Zeitschrift: Schweizerische Zeitschrift für Vermessungswesen und Kulturtechnik =

Revue technique suisse des mensurations et améliorations foncières

Herausgeber: Schweizerischer Geometerverein = Association suisse des géomètres

Band: 41 (1943)

Heft: 10

Artikel: Die Lösung der Normalgleichungen nach der Methode von Prof. Dr. T.

Banachiewicz: sogenannte "Krakovianenmethode" [Schluss]

Autor: Kamela, Czeslaw

DOI: https://doi.org/10.5169/seals-200756

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 01.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Die Lösung der Normalgleichungen nach der Methode von Prof. Dr. T. Banachiewicz

(sogenannte «Krakovianenmethode»)

Dipl. Ing. Czesław Kamela

(Schluß)

Zahlenbeispiel:

Man löse folgende Normalgleichungen auf:

$$38,85x + 4,42y - 4,41z + 2,41t + 28,95 = 0$$

+ $4,42x + 38,64y + 5,98z - 33,49t - 10,55 = 0$
- $4,41x + 5,98y + 38,61z - 1,58t + 17,65 = 0$
+ $2,41x - 33,49y - 1,58z + 54,74t + 11,13 = 0$
und $[pll] = 45,7665$.

Die ganzen Berechnungen können durch folgendes Schema dargestellt werden:

Tabelle I In jeder Zeile steht oben A, unten H.

		N)	* .		S_A	\mathcal{S}_H
+ 38,85	+ 4,42	-4,41	+ 2,41	+28,95	+ 70,220	+ 70,220
	+ 38,64 + 38,137	$+5,98 \\ +6,482$	—33,49 —33,764	— 10,55 — 13,844	+ 5,000	2,989
		+ 38,61 + 37,008	- 1,58 + 4,442	$+17,65 \\ +23,290$	+ 56,250	+ 64,730
			$+54,74 \\ +24,167$	+11,13 $-5,712$	+ 33,210	+ 18,455
				+ 45,7665 + 3,1613	+ 92,946	+ 3,161

$$\Sigma S_A = + 257,626$$

Tabelle II

Über der Trennungslinie I–G, unter dieser Linie G^{-1} .

					S_{G}	$S_{\boldsymbol{G}^{-1}}$
1	-0,113771	+0,113541	-0,062033	-0,745174	+1,807437	+1,000000
-0,113771	1	-0,169966	+0,885334	+0,363007	-0,078365	+0,886229
+0,132851	-0,169966	1	-0,119758	-0,629323	+1,749081	+0,962885
-0,178668	+0,905689	-0,119758	1	-0,236338	+0,763662	+1,607263
x = -0,912306	y = +0,684019	z = -0,657626	t = +0,236338	1	+1,000000	+0,350424

Tabelle III wie (23)

+0,025740	1	•		. •	$Q_{11} = +0.027877$
+0,026221	+0,012944	1	•		$Q_{22} = +0,060944$
+0,027021	+0,017649	+0,028888	1	•8	$Q_{33} = +0.027614$
+0,041379	+0,031922	+0,820273	+0,014342		$Q_{44} = +0,041379$

$$G^{-1} \cdot S_{G} = \left\{ \begin{array}{l} 0,9999 + 1,0000 + 1,0000 + 1,0000 + 1,0000 \end{array} \right\}$$

$$H \cdot S_{G} = I \cdot S_{A} = \left\{ \begin{array}{l} +70,219 \\ +5,000 \\ +56,251 \\ +33,209 \\ +92,945 \end{array} \right\}$$

$$S_H \cdot S_G = S_A = 257,625$$
 (soll sein 257,626)

Eine etwas andere Methode der Lösung der Normalgleichungen unter Anwendung der Krakovianen ist folgende: Hierin ist der Krakovian A, ohne Absolutglieder

$$A = \begin{cases} [paa] & [pab] & [pac] \\ [pba] & [pbb] & [pbc] \\ [pca] & [pcb] & [pcc] \end{cases}$$

$$(38)$$

Weiter berechnen wir die Krakovianen I-G, H und G^{-1} und die Kontrollsumme S_A , S_H , S_{I-G} und S_{G-1} , den Krakovian M mit den Koeffizienten

$$\frac{1}{[paa]}$$
, $\frac{1}{[pbb\cdot 1]}$, $\frac{1}{[pcc\cdot 2]}$ und den Krakovian N mit Koeffizienten

$$\sqrt{\frac{1}{[paa]}}, \sqrt{\frac{1}{[pbb\cdot 1]}}, \sqrt{\frac{1}{[pcc\cdot 2]}}$$
 (39)

Hierauf berechnen wir die Krakovianen P und S_p .

$$P = \begin{cases} \frac{1}{[paa]} & 0 & 0 \\ 0 & \frac{1}{[pbb \cdot 1]} & 0 \\ 0 & 0 & \frac{1}{[pcc \cdot 2]} \end{cases} \cdot G^{-1*}$$
(40)

$$P = \begin{cases} \frac{1}{[paa]} & 0 & 0 \\ 0 & \frac{1}{[pbb \cdot 1]} & 0 \\ 0 & 0 & \frac{1}{[pcc \cdot 2]} \end{cases} \begin{cases} g_{11}^{-1} & g_{21}^{-1} & g_{31}^{-1} \\ 0 & g_{22}^{-1} & g_{32}^{-1} \\ 0 & 0 & g_{33}^{-1} \end{cases}$$
(40*)

$$S_{p} = \begin{cases} S_{p11} \\ S_{p21} \\ S_{p31} \end{cases} \quad \text{wo} \quad S_{p21} = p_{21} + p_{22} \\ S_{p31} = p_{31} + p_{32} + p_{33}$$
 (40**)

Weiter berechnen wir den Krakovian R.

$$R = L \cdot P^* \tag{41}$$

$$R = \left\{ \begin{array}{l} - [pal] \\ - [pbl] \\ - [pcl] \end{array} \right\} \left\{ \begin{array}{l} p_{11} & p_{21} & p_{31} \\ 0 & p_{22} & p_{32} \\ 0 & 0 & p_{33} \end{array} \right\}$$
(41*)

Die Unbekannten x_1 , x_2 , x_3 berechnen wir aus $X = R \cdot P$ (42)

$$X = \begin{cases} x_1 \\ x_2 \\ x_3 \end{cases} = \begin{cases} r_{11} \\ r_{21} \\ r_{31} \end{cases} \begin{cases} p_{11} & 0 & 0 \\ p_{21} & p_{22} & 0 \\ p_{31} & p_{32} & p_{33} \end{cases}$$
(42*)

Nun berechnen wir die Koeffizienten Q und S_Q :

$$Q = P \cdot P \tag{43}$$

$$Q = \left\{ \begin{array}{ccc} q_{11} & 0 & 0 \\ q_{21} & q_{22} & 0 \\ q_{31} & q_{32} & q_{33} \end{array} \right\} = \left\{ \begin{array}{ccc} p_{11} & 0 & 0 \\ p_{21} & p_{22} & 0 \\ p_{31} & p_{32} & p_{33} \end{array} \right\} \quad \left\{ \begin{array}{ccc} p_{11} & 0 & 0 \\ p_{21} & p_{22} & 0 \\ p_{31} & p_{32} & p_{33} \end{array} \right\} \quad (43*)$$

$$S_{Q} = \begin{cases} S_{Q11} \\ S_{Q21} \\ S_{Q31} \end{cases} \quad \text{wo} \quad S_{Q21} = Q_{21} + Q_{22} + Q_{23} \\ S_{Q31} = Q_{31} + Q_{32} + Q_{33} \end{cases}$$
 (43**)

Zur Kontrolle dienen uns:

$$S_{I-G} \cdot S_{G}^{-1} = \Sigma g_{ik} \tag{44}$$

(ohne Koeffizienten g_{ik} für i = k)

Zweite Kontrolle:

$$\frac{\Sigma r^2_{ik} = [pll] - [pll \cdot k]}{\text{(45)}}$$

$$(k = \text{Anzahl der Unbekannten)}$$

$$S_A \cdot X = - \left\{ [pal] + [pbl] + [pcl] \right\} \tag{46}$$

$$-[pal] x - [pbl] y - [pcl] z = \Sigma r^{2}_{ik} = [pll] - [pll : k]$$
 (47)

$$\Sigma SQ_{ik} = \Sigma S^2_{pik} \tag{48}$$

$$S_A \cdot S_Q = \text{Anzahl der Unbekannten}$$
 (49)

also ist

$$\frac{S_{A_{11}} \cdot S_{Q_{11}} + S_{A_{21}} \cdot S_{Q_{21}} + S_{A_{31}} \cdot S_{Q_{31}}}{= \text{Anzahl der Unbekannten}}$$
(49*)

Als Schlußkontrolle dient

$$[pll \cdot k] = [pvv] \tag{50}$$

Zahlenbeispiel:

$$+459,00x - 308,00y - 389,00z + 244,00t - 507,00 = 0$$
 $-308,00x + 464,00y + 408,00z - 269,00t + 695,00 = 0$
 $-389,00x + 408,00y + 676,00z - 331,00t + 653,00 = 0$
 $+244,00x - 269,00y - 331,00z + 469,00t - 283,00 = 0$
und $[pll] = +1129,00$

Die ganzen Berechnungen können durch nebenstehendes Schema dargestellt werden.

Beide Zahlenbeispiele wurden vom Verfasser während der Übungen über Ausgleichsrechnung an der ETH. unter Leitung von Herrn Prof. Dr. Baeschlin durchgeführt.

Wir wollen nun zur Untersuchung der Anzahl der Operationen schreiten, die bei der Lösung der Normalgleichungen mittels des Gaußschen Algorithmus, mittels der ersten und mittels der zweiten Krakovianenmethode durchgeführt werden. Diese ganze Untersuchung kann in Tabellen zusammengestellt werden unter der Bedingung, daß bei keiner Operation eine Rechenmaschine angewendet, bei der Krakovianenmethode Multiplikationen mit der Zahl eins nicht berücksichtigt werden und auch die Kontrollrechnung nicht eingerechnet wird.

Diese Zusammenstellung wurde so durchgeführt, daß in der ersten Tabelle nur die Operationen bei der Berechnung der Unbekannten x, y, z angegeben wurden, in der zweiten Tabelle jene Operationen, die bei der Berechnung der Koeffizienten Q benötigt wurden und in der dritten Tabelle die Summe aller Operationen (d. h. die Summe der Operationen aus der Tabelle I und Tabelle II).

		Tabelle I	lle I	<u> </u>		- W		Tabe	Tabelle II	L		T	Tabelle III	III	
Nr.		Zeile steht	In jeder Zeile steht oben A , unten H	nten H	S_H	Z		J	g-f		SI-G		G^{-1}		S_{G-1}
1	+459,00	- 308,00	- 389,00	+244,00	+6,00 + 6,00	0,0021786	86 1 75 1	+ 0,671024	+ 0,847494 (0,531590	+	-			
63		+464,00 +257,325	+408,00 $+146,972$ $-$	-269,00 -105,270	$+295,00 \\ +299,026$	0,003861	8	1	0,571153	+	0,162059	+ 0,612024	1	3	
အ			+676,00 $ +262,381$ $-$	-331.00 - 64,086	$+364,00 \\ +198,295$	0,0038112	12 5		1	+ 0,244248	+	+	0,571153	П.	a a
4	"	" •	* •	$+469,00 \\ +280,574$	$+113,00 \\ +280,574$	0,00356412	412 3			1		0,143689	+ 0,269591	+	г
			×	-	ø		4 .3 91	, a	*	æ		Summe) + = 6	Summe = $+ 0.934258$ $+ 0.934258$	Kontr. + 0,934,258
Nr.	R			Tabelle IV P	VI e	<u> </u>	S_{P}	X		19	ð			S_G	17 10 E8
1	$^{+}_{23,664225}$	0,046675	•	· 8-		0	0,046675	x = + 0.212800	0,004824	31				+ 0,007435	20
23	22,117100	0,041830	0,062338		500 H		+0,104168	y = -1,465084	0,001459	0,0053888	90	100	8	+ 0,005866	9
က	1,276635	0,028660	0,035260	0,061735	35	0	$^{+}_{0,055135}$	z = z - 0,197827	+ 0,001644	0,001942	0,004023	23		+ 0,004595	20
4	8,161675	0,008579	0,016095	5 0,014582		0.059703 0	+ 0,081801	t = 0.487276	0,000512	+ 0,000961	0,000870	70 0,00036 4	364	+ 0,004883	က
	T = T	-[pal] = +507,00	$\begin{bmatrix} -[pbl] = \\ -695,00 \end{bmatrix}$	$= \frac{ -[pcl] }{0} = 0$		-[pdl] = + 283,00		2	2 E.	×			Aus Kon		0,022779
_] [[[[[2,6]	011	5	20000		17 0 20 4 2 .	100 110 110 110 110 110 110 110 110 110	1.0.1	1- 1-3114	- [-0]	177			11/ 000 6

 $\{-[pal] - [pbl] - [pcl] - [pdl] = -558,00$ Aus Kontr. = -557,99

Kontr.: $-[pal]x - [pbl]y - [pcl]z - [pdl]t = [r^2] = +1117,404$

 $[pll] = +1129,00 \\ [r^2] = +1117,404 \quad [pvv] = 1129,00-1117,404 = +11,596 \quad \text{Kontr.:} \\ [pvv] = [pll \cdot k] = 1129,00-1117,404 = +11,596 \\ [pvv] = (pll \cdot k) = (pll \cdot k) = 1129,00-1117,404 = +11,596 \\ [pvv] = (pvv) = (pvv$

Kontr. = 3,999 (soll sein 4,000 = Anzahl der Unbekannten)

Tabelle I Methode nach Gauß. Anzahl der Operationen bei der Berechnung der Unbekannten $x, y, z \dots$

Anzahl der Unbek.	Anzahl der Divisionen	Anzahl der Multiplikat.	Anzahl der Addit. u. Subtrakt.	Summe der Operationen
3	9	14	14	37
4	14	30	30	74
5	20	55	55	130
6	27	91	91	209
7	35	140	140	315
8	. 44	204	204	452
9	54	285	285	624
	•			•
•	•	•	•	•
•	¥	•	•	
n	$\frac{n}{2}(n+3)$	$ \begin{array}{c} i = n \\ \sum_{i=1}^{\infty} n_i^2 \\ i = 1 \end{array} $	$i = n$ $\sum_{i=1}^{\infty} n_i^2$	$2\sum_{i=1}^{i=n} n_i^2 + \frac{n}{2} (n+3)$

Tabelle II Methode nach Gauß. Anzahl der Operationen bei der Berechnung der Koeffizienten Q

Anzahl der Unbek.	Anzahl der Divisionen	Anzahl der Multiplik.	Anzahl der Addit. u. Subtrakt.	Summe der Operationen
3	6	8	5	19
4	10	20	14	44
5	15	40	30	85
6	21	70	55	146
7	28	112	91	231
8	36	168	140	344
9	45	240	204	489
•	•	•		•
	•	٠	•	•
•	٠	• •	•	•.
n	$\frac{n}{2}(n+1)$	$ \sum_{i=1}^{i=n} n_i (n_i - 1) $	$ \begin{array}{l} i = n \\ \sum (n_i - 1)^2 \\ i = 1 \end{array} $	$ \sum_{i=1}^{i=n} \left\{ 2 n_i (n_i - 1) + 1 \right\} $

Tabelle III = Tabelle I + Tabelle II

Methode nach Gauß. Anzahl der Operationen

Anzahl der Unbek.	Anzahl der Divisionen	Anzahl der Multiplikat.	Anzahl der Addit. u. Subtrakt.	Summe der Operationen
3	1 5	22	19	56
4	24	50	44	118
5	35	95	85	215
6	48	161	146	355
7	63	252	231	546
8	80	372	344	796
9	99	525	489	1113
	•			
n	n (n + 2)	$\sum_{i=1}^{i=n} \sum_{i=1}^{n_i (2n_i-1)}$	$\sum_{i=1}^{i=n} \frac{\sum (2n_i^2 - 2n_i + 1)}{i=1}$	$ \begin{array}{c c} i = n \\ \Sigma \{n_i (4 n_i - 1) + 2\} \\ i = 1 \end{array} $

Tabelle I Erste Krakovianenmethode. Anzahl der Operationen bei der Berechnung der Unbekannten $x, y, z \dots$

Anzahl der Unbek.	Anzahl der Divisionen	Anzahl der Multiplikat.	Anzahl der Addit. u. Subtrakt.	Summe der Operationen
3	6	14	14	34
4	10	30	30	70
5	15	55	55	125
6	21	91	91	203
7	28	140	140	308
8,	36	204	204	444
9	45	285	285	615
•		•	•	• ,
n	$\frac{n}{2}(n+1)$	$i = 1$ $\sum_{i=1}^{\infty} n_i^2$	$i = n$ $\sum_{i=1}^{i=n} n_i^2$	$2\sum_{i=1}^{i=n}n_{i}^{2}+\frac{n}{2}(n+1)$

Erste Krakovianenmethode

 ${\bf Tabelle\ I\,I}$ Anzahl der Operationen bei der Berechnung der Koeffizienten ${\bf \it Q}$

Anzahl der Unbek.	Anzahl der Divisionen	Anzahl der Multiplikat.	Anzahl der Addit. u. Subtrakt.	Summe der Operationen
3	3	8	3	14
4	4	- 15	6	25
5	5	24	10	39
6	6	35	15	56
7	7 -	48	21	76
8	8	63	28	99
9	9	80	36	125
•				
n	n	n² — 1	$\frac{n}{2}(n-1)$	$\frac{n}{2}(3n+1)-1$

Tabelle III

= Tabelle I + Tabelle II

Anzahl der Unbek.	Anzahl der Divis.	Anzahl der Multiplikat.	Anzahl der Additionen und Subtrakt.	Summe der Operationen
3	9	22	17	48
4	14	45	36	95
5	20	79	65	164
6	27	126	106	259
7	35	188	161	384
8	44	207	232	543
9	54	365	321	740
•	•	1		
n	$\frac{n}{2}(n+3)$	$\sum_{1}^{n}n_{i}^{2}+(n^{2}-1)$	$\frac{\sum_{i=1}^{n}n_{i}^{2}+\frac{n}{2}(n-1)}{1}$	$2\sum_{1}^{n}n_{i}^{2}+n(2n+1)-1$

Zweite Krakovianenmethode

Anzahl der Unbek.	Anzahl der Divis.	Anzahl der Multiplikat.	Anzahl der Addit. u. Subtrakt.	Anzahl der Wurzel- ausziehg.	Summe der Operationen
3	6	20	10	3	39
4	10	40	26	4	80
5	15	70	50	5	140
6	21	110	83	6	220
7	28	160	126	7	314
8	36	220	180	8	436
9	45	290	246	9	581
•			•	٠	
•	•	•	• #	•	•
n	$\frac{n}{2}(n+1)$	$10 \begin{Bmatrix} \overset{n}{\Sigma} n_{i^2-2} n_{i-1} \end{Bmatrix}$	$\sum_{1}^{n} S_{i} + \frac{3n}{2} (n-3)$ wo $S_{i} = 1 + 2 + 3 + + i$	n	$ \frac{\sum_{i=1}^{n} S_{i} + 10 \left\{ \sum_{i=1}^{n} n_{i}^{2} - \frac{1}{1} - 2 n_{i-1} \right\} + n (2n-3)}{-2n(2n-3)} $

 ${\bf Tabelle\ II}$ Anzahl der Operationen bei der Berechnung der Koeffizienten ${\bf \it Q}$

× ×				
Anzahl der Unbek.	Anzahl der Divisionen	Anzahl der Multiplikat.	Anzahl der Additionen u. Subtrakt.	Summe der Operationen
3	-	10	4	14
4	-	20	10	30
5	-	35	20	55
6	-	56	35	91
7	_	84	56	140
8	_	120	84	204
9	_	165	120	285
•	•	•	•	•
•	•		(E)	. T e
n		$\sum_{1}^{n} S_{i}$	$\sum_{i=1}^{n-1} S_i$	$\sum_{i=1}^{n} n_i^2$

Zweite Krakovianenmethode

Tabelle II = Tabelle I + Tabelle II

Anzahl der Unbek.	Anzahl der Divis.	Anzahl der Multiplikat.	Anzahl der Addit. u. Subtrakt.	Anzahl der Wurzel- auszieh.	Summe der Operationen
3	6	30	14	3	53
4	10	60	36	4	110
5	15	105	70	5	195
6	21	166	118	6	311
7	28	244	182	7	461
8	36	340	264	8	648
9	45	455	366	9	875
•				•	•
•	•		٠	٠	je .
n	$\frac{n}{2}(n+1)$	$egin{array}{l} 10 \left\{ egin{array}{c} \Sigma n_{i^2} - 2 n_{i-1} ight\} \ + & \sum \limits_{1}^{n} S_i \end{array}$	$\sum_{1}^{n} S_{i+} \frac{3n}{2} (n-3) + \sum_{1}^{n-1} S_{i}$	n	$ \begin{array}{c c} $

Sehr großen Einfluß auf die Genauigkeit der Berechnung der Unbekannten x, y, z... haben die nachfolgenden Operationen: Multiplikation, Division und Wurzelausziehung. Wenn wir die erste Tabelle für die Gaußsche Methode mit der ersten Tabelle für die erste Krakovianenmethode vergleichen, dann sehen wir sofort, daß die Anzahl der Multiplikationen gleich sind, gleichzeitig sind aber bei der ersten Krakovianenmethode weniger Divisionen als bei der Gaußschen Methode.

Der Vergleich der Tabellen III gibt uns ein Bild darüber, daß die erste Krakovianenmethode viel vorteilhafter ist, weil sie es gestattet,

viel Zeit zu ersparen und die Unbekannten x, y, z wie auch die Koeffizienten Q_{ii} viel genauer zu berechnen.

Beim Vergleich der Tabelle I für die Gaußsche Methode mit der Tabelle I für die zweite Krakovianenmethode bemerken wir, daß die Anzahl der Divisionen für die Gaußsche Methode der Anzahl der Divisionen und der Wurzelausziehungen zusammen für die zweite Krakovianenmethode gleich ist.

Die Anzahl der Multiplikationen bis zu 9 Unbekannten ist kleiner bei der Gaußschen Methode als bei der zweiten Krakovianenmethode, aber schon für mehr als 9 Unbekannte erfordert die zweite Krakovianenmethode weniger Operationen. Beim Vergleich der Tabellen II sehen wir, daß bei der zweiten Krakovianenmethode keine Divisionen vorhanden sind, hingegen ist aber die Anzahl der Multiplikationen bei der zweiten Krakovianenmethode kleiner als bei der Gaußschen Methode.

Dasselbe Ergebnis liefert der Vergleich der Tabellen III.

Die Krakovianenmethode besitzt folgende Vorteile:

- a) Die Bestimmung der Unbekannten x, y, z... und der Koeffizienten Q ist genauer.
- b) Während der Berechnung ist eine häufige Kontrolle möglich.
- c) Wir können die ganze Berechnung in ein praktisches Schema zusammenfassen, ohne Rücksicht auf die Anzahl der Unbekannten.
- d) Die Krakovianenmethode bietet eine große Zeitersparnis.
- e) Sie eignet sich sehr gut zur Durchführung der Berechnungen mit Hilfe von Doppelrechenmaschinen und kann bei der Ausgleichungsrechnung eine sehr ausgedehnte Anwendung finden.

Der Verfasser möchte es nicht versäumen, Herrn Prof. Dr. C. F. Baeschlin für seine Hilfsbereitschaft bei der Bearbeitung des vorliegenden Themas seinen Dank auszusprechen.

Literatur

- Prof. T. Banachiewicz: Was sind die Formeln neuer Art? Acta Astronom. c. Mai 1929, Krakau.
 - Etudes d'analyse pratique. Cracovie, 1938.
 - a) Einfluß der Gewichte auf die Resultate.
 - b) Bemerkung zum Zentralblatt für Mathematik, Bd. 17, 416.
 - c) Ordinary formulae, cracovians and matrices. Acta Astronom. c. 3, 1938, Juillet, Cracovie.
 - On the computation of inverse arrays. Acta Astronom. c. 4. Avril 1939, Cracovie.
 - a) Contrôle des opérations avec les cracoviens.
 - b) Ein Beispiel der Krakovianentechnik. Acta Astronom. c. Décembre 1938, Cracovie.
- Henry Jensen: Herleitung einiger Ergebnisse der Ausgleichungsrechnung mit Hilfe von Matrizen. Kopenhagen 1939.
- Prof. Dr. K. Weigel: "Geodezja" Warschau, 1938 (in polnischer Sprache).