sin $ cotg a Ct 0
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Es besteht also für

X 1; Y cos O; Z — sin $ cotg a

die Beziehung (40).
Wir wählen a als fingierte Beobachtung. Dann muß (43) geschrieben

werden:

cotg (a +dai) sin (U; + u0 + du — at) + cotg p,- sin (O0 + dO)
— cos (<b„ + d0>) cos (CJ,- + u„ + du — af) 0.

Das liefert bei einer Behandlung nach der Theorie der fingierten
Beobachtungen entsprechend dem .früher gezeigten

sin zid at cos qi sin ptd (Ut + u) + cos zt sin a;d(f?

Oi erhalten wir aus der Gleichung

_ tg pt cosec Q)0 sin (Uj + u0 — q,)
1 — tg pi cotg 0„ cos (U{ + Ug — ai)

Beachten wir, daß

f Stern Süd
(46) cos qi sin pt cos <P sin Z; ± sin 0 cos zf cos a {

l Stern Nord

ist, so erhalten wir

sin zt da — (cos <I> sin z; ± sin O cos z,- cos a) du

T cos z,- sin a dO (af — aB) sin Zj

Das können wir schreiben

sin zi (da — cos O du) T cos zj (sin O cos a du + sin a d0>)

sin zi (at — a0)

Wir führen nun die zwei neuen Unbekannten ein

x da — cos O du
(47)

y sin O cos a du + sin a d 0>

Damit erhalten wir die linearen, fingierten Fehlergleichungen

Stern Süd
(48) Ei a; T y cotg af + (a0 — ad

' Stern Nord

Da hier die Determinante der Koeffizienten von x und y für zwei
beliebige Indizes nicht verschwindet, kann man die beiden Unbekannten
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x und y aus n Fehlergleichungen (48) durch eine Ausgleichung bestimmen,

sobald die Gewichte der fingierten Beobachtungen aj bestimmt
sind. Nach unsern Ergebnissen bei der Behandlung der fingierten
Beobachtungen finden wir

(49)

Da aber

(50)

Gat
sin2 Zi

sur

cos2 <7i sin2 pi

1

9Ui

r02 + s02
V2 sin2 pi cos2 Ci

gesetzt werden kann, wo

r0 ± 0S.031 bei der Verwendung des unpersönlichen Mikrometers

s„ ± 2S.6

V bedeutet die Fernrohrvergrößerung. Wir erhalten damit

(51) G„..

rtt2 cos2 </,• sin2 p,- +
V2

Beobachtet man in zwei verschiedenen Azimuten a und b, so findet
man durch eine Ausgleichung, die man in jedem Vertikal für sich
ausführt, die Unbekannten xa, ya, x\„ y0

(52)

xa da — còs 0„ du

ya sin <ï>0 cos a0 du + sin a0 d <I>

xB db — cos O0 du

yb sin O0 cos bt du + sin Z>0 d O

aus denen man durch Auflösen die 4 Unbekannten da, dZ>, du und d<I>

findet, gemäß den Gleichungen

(53)

sin O0 sin (a0 — b0) du — ya sin b0 + yb sin a0

sin (a0 — &o) rfO + ya cos Z>0 — y6 cos a0

da + xa + cos <E>0 du

dö + x0 + cos O0 du

Die Unbekannten :ra und ya sind vollständig unabhängig von x\,
und yj, trotzdem beide du und dO> enthalten. a;a und xt, enthalten wohl
gemeinsam — cos Q>0du; aber xa enthält da, xB dagegen db, die miteinander

nichts gemein haben. In ya treten cos a0 und sin a0, in y0 aber
cos bg und sin b0 auf. ya ist daher unabhängig von yb.
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Daraus erkennt man, daß man aus Durchgangsbeobachtungen
durch einen Vertikal nur das Azimut dieses Vertikals und entweder die
Polhöhe oder die Ortszeit bestimmen kann.

Beobachtet man aber die Durchgänge durch zwei verschiedene Vertikale,

so kann man die Azimute beider Vertikale und sowohl die Polhöhe,
wie die Ortszeit bestimmen.

Die Bewegung des erdmagnetischen Feldes

Die Tatsache, daß für vorwiegend topographische Zwecke
Bussolentheodolite für Zugsmessungen eingesetzt werden, veranlaßt die Eidg.
Landestopographie, kurze monatliche Bulletins über die Charakteristik
des magnetischen Feldes im Fachorgan „Zeitschrift für Vermessungswesen

und Kulturtechnik" zu publizieren. Die von der Eidg. Sternwarte
Zürich berechneten Sonnenflecken-Belativzahlen lassen erkennen, daß
wir uns im Jahre 1947 in einer Periode größter Fleckentätigkeit befanden.
Ihr Abklingen wird hinsichtlich ihrer Einwirkung auf das erdmagnetische
Feld gerade so interessant sein wie die Anfangsentwicklung, in welche
wir in den Jahren 1945-1947 mit den systematischen Untersuchungen
der Magnetogramme der Meteorologischen Zentralanstalt erstmals
eingetreten sind.

Die Verbindungslinie der graphisch aufgetragenen Wolfschen Bela-
tivzahlen zeigt in ausgesprochenen Fleckenjahren sinusoiden Charakter.
Die Wellenperiode beträgt im Mittel ungefähr 27 Tage, ist also identisch
mit einer Sonnenrotation. Die Erklärung scheint darin zu liegen, daß
sich auf der Sonne nachhaltige Fleckengebilde entwickeln, die trotz interner

Variabilität einige Botationsperioden anhalten. In fleckenarmen Jahren

verliert sich dieser Charakter völlig (Tabelle I).
Im Auftrag der Flecken-Monatsmittel (Tabelle II) zeigt sich der

generelle Verlauf der gesamten Fleckenperiode. Das Maximum scheint im
Sommer 1947 aufgetreten zu sein. Die Bückwirkungen auf das erdmagnetische

Feld sind hinsichtlich der Deklination doppelter Natur.
a) Das Gesamtbild der Deklinationskurve ist bedeutend unruhiger,

die Anzahl gestörter Stunden oder gar Tage ist ungleich größer als in
fleckenarmen Perioden. Eine strenge Gesetzmäßigkeit zwischen
Fleckenrelativzahl und magnetischer Störung ist jedoch nicht erkennbar, da die
Flecken je nach Alter und Lage magnetisch sehr variabel sind, ja
teilweise sogar inaktiv werden können. Aus diesen Gründen verunmöglicht
sich eine genauere Prognose.

b) Der Gesamtausschlag der Tageskurve (Amplitude) vergrößert
sich merklich (Tabelle III). Die Sommer-Durchschnittskurve 1947 ist um
5' 9' stärker ausgebogen als diejenige von 1945, ja es treten einzelne
Tage oder Tagesgruppen auf, die mit Amplituden bis zu 21' 40' überraschen.

Eigentümlicherweise zeigt die Mehrzahl dieser Kurven keine An-
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