Zeitschrift: Schweizerische Zeitschrift für Vermessung, Kulturtechnik und

Photogrammetrie = Revue technique suisse des mensurations, du

génie rural et de la photogrammétrie

Herausgeber: Schweizerischer Verein für Vermessungswesen und Kulturtechnik =

Société suisse de la mensuration et du génie rural

Band: 45 (1947)

Heft: 6

Artikel: Zur Fehlertheorie der gegenseitigen Orientierung

Autor: Kasper, H.

DOI: https://doi.org/10.5169/seals-204715

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 09.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

VERMESSUNG UND KULTURTECHNIK

Revue technique Suisse des Mensurations et du Génie rural

Herausgeber: Schweiz, Verein für Vermessungswesen und Kulturtechnik. Offiz. Organ der Schweiz. Gesellschaft f. Photogrammetrie Editeur: Société Suisse de Mensuration et du Génie rural. Organe officiel de la Société Suisse de Photogrammétrie

REDAKTION: Dr. h. c. C. F. BAESCHLIN, Professor, Zollikon (Zürich)

Ständiger Mitarbeiter f. Kulturtechnik: E. RAMSER, Prof. f. Kulturtechnik ETH., Freiestr. 72, Zürich Redaktionsschluß: Am 1. jeden Monats

Expedition, Administration und Inseratenannahme: BUCHDRUCKEREI WINTERTHUR AG.
Schluß der Inseratenannahme am 6. jeden Monats

NR. 6 • XLV. JAHRGANG

der "Schweizerischen Geometer-Zeitung" Erscheinend am 2. Dienstag jeden Monats 10. JUNI 1947

INSERATE: 25 Rp. per einspalt. mm-Zeile. Bei Wiederholungen Rabatt gemäß spez. Tarif

ABONNEMENTE:

Schweiz Fr. 15.—, Ausland Fr. 20.— jährlich Für Mitglieder der Schweiz. Gesellschaft für Photogrammetrie Fr. 10.— jährlich Unentgeltlich für Mitglieder des Schweiz. Vereins f. Vermessungswesen u. Kulturtechnik

Zur Fehlertheorie der gegenseitigen Orientierung

Von Prof. Dr. H. Kasper, Strobl/Wolfgangsee

In den Abhandlungen "Théorie des erreurs de l'orientation relative" [1] und "Méthode de la connexion des images et théorie des erreurs de l'orientation relative" [2] behandelt Prof. W. K. Bachmann erstmalig erfolgreich das Problem der Parallaxenrestfehler bei der optisch-mechanischen Orientierung von Bildpaaren für einen bestimmten Spezialfall des Orientierungsverfahrens von Senkrechtaufnahmen. Er verwendet hierfür in [1] die von ihm entwickelte "Théorie des erreurs de l'observation des variables secondaires" [3] bzw. in [2] die Gewichtssymbolik nach Tienstra [4]*.

Wenn es sich darum handelt, verschiedene Verfahren der Orientierung von Bildpaaren zu beurteilen, kann man jedoch noch rascher, müheloser und direkter zu den entscheidenden Vergleichswerten gelangen, ohne mehr als das Fehlerfortpflanzungsgesetz anwenden zu müssen, was hier gezeigt werden soll.

Die zu behandelnde Methode hat überdies den Vorteil, einen vollen Einblick in die wirkliche Fehlerentstehung und -verknüpfung zu eröffnen und die inneren Zusammenhänge des Orientierungsverfahrens offener darzulegen.

Schließlich erhält man auch aus einer recht einfachen Form beding-

^{* [1],} Thèse Ecole d'Ingénieurs Lausanne, 1943;

^{[2], [3]} und [4], Schweizerische Zeitschrift für Vermessungswesen und Kulturtechnik, 1945.

ter Beobachtungen mit Unbekannten, ganz schematisch und übersichtlich die Gewichtskoeffizienten der Orientierungsgrößen.

Es sei dies hier für den Fall des Bildanschlusses nach dem von Herrn *Bachmann* verwendeten Orientierungsverfahren [2] (5.1) und (5.3) dargestellt.

Wir verfolgen hierbei hinsichtlich der Fehleruntersuchung die aufeinanderfolgenden Orientierungsphasen einzeln und notieren die zufälligen Restfehler für die 6 charakteristischen Modellpunkte in Tabelle 1.

Der erste Schritt ist die Messung der Parallaxe pv_4 mit bz_B , ihr zufälliger Beobachtungsfehler sei v_4 ; der nächste ist pv_6 mit v_6 . Der einzustellende Mittelwert hat den Fehler $\frac{v_4+v_6}{2}$. Er tritt als bz-Fehler in den

Punkten 3, 4, 5, 6 in voller Größe auf, in den beiden letzteren mit entgegengesetztem Vorzeichen. 1, 2 bleiben fehlerfrei. Wir vermerken dieses Ergebnis in Tabelle 1, Zeile 1, 2. Die Schritte 3 und 4 liefern mit φ_B gemessen, die Fehler v_3 und v_5 . Im einzustellenden Mittel verschwinden die Fehlereinflüsse der vorangegangenen bz-Messung für die Punkte 3 und 5, doch äußert sich dort nunmehr $\frac{v_3+v_5}{2}$. Die übrigen Punkte bleiben

unbeeinflußt. Die Schritte 5 und 6 geben mit den neuen Fehlern v_4' und v_6' im Mittel den Fehler $\frac{v_4'+v_6'}{2}$, deren Einfluß auf ω_B nach [2] (5. 1)

gleich ist $\frac{v_4'+v_6'}{2\;h\left(1+rac{a^2}{h^2}
ight)}$. Der Schritt 7 hat den Fehler v_2 mit dem ω -Einfluß

 $\frac{v_2}{h}$. Es wird also der einzustellende ω -Wert

$$(\omega_B)_m - \frac{h^2}{a^2} \left\{ (\omega_B)_2 - (\omega_B)_m \right\} = (\omega_B)_m \left(1 + \frac{h^2}{a^2} \right) - (\omega_B)_2 \cdot \frac{h^2}{a^2}$$

mit dem Fehler

$$\frac{v_{4}' + v_{6}'}{2 h \left(1 + \frac{a^{2}}{h^{2}}\right)} \cdot \left(1 + \frac{h^{2}}{a^{2}}\right) - \frac{v_{2} h}{a^{2}}$$

behaftet sein, dessen Einfluß für die Punkte 3, 4, 5 und 6 durch Multiplikation mit $h\left(1+\frac{h^2}{a^2}\right)$ zu

$$\left(\frac{v_4' + v_6'}{2} - v_2\right) \left(1 + \frac{h^2}{a^2}\right)$$

errechnet wird. Für die Punkte 1 und 2 ist mit h zu multiplizieren. Es entsteht

$$\left(\frac{v_4'+v_6'}{2}-v_2\right)\cdot\frac{h^2}{a^2}.$$

Punkt Nr.	Orien- tierungs- phase	Operator	Restfehler nach Beseitigung der Vertikalparallaxen durch Bildanschluß	Orien- tierungs- phase	Operator	Restfehler nach Beseitigung der Vertikalparallaxen durch Bildanschluß	Punkt Nr.		
	1, 2	bz_{B}	$\frac{v_4+v_6}{2}$	1, 2	bz_{B}	$\frac{v_4+v_6}{2}$			
	3,4	$\varphi_{m{B}}$	$\frac{v_3+v_5}{2}$	3,4	$\varphi_{m{B}}$	$\frac{v_4+v_6}{2}$			
3	5,6,7	ω_B	$\left \frac{v_3 + v_5}{2} + \left(\frac{v_4' + v_6'}{2} - v_2 \right) \left(1 + \frac{h^2}{a^2} \right) \right $	5,6,7	ω_B	$\frac{v_{4}+v_{6}}{2}+\left(\frac{{v_{4}}^{\prime}+{v_{6}}^{\prime}}{2}-v_{2}\right)\left(1+\frac{h^{2}}{a^{2}}\right)$	4		
	8	by_B	$\frac{v_3 + v_5}{2} + \frac{v_4' + v_6'}{2} - v_2 + v_2'$	8	$by_{m B}$	$\frac{v_{4}+v_{6}}{2}+\frac{v_{4}^{'}+v_{6}^{'}}{2}-v_{2}+v_{2}^{'}$			
	9	K_{B}	$\boxed{\frac{v_3 + v_5}{2} + \frac{v_4' + v_6'}{2} - v_2 + v_1}$	9	K_{B}	$\left[rac{v_{4}\!+\!v_{6}}{2}\!+\!rac{v_{4}^{'}\!+\!v_{6}^{'}}{2}-v_{2}\!+\!v_{2}^{'} ight]$			
	1, 2	bz_{B}		1, 2	bz_{B}	•			
1	3, 4	$\varphi_{m{B}}$		3, 4	$\varphi_{m{B}}$	• .			
	5,6,7	ω_B	$\left(\frac{v_4' + v_6'}{2} - v_2\right) \frac{h^2}{a^2}$	5,6,7	ω_B	$\left(\frac{v_{4}' + v_{6}'}{2} - v_{2}\right) \frac{h^{2}}{a^{2}}$	2		
	8	by_B	v ₂ '	8	by _B	$v_{2^{'}}$			
	9	K_{B}	v_1	9	K_{B}	$v_2^{'}$			
	1, 2	bz_{B}	$-\frac{v_4+v_6}{2}$	1, 2	bz_{B}	$-\frac{v_4+v_6}{2}$			
	3, 4	$\varphi_{m{B}}$	$-\frac{v_3+v_5}{2}$	3, 4	φ_{B}	$-\frac{v_4+v_6}{2}$			
5	5,6,7	ω_B		5,6,7	ω_{B}	$ -\frac{v_4 + v_6}{2} + \left(\frac{{v_4}' + {v_6}'}{2} - v_2\right) \left(1 + \frac{h^2}{a^2}\right) $	6		
	8	by_B	$-\frac{v_3 + v_5}{2} + \frac{v_4' + v_6'}{2} - v_2 + v_2'$	8	by_B	$-\frac{v_{4}+v_{6}}{2}+\frac{v_{4}^{'}+v_{6}^{'}}{2}-v_{2}+v_{2}^{'}$			
	9	K_{B}	$\boxed{-\frac{v_{3}+v_{5}}{2}+\frac{{v_{4}}'+{v_{6}}'}{2}-v_{2}+{v_{1}}'}$	9	K_B	$\boxed{-\frac{v_{4}+v_{6}}{2}+\frac{{v_{4}}'+{v_{6}}'}{2}-v_{2}+v_{2}'}$			

. Tabelle 2

							g	1	1	$\frac{1}{6}$	$\frac{1}{2}$	$\frac{1}{2}$
							= γ	1	1	H	1	+
0.0	$v_{6}^{'}$			$\frac{1}{2}$	$\frac{1}{2}$	1 2	1 2	•	•	T	-4	•
Restfehler der Orientierung	$v_{4}^{'}$		•	1 2 2	$\frac{1}{2}$	$\frac{1}{2}$	1 2	•	•	1	7•8	•
ntie	$v_2^{'}$	•	1	•	1	•	H	•	1	•		•
)rie	$ v_6 $	•		•	$\frac{1}{2}$	•	$-\frac{1}{2}$	•	•		Н	•
er ($ v_5 $	•	2.0	1 2 2	•	$-\frac{1}{2}$	2 3 00	•	•	•	·•	-
er d	v_4	•	•	•	$\frac{1}{2}$	•	$-\frac{1}{2}$	•	•	•	Н	•
ehle	v_3	•	•	$\frac{1}{2}$	•	$\frac{1}{2}$	٠	•	•	•	•	-
estf	a.	•	٠	- 1	-1	-1	-1	•		-2	٠	•
R	$ v_1 $	1	•	-		н	٠	1	•	•	•	
dbz_B		*	•	$+\frac{a}{h}$	$+\frac{a}{h}$	$-\frac{a}{h}$	$-\frac{a}{h}$	•	•		$+\frac{2a}{h}$	$+\frac{2a}{h}$
$d\phi_B$		٠	٠	$-\frac{ab}{h}$		$+\frac{ab}{h}$		•	•	•	•	$-\frac{2ab}{h}$
$d\omega_B$		h	h	$h\left(1+rac{a^2}{h^2} ight)$	$h\left(1+rac{a^2}{h^2} ight)$	$h\left(1+rac{a^2}{h^2} ight)$	$h\left(1+rac{a^2}{h^2} ight)$	h	h	$\frac{2a^2}{h}$	•	
dby		-1	-1	1-1	-1	Ť	-1	-1	-1		•	
dK_{B}		<i>q</i> —	•	<i>q</i> —		<i>q</i> —	•	<i>q</i> —	•	•	٠	
Fehler- gleichung		1)	2)	3)	4)	5)	(9)	I.	II.	III.	IV.	, ×
								1)	2)	$\begin{array}{c} \mathfrak{g} \\ \text{hn} \\ = 3 + 5) - 2 \times 2) \\ = 3 + 5) - 2 \times 1) \end{array}$	Entst 4) — 6)	3) — 5)

Punkt Nr. Orien-	tierungs- phase	Operator	Restfehler der gegenseitigen Orientierung	Orien- tierungs- phase	Operator	Restfehler der gegenseitigen Orientierung	Punkt Nr.
1	1,2	φ_{A}	e e e e e e e e e e e e e e e e e e e	1, 2	φ_{A}	$\frac{v_4+v_6}{2}$	
3	3, 4	$\varphi_{m{B}}$	$\frac{v_3+v_5}{2}$	3, 4	$\varphi_{m{B}}$	$\frac{v_4+v_6}{2}$	
3 5,	,6,7	ω_A	$\left \frac{v_3 + v_5}{2} + \left(\frac{v_3' + v_5'}{2} - v_1 \right) \left(1 + \frac{h^2}{a^2} \right) \right $	5,6,7	ω_A	$\left \frac{v_4+v_6}{2}+\left(\frac{{v_3}'+{v_5}'}{2}-v_1\right)\left(1+\frac{h^2}{a^2}\right)\right $	4
	8	K_{B}	$\frac{v_3 + v_5}{2} + \frac{v_3' + v_5'}{2} - v_1 + v_1'$	8	K_{B}	$\boxed{\frac{v_4 + v_6}{2} + \left(\frac{v_3' + v_5'}{2} - v_1\right) \left(1 + \frac{h^2}{a^2}\right)}$	
	9	K_{A}	$\boxed{\frac{v_3 + v_5}{2} + \frac{v_3' + v_5'}{2} - v_1 + v_1'}$	9	K_A	$\left[\begin{array}{c c} v_4 + v_6 \\ \hline 2 \end{array} + \frac{{v_3}' + {v_5}'}{2} \ - \ v_1 + v_2 \end{array} \right]$	
1	1, 2	$\varphi_{m{A}}$	•	1, 2	$\varphi_{m{A}}$		
3	3,4	$\varphi_{m{B}}$	\$	3, 4	φ_{B}		12
1 5,	, 6, 7	ω_A	$\left(\frac{v_{3}' + v_{5}'}{2} - v_{1}\right) \frac{h^{2}}{a^{2}}$	5,6,7	ω_A	$\left(\frac{v_{3}' + v_{5}'}{2} - v_{1}\right) \frac{h^{2}}{a^{2}}$	2
	8	K_{B}	v_1'	8	K_{B}	$\left(\frac{v_{3}' + v_{5}'}{2} - v_{1}\right) \frac{h^{2}}{a^{2}}$	
	9	K_A	v_1	9	K_A	v_2	
1	1, 2	φ_A	•	1, 2	φ_{A}	$-\frac{v_4+v_6}{2}$	
3	3, 4	φ_{B}	$\frac{v_3+v_5}{2}$	3, 4	φ_{B}	$-\frac{v_4+v_6}{2}$	
5 5,		II E	$\boxed{-\frac{{v_3}+{v_5}}{2}+\left(\!\frac{{v_3}'+{v_5}'}{2}-\!\!-v_1\!\right)\left(\!1\!+\!\!\frac{h^2}{a^2}\!\right)}$				6
	8	K_{B}	$-\frac{v_3 + v_5}{2} + \frac{v_3' + v_5'}{2} - v_1 + v_1'$	8	K_{B}	$-\frac{v_4+v_6}{2}+\left(\frac{{v_3}'+{v_5}'}{2}-v_1\right)\left(1+\frac{h^2}{a^2}\right)$	
	9	K_A	$\left[-\frac{v_3 + v_5}{2} + \frac{v_3' + v_5'}{2} - v_1 + v_1' \right]$	9	K_A	$ - \frac{v_4 + v_6}{2} + \frac{v_3' + v_5'}{2} - v_1 + v_2 $	

Der Schritt 8 tilgt den bisherigen Restfehler in 1 und 2 durch by_B und verringert um den gleichen Betrag

$$\left(\frac{v_{\mathbf{4}}'+v_{\mathbf{6}}'}{2}-v_{\mathbf{2}}\right)\cdot\frac{h^{\mathbf{2}}}{a^{\mathbf{2}}}$$

die Restfehler aller übrigen Punkte, teilt jedoch gleichzeitig seinen eigenen Fehler v_2 allen anderen Punkten mit. Schritt 9, die Drehung mit k_B tilgt in den Punkten 1, 3, 5 den Fehler v_2 und bringt ihnen den neuen Fehler v_1 . Damit ist die Orientierung beendet.

Die zufälligen Restfehler der 6 charakteristischen Punkte sind in der Tabelle 1 stark umrahmt.

Ist das Gewicht eines Fehlers v=1, so ist die Gewichtsreziproke für den *mittleren* Restfehler der Punkte 1 und 2 gleich $Q_{11}=Q_{22}=1$, für die Punkte 3 bis 6 nach dem Fehlerfortpflanzungsgesetz

$$Q_{33} = Q_{44} = Q_{55} = Q_{66} = \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + 1 + 1 = 3.$$

Dieses bemerkenswerteste Ergebnis der Arbeiten [1] und [2] ist somit lediglich durch die Fehlerbetrachtung selbst hergeleitet.

Die Tabelle 1 ist auch sonst fehlerkundlich recht aufschlußreich. Man beachte die innere gegenseitige Abhängigkeit der Restfehler, die hier klar zu Tage tritt.

Will man nun die Gewichtskoeffizienten der Orientierungsunbekannten herleiten, so sind in die bekannten Parallaxengleichungen (5. 1) nun der Reihe nach die erhaltenen Restfehler einzutragen. Tabelle 2 zeigt dies. Wir stehen vor einem Fall bedingter Beobachtungen mit Unbekannten, der jedoch einfachst zu lösen ist, indem durch leicht einzusehende Subtraktion bzw. Addition der 6 Gleichungen die 5 neuen I bis V mit den nun unabhängigen Verbesserungen $\lambda_{\rm I}$ bis $\lambda_{\rm V}$ hergeleitet werden, wie aus dem unteren Teil der Tabelle 2 ersichtlich ist. Die Gewichte g der λ sind die zeilenweisen reziproken Quadratsummen der Fehlerkoeffizienten. (Vgl. [1], Tabelle VIII.)

Die Normalgleichungen für die Gewichtsreziproken sind aus I bis V mit den neuen Verbesserungen λ und ihren Gewichten g sofort leicht gebildet; sie decken sich mit den in [1] Seite 50 angegebenen.

Für den Fall, daß beide Kammern beweglich sind [2] (5. 2) und (5. 4), können wir nun die Tabelle 3 direkt aufstellen, was in wenigen Minuten geschehen ist und nach dem vorhergehenden wohl kaum weitere Erklärungen erheischt.

Es ist in der Tat erstaunlich, daß dieses überaus wichtige, fehlertheoretisch so einfache Problem nicht schon längst richtig erkannt wurde und mehrfach zu falschen Beurteilungen geführt hat. Herr *Bachmann* hat das Verdienst, als erster einen *richtigen* Weg gegangen zu sein.

D. Kasper