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der Union nicht entsprochen hat, da die Übermittlung oft mehrere
Monate gedauert hat, und

2. anzuregen, daß der Rat den « Service des Exchanges
Internationaux » ersuchen möge, die prompte Übermittlung der Publikationen
von Land zu Land und ihre unmittelbare Verteilung in den Empfangsländern

zu gewährleisten.
Ich kann mich der Feststellung des Unionspräsidenten durchaus

anschließen, daß der Kongreß einen vollen wissenschaftlichen Erfolg
gehabt hat, trotz starker Reduktion der Delegationen. Den Organisatoren

und den leitenden Männern sei wärmstens gedankt, daß sie den
Mut aufgebracht haben, den Kongreß trotz des Krieges abzuhalten.
Hoffen wir, daß die Union während des Krieges durchhalten kann und
daß sie nach seiner Beendigung das ihre zur gemeinsamen wissenschaftlichen

Arbeit und zur Versöhnung der Welt beitragen kann.
Am Nachmittag des 15. und des 16. September besichtigte ich

noch Washington, wozu ich während des Kongresses, infolge ständiger
Inanspruchnahme, nicht gekommen war. Washington ist eine sehr
schöne Stadt. Die vielen Staatsgebäude sind meist in klassischem Stil
gebaut. Im Gegensatz zu New York finden wir hier viele prächtige
Parke und große, breite Alleen.

Vom 17.-26. September weilte ich wieder in New York und führte
dort die Besichtigung dieser Riesenstadt und ihrer engern und weitern
Umgebung und der Weltausstellung weiter. Am 26. September, mittags,
schiffte ich mich auf dem italienischen Dampfer „Conte di Savoia" ein.
Nach sehr schöner Überfahrt langten wir am 5. Oktober vormittags,
ohne Zwischenfall, in Genua an. Am Abend desselben Tages war ich
wieder zu Hause. Im Rückblick auf die vielen neuen Eindrücke, die
mir diese Reise nach den Vereinigten Staaten vermittelt hat, und auf
den sehr interessanten Kongreß, bereue ich es nicht, daß ich die Reise
unternommen habe, trotzdem es oft schwer war, ohne Nachrichten aus
der Heimat die nötige Besinnlichkeit aufzubringen.

Le théorème de Tissot et les lignes
de déformation.

Par W. K. Bachmann, géomètre off., Lausanne.

Le théorème de Tissot, relatif à la représentation d'une surface
quelconque sur une autre, est passablement répandu. Ce théorème joue
un rôle très important dans l'étude de toutes les projections non
conformes; il est en effet à la base de l'étude des déformations linéaires,
angulaires et superficielles. Sa démonstration est indiquée dans l'ouvrage
„Die Netzentwürfe geographischer Karten" de Tissot (traduction
allemande par E. Hammer). Quoique très simple, elle comporte cependant
certains inconvénients. Je suis persuadé que ce théorème gagnerait beaucoup

si l'on utilisait, non pas la démonstration de Tissot, mais une autre,
basée d'une manière systématique sur la géométrie différentielle. Cette
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dernière démonstration aura notamment les avantages suivants sur celle
donnée par Tissot:
1° elle sera une simple application d'une théorie bien connue;
2 ° elle permettra la résolution de certains problèmes qui n'ont pas encore

été envisagés jusqu'à présent et dont la solution ne peut être obtenue
au moyen de la démonstration indiquée par Tissot.

1° Le théorème de Tissot.

Enoncé du théorème: Pour toute représentation ponctuelle, continue,
non dégénérée et non conforme d'une surface quelconque sur une autre,
il existe un réseau de courbes orthogonales et un seul sur l'une des
surfaces tel que les courbes correspondantes sur l'autre surface forment
également un réseau orthogonal.

Démonstration. Soit S une surface donnée sous forme paramétrique
au moyen des relations

(1)

Désignons les coordonnées de la seconde surface par x, y, z. Comme
ces dernières seront des fonctions des paramètres u et v, la seconde
surface S pourra être représentée par les relations

Ix
x (u, o)

y_=y_(u, v)

z z (u, v)
Les points homologues sur les deux surfaces sont ainsi caractérisés

par les mêmes valeurs des paramètres u et v. Les lignes u constante
et v — constante constituent un système de coordonnées curvilignes sur
chacune des deux surfaces. Pour simplifier les calculs, nous introduisons
une représentation vectorielle des deux surfaces. L'équation de S peut
s'écrire
(U) _ r A", »)
et celle de S devient
(2') r ?(a, v).

L'équation vectorielle (1') remplace donc les trois équations (1), tandis

que (2') remplace le système (2).
Nous introduisons en outre les désignations suivantes:

-f ->¦ r± r±
8r _

-*- dr _ -* dr _
=* dr _

=»

&r ~Tl dv -T2 du -Fl dv -Tï
Considérons maintenant deux points P et P, situés respectivement

sur S et S et répondant aux valeurs u et v des paramètres. Donnons les
accroissements du et dv aux paramètres; les accroissements correspondants

des rayons vecteurs sont respectivement
-> -» -r =t =t =*

dr rxdu + r2dv et dr Txdu + r2dv
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En multipliant ces équations scalairement par dr et dr, et en posant

\dr\ — ds, \dr\ ds, nous obtenons

ds2 Tx2du2 + 2r\r2dudv + r22dv2

dì2 fx2du2 + 2%72 du dv + f22dv2

Introduisons en outre les désignations suivantes:

r,2 E î\r2 F r22 G T,2 Ë~ ?xf2 F 72 G

L'élément linéaire des surfaces S et S peut ainsi s'écrire sous la forme

f ds2 E du2 y 2Fdudv + G dv2
(3) _

ds2 E du2 + 2Fdudv + Gdv2

Ce sont les expressions bien connues de la première forme
fondamentale.

Soient | dì Txdu + 72dv

y Sr rtSu + r2 Sv

deux déplacements infinitésimaux sur la surface S à partir du point
P(u,v). Déterminons l'angl a formé par ces deux directions. Nous avons

dr • Sr dr • Sr ¦ cos a
d'où

E du Su y FlduSv + du Su) + GdvSv
cos a 3—5 —¦dr Sr

L'angle a est droit si l'on a

(4) EduSu + F(duSv + Sudv) + GdvSv 0

La condition d'orthogonalité pour les deux déplacements
correspondants sur la surface S à partir du point P (u, o) est de même

(4') ËduSu y F(du8v + Sudv) + GdvSv 0

La condition nécessaire et suffisante pour l'orthogonalité des deux
déplacements sur les deux surfaces est par conséquent l'existence simultanée

des deux relations (4) et (4'). Posons

dv Si;
Ai et ^— A2

du * Su

Les équations (4) et (4') deviennent après division par du Su

(5) UE + F (A, + A2) + G_\xt\2 0

+ F(Xx + A2) + GM, 0

Nous voyons que Àx it A2 sont les racines de l'équation du second
ordre

(FG — GF) A2 — (ÊG — EG) A + (EF — FË) 0



— 256 —

En posant A -t—, cette dernière prend la forme suivante

dv2 — dv du du2

(6) E F G

Ë F G

Nous avons alors trois cas à considérer:

a) L'équation (6) peut avoir une racine double. On montre facilement
que ce cas ne peut se présenter pour les surfaces réelles à paramètres
réels; par conséquent nous l'excluons ici.

b) L'équation (6) peut avoir une infinité de racines. Il en est ainsi si
l'on a identiquement

JT TT TL
Ë F ~

G

Dans ce cas, il existe en tout point de S une infinité de directions
orthogonales jouissant de la propriété demandée. On montre facilement que
la projection est alors conforme; on a en effet

ds
m -jj- k («, v)

La déformation linéaire est par conséquent une fonction de u et de »

seulement; elle est indépendante du rapport -r— ce qui est la caractéristique

des projections conformes.

c) L'équation (6) peut avoir deux racines distinctes. C'est ce dernier
cas qui fait précisément l'objet du théorème de Tissot, et nous voyons
que sa démonstration est tout simplement donnée par l'établissement de
la relation (6). Dans les conditions énoncées au début, l'équation (6) a en
effet toujours deux racines distinctes ce qui démontre le théorème.

2° L'ellipse indicatrice de Tissot.

En utilisant les résultats obtenus, nous arrivons facilement à la
notion de l'ellipse indicatrice. Dans ce qui suit, nous considérerons des

projections non conformes, jouissant des propriétés indiquées plus haut.
Pour simplifier les calculs, nous choisissons un système particulier de
coordonnées curvilignes. Supposons que l'on ait pris pour lignes de
coordonnées les deux réseaux orthogonaux qui se correspondent sur les deux
surfaces. On a dans ce cas F F 0. Considérons maintenant les

plans tangents aux deux surfaces aux points P (u, v) et P (u, v). Donnons
les accroissements du et dv aux paramètres. Les accroissements
correspondants des rayons vecteurs sont respectivement

dr rydu y r2dv dr rxdu + r2dv (voir flg. 1)
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Supposons que le point Q décrive dans le plan tangent un cercle de

rayon ds \dr\ ayant le point P (u,v) pour centre et cherchons le lieu
du point correspondant Q dans le plan tangent en P (u, v) à la surface S.
Nous avons d'une part

ds ¦ cos cp

d<f Y£ du ds • cos cp

dr) YG dv ds • sin cp

ou bien

et d'autre part

V£
ds • sin cpdv _VG

dr) ^Gdv

d'où en éliminant le paramètre tp

d$ =\JEdu ds • cos cp

(7)
rig2

IT

di)2

_G^
G

ds

ds2

sin y

Comme les coefficients E, E, G et G sont essentiellement positifs, on
voit que le point Q décrit une ellipse ayant pour axes

et

Nous remarquons en outre que les axes de cette ellipse coïncident
avec les axes de coordonnées, ce qui résulte du choix particulier des
coordonnées curvilignes. Cette ellipse se nomme «indicatrice de Tissot».
Il est alors très simple de tirer toutes les propriétés relatives aux
déformations angulaires, linéaires et superficielles des formules que nous
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venons d'établir. Etant donné que lous les résultats indiqués par Tissot
s'obtiennent ainsi sans aucune difficulté, je m'abstiens de les indiquer
ici et je me bornerai dans ce qui suit à étudier certaines propriétés
relatives aux déformations linéaires.

En utilisant le système de coordonnées curvilignes particulier que
nous avons adopté, nous obtenons l'expression suivante pour la
déformation linéaire:
,0. ds2 Ëdu* + Gdv2
(o) mr '

v ; ds2 E du2 + Gdv2

Cette expression montre que la déformation linéaire est maximum
ou minimum le long des lignes de coordonnées u constante et v
constante. Ce fait résulte du reste immédiatement de la considération de
l'indicatrice. Ainsi, les lignes de coordonnées jouent dans le cas considéré

un rôle tout à fait particulier, en ce sens qu'elles sont, en tout point
de la surface, tangentes aux axes de l'indicatrice. Nous appellerons par
la suite les lignes jouissant de cette dernière propriété des lignes de
déformation. Remarquons qu'il existe une grande analogie entre les lignes
de déformation et les lignes de courbure d'une surface. Nous sommes ainsi
amenés à déterminer les lignes de déformation pour une projection
quelconque de deux surfaces arbitrairement données. N'oublions pas que nous
avions adopté précédemment un système particulier de coordonnées
curvilignes, et que c'est seulement grâce à ce fait-là que les lignes de
coordonnées coïncidaient avec les lignes de déformation. Pour des raisons de

calcul, il ne sera en général pas indiqué de choisir ce système particulier
de coordonnées curvilignes. On choisira de préférence les lignes de
coordonnées de telle sorte que les formules de transformation deviennent aussi
simples que possible, et on déterminera ensuite les lignes de déformation
par le procédé que nous indiquerons ci-après.

Toutes les questions relatives aux lignes de déformation n'ont jamais
été envisagées jusqu'à présent et elles constituent, par conséquent, un
problème de genre nouveau.

3° Généralités sur les lignes de déformation.

Nous supposons dans ce qui suit que l'on ait choisi sur chacune des

surfaces S et S un système de coordonnées curvilignes absolument
arbitraire et nous admettons que la projection de S sur S soit donnée par les
relations (1 et (2). Cela étant, nous nous proposons de déterminer les lignes
de déformation pour la projection ainsi définie. En introduisant les

désignations précédentes, les éléments linéaires des deux surfaces sont
donnés parles relations (3). En supposant que l'on projette la surface S sur
la surface S, la déformation linéaire est donnée par

Ëdu2 + 2Fdudv + Gdv2
(9) m2

E du2 + 2 Fdudv + G dv2

Déterminons maintenant le rapport -=— pour lequel cette expression

devient maximum ou minimum.
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Nous obtenons

Ëdu y Ëdu Fdu + Gdv
(10) m" ' Edu + Fdv " Fdu + Gdv

d'où les deux équations

(Ë—m2E) du + (F — m2F)dv 0
(H)

(F — m2F) du + (G — m2G) dv 0

0

En éliminant du et dv entre les équations 11, nous obtenons

Ë — m*E Ë—m2^
F — m2F G — m2G

d'où en développant

(12) m* (EG — F2) — m2 (EG — 2 FF + ËG) + (ËG'— F2) 0

L'équation (12) nous fournit les deux valeurs m!2 et m22 correspondant
respectivement au maximum et au minimum de la déformation au point
envisagé, c'est-à-dire que (12) permet la détermination des axes de
l'indicatrice. Les directions de ces axes sont données par

Ëdu y Fdv Fdu y Gdv
Edu y Fdv Fdu y Gdv

ou bien

(13) (FG —- FG) dv2 y (EG — EG) du dv + (EF — EF) du2 0

C'est une équation différentielle du premier ordre et du second degré.
Par intégration, nous trouvons lesdeux famillesdecourbesdedéformation.

On vérifie aisément que (13) représente effectivement un réseau de
courbes orthogonales sur chacune des deux surfaces. Considérons par
exemple la surface S; la condition d'orthogonalité est

et les racines de l'équation (13) vérifient précisément l'équation (14).
Pour la surface S, la démonstration reste exactement la même à condition

que l'on remplace E, F, G par E, F, G respectivement.
Pour une meilleure compréhension de la théorie précédente, nous

allons considérer quelques applications simples.

4° Applications.

Considérons la projection de la sphère sur le plan au moyen des
relations

x cp

(15) ' y - A
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où cp et A désignent, comme d'habitude, la longitude et la latitude sur la
sphère. Cette projection est connue sous le nom de « cartes plates ». Les
lignes <p constante et À constante forment sur la sphère le système
des méridiens et des parallèles, donc un réseau orthogonal. Le réseau
correspondant dans le plan est également orthogonal. D'après ce qui
précède, nous voyons que les lignes x constante et y constante sont
les lignes de déformation pour la projection considérée.

Si nous considérons, au lieu de la transformation (15), la suivante

(16) f X h <?K ' \ y /, (A)

où fx et /2 représentent deux fonctions arbitraires des variables cp et A

respectivement, nous constatons immédiatement que les lignes x
constante et y constante sont encore les lignes de déformation.

Comme second exemple, nous considérons une projection quelconque
de la sphère sur le plan, définie par les formules

x x (<p, À)
(17)

l y y (<p, A)

L'élément linéairede la sphère estdonnépards2 dcp2 y cos2? • dA2

d'où £=1 F 0 G cosV EG — F2 cos2?

et l'élément linéaire du plan est

d~s2 (x^,2 + y92) dcp2 + 2 (x^xA + y<pyx) dcpdX + (xA2 + yx2) dA2

d'où

E x92 + y92 F xfxx y yvyx G x^2 + y£
L'équation (13) devient dans ce cas

(18) (x^xA + y(pyx) cos2? (~j +

+ [(V + Vcp*) cos2 cp — (xA2 + yA2)] |£ — (x^xA + yvyx) 0

Nous utiliserons cette dernière relation ultérieurement.

5° Détermination des projections ayant des lignes de déformation données.

Dans cette partie, nous nous proposons de résoudre le problème
suivant:

Soient S et S deux surfaces données et C un réseau de courbes
orthogonales sur l'une d'elles. Déterminer toutes les projections de S sur S

telles que les courbes données soient des lignes de déformation.
Avant d'aborder le problème général, nous allons considérer un cas

particulier; nous étudierons la projection de la sphère sur le plan. Comme
précédemment, nous nous donnons la projection au moyen des relations
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(17) où les fonctions x (cp, A) et y (cp, A) restent pour le moment indéterminées.

Le réseau de courbes est défini au moyen de l'équation

(19) P (cp, A) (<g)2- Q (cp, A) g + R (cp, A) - 0

Ce réseau ne sera cependant formé de courbes orthogonales que si
les coefficients P, Q et R satisfont à une certaine relation que nous allons
établir. La condition d'orthogonalité pour deux déplacements sur la
sphère est en effet donnée par la relation (4) où nous avons E 1,
F 0 et G cos2?; cette condition devient par conséquent

(20) d?8? + cos2? • dX SX 0

L'équation (19) nous donne

/dX\2 Q (dX\ R n dA SA R
0 d ou(dcp)\dcpj P \dcpj ^ P dcp Sep " P

En introduisant cette valeur dans (20), nous obtenons

(21) P y R cos2? 0

Cette dernière condition est nécessaire et suffisante. En tenant
compte de (21), l'équation (19) peut s'écrire

(22) CMn9.R.Q,+ Q^-R 0

D'autre part, nous avons vu que le réseau des lignes de déformation
est donné par l'équation (18). Etant donné que les équations (18) et (22)
doivent représenter les mêmes courbes, nous devons avoir

(23)
X<PXX + y<PyX

R

cos2 • (Xy,2 + y92) --(xA2 + yA2)

Q

Si les fonctions x (cp, X) et y (cp, X) satisfont à la relation (23), les

lignes de déformation coïncident bien avec les lignes du réseau proposé.
Il s'agit donc de savoir déterminer ces fonctions pour que (23) soit
toujours vérifiée. Nous constatons immédiatement que le problème est
encore indéterminé; nous pouvons en effet disposer de l'une quelconque de
ces deux fonctions et l'équation (23) nous fournit alors une équation aux
dérivées partielles permettant la détermination de l'autre fonction. Nous
tirerons plus loin des conséquences de cette indétermination; pour le

moment, nous nous contentons de montrer que l'on peut toujours trouver
une infinité de fonctions satisfaisantes aux conditions du problème.
Supposons par exemple que l'on ait choisi la fonction x x A); l'équation

(23) devient alors une équation aux dérivées partielles en y. Soit
y y (cp, X, a, b) l'intégrale complète de cette équation. En prenant
b b (a) et en cherchant ensuite l'enveloppe de la famille de surfaces
ainsi définie, nous obtenons l'intégrale générale qui dépendra d'une
fonction arbitraire de et de A. On peut alors profiter de ces fonctions
arbitraires pour introduire certaines conditions initiales. Considérons
maintenant une application simple.
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Déterminons toutes les projections de la sphère sur le plan telles que
les méridiens et les parallèles soient des lignes de déformation. Nous
avons déjà vu que les cartes plates jouissent de cette propriété et nous
allons naturellement les retrouver comme cas particulier. L'équation (22)
devient dans ce cas
(24) d?dA 0

et l'équation (23) donne la condition

(25) *?*A + ycpU\ o

Nous apercevons immédiatement les solutions

x x x x (A)
ou {

y y (A) l y v(¥)
L'équation (25) peut cependant encore être vérifiée par d'autres

fonctions. Pour fixer les idées, nous prenons par exemple
x acp + bX y c0

où a, b et c0 sont des constantes. Nous nous proposons de déterminer y
dans ces conditions. Dans le but d'obtenir les notations propres à la
théorie des équations aux dérivées partielles, nous posons

J/? P y\ — 1 L'équation (25) devient pq + ab 0

Les caractéristiques sont données par
dcp dX dy dp dq
~q ^T 2 pq ~ ~Ö~ _ ~W

ce qui nous donne les intégrales premières

p Kx et

q K2

Intégrons donc le système
f pq —ab
\ p K

Ces deux équations sont, comme on le sait, en involution. Nous avons

dy Kdcp jzr dX d'où

y Kcp — -g, X y cr

Le système des deux équations

Ix
a? + bX y c0

y Kcp — -g-
A + Cx

constitue donc une solution du problème proposé. Remarquons que les
constantes Ca, et cx jouent un rôle secondaire, étant donné qu'elles
correspondent à une translation des axes de coordonnées dans le plan. Le
système précédent contient ainsi trois constantes essentielles. Le résultat
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obtenu se vérifie immédiatement en cherchant les lignes de déformation
de la projection ainsi définie.

Considérons maintenant le cas général. Donnons-nous les deux
surfaces S et S, et sur S un Téseau de courbes orthogonales défini au moyen de
la relation
(26) Pdv2 + Qdudv + Rdu2 0

Déterminons maintenant les projections admettant ces lignes comme
courbes de déformation. Nous savons que les lignes de déformation satisfont

toujours à l'équation (13). Etant donné que les équations (13) et (26)
doivent représenter les mêmes courbes, nous devons avoir

(27)
P Q R

ËG — GF EG — EG ËF — EF

Ces relations doivent avoir lieu identiquement. Remarquons qu'elles
expriment implicitement l'orthogonalité du réseau choisi. Si nous
disposons par contre des coefficients P, Q et R de telle sorte que le réseau
soit formé de courbes orthogonales, nous n'aboutirons alors qu'à une
seule équation (27) comme dans le cas de la projection de la sphère sur le
plan que nous avons considéré plus haut. Nous constatons que le
problème est de nouveau indéterminé et que nous pouvons encore trouver
une infinité de projections satisfaisant aux conditions imposées. Il est
clair que les conditions initiales que nous pouvons alors introduire pour
déterminer complètement le problème, peuvent être de diverses natures.
Nous pouvons par exemple demander que la projection fasse correspondre,
à une ligne choisie sur la surface S, une ligne arbitrairement donnée sur
la surface S; nous pouvons de même imposer que l'indicatrice prenne en
un point donné une forme donnée d'avance, ou que la déformation le

long d'une ligne soit une fonction donnée d'avance.
Les quelques exemples qui précèdent nous montrent que la théorie

des lignes de déformation peut donner lieu à des applications très intéressantes.

En utilisant les théories relatives aux systèmes d'équations aux
dérivées partielles, il sera facile d'aboutir à quelques théorèmes très
intéressants, que je veux traiter plus tard.

Considerazioni pratiche sulla restituzione stereo-
fotogrammetrica; sua azione fisiologica.

Mi sia permesso raccogliere alcune osservazioni e deduzioni, frutto
di una pratica forse non molto lunga, ma intensa, nel campo della
stereofotogrammetria.

Chi scrive ha avuto occasione di partecipare alla vita di parecchi
studi privati di stereofotogrammetria di diverse Nazioni, e di collaborare

come istruttore a due Corsi di Fotogrammetria tenuti al
Politecnico di Zurigo.
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