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der Union nicht entsprochen hat, da die Ubermittlung oft mehrere
Monate gedauert hat, und _

2. anzuregen, dall der Rat den «Service des Exchanges Inter-
nationaux » ersuchen maoge, die prompte Ubermittlung der Publikationen
von Land zu Land und ihre unmittelbare Verteilung in den Empfangs-
landern zu gewdihrleisten.

Ich kann mich der Feststellung des Unionspriasidenten durchaus
anschlieen, dall der Kongref3 einen vollen wissenschaftlichen Erfolg
gehabt hat, trotz starker Reduktion der Delegationen. Den Organisa-
toren und den leitenden Minnern sei wirmstens gedankt, dal3 sie den
Mut aufgebracht haben, den Kongre3 trotz des Krieges abzuhalten.
Hoffen wir, da3 die Union wiahrend des Krieges durchhalten kann und
daf3 sie nach seiner Beendigung das ihre zur gemeinsamen wissenschaft-
lichen Arbeit und zur Versohnung der Welt beitragen kann.

Am Nachmittag des 15. und des 16. September besichtigte ich
noch Washington, wozu ich wihrend des Kongresses, infolge sténdiger
Inanspruchnahme, nicht gekommen war. Washington ist eine sehr
schone Stadt. Die vielen Staatsgebiude sind meist in klassischem Stil
gebaut. Im Gegensatz zu New York finden wir hier viele prichtige
Parke und grolle, breite Alleen.

Vom 17.-26. September weilte ich wieder in New York und fiihrte
dort die Besichtigung dieser Riesenstadt und ihrer engern und weitern
Umgebung und der Weltausstellung weiter. Am 26. September, mittags,
schiffte ich mich auf dem italienischen Dampfer ,,Conte di Savoia‘ ein.
Nach sehr schoner Uberfahrt langten wir am 5. Oktober vormittags,
ohne Zwischenfall, in Genua an. Am Abend desselben Tages war ich
wieder zu Hause. Im Riickblick auf die vielen neuen Eindriicke, die
mir diese Reise nach den Vereinigten Staaten vermittelt hat, und auf
den sehr interessanten Kongrel3, bereue ich es nicht, daf3 ich die Reise
unternommen habe, trotzdem es oft schwer war, ohne Nachrichten aus
der Heimat die noétige Besinnlichkeit aufzubringen.

Le théoréme de Tissot et les lignes
de déformation.
- Par W. K. Bachmann, géometre off., LLausanne.

Le théoréme de Tissot, relatif a la représentation d’une surface
quelconque sur une autre, est passablement répandu. Ce théoréme joue
un role trés important dans I'étude de toutes les projections non con-
formes; il est en effet a la base de I'étude des déformations linéaires,
angulaires et superficielles. Sa démonstration est indiquée dans I'ouvrage
,,Die Netzentwiirfe geographischer Karten‘ de Tissot (traduction alle-
mande par E. Hammer). Quoique tres simple, elle comporte cependant
certains inconvénients. Je suis persuadé que ce théoreme gagnerait beau-
coup si ’on utilisait, non pas la démonstration de Tissot, mais une autre,
basée d’une maniére systématique sur la géométrie différentielle. Cette
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derniére démonstration aura notamment les avantages suivants sur celle

donnée par Tissot:

10 elle sera une simple application d’une théorie bien connue;

20 elle permettra la résolution de certains problémes qui n’ont pas encore
été envisagés jusqu’a présent et dont la solution ne peut étre obtenue
au moyen de la démonstration indiquée par Tissot.

1° Le théoréme de Tissol.

Enoncé du théoréme: Pour toute représentation ponctuelle, continue,
non dégénérée et non conforme d’une surface quelconque sur une autre,
il existe un réseau de courbes orthogonales et un seul sur 'une des sur-
faces tel que les courbes correspondantes sur l'autre surface forment
également un réseau orthogonal.

Démonstration. Soit S une surface donnée sous forme paramétrique
au moyen des relations

& = ¥ {l, o)
(1) y =y
z = 2(:D)

Désignons les coordonnées de la seconde surface par x, y, z. Comme
ces dernieres seront des fonctions des parametres u et v, la seconde sur-

face S pourra étre représentée par les relations
x = E(u, D)

(2) y=19 (I.l, v)
z = z (u, v)

Les points homologues sur les deux surfaces sont ainsi caractérisés
par les mémes valeurs des parametres u et v. Les lignes u = constante
et v = constante constituent un systéme de coordonnées curvilignes sur
chacune des deux surfaces. Pour simplifier les calculs, nous introduisons
une représentation vectorielle des deux surfaces. L’équation de S peut

s’écrire

(1) _ T =1 (u, v)
et celle de S devient N 7
(2%) T = T (u,D).

L’équation vectorielle (1) remplace donc les trois équations (1), tan-
dis que (2) remplace le systéme (2).
Nous introduisons en outre les désignations suivantes:

or o _ o or _ or _
ou o T '

N
o [

—
—— i s
1 ou ov
Considérons maintenant deux points P et P, situés respectivement

sur S et S et répondant aux valeurs u et v des paramétres. Donnons les
accroissements du et dv aux parametres; les accroissements correspon-
‘dants des rayons vecteurs sont respectivement

- — —- = = =
dr = rydu + r,dv et dr = ridu + r,do
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En multipliant ces équations scalairement par dretd rﬁ'*—, et en posant
|d_;'| = ds,

—> o
drl = ds, nous obtenons
ds? = F;zd'u2 + 2!‘:17;dudv — 17;2(1’1)2
ds® = r,?du® + 2ryr,dudov + r,2dv?

Introduisons en outre les désignations suivantes:

=3 o - = —

rmP=E nra=F 1= r*=FE nrn=F 12=0
L’élément linéaire des surfaces S et S peut ainsi s’écrire sous la forme
{ ds® = Edu® + 2Fdudv + G dv?

(3) _ _ — _
ds* = Edu® + 2Fdudv + Gdv?

Ce sont les expressions bien connues de la premiére forme fonda-
mentale.

Soient { d? _ I_‘;dll 4 ;;dv
S = I, 8U + T, 80

deux déplacements infinitésimaux sur la surface S & partir du point
P(u,v). Déterminons I'angl- a formé par ces deux directions. Nous avons

dr- 8r = dr- 8r - cos a
d’ou
Edudu + F(dudv + dvdu) + Gdvdv

CcOS a =
dr ér

L’angle a est droit si 'on a
(4) Edudu + F (dudv + dudv) + Gdvdv = 0

La condition d’orthogonalité pour les deux déplacements corres-
pondants sur la surface S a partir du point P (u, v) est de méme

(4% Edudu + F(dudv + Sudv) + Gdvosv = 0

La condition nécessaire et suffisante pour ’orthogonalité des deux
déplacements sur les deux surfaces est par conséquent I’existence simul-
tanée des deux relations (4) et (4”). Posons

- dv-
du

v

du

Les équations (4) et (4°) deviennent apreés division par du éu
{ E + F (A + A) + (i)t,)\zz 0
E+F(A1+ A) + GAL A, =0

= AI et = Ag

()

Nous voyons que A, ¢t A, sont les racines de ’équation du second
ordre '

(FG— GF) \* — (EG— EG) A + (EF — FE) = 0
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En posant A = %, cette derniére prend la forme suivante
dv®? — dvdu du?
(6) E F G | =0
E F G

Nous avons alors trois cas a considérer:

a) L’équation (6) peut avoir une racine double. On montre facilement
que ce cas ne peut se présenter pour les surfaces réelles a parameétres
réels; par conséquent nous I’excluons ici.

b) L’équation (6) peut avoir une infinité de racines. Il en est ainsi si

I'on a identiquement
E F G

E F G
Dans ce cas, il existe en tout point de S une infinité de directions ortho-
gonales jouissant de la propriété demandée. On montre facilement que
la projection est alors conforme; on a en effet
ds
M= —- = # (u, v)

La déformation linéaire est par conséquent une fonction de u et de v

seulement; elle est indépendante du rapport % ce qui est la caractéris-

tique des projections conformes.

¢) L’équation (6) peut avoir deux racines distinctes. C’est ce dernier
cas qui fait précisément I’objet du théoréme de Tissot, et nous voyons
que sa démonstration est tout simplement donnée par I’établissement de
la relation (6). Dans les conditions énoncées au début, I’équation (6) a en
effet toujours deux racines distinctes ce qui' démontre le théoréme.

20 L’ellipse indicatrice de Tissol.

En utilisant les résultats obtenus, nous arrivons facilement a la
notion de 1’ellipse indicatrice. Dans ce qui suit, nous considérerons des
projections non conformes, jouissant des propriétés indiquées plus haut.
Pour simplifier les calculs, nous choisissons un systéme particulier de
coordonnées curvilignes. Supposons que ’on ait pris pour lignes de coor-
données les deux réseaux orthogonaux qui se correspondent sur les deux
surfaces. On a dans ce cas F = F = 0. Considérons maintenant les

plans tangents aux deux surfaces aux points P (u, v) et P (u, v). Donnons
les accroissements du et dv aux parametres. Les accroissements corres-
pondants des rayons vecteurs sont respectivement

=

- - == =
dr = rydi Edv dr = r;du + ry,dv (voir fig. 1)



o5
aly T 7 N
A
7 dv adr
-4
F  Fau
Fig. 1.

Supposons que le point Q décrive dans le plan tangent un cercle de

rayon ds = id?l ayant le point P (u, v) pour centre et cherchons le lieu

du point correspondant Q dans le plan tangent en P (u, v) a4 la surface S.
Nous avons d’une part

ds - cos ¢
. du = —
{df:‘\/Edu:ds-COSgo . VE
- ou bien
dyg = YGdv = ds -+ sin ¢ a,v__ds-sin<p
VG
et d’autre part :
df:\/fdu: %—ds-cosga
1
d5=\/:G:dv = —g— ds « sin ¢
d’ou en éliminant le parameétre ¢
gz | dy?
=— 4+ —— = ds?
(@) E G
E G

Comme les ccefficients E, E, G et G sont essentiellement positifs, on
voit que le point Q décrit une ellipse ayant pour axes

2 £ et 2 G

E G
Nous remarquons en outre que les axes de cette ellipse coincident
avec les axes de coordonnées, ce (ui résulte du choix particulier des
coordonnées curvilignes. Cette ellipse se nomme cindicatrice de Tissot».
Il est alors trés simple de tirer toutes les propriétés relatives aux défor-
mations angulaires, linéaires et superficielles des formules que nous

-af



venons d’établir. Etant donné que fous les résultats indiqués par Tissot
s’obtiennent ainsi sans aucune difficulté, je m’abstiens de les indiquer
ici et je me bornerai dans ce qui suit a étudier certaines propriétés rela-
tives aux déformations linéaires.

En utilisant le systéme de coordonnées curvilignes particulier que
nous avons adopté, nous obtenons I’expression suivante pour la défor-
mation linéaire:

(8) e — 45* _ Edu® + Gdv?
ds? E du® 4+ Gdv?

Cette expression montre que la déformation linéaire est maximum
ouminimum le longdes lignes de coordonnéesu = constanteet v = cons-
tante. Ce fait résulte du reste immédiatement de la considération de
I'indicatrice. Ainsi, les lignes de coordonnées jouent dans le cas consi-
déré un role tout a fait particulier, en ce sens qu’elles sont, en tout point
de la surface, tangentes aux axes de I’indicatrice. Nous appellerons par
la suite les lignes jouissant de cette derniére propriété des lignes de dé-
formation. Remarquons qu’il existe une grande analogie entre les lignes
de déformation et les lignes de courbure d’une surface. Nous sommes ainsi
amenés a déterminer les lignes de déformation pour une projection quel-
conque de deux surfaces arbitrairement données. N’oublions pas que nous
avions adopté précédemment un systéme particulier de coordonnées cur-
vilignes, et que c’est seulement grace a ce fait-1a que les lignes de coor-
données coincidaient avec les lignes de déformation. Pour des raisons de
calcul, il ne sera en général pas indiqué de choisir ce systéme particulier
de coordonnées curvilignes. On choisira de préférence les lignes de coor-
données de telle sorte que les formules de transformation deviennent aussi
simples que possible, et on déterminera ensuite les lignes de déformation
par le procédé que nous indiquerons ci-apreés.

Toutes les questions relatives aux lignes de déformation n’ont jamais
été envisagées jusqu’a présent et elles constituent, par conséquent, un
probléeme de genre nouveau.

39 Généralités sur les lignes de déformation.

Nous supposons dans ce qui suit que I’on ait choisi sur chacune des
surfaces S et S un systéme de coordonnées curvilignes absolument arbi-
traire et nous admettons que la projection de S sur S soit donnée par les
relations (1) et (2). Cela étant, nous nous proposons de déterminerles lignes
de déformation pour la projection ainsi définie. En introduisant les dé-
signations précédentes, les éléments linéaires des deux surfaces sont
donnés par les relations (3). En supposant que I’on projette la surface S sur
la surface S, la déformation linéaire est donnée par

_Edu2 + 2 Fdudv + G dv?
Edu?® 4+ 2 Fdudo + G dv?

(9) m? =

Déterminons maintenant le rapport % pour leque] cette expression

devient maximum ou minimum.
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Nous obtenons

Edu + Fdv Fdu + Gdv
. —
(10) M= Tdu + Fdv = Fdu + Gdo

d’oul les deux équations
A1) { (E— m?E)du + (F— m®F)dv = 0
(F— m:F)du + (G — m®G)dvo = 0

En éliminant du et dv entre les équations 11, nous obtenons
E — mE F — mjF
F—m:F G—m2G

= 0

d’ou en développant
(12) m*(EG — F?*) — m?® (EG — 2 FF + EG) + (EG — F?) = 0

L’équation (12) nous fournit les deux valeurs m,%et m,? correspondant
respectivement au maximum et au minimum de la déformation au point
envisagé, c’est-a-dire que (12) permet la détermination des axes de I'indi-
catrice. Les directions de ces axes sont données par

Edu + Fdv _ Fdu + Gdv
Edu + Fdvo = Fdu + Gdp

ou bien

(13) | (FG — FG) dv* + (EG — EG)dudv + (EF — EF) du? = 0

C’est une équation difiérentielle du premier ordre et du second degré.
Par intégration, nous trouvons lesdeux famillesde courbes de déformation.

On vérifie aisément que (13) représente effectivement un réseau de
courbes orthogonales sur chacune des deux surfaces. Considérons par
exemple la surface S; la condition d’orthogonalité est

dv dv dv dv
(14) E+F(E+8—u)+ da T

et les racines de I’équation (13) vérifient précisément 1’équation (14).

= 0

Pour la surface S, la démonstration reste exactement la méme a condi-
tion que ’on remplace E, F, G par E, F, G respectivement.

Pour une meilleure compréhension de la théorie précédente, nous
allons considérer quelques applications simples. :

4° Applications.

Considérons la projection de la sphere sur le plan au moyen des
relations

(15) {:Z‘;
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ol ¢ et A désignent, comme d’habitude, la longitude et la latitude sur la
sphere. Cette projection est connue sous le nom de « cartes plates ». Les
lignes ¢ = constante et A = constante forment sur la sphére le systéme
des méridiens et des paralleles, donc un réseau orthogonal. Le réseau cor-
respondant dans le plan est également orthogonal. D’aprés ce qui pré-
céde, nous voyons que les lignes * = constante et y = constante sont
les lignes de déformation pour la projection considérée.
Si nous considérons, au lieu de la transformation (15), la suivante

= fi(¢)
y=fa (N
ou f; et f, représentent deux fonctions arbitraires des variables ¢ et A
respectivement, nous constatons immédiatement que les lignes x = cons-
tante et y = constante sont encore les lignes de déformation.

Comme second exemple, nous considérons une projection quelconque
de la spheére sur le plan, définie par les formules

{ e =R g (QD, /\)

L’élément linéairede la sphére estdonnépards? = d¢?* + cos2p - dA?
d’ou B o= ] F = G = cos?p EG — F? = cos?p

et I’élément linéaire du plan est

ds? = (Tp? + y¢2) de? + 2 (xq,:c/\ + Yo U)) depdA + (:ic/\2 + yf) d\A“

(16)

(17)

d’on

B =z + yof F =zp2) + ypy) &= ot Uy
L’équation (13) devient dans ce cas

dA\2
(18) oy + ypuy) costy (o) +

dA
|+ ug) cost o — 2y + yp)| G5 — @pry + Upuy = 0

Nous utiliserons cette derniére relation ultérieurement.

50 Déterminalion des projections ayant des lignes de déformation données.

Dans cette partie, nous nous proposons de résoudre le probléme
suivant:

Soient S et S deux surfaces données et ¢ un réseau de courbes ortho-

gonales sur ’une d’elles. Déterminer toutes les projections de S sur S
telles que les courbes données soient des lignes de déformation.

Avant d’aborder le probléme général, nous allons considérer un cas
particulier; nous étudierons la projection de la sphére sur le plan. Comme
précédemment, nous nous donnons la projection au moyen des relations
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(17) ot les fonctions x (¢, A) et y (¢, A) restent pour le moment indéter-
minées. Le réseau de courbes est défini au moyen de I’équation

(19) P (¢, ) (%)— Q (¢, N 3—;‘ + R(g, ) =0

Ce réseau ne sera cependant formé de courbes orthogonales que si
les ceefficients P, et R satisfont a une certaine relation que nous allons
établir. La condition d’orthogonalité pour deux déplacements sur la

sphere est en effet donnée par la relation (4) ou nous avons E = 1,
F = 0et G = cos?p; cette condition devient par conséquent
(20) dp dp + cos2p - dASA = 0

L’équation (19) nous donne

dA\? Q [dX R s dAéA R

() =5 (@) + p =0 wou G5 -5

En introduisant cette valeur dans (20), nous obtenons
(21) P 4+ Rcos? = 0

Cette derniére condition est nécessaire et suffisante. En tenant
compte de (21), I’équation (19) peut s’écrire

d A\2 dA
By & B {20 £ R =

(22) costp + R (d¢)+Qd¢ R =0

D’autre part, nous avons vu que le réseau des lignes de déformation
est donné par I’équation (18). Etant donné que les équations (18) et (22)
doivent représenter les mémes courbes, nous devons avoir

amy |Tetact¥ply eyt —y" )
R _ Q

Si les fonctions x (¢, A) et y (¢, A) satisfont a la relation (23), les
lignes de déformation coincident bien avec les lignes du réseau proposé.
Il s’agit donc de savoir déterminer ces fonctions pour que (23) soit tou-
jours vérifiée. Nous constatons immédiatement que le probléme est en-
core indéterminé; nous pouvons en effet disposer de I’'une quelconque de
ces deux fonctions et I’équation (23) nous fournit alors une équation aux
dérivées partielles permettant la détermination de I’autre fonction. Nous
tirerons plus loin des conséquences de cette indétermination; pour le
moment, nous nous contentons de montrer que I’on peut toujours trouver
une infinité de fonctions satisfaisantes aux conditions du probléme. Sup-
posons par exemple que 1’on ait choisi la fonction x = x (¢, A); I’équa-
tion (23) devient alors une équation aux dérivées partielles en y. Soit
y = Yy (¢, A, a, b) I'intégrale complete de cette équation. En prenant
b = b (a) et en cherchant ensuite I’enveloppe de la famille de surfaces
ainsi définie, nous obtenons l'intégrale générale qui dépendra d’une
fonction arbitraire de ¢ et de A. On peut alors profiter de ces fonctions
arbitraires pour introduire certaines conditions initiales. Considérons
maintenant une application simple.
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Déterminons toutes les projections de la sphere sur le plan telles que
les méridiens et les paralleéles soient des lignes de déformation. Nous
avons déja vu que les cartes plates jouissent de cette propriété et nous
allons naturellement les retrouver comme cas particulier. L’équation (22)
devient dans ce cas
(24) dedA = 0

et I’équation (23) donne la condition

Nous apercevons immédiatement les solutions
{x:x(go) ou {x:x(/\)
y =y y =y ()
L’équation (25) peut cependant encore étre vérifiée par d’autres
fonctions. Pour fixer les idées, nous prenons par exemple
T = ap + bA + ¢
ou a, b et ¢, sont des constantes. Nous nous proposons de déterminer y

dans ces conditions. Dans le but d’obtenir les notations propres a la
théorie des équations aux dérivées partielles, nous posons

Yo = P gy = i L’équation (25) devient pqg + ab = 0

Les caractéristiques sont données par
dp  dA dy dp dq

¢ p  2pg 0 0
ce qui nous donne les intégrales premieres
p= K, et
q = K,
Intégrons donc le systéme
pqg = — ab
{ p=K
Ces deux équations sont, comme on le sait, en involution. Nous avons
dy = Kdy — %b dA d’ou

ab
y= K¢ — Nd A+
Le systéme des deux équations
x = ap + bA + ¢
ab

y = Ko — K A+
constitue donc une solution du probléme proposé. Remarquons que les
constantes ¢, et ¢, jouent un réle secondaire, étant donné qu’elles corres-

pondent a4 une translation des axes de coordonnées dans le plan. Le sys-
téme précédent contient ainsi trois constantes essentielles. Le résultat
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obtenu se vérifie immédiatement en cherchant les lignes de déformation
de la projection ainsi définie.
Considérons maintenant le cas général. Donnons-nous les deux sur-

faces Set S, et sur S un réseau de courbes orthogonales défini au moyen de
la relation

(26) Pdv® + Qdudv + Rdu® = 0

Déterminons maintenant les projections admettant ces lignes comme
courbes de déformation. Nous savons que les lignes de déformation satis-
font toujours a I’équation (13). Etant donné que les équations (13) et (26)
doivent représenter les mémes courbes, nous devons avoir

(27) P = Q = &
FG — GF EG — EG EF — EF

Ces relations doivent avoir lieu identiquement. Remarquons qu’elles
expriment implicitement I'orthogonalité du réseau choisi. Si nous dis-
posons par contre des ccefficients P, Q et R de telle sorte que le réseau
soit formé de courbes orthogonales, nous n’aboutirons alors qu’a une
seule équation (27) comme dans le cas de la projection de la sphere sur le
plan que nous avons considéré plus haut. Nous constatons que le pro-
bléme est de nouveau indéterminé et que nous pouvons encore trouver
une infinité de projections satisfaisant aux conditions imposées. Il est
clair que les conditions initiales que nous pouvons alors introduire pour
déterminer completement le probleme, peuvent étre de diverses natures.
Nous pouvons par exemple demander que la projection fasse correspondre,
a une ligne choisie sur la surface S, une ligne arbitrairement donnée sur
la surface S; nous pouvons de méme imposer que l’indicatrice prenne en
un point donné une forme donnée d’avance, ou que la déformation le
long d’une ligne soit une fonction donnée d’avance.

Les quelques exemples qui précédent nous montrent que la théorie
des lignes de déformation peut donner lieu & des applications trés intéres-
santes. En utilisant les théories relatives aux systémes d’équations aux
dérivées partielles, il sera facile d’aboutir a4 quelques théorémes trés
intéressants, que je veux traiter plus tard.

Considerazioni pratiche sulla restituzione stereo-
fotogrammetrica; sua azione fisiologica.

Mi sia permesso raccogliere alcune osservazioni e deduzioni, frutto
di una pratica forse non molto lunga, ma intensa, nel campo della stereo-
fotogrammetria. ,

Chi scrive ha avuto occasione di partecipare alla vita di parecchi
studi privati di stereofotogrammetria di diverse Nazioni, e di collabo-
rare come istruttore a due Corsi di Fotogrammetria tenuti al Poli-
tecnico di Zurigo.
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