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Zwei Erweiterungen
der Theorie der vermittelnden Ausgleichung

von C. F. Baeschlin

(SchluB)

Unter Benutzung der Beziechungen (7) erhalten wir mit Hilfe einer
Taylor-Entwicklung

Fi x, y,z, li; pi + A qi) = Fi (g, Yos Zo Uiy Pis i)

| oF;
+aiéE+bin+el + ("a-'-[-“) A = 0.
Pi /o

Setzen wir das Absolutglied nach (8) gleich f;, wihrend wir
( oF; )
— L) =m
opi

(13) fi + aié + bin+ il + miA = 0.

setzen, so erhalten wir
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Subtrahieren wir (9) von (13), so folgt

i Vi — Ai D = 0
oder
A
(14) A = Loy

mi

Wir wollen fiir jede der n fingierten Beobachtungen p; ein fingiertes
Gewicht G; einfiihren, so da} aus den aus (13) folgenden fingierten Fehler-
gleichungen .

Gewicht
(1 3a) Gi; Ai == =

a; b ¢ i
§———nq
7 i r i

unter Zuhilfenahme der Minimumsbedingung

(15) [GAA] = Minimum

dieselben Normalgleichungen fiir &, y, ¢ (11) folgen wie aus den urspriing-

lichen Fehlergleichungen (10).
Aus (13a) folgen unter Zuhilfenahme von (15) die Normalgleichungen

[ aa [ ab’| [ ac [ af ]

[ ab ] T. b1 [ be | [ bf ]
ahal | Wil : W G——| =0

(16) _Gw2~f+_G"2Jn+_Gﬂ2JC+~ g
[ ac] be | [ cc ] [ cf ] ‘

Wenn (11) und (16) dieselben Werte fiir die Unbekannten &, 7, {,
wie auch denselben mittlern Fehler der Gewichtseinheit p nach der be-
kannten Beziehung

o ‘ i1
RV GO _ /[G?"”]
p=\/ g repp=\/ 5

n—3

haben sollen, dann miissen die 13 Gleichheiten bestehen

[ aah_FGaa' ce] _[sc
Al B e [gﬁ]_[ 7]
[l [ [ o] [ 0] cf cf
17) _Q“K;J = 'G“T;z—_s _g A_é_ = _G-'i;é:, [g Az] = [G ﬁ_g]
[ ff‘_r if]
_g—FJ— —G—?'Tzd.
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Diese Gleichungen (17) sind erfiillt, wenn

(18) 9i _ Ci i jeden Index i
A2 mi?
oder wenn also
2
(18a) Gi= % g i=1,2,...n

Wir erkennen daher, dal wir bei der Einfithrung einer fingierten
Beobachtung mit dem fingierten Gewicht G; nach (18a) und der Durch-
flihrung der vermittelnden Ausgleichung fiir diese fingierte Beobachtung
nach der Meth. d. kl. Qu. genau dieselben Werte fiir die Unbekannten
des Problems erhalten, wie wenn wir die eigentlichen Beobachtungen [;
zugrunde legen. Da auch der mittlere Fehler der Gewichtseinheit in beiden
IFdllen gleich erhalten wird, fallen bei der Verwendung der fingierten
Beobachtungen auch die mittleren Fehler der Unbekannten und von
Funktionen derselben gleich aus, wie bei der Verwendung der urspriing-
lichen Beobachtungen.

Man kann aber nicht nur Parameter, sondern auch Unbekannte als
fingierte Beobachtungen einfiihren. Das geschieht in der folgenden Weise.
Wir gehen aus von den Gleichungen (4a)

(4a) . Fi(x,y,z,l; +vi,pi»q)) =0 i=1,2, ... n
Diese gingen durch Entwicklung tiber in
(12a)  Fi (X Yo» 20 lis Py q1) + @i € + bim + il + Ajwi = 0.

Wenn wir z.B. die Unbekannte x als fingierte Beobachtung einfiihren
wollen, so miissen wir (4a) zum Stimmen bringen, indem wir [; unver-
andert lassen, dafiir aber (x + £;) an Stelle.von = setzen. Wir haben dann
also

(19) Fi($+fi,y,Z,li,Pi,Qi)=0 i=132!"'n'
Das geht durch Entwicklung iiber in
(193) Fi (xo’ Yoy Zos li: Pi» ql) + q; (f + ‘fl) + bi’? + Cig = 0.

Bilden wir (19a) minus (12a), so finden wir

aéi — Ajvi = 0
oder
Ai
(20 £y = v
) i a

Aus (19a) folgt
aiéi +fi +aié+ binp + ¢l =0.



— 140 —
Damit erhalten wir die fingierte Fehlergleichung
Gewicht
(21) Ggy bi=————f—-Lg——Llg

Entsprechend (18a) erhalten wir mit den analogen Ubeilegungen,
die wir dort angestellt haben,

(22) @i=(%)%

Wir kénnen aber die fingierten Beobachtungen nicht nur mit einem
Parameter oder irgendeiner Unbekannten zusammenfallen lassen, son- -
dern es ist auch zuléssig, eine in F; vorkommende Funktion eines Para-
meters, oder einer Unbekannten, oder auch der Beobachtung als ﬁnglerte,
Beobachtung wihlen. Es sei z. B.

(23) Fi (¢@y Us % i + vi, i q1) = 0.

Statt, wie hier, l; durch v; zu korrigieren, verindern wir ¢) um
d¢; und haben dann

(24) F; (¢@zy + 8¢, 4, %, lj, pi» qi) = O

Daraus erhalten wir durch Entwicklung

oF;
(24a)  F; (¢(xo)> Yoo Z0s li> Pi> 9i) + ( g; ) d¢;
0

0
oF; do
— — b =0
+(w w), € o+l
Die Entwicklung von (23) dagegen gibt
oF; d
(233) Fy (Sa(a‘o)’ Yos Zo» Lis Pis qi) + ( aq; “Eﬁz“)o ‘f

o+ b+l + Aoy = 0.
(24a) minus (23a) liefert

oF
(— ) dp; — Ajv; =0
% /o

- oder

(25) O =
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(%),
99 /o

Danach wird

(26) Gy = TAg U
Das Absolutglied der fingierten Fehlergleichungen wird nach (24a)
27) _ _Fi (P@op Yo Zo» lis Pi» 91)

(%)
Op .
Dieses Absolutglied kénnen wir auch noch auf eine andere Weise er-

halten, die dann besonders einfach wird, wenn man (23) oder (24) nach
¢(x) auflosen kann, so dal man erhilt

¢@ = Qi @ 2z, i + v, Py 7).
Ersetzt man ; + v; durch lj, ¢y durch ¢y + 8¢;, so wird

o,
( oz )o ¢

¢@) + d¢i = Oy (u, 2, li, Pi» 9D

oD
= ®; Yo Zo» li» Pi» 71) + (“‘—”a i) 7+
Y Jo

Es ist aber
T ==+ &

womit wir durch Entwicklung erhalten

de

P) = Py T+ (—dx )of
und damit
(28) dp; = [Di o Zos Uts Pis q1) — P(zo)]

de(x) od; - od;
_( dx )o§+( Y )on+( 2 )oc

Fiihren wir die Abkiirzung ein =~
(29) @t Wos Zos lis Pi> §) = P(zi)
so wird das Absolutglied von (28)
(30) Absolutglied von (28) = ¢(z)) — P(xo)

Bei dem Beispiel der Durchginge mehrerer Sterne durch denselben
Almukantarat von der Zenitdistanz z erhalten wir

‘qo(,) = cos £ = cos { cos p; + sin @ sin p; cos (U; + v; + u — ay)
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Wir setzen
cos z; = cos O, cos p; + sin @, sin p; cos (U; + uy — a;)
Damit wird

_ dcos z
3 cosz; = (cos z; — €oS z,) — (__._&;_> dz + sin z, cos q; AP
0

— sin @, sin z, sin ¢; du
Das gibt

(31) & (cos z;) = (cos z; — cos z,) + sin z, dz + sin z, cos a; dD
— sin @, sin z, sin a; du.
Das kann man auch noch auf eine andere Form bringen. Es ist
8 cos z; = — sin z, 8f;.
Ferner wird nach einer Taylor-Entwicklung
COS Z; — COS 2o = — Sin 24 (z; — Z).
Fiithren wir das in (31) ein, so finden wir nach Division durch — sin z,

8{; = — dz — cos a; dO® + sin @, sin a; du + (z; — z,)

(32)
mit cos z; = cos P, cos p; + sin @, sin p; cos (U; + uy— ap).

I1. Behandlung einer vermitlelnden Ausgleichung, wenn die Funktional-
9 (Fy, Fa, Fy)

determinante —= (0 ist.
’ 8 (@ y» 2)

Bei der Behandlung von Beobachtungsaufgaben mit und ohne Aus-
gleichung kommt es hin und wieder vor,dafl man nicht alle Unbekannten,
die sich bei der Aufgabe zeigen, bestimmen kann, trotzdem die notwen-
dige Zahl von Beobachtungen vorliegt.

Wir stellen uns ein Problem mit 3 Unbekannten z, y, z vor. Die Be-
obachtungswerte I, I,, I3 sind mit den 3 Unbekannten durch 3 Funktio-
nen verkniipft )

(33) Fi=Fi(x,yzl)=0 i=1,2,3.

Fihren wir fiir die Unbekannten die Ndherungswerte x4, y,, z, und
die Verbesserungen’'¢, », { ein, so erhalten wir durch Entwicklung
Fy (T, Yo Z0s ) + & + bymp + ¢, =0
(34) Fy (@oy Ygs Zgy 1) + @€ + bomp + 38 = 0
F3(Tos Yos Zos Es) + 3§ + bgn + ¢3{ = 0



Wenn die Determinante aus den Koeffizienten der Unbekannten £,
7, { verschwindet

a; by ¢
(35) az bz (:2 = 0
ag by ¢y

dann kann man die Gleichungen (34) nicht nach den 3 Unbekannten &,
7, { auflésen. Beachten wir aber die Beziehungen (8), nimlich

oo (OFL) ., _ (OF) 8Fi)
i o o, i dy 0’ i dz /,

so ist (35) identisch mit

oF, oF, oF,
ox oy 0z

. oF, OF, F,
(36) ox oy 0z =1

oF3 OF 4 oF
orx oy 0z

Die in (36) auftretende Determinante ist aber nichts anderes als die
Funktionaldeterminante

a(FlsFZQFS)
a(é"}sC)

Wir erhalten daher den Satz: Ein System von u Gleichungen mit u
Unbekannten, entsprechend Formel (33), kann nur dann nach den u Un-
bekannien aufgelost werden, wenn die Funktionaldelerminante

9 (Fy, Fy, Fy,...Fy)
o L. .v)

von Null verschieden ist.

Es stellt sich nun die Frage, ob, wenn die obige Funktionaldeter-
minante gleich Null ist, man dann in einem System von n Gleichungen
(n>u) |

(37) Fi (x, y, z, li + vi, Pi, ql) = 0 i=1, 2’ 3" ..

nach der Methode der kleinsten Quadrate, also unter Zuhilfenahme der
Bedingung '

i=n
(38) ‘ [g; vi v;] = Minimum
i

die 3 (allgemein u) Unbekannten z, y, z,...u bestimmen kann?



Es ist schon behauptet worden, es sei selbstverstindlich, da dies
nicht méglich sei. Ich bin aber der Ansicht, daB3 das bewiesen werden mufl.
Entwickeln wir (37) nach der Taylor-Reihe, so erhalten wir

(37a) F;i (xo, Yos Zo» lis P1» qi) + @i € + bin + ¢ L4+ Ay =0

i=1,2...n
oder
fi +aié+bnm+eal+ Av; =0
Daraus folgen die Fehlergleichungen
Gewicht
ai bi Ci fi
38 . is I JE— e g i e
(38) gi D Alf 7 Ai‘q AIC A;

wihrend die Normalgleichungen werden

a b | ac a
R I LR I IR [ B
ab | [ b | [ be | [ bf |
@ | foge|e+|oge|n|oge |+ |oae| =0
[ ac | [ be | i cc— T c-
> A LR I IR I B

Fir drei beliebige Indizes k, [, m aus der Reihe 1, 2. . .n, besteht die
Beziehung '

ayx by o
(35a) a b ¢ =2 {

am by €m

Nach (35a) sind alle dreireihigen Unterdeterminanten der Matrix

a, a, ay
€1 Cg Cu

Null. Folglich gibt es 3 Zahlen z, y, z, die nicht alle drei gleich Null sind,
so da3 die Gleichungen '

(40) Xag + Yby +2Z¢; =0 i=1,2,...n

erfiillt sind. Es sei nun P = (P,, P,,...P;,) eine beliebige Zahlenreihe.
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Man multipliziere die i.te Gleichung (40) mit P; und summiere iiber i;
man erhalt
X[aP] + Y[bP] + Z][cP] =0

dasselbe mache man mit irgend zwei andern Zahlenreihen Q und R. Dann
siecht man:
Das Gleichungssystem
[aPlX +[bP]Y +[cP]Z =0
(41) [@Q] X +[6Q]lY +[cQlZ =0
[aR] X +[bR]Y +[¢cR]|Z =0
besitzt ebenfalls die Lésung (X, Y, Z); da nicht alle drei Zahlen Xy Yo &
gleich Null sind, ist daher die Determinante
[a P] [bP] [cP]
(42) [a@Q] [6Q] [cQl| =0
[aR] [0R] I[cR]
Fiir den Spezialfall

s b
P; = gi.'[’\’;; Qi = gi]'\jl;z;Riz giK:Q
I 1 L

erhalten wir aber aus (42)

aa ab ac
_-g ‘/\-2~ —g A“ —‘g ASJ
| a] [ ] [ o] — 0
vl I K ol B v vl B e
ach bc_ [ cch
Pal Pa) ['a

womit gezeigt ist, daB3, wenn (35a) fiir je 3 beliebige Indizes aus der
Reihe 1, 2,...n erfiillt ist, dann auch das Normalgleichungssystem (39),
das aus den n Fehlergleichungen (38) nach der Methode d. k1. Qu. hervor-
geht, auch nicht nach den drei Unbekannten aufgelést werden kann.
Damit ist aber der Beweis, von dem wir oben gesprochen haben, geleistet.
Wir erkennen ohne weiteres, dal3 der obige Beweis auch fiir die Matrix

al a2 LI ) an
bl bz . s bn
cl 62 00 Cn n > u
u,; U,...Un

gilt. Damit haben wir den Safz gefunden:
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Wenn ein Gleichungssystem, bestehend aus so viel Gleichungen, wie
Unbekannte vorhanden sind, nicht aufgelést werden kann, weil die Funktio-
naldelerminanle verschwindet, dann kénnen auch bei mehr Beobachlungen
als notwendig sind, die Unbekannten nach der Methode d. kl. Qu. ebenfalls
nicht bestimmt werden.

Den Beweis zu diesem Satze verdanke ich Herrn Prof. Dr. H. Hopf
von der E. T. H. Ziirich. | '

Es ist in einem Falle verschwindender Funktionaldeterminante zu
empfehlen, u—1 neue Unbekannte einzufiihren, fiir die die Funktional-
determinante fiir u—1 Funktionen F; nicht mehr verschwindet.

Ein sehr interessantes Beispiel der besprochenen Art ist das folgende,
das Th. Niethammer in seinem Xkiirzlich, wenige Wochen nach seinem
Tode erschienenen Lehrbuch ,,Die genauen Methoden der astronomisch-
geographischen Ortsbestimmung‘‘, Basel 1947, behandelt hat.

Wir beobachten die Durchgangszeit U; mehrerer Sterne durch den-
selben Vertikal vom unbekannten Siidazimut a auf einer Station, deren
Zenitdistanz des Poles @ ist, wihrend die Uhrkorrektion der Beobach-
tungsuhr u betragt.

Im sphirischen Dreieck Pol-Zenit-Stern haben wir gema8 der Figur 1
nach einer Kotangentengleichung die Beziehung

(43) F; = cotgasin (U; + v; + u — ay)
~ + cotg pisin ® —cos D cos (Uy +v; +u—a) =0

Wfr erhalten

A oF; cos @ sin z; 4 sin ® cos z; cos a CoS ¢;
' du sin a sin p; " sina
aF,- : sin z;
(44) ( Bi = T ——
da sin a sin p;
C oF;  cosz; cos z; sin a
' od sin p; 'sin a sin p;

Es ist leicht zu beweisen, daB die Determinante

Ay B, (G
(45) | 42 By Cy | =0
A By Gy
- indem .
— cos @ B; + sin @ cotg a C; = A;
ist oder

1A; +cos® B; —sin® cotga C; = 0
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Es besteht also fiir
X=1,Y=cosP; Z = —sin® cotg a

die Beziehung (40).
Wir wihlen a als fingierte Beobachtung. Dann muf} (43) geschrieben
werden:

cotg (a +da;) sin (U; + uy + du — a;) + cotg p; sin (®, + dd)
— cos (@, + d®) cos (U; + uy + du — a;) = 0.

Das liefert bei einer Behandlung nach der Theorie der fingierten Be-
obachtungen entsprechend dem frither gezeigten

sin z;d a; = cos ¢; sin p;d (U; + u) + cos z; sin a; dD
a; erhalten wir aus der Gleichung

tg pi cosec O, sin (U; + u, — a;)

tga = — ‘
8 1 —tg p; cotg ®, cos (U; + uy — a;)

Beachten wir, da3
Stern Siud

46 cos q; sin p; = cos ® sin z; 4 sin @ cos z; cos a
e o F ' ' Stern Nord

ist, so erhalten wir
sin z; da — (cos @ sin z; + sin @ cos z; cos a) du
F cos z; sin a d® = (a; — a,) sin z;
Das kénnen wir schreiben
sin z; (da — cos @ du)F cos z; (sin ® cos a du + sin a d®)
= sin z; (q; — a,)
Wir fithren nun die zwei neuen Unbekannten ein

x = da — cos ® du
(47) {

y=sin®cosadu +sinad®

Damit erhalten wir die linearen, fingierten Fehlergleichungen

Stern Sid

(48) Ei = zF ycotg a; + (ap— a;) Sforii Nord

Da hier die Determinante der Koeffizienten von x und y fiir zwei be-
liebige Indizes nicht verschwindet, kann man die beiden Unbekannten
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z und y aus n Fehlergleichungen (48) durch eine Ausgleichung bestim-
men, sobald die Gewichte der fingierten Beobachtungen ¢; bestimmt
sind. Nach unsern Ergebnissen bei der Behandlung der fingierten Beob-
achtungen finden wir \ |

sin? z;
(49) G = cos? ¢; sin? p; U,
Da aber '
(50) g '
Ui rd 4 syt 1

V2 sin? p; cos? g;
gesetzt werden kann, wo
ro = 4 0%.031  bei der Verwendung des unpersﬁnlichen Mikrometers
So = =+ 25.6 a
\ %4 bedéutet die FernrohrvergroBBerung. Wir erhalten damit

sin? z;
(51) Gq; = & "l
ro? cos? q; sin? p; + ‘;2

Beobachtet man in zwei verschiedenen Azimuten a und b, so findet
man durch eine Ausgleichung, die man in jedem Vertikal fiir sich aus-
fithrt, die Unbekannten x4, ¥4, p, Up

xz, = da — cos ®, du

Ug = sin @, cos a, du + sin a, d @
(52) xp = db — cos @, du '
yp = sin®ycos bydu + sin by d @

aus denen man durch Auflésen die 4 Unbekannten da; db, du und d®
findet, gemil den Gleichungen

sin @, sin (ag — by) du = — y, sin b, + yp sin q
sin (ag — by)d® = + y, cos by — yp cos a,
(53) da = + z, + cos @, du

db

I

+ xp + cos O, du

Die Unbekannten z, und y, sind vollstindig unabhingig von zx;
und yp, trotzdem beide du und d® enthalten. x, und x; enthalten wohl
gemeinsam — cos ®,du; aber r, enthilt da, x;, dagegen db, die mitein-
ander nichts gemein haben. In y, treten cos a, und sin a,, in y; aber
cos b, und sin b, auf. y, ist daher unabhéngig von yp.
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Daraus erkennt man, dal man aus Durchgangsbeobachtungen
durch einen Vertikal nur das Azimut dieses Vertikals und entweder die
Polhohe oder die Ortszeit bestimmen kann.

Beobachtet man aber die Durchginge durch zwei verschiedene Verti-
kale, so kann man die Azimute beider Vertikale und sowohl die Polhdhe,
wie die Ortszeit bestimmen.

Die Bewegung des erdmagnetischen Feldes

Die Tatsache, daB fiir vorwiegend topographische Zwecke Bussolen-
theodolite fiir Zugsmessungen eingesetzt werden, veranlafit die Eidg.
Landestopographie, kurze monatliche Bulletins iiber die Charakteristik
des magnetischen Feldes im Fachorgan ,,Zeitschrift fiir Vermessungs-
wesen und Kulturtechnik‘* zu publizieren. Die von der Eidg. Sternwarte
. Ziirich berechneten Sonnenflecken-Relativzahlen lassen erkennen, daf
wir uns im Jahre 1947 in einer Periode gro3ter Fleckentatigkeit befanden.
Ihr Abklingen wird hinsichtlich ihrer Einwirkung auf das erdmagnetische
Feld gerade so interessant sein wie die Anfangsentwicklung, in welche
wir in den Jahren 1945-1947 mit den systematischen Untersuchungen
der Magnetogramme der Meteorologischen Zentralanstalt erstmals ein-
getreten sind. ‘

Die Verbindungslinie der graphisch aufgetragenen Wolfschen Rela-
tivzahlen zeigt in ausgesprochenen Fleckenjahren sinusoiden Charakter.
Die Wellenperiode betrigt im Mittel ungeféahr 27 Tage, ist also identisch
mit einer Sonnenrotation. Die Erklirung scheint darin zu liegen, daB3
sich auf der Sonne nachhaltige Fleckengebilde entwickeln, die trotz inter-
ner Variabilitit einige Rotationsperioden anhalten. In fleckenarmen Jah-
ren verliert sich dieser Charakter vollig (Tabelle I).

Im Auftrag der Flecken-Monatsmittel (Tabelle II) zeigt sich der
generelle Verlauf der gesamten Fleckenperiode. Das Maximum scheint im
Sommer 1947 aufgetreten zu sein. Die Riickwirkungen auf das erdmagne-
tische Feld sind hinsichtlich der Deklination doppelter Natur.

a) Das Gesamtbild der Deklinationskurve ist bedeutend unruhiger,
die Anzahl gestérter Stunden oder gar Tage ist ungleich groBer als in
fleckenarmen Perioden. Eine strenge Gesetzméifligkeit zwischen Flecken-
relativzahl und magnetischer Stérung ist jedoch nicht erkennbar, da die
Flecken je nach Alter und Lage magnetisch sehr variabel sind, ja teil-
weise sogar inaktiv werden konnen. Aus diesen Griinden verunmdéglicht
sich eine genauere Prognose.

b) Der Gesamtausschlag der Tageskurve (Amplitude) vergroBert
sich merklich (Tabelle III). Die Sommer-Durchschnittskurve 1947 ist um
5" = 9 starker ausgebogen als diejenige von 1945, ja es treten einzelne
Tage oder Tagesgruppen auf, die mit Amplituden bis zu 21’ = 40" iiberra-
schen, Eigentiimlicherweise zeigt die Mehrzahl dieser Kurven keine An-
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