Zeitschrift: Schweizerische Zeitschrift für Vermessung, Kulturtechnik und

Photogrammetrie = Revue technique suisse des mensurations, du

génie rural et de la photogrammétrie

Herausgeber: Schweizerischer Verein für Vermessungswesen und Kulturtechnik =

Société suisse de la mensuration et du génie rural

Band: 46 (1948)

Heft: 6

Artikel: Zwei Erweiterungen der Theorie der vermittelnden Ausgleichung

[Schluss]

Autor: Baeschlin, C.F.

DOI: https://doi.org/10.5169/seals-205590

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 09.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

VERMESSUNG UND KULTURTECHNIK

Revue technique Suisse des Mensurations et du Génie rural

Herausgeber: Schweiz, Verein für Vermessungswesen und Kulturtechnik. Offiz. Organ der Schweiz. Gesellschaft f. Photogrammetrie Editeur: Société Suisse de Mensuration et du Génie rural. Organe officiel de la Société Suisse de Photogrammétrie

REDAKTION: Dr. h. c. C. F. BAESCHLIN, Professor, Zollikon (Zürich)

Ständiger Mitarbeiter f. Kulturtechnik: E. RAMSER, Prof. f. Kulturtechnik ETH., Freiestr. 72, Zürich Redaktionsschluß: Am 1. jeden Monats

Expedition, Administration und Inseratenannahme: BUCHDRUCKEREI WINTERTHUR AG.
Schluß der Inseratenannahme am 6. jeden Monats

NR. 6 • XLVI. JAHRGANG

der "Schweizerischen Geometer-Zeitung" Erscheinend am 2. Dienstag jeden Monats 8. JUNI 1948

INSERATE: 25 Rp. per einspalt. mm-Zeile. Bei Wiederholungen Rabatt gemäß spez. Tarif

ABONNEMENTE:

Schweiz Fr. 15.—, Ausland Fr. 20.— jährlich Für Mitglieder der Schweiz. Gesellschaft für Photogrammetrie Fr. 10.— jährlich Unentgeltlich für Mitglieder des Schweiz. Vereins f. Vermessungswesen u. Kulturtechnik

Zwei Erweiterungen der Theorie der vermittelnden Ausgleichung

von C. F. Baeschlin

(Schluß)

Unter Benutzung der Beziehungen (7) erhalten wir mit Hilfe einer Taylor-Entwicklung

$$F_{i}(x, y, z, l_{i}, p_{i} + \lambda_{i}, q_{i}) = F_{i}(x_{0}, y_{0}, z_{0}, l_{i}, p_{i}, q_{i})$$

$$+ a_{i} \xi + b_{i} \eta + c_{i} \zeta + \left(\frac{\partial F_{i}}{\partial p_{i}}\right)_{0} \lambda_{i} = 0.$$

Setzen wir das Absolutglied nach (8) gleich f_i , während wir

$$\left(\frac{\partial F_i}{\partial p_i}\right) = \pi_i$$

setzen, so erhalten wir

$$(13) f_i + a_i \xi + b_i \eta + c_i \zeta + \pi_i \lambda_i = 0.$$

Subtrahieren wir (9) von (13), so folgt

$$\pi_i v_i - \Lambda_i v_i = 0$$

oder

$$\lambda_i = \frac{\Lambda_i}{\pi_i} \nu_i.$$

Wir wollen für jede der n fingierten Beobachtungen p_i ein fingiertes Gewicht G_i einführen, so daß aus den aus (13) folgenden fingierten Fehlergleichungen

Gewicht

(13a)
$$G_i; \qquad \lambda_i = -\frac{a_i}{\pi_i} \xi - \frac{b_i}{\pi_i} \eta - \frac{c_i}{\pi_i} \zeta - \frac{f_i}{\pi_i}$$

unter Zuhilfenahme der Minimumsbedingung

$$[G\lambda\lambda] = Minimum$$

dieselben Normalgleichungen für ξ , y, ζ (11) folgen wie aus den ursprünglichen Fehlergleichungen (10).

Aus (13a) folgen unter Zuhilfenahme von (15) die Normalgleichungen

$$\begin{bmatrix}
G \frac{aa}{\pi^2} \end{bmatrix} \xi + \left[G \frac{ab}{\pi^2} \right] \eta + \left[G \frac{ac}{\pi^2} \right] \zeta + \left[G \frac{af}{\pi^2} \right] = 0$$

$$\begin{bmatrix}
G \frac{ab}{\pi^2} \end{bmatrix} \xi + \left[G \frac{bb}{\pi^2} \right] \eta + \left[G \frac{bc}{\pi^2} \right] \zeta + \left[G \frac{bf}{\pi^2} \right] = 0$$

$$\begin{bmatrix}
G \frac{ac}{\pi^2} \end{bmatrix} \xi + \left[G \frac{bc}{\pi^2} \right] \eta + \left[G \frac{cc}{\pi^2} \right] \zeta + \left[G \frac{cf}{\pi^2} \right] = 0.$$

Wenn (11) und (16) dieselben Werte für die Unbekannten ξ , η , ζ , wie auch denselben mittlern Fehler der Gewichtseinheit μ nach der bekannten Beziehung

$$\mu = \sqrt{\frac{\left[g\frac{ff}{\Lambda^2} \cdot 3\right]}{n-3}} \quad \text{resp. } \mu = \sqrt{\frac{\left[G\frac{ff}{\pi^2} \cdot 3\right]}{n-3}}$$

haben sollen, dann müssen die 13 Gleichheiten bestehen

$$\begin{bmatrix} g \frac{aa}{\Lambda^2} \end{bmatrix} = \begin{bmatrix} G \frac{aa}{\pi^2} \end{bmatrix}, \dots \begin{bmatrix} g \frac{cc}{\Lambda^2} \end{bmatrix} = \begin{bmatrix} G \frac{cc}{\pi^2} \end{bmatrix} \\
\begin{bmatrix} g \frac{af}{\Lambda^2} \end{bmatrix} = \begin{bmatrix} G \frac{af}{\pi^2} \end{bmatrix}; \begin{bmatrix} g \frac{bf}{\Lambda^2} \end{bmatrix} = \begin{bmatrix} G \frac{bf}{\pi^2} \end{bmatrix}; \begin{bmatrix} g \frac{cf}{\Lambda^2} \end{bmatrix} = \begin{bmatrix} G \frac{cf}{\pi^2} \end{bmatrix} \\
\begin{bmatrix} g \frac{ff}{\Lambda^2} \end{bmatrix} = \begin{bmatrix} G \frac{ff}{\pi^2} \end{bmatrix}.$$

Diese Gleichungen (17) sind erfüllt, wenn

(18)
$$\frac{g_i}{\Lambda_{i^2}} = \frac{G_i}{\pi_{i^2}} \text{ für jeden Index } i$$

oder wenn also

(18a)
$$G_i = \frac{{\pi_i}^2}{{\Lambda_i}^2} g_i \quad i = 1, 2, \ldots n.$$

Wir erkennen daher, daß wir bei der Einführung einer fingierten Beobachtung mit dem fingierten Gewicht G_i nach (18a) und der Durchführung der vermittelnden Ausgleichung für diese fingierte Beobachtung nach der Meth. d. kl. Qu. genau dieselben Werte für die Unbekannten des Problems erhalten, wie wenn wir die eigentlichen Beobachtungen l_i zugrunde legen. Da auch der mittlere Fehler der Gewichtseinheit in beiden Fällen gleich erhalten wird, fallen bei der Verwendung der fingierten Beobachtungen auch die mittleren Fehler der Unbekannten und von Funktionen derselben gleich aus, wie bei der Verwendung der ursprünglichen Beobachtungen.

Man kann aber nicht nur Parameter, sondern auch Unbekannte als fingierte Beobachtungen einführen. Das geschieht in der folgenden Weise. Wir gehen aus von den Gleichungen (4a)

(4a)
$$F_i(x, y, z, l_i + v_i, p_i, q_i) = 0 \quad i = 1, 2, \ldots n.$$

Diese gingen durch Entwicklung über in

(12a)
$$F_i(x_0, y_0, z_0, l_i, p_i, q_i) + a_i \xi + b_i \eta + c_i \zeta + \Lambda_i \nu_i = 0.$$

Wenn wir z.B. die Unbekannte x als fingierte Beobachtung einführen wollen, so müssen wir (4a) zum Stimmen bringen, indem wir l_i unverändert lassen, dafür aber $(x + \xi_i)$ an Stelle von x setzen. Wir haben dann also

(19)
$$F_i(x + \xi_i, y, z, l_i, p_i, q_i) = 0 \qquad i = 1, 2, \ldots n.$$

Das geht durch Entwicklung über in

(19a)
$$F_i(x_0, y_0, z_0, l_i, p_i, q_i) + a_i(\xi + \xi_i) + b_i \eta + c_i \zeta = 0.$$

Bilden wir (19a) minus (12a), so finden wir

$$a_i \, \xi_i - \Lambda_i \, v_i = 0$$

oder

(20)
$$\xi_{i} = \frac{\Lambda_{i}}{a_{i}} v_{i}$$

Aus (19a) folgt

$$a_i \xi_i + f_i + a_i \xi + b_i \eta + c_i \zeta = 0.$$

Damit erhalten wir die fingierte Fehlergleichung

Gewicht

(21)
$$G\xi_{i}; \qquad \xi_{i} = -\frac{f_{i}}{a_{i}} - \xi - \frac{b_{i}}{a_{i}} \eta - \frac{c_{i}}{a_{i}} \zeta.$$

Entsprechend (18a) erhalten wir mit den analogen Überlegungen, die wir dort angestellt haben,

(22)
$$G_{\xi_i} = \left(\frac{a_i}{\Lambda_i}\right)^2 g_i.$$

Wir können aber die fingierten Beobachtungen nicht nur mit einem Parameter oder irgendeiner Unbekannten zusammenfallen lassen, sondern es ist auch zulässig, eine in F_i vorkommende Funktion eines Parameters, oder einer Unbekannten, oder auch der Beobachtung als fingierte Beobachtung wählen. Es sei z. B.

(23)
$$F_{i}(\varphi_{(x)}, \dot{y}, z, l_{i} + v_{i}, p_{i}, q_{i}) = 0.$$

Statt, wie hier, l_i durch v_i zu korrigieren, verändern wir $\varphi_{(x)}$ um $\delta\varphi_i$ und haben dann

$$(24) F_i (\varphi_{(x)} + \delta \varphi_i, y, z, l_i, p_i, q_i) = 0.$$

Daraus erhalten wir durch Entwicklung

(24a)
$$F_{i} (\varphi_{(x_{0})}, y_{0}, z_{0}, l_{i}, p_{i}, q_{i}) + \left(\frac{\partial F_{i}}{\partial \varphi}\right)_{0} \delta\varphi_{i} + \left(\frac{\partial F_{i}}{\partial \varphi} \frac{d\varphi}{dx}\right)_{0} \xi + b_{i} \eta + c_{i} \zeta = 0$$

Die Entwicklung von (23) dagegen gibt

(23a)
$$F_{i} (\varphi_{(x_0)}, y_0, z_0, l_i, p_i, q_i) + \left(\frac{\partial F_{i}}{\partial \varphi} \frac{d\varphi}{dx}\right)_{\mathbf{0}} \xi + b_{i} \eta + c_{i} \zeta + \Lambda_{i} v_{i} = 0.$$

(24a) minus (23a) liefert

$$\left(\frac{\partial F}{\partial \varphi}\right)_0 \delta \varphi_i - \Lambda_i v_i = 0$$

oder

(25)
$$\delta\varphi_{i} = \frac{\Lambda_{i}}{\left(\frac{\partial F_{i}}{\partial\varphi}\right)_{0}}\nu_{i}$$

Danach wird

(26)
$$G_{\varphi(xi)} = \frac{\left(\frac{\partial F_i}{\partial \varphi}\right)_0^2}{\Lambda_i^2} g_i$$

Das Absolutglied der fingierten Fehlergleichungen wird nach (24a)

$$-\frac{F_{i} (\varphi_{(x_{0})}, y_{0}, z_{0}, l_{i}, p_{i}, q_{i})}{\left(\frac{\partial F_{i}}{\partial \varphi}\right)_{0}}$$

Dieses Absolutglied können wir auch noch auf eine andere Weise erhalten, die dann besonders einfach wird, wenn man (23) oder (24) nach $\varphi_{(x)}$ auflösen kann, so daß man erhält

$$\varphi_{(x)} = \Phi_i (y, z, l_i + v_i, p_i, q_i).$$

Ersetzt man $l_i + v_i$ durch l_i , $\varphi_{(x)}$ durch $\varphi_{(x)} + \delta \varphi_i$, so wird

$$\varphi_{(x)} + \delta \varphi_{i} = \Phi_{i} (y, z, l_{i}, p_{i}, q_{i})$$

$$= \Phi_{i} (y_{0}, z_{0}, l_{i}, p_{i}, q_{i}) + \left(\frac{\partial \Phi_{i}}{\partial y}\right)_{0} \eta + \left(\frac{\partial \Phi_{i}}{\partial z}\right)_{0} \zeta.$$

Es ist aber

$$x = x_0 + \xi$$

womit wir durch Entwicklung erhalten

$$\varphi_{(x)} = \varphi_{(x_0)} + \left(\frac{d\varphi}{dx}\right)_0 \xi$$

und damit

(28)
$$\delta\varphi_{i} = \left[\Phi_{i} \left(y_{0}, z_{0}, l_{i}, p_{i}, q_{i}\right) - \varphi_{(x_{0})}\right] - \left(\frac{d\varphi_{(x)}}{dx}\right)_{0} \xi + \left(\frac{\partial\Phi_{i}}{\partial y}\right)_{0} \eta + \left(\frac{\partial\Phi_{i}}{\partial z}\right)_{0} \zeta$$

Führen wir die Abkürzung ein

(29)
$$\Phi_{i}(y_{0}, z_{0}, l_{i}, p_{i}, q_{i}) = \varphi_{(xi)}$$

so wird das Absolutglied von (28)

(30) Absolutglied von (28) =
$$\varphi_{(x_i)} - \varphi_{(x_0)}$$

Bei dem Beispiel der Durchgänge mehrerer Sterne durch denselben Almukantarat von der Zenitdistanz z erhalten wir

$$\varphi_{(z)} = \cos z = \cos \Phi \cos p_i + \sin \Phi \sin p_i \cos (U_i + v_i + u - a_i)$$

Wir setzen

$$\cos z_i = \cos \Phi_0 \cos p_i + \sin \Phi_0 \sin p_i \cos (U_i + u_0 - a_i)$$

Damit wird

$$\delta \cos z_i = (\cos z_i - \cos z_0) - \left(\frac{d \cos z}{dz}\right)_0 dz + \sin z_0 \cos a_i d\Phi$$
$$- \sin \Phi_0 \sin z_0 \sin a_i du$$

Das gibt

(31)
$$\delta(\cos z_i) = (\cos z_i - \cos z_0) + \sin z_0 dz + \sin z_0 \cos a_i d\Phi - \sin \Phi_0 \sin z_0 \sin a_i du.$$

Das kann man auch noch auf eine andere Form bringen. Es ist

$$\delta \cos z_i = -\sin z_0 \, \delta \zeta_i$$
.

Ferner wird nach einer Taylor-Entwicklung

$$\cos z_i - \cos z_0 = -\sin z_0 (z_i - z_0).$$

Führen wir das in (31) ein, so finden wir nach Division durch — $\sin z_0$

(32)
$$\delta \zeta_i = -dz - \cos a_i d\Phi + \sin \Phi_0 \sin a_i du + (z_i - z_0)$$
$$\operatorname{mit} \cos z_i = \cos \Phi_0 \cos p_i + \sin \Phi_0 \sin p_i \cos (U_i + u_0 - a_i).$$

II. Behandlung einer vermittelnden Ausgleichung, wenn die Funktional-

determinante
$$\frac{\partial (F_1, F_2, F_3)}{\partial (x, y, z)} \equiv 0$$
 ist.

Bei der Behandlung von Beobachtungsaufgaben mit und ohne Ausgleichung kommt es hin und wieder vor, daß man nicht alle Unbekannten, die sich bei der Aufgabe zeigen, bestimmen kann, trotzdem die notwendige Zahl von Beobachtungen vorliegt.

Wir stellen uns ein Problem mit 3 Unbekannten x, y, z vor. Die Beobachtungswerte l_1 , l_2 , l_3 sind mit den 3 Unbekannten durch 3 Funktionen verknüpft

(33)
$$F_i = F_i(x, y, z, l_i) = 0 \qquad i = 1, 2, 3.$$

Führen wir für die Unbekannten die Näherungswerte x_0 , y_0 , z_0 und die Verbesserungen ξ , η , ζ ein, so erhalten wir durch Entwicklung

(34)
$$\begin{cases} F_{1}(x_{0}, y_{0}, z_{0}, l_{1}) + a_{1}\xi + b_{1}\eta + c_{1}\zeta = 0 \\ F_{2}(x_{0}, y_{0}, z_{0}, l_{2}) + a_{2}\xi + b_{2}\eta + c_{2}\zeta = 0 \\ F_{3}(x_{0}, y_{0}, z_{0}, l_{3}) + a_{3}\xi + b_{3}\eta + c_{3}\zeta = 0 \end{cases}$$

Wenn die Determinante aus den Koeffizienten der Unbekannten ξ , η , ζ verschwindet

(35)
$$\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = 0$$

dann kann man die Gleichungen (34) nicht nach den 3 Unbekannten ξ , η , ζ auflösen. Beachten wir aber die Beziehungen (8), nämlich

$$a_i = \left(\frac{\partial F_i}{\partial x}\right)_0$$
; $b_i = \left(\frac{\partial F_i}{\partial y}\right)_0$; $c_i = \left(\frac{\partial F_i}{\partial z}\right)_0$

so ist (35) identisch mit

(36)
$$\begin{vmatrix} \frac{\partial F_1}{\partial x} & \frac{\partial F_1}{\partial y} & \frac{\partial F_1}{\partial z} \\ \frac{\partial F_2}{\partial x} & \frac{\partial F_2}{\partial y} & \frac{\partial F_2}{\partial z} \\ \frac{\partial F^3}{\partial x} & \frac{\partial F_3}{\partial y} & \frac{\partial F_3}{\partial z} \end{vmatrix} = 0$$

Die in (36) auftretende Determinante ist aber nichts anderes als die Funktionaldeterminante

$$\frac{\partial (F_1, F_2, F_3)}{\partial (\xi, \eta, \zeta)}$$

Wir erhalten daher den Satz: Ein System von u Gleichungen mit u Unbekannten, entsprechend Formel (33), kann nur dann nach den u Unbekannten aufgelöst werden, wenn die Funktionaldeterminante

$$\frac{\partial (F_1, F_2, F_3, \dots F_u)}{\partial (\xi, \eta, \zeta, \dots \omega)}$$

von Null verschieden ist.

Es stellt sich nun die Frage, ob, wenn die obige Funktionaldeterminante gleich Null ist, man dann in einem System von n Gleichungen (n>u)

(37)
$$F_i(x, y, z, l_i + v_i, p_i, q_i) = 0 \quad i = 1, 2, 3, ...n$$

nach der Methode der kleinsten Quadrate, also unter Zuhilfenahme der Bedingung

$$[g_i \ v_i \ v_i] = \underset{i=1}{\overset{i=n}{\text{Minimum}}}$$

die 3 (allgemein u) Unbekannten x, y, z, ... u bestimmen kann?

Es ist schon behauptet worden, es sei selbstverständlich, daß dies nicht möglich sei. Ich bin aber der Ansicht, daß das bewiesen werden muß. Entwickeln wir (37) nach der Taylor-Reihe, so erhalten wir

(37a)
$$F_i(x_0, y_0, z_0, l_i, p_i, q_i) + a_i \xi + b_i \eta + c_i \zeta + \Lambda_i v_i = 0$$

 $i = 1, 2...n$
oder
 $f_i + a_i \xi + b_i \eta + c_i \zeta + \Lambda_i v_i = 0$

Daraus folgen die Fehlergleichungen

Gewicht

(38)
$$g_i; \qquad v_i = -\frac{a_i}{\Lambda_i} \xi - \frac{b_i}{\Lambda_i} \eta - \frac{c_i}{\Lambda_i} \zeta - \frac{f_i}{\Lambda_i}$$

während die Normalgleichungen werden

(39)
$$\left[g \frac{aa}{\Lambda^2} \right] \xi + \left[g \frac{ab}{\Lambda^2} \right] \eta + \left[g \frac{ac}{\Lambda^2} \right] \zeta + \left[g \frac{af}{\Lambda^2} \right] = 0$$

$$\left[g \frac{ab}{\Lambda^2} \right] \xi + \left[g \frac{bb}{\Lambda^2} \right] \eta + \left[g \frac{bc}{\Lambda^2} \right] \zeta + \left[g \frac{bf}{\Lambda^2} \right] = 0$$

$$\left[g \frac{ac}{\Lambda^2} \right] \xi + \left[g \frac{bc}{\Lambda^2} \right] \eta + \left[g \frac{cc}{\Lambda^2} \right] \zeta + \left[\zeta \frac{cf}{\Lambda^2} \right] = 0$$

Für drei beliebige Indizes k, l, m aus der Reihe 1, $2 \dots n$, besteht die Beziehung

(35a)
$$\begin{vmatrix} a_k & b_k & c_k \\ a_l & b_l & c_l \\ a_m & b_m & c_m \end{vmatrix} = 0$$

Nach (35a) sind alle dreireihigen Unterdeterminanten der Matrix

$$\begin{pmatrix} a_1 & a_2 \dots a_u \\ b_1 & b_2 \dots b_u \\ c_1 & c_2 \dots c_u \end{pmatrix}$$

Null. Folglich gibt es 3 Zahlen x, y, z, die nicht alle drei gleich Null sind, so daß die Gleichungen

(40)
$$Xa_i + Yb_i + Zc_i = 0 \quad i = 1, 2, ... n$$

erfüllt sind. Es sei nun $P = (P_1, P_2, \dots P_n)$ eine beliebige Zahlenreihe.

Man multipliziere die *i*.te Gleichung (40) mit P_i und summiere über i; man erhält

$$X[a P] + Y[b P] + Z[c P] = 0;$$

dasselbe mache man mit irgend zwei andern Zahlenreihen Q und R. Dann sieht man:

Das Gleichungssystem

(41)
$$[a P] X + [b P] Y + [c P] Z = 0$$

$$[a Q] X + [b Q] Y + [c Q] Z = 0$$

$$[a R] X + [b R] Y + [c R] Z = 0$$

besitzt ebenfalls die Lösung (X, Y, Z); da nicht alle drei Zahlen X, Y, Z gleich Null sind, ist daher die Determinante

(42)
$$\begin{vmatrix} [a P] & [b P] & [c P] \\ [a Q] & [b Q] & [c Q] \\ [a R] & [b R] & [c R] \end{vmatrix} = 0$$

Für den Spezialfall

$$P_{i} = g_{i} \frac{a_{i}}{\Lambda_{i}^{2}}; \ Q_{i} = g_{i} \frac{b_{i}}{\Lambda_{i}^{2}}; \ R_{i} = g_{i} \frac{c_{i}}{\Lambda_{i}^{2}}$$

erhalten wir aber aus (42)

$$\begin{bmatrix} g \frac{aa}{\Lambda^2} \end{bmatrix} & \begin{bmatrix} g \frac{ab}{\Lambda^2} \end{bmatrix} & \begin{bmatrix} g \frac{ac}{\Lambda^2} \end{bmatrix} \\ & \begin{bmatrix} g \frac{ab}{\Lambda^2} \end{bmatrix} & \begin{bmatrix} g \frac{bc}{\Lambda^2} \end{bmatrix} & \begin{bmatrix} g \frac{bc}{\Lambda^2} \end{bmatrix} & = 0 \\ & \begin{bmatrix} g \frac{ac}{\Lambda^2} \end{bmatrix} & \begin{bmatrix} g \frac{bc}{\Lambda^2} \end{bmatrix} & \begin{bmatrix} g \frac{cc}{\Lambda^2} \end{bmatrix} & \end{bmatrix}$$

womit gezeigt ist, daß, wenn (35a) für je 3 beliebige Indizes aus der Reihe $1, 2, \ldots n$ erfüllt ist, dann auch das Normalgleichungssystem (39), das aus den n Fehlergleichungen (38) nach der Methode d. kl. Qu. hervorgeht, auch nicht nach den drei Unbekannten aufgelöst werden kann. Damit ist aber der Beweis, von dem wir oben gesprochen haben, geleistet. Wir erkennen ohne weiteres, daß der obige Beweis auch für die Matrix

$$\left\{
\begin{array}{ccc}
a_{1} & a_{2} \dots a_{n} \\
b_{1} & b_{2} \dots b_{n} \\
c_{1} & c_{2} \dots c_{n} \\
\vdots & \vdots & \vdots \\
u_{1} & u_{2} \dots u_{n}
\end{array}
\right\} n > u$$

gilt. Damit haben wir den Satz gefunden:

Wenn ein Gleichungssystem, bestehend aus so viel Gleichungen, wie Unbekannte vorhanden sind, nicht aufgelöst werden kann, weil die Funktionaldeterminante verschwindet, dann können auch bei mehr Beobachtungen als notwendig sind, die Unbekannten nach der Methode d. kl. Qu. ebenfalls nicht bestimmt werden.

Den Beweis zu diesem Satze verdanke ich Herrn Prof. Dr. H. Hopf von der E. T. H. Zürich.

Es ist in einem Falle verschwindender Funktionaldeterminante zu empfehlen, u—1 neue Unbekannte einzuführen, für die die Funktionaldeterminante für u—1 Funktionen F_i nicht mehr verschwindet.

Ein sehr interessantes Beispiel der besprochenen Art ist das folgende, das Th. *Niethammer* in seinem kürzlich, wenige Wochen nach seinem Tode erschienenen Lehrbuch "Die genauen Methoden der astronomischgeographischen Ortsbestimmung", Basel 1947, behandelt hat.

Wir beobachten die Durchgangszeit U_i mehrerer Sterne durch denselben Vertikal vom unbekannten Südazimut a auf einer Station, deren Zenitdistanz des Poles Φ ist, während die Uhrkorrektion der Beobachtungsuhr u beträgt.

Im sphärischen Dreieck Pol-Zenit-Stern haben wir gemäß der Figur 1 nach einer Kotangentengleichung die Beziehung

(43)
$$F_i = \cot g \ a \sin \left(U_i + v_i + u - a_i \right) + \cot g \ p_i \sin \Phi - \cos \Phi \cos \left(U_i + v_i + u - a_i \right) = 0$$

Wir erhalten

$$A_{i} = \frac{\partial F_{i}}{\partial u} = \frac{\cos \Phi \sin z_{i} + \sin \Phi \cos z_{i} \cos a}{\sin a \sin p_{i}} = \frac{\cos q_{i}}{\sin a}$$

$$B_{i} = \frac{\partial F_{i}}{\partial a} = \frac{\sin z_{i}}{\sin a \sin p_{i}}$$

$$C_{i} = \frac{\partial F_{i}}{\partial \Phi} = \frac{\cos z_{i}}{\sin p_{i}} = \frac{\cos z_{i} \sin a}{\sin a \sin p_{i}}$$

Es ist leicht zu beweisen, daß die Determinante

$$\begin{vmatrix}
A_1 & B_1 & C_1 \\
A_2 & B_2 & C_2 \\
A_3 & B_3 & C_3
\end{vmatrix} = 0$$

indem

$$-\cos\Phi B_i + \sin\Phi \cot \alpha C_i = A_i$$

ist oder

$$1 A_i + \cos \Phi B_i - \sin \Phi \cot \alpha C_i = 0$$

Es besteht also für

$$X = 1$$
; $Y = \cos \Phi$; $Z = -\sin \Phi \cot \alpha$

die Beziehung (40).

Wir wählen a als fingierte Beobachtung. Dann muß (43) geschrieben werden:

cotg
$$(a + da_i) \sin (U_i + u_0 + du - a_i) + \cot g p_i \sin (\Phi_0 + d\Phi)$$

- $\cos (\Phi_0 + d\Phi) \cos (U_i + u_0 + du - a_i) = 0.$

Das liefert bei einer Behandlung nach der Theorie der fingierten Beobachtungen entsprechend dem früher gezeigten

$$\sin z_i d a_i = \cos q_i \sin p_i d (U_i + u) + \cos z_i \sin a_i d\Phi$$

ai erhalten wir aus der Gleichung

$$\operatorname{tg} a_{i} = -\frac{\operatorname{tg} p_{i} \operatorname{cosec} \Phi_{0} \sin (U_{i} + u_{0} - a_{i})}{1 - \operatorname{tg} p_{i} \operatorname{cotg} \Phi_{0} \cos (U_{i} + u_{0} - a_{i})}$$

Beachten wir, daß

(46)
$$\cos q_i \sin p_i = \cos \Phi \sin z_i \pm \sin \Phi \cos z_i \cos a$$
 { Stern Süd Stern Nord

ist, so erhalten wir

$$\sin z_i da - (\cos \Phi \sin z_i \pm \sin \Phi \cos z_i \cos a) du$$

 $\mp \cos z_i \sin a d\Phi = (a_i - a_0) \sin z_i$

Das können wir schreiben

$$\sin z_i (da - \cos \Phi du) \mp \cos z_i (\sin \Phi \cos a du + \sin a d\Phi)$$

= $\sin z_i (a_i - a_0)$

Wir führen nun die zwei neuen Unbekannten ein

(47)
$$\begin{cases} x = da - \cos \Phi du \\ y = \sin \Phi \cos a du + \sin a d \Phi \end{cases}$$

Damit erhalten wir die linearen, fingierten Fehlergleichungen

(48)
$$E_i = x \mp y \cot \alpha_i + (\alpha_0 - \alpha_i) \begin{cases} \text{Stern Süd} \\ \text{Stern Nord} \end{cases}$$

Da hier die Determinante der Koeffizienten von x und y für zwei beliebige Indizes nicht verschwindet, kann man die beiden Unbekannten

x und y aus n Fehlergleichungen (48) durch eine Ausgleichung bestimmen, sobald die Gewichte der fingierten Beobachtungen a_i bestimmt sind. Nach unsern Ergebnissen bei der Behandlung der fingierten Beobachtungen finden wir

$$G_{\alpha_i} = \frac{\sin^2 z_i}{\cos^2 q_i \sin^2 p_i} g_{U_i}$$

Da aber

(50)
$$g_{U_i} = \frac{1}{r_0^2 + s_0^2 \frac{1}{V^2 \sin^2 p_i \cos^2 q_i}}$$

gesetzt werden kann, wo

 $r_0=\pm 0^{\rm s}.031$ bei der Verwendung des unpersönlichen Mikrometers $s_0=\pm 2^{\rm s}.6$

V bedeutet die Fernrohrvergrößerung. Wir erhalten damit

(51)
$$G_{a_i} = \frac{\sin^2 z_i}{r_0^2 \cos^2 q_i \sin^2 p_i + \frac{s_0^2}{V^2}}.$$

Beobachtet man in zwei verschiedenen Azimuten a und b, so findet man durch eine Ausgleichung, die man in jedem Vertikal für sich ausführt, die Unbekannten x_a , y_a , x_b , y_b

(52)
$$\begin{cases} x_a = da - \cos \Phi_0 du \\ y_a = \sin \Phi_0 \cos a_0 du + \sin a_0 d\Phi \\ x_b = db - \cos \Phi_0 du \\ y_b = \sin \Phi_0 \cos b_0 du + \sin b_0 d\Phi \end{cases}$$

aus denen man durch Auflösen die 4 Unbekannten da, db, du und $d\Phi$ findet, gemäß den Gleichungen

(53)
$$\begin{cases} \sin \Phi_{0} \sin (a_{0} - b_{0}) du = -y_{a} \sin b_{0} + y_{b} \sin a_{0} \\ \sin (a_{0} - b_{0}) d\Phi = +y_{a} \cos b_{0} - y_{b} \cos a_{0} \\ da = +x_{a} + \cos \Phi_{0} du \\ db = +x_{b} + \cos \Phi_{0} du \end{cases}$$

Die Unbekannten x_a und y_a sind vollständig unabhängig von x_b und y_b , trotzdem beide du und $d\Phi$ enthalten. x_a und x_b enthalten wohl gemeinsam — $\cos \Phi_0 du$; aber x_a enthält da, x_b dagegen db, die miteinander nichts gemein haben. In y_a treten $\cos a_0$ und $\sin a_0$, in y_b aber $\cos b_0$ und $\sin b_0$ auf. y_a ist daher unabhängig von y_b .

Daraus erkennt man, daß man aus Durchgangsbeobachtungen durch einen Vertikal nur das Azimut dieses Vertikals und entweder die Polhöhe oder die Ortszeit bestimmen kann.

Beobachtet man aber die Durchgänge durch zwei verschiedene Vertikale, so kann man die Azimute beider Vertikale und sowohl die Polhöhe, wie die Ortszeit bestimmen.

Die Bewegung des erdmagnetischen Feldes

Die Tatsache, daß für vorwiegend topographische Zwecke Bussolentheodolite für Zugsmessungen eingesetzt werden, veranlaßt die Eidg. Landestopographie, kurze monatliche Bulletins über die Charakteristik des magnetischen Feldes im Fachorgan "Zeitschrift für Vermessungswesen und Kulturtechnik" zu publizieren. Die von der Eidg. Sternwarte Zürich berechneten Sonnenflecken-Relativzahlen lassen erkennen, daß wir uns im Jahre 1947 in einer Periode größter Fleckentätigkeit befanden. Ihr Abklingen wird hinsichtlich ihrer Einwirkung auf das erdmagnetische Feld gerade so interessant sein wie die Anfangsentwicklung, in welche wir in den Jahren 1945–1947 mit den systematischen Untersuchungen der Magnetogramme der Meteorologischen Zentralanstalt erstmals eingetreten sind.

Die Verbindungslinie der graphisch aufgetragenen Wolfschen Relativzahlen zeigt in ausgesprochenen Fleckenjahren sinusoiden Charakter. Die Wellenperiode beträgt im Mittel ungefähr 27 Tage, ist also identisch mit einer Sonnenrotation. Die Erklärung scheint darin zu liegen, daß sich auf der Sonne nachhaltige Fleckengebilde entwickeln, die trotz interner Variabilität einige Rotationsperioden anhalten. In fleckenarmen Jahren verliert sich dieser Charakter völlig (Tabelle I).

Im Auftrag der Flecken-Monatsmittel (Tabelle II) zeigt sich der generelle Verlauf der gesamten Fleckenperiode. Das Maximum scheint im Sommer 1947 aufgetreten zu sein. Die Rückwirkungen auf das erdmagnetische Feld sind hinsichtlich der Deklination doppelter Natur.

- a) Das Gesamtbild der Deklinationskurve ist bedeutend unruhiger, die Anzahl gestörter Stunden oder gar Tage ist ungleich größer als in fleckenarmen Perioden. Eine strenge Gesetzmäßigkeit zwischen Fleckenrelativzahl und magnetischer Störung ist jedoch nicht erkennbar, da die Flecken je nach Alter und Lage magnetisch sehr variabel sind, ja teilweise sogar inaktiv werden können. Aus diesen Gründen verunmöglicht sich eine genauere Prognose.
- b) Der Gesamtausschlag der Tageskurve (Amplitude) vergrößert sich merklich (Tabelle III). Die Sommer-Durchschnittskurve 1947 ist um 5'=9' stärker ausgebogen als diejenige von 1945, ja es treten einzelne Tage oder Tagesgruppen auf, die mit Amplituden bis zu 21'=40' überraschen. Eigentümlicherweise zeigt die Mehrzahl dieser Kurven keine An-