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Ableitung der mittleren Fehlerellipse fiir Triangulationspunkte
ohne Benutzung der Theorie von der partiellen Aequivalenz.

Von Dr. C. F. Baeschlin, Zollikon.

Die wichtigste Anwendung der mittlern Fehlerellipse liegt auf
dem Gebiete der Triangulation. Eine vollstindig einwandfreie Her-
leitung dieses Hilfsmittels der Fehlertheorie besteht bis jetzt nur ge-
stiitzt auf die Theorie der partiellen Aquivalenz. Nun ist aber diese
Theorie fur viele Vermessungsfachleute zu abstrakt; das hat zur Folge
gehabt, dall die Fehlerellipse in der Triangulationspraxis lange nicht
die allgemeine Verwendung gefunden hat, die sie verdient. Einzelne
in der Literatur verdéffentlichte Ableitungen der mittlern Fehlerellipse
sind nur fiir vermittelnde Einzelpunkteinschaltungen einwandfrei. Da-
gegen besteht meines Wissens keine methodisch einwandfreie Herlei-
tung der Fehlerellipse fiir vermittelnde Mehrpunkteinschaltungen und
fiir bedingte Ausgleichung.

Diese Liicke mochte diese Mitteilung schliel3en.

a) Vermiltelnde Koordinatenausgleichung.

Die Fehlergleichungen, die den n Beobachtungen in einem Trian-
gulationsnetz entsprechen, seien

(V) pp oy =apéy + by + oo+ ap b+ by oy +
+ —+ ag & + byt fn

Das Gewicht der zu dieser Fehlergleichung gehérenden Beobach-
tung sei p;.
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Diese Gleichung kann sich sowohl auf Richtungsmessungen, wie
auf Winkelmessungen beziehen. Im Falle von Richtungsmessungen
denken wir uns die Orientierungsunbekannten der einzelnen Stationen
vorgingig eliminiert, etwa nach dem Schreiber’schen Verfahren fin-
gierter Fehlergleichungen mit negativen Gewichten.

Dabei ist fiir Richtungsmessungen bekanntlich

ko . sin z; ik b g . COS Zlk
Gy =—PF —5— +0p = TP —¢-
ik ik
In = zik — lix
z;. = Niherungsneigung vom Punkte i nach dem Punkte k.
sz = Entfernung P; P,.
l;; = provisorisch orientierte Richtungsmessung

Fiir Winkelmessungen dagegen ist:

k # [P Fix SN %, ke
(lh == - - - T - -
Sik Si, k-1
Ccos z cos z
k ” ik I. k-1
P R
Sik Si, k-1

Ih = (Zik — Zi, k1) — Wy

wo w), eine Winkelmessung auf dem Punkte P; ist
Die &, 7 sind die Komponenten der Verschiebung, die vom
Néherungspunkt Py, y,) zum ausgeglichenen Punkt Py, yp) fiihrt.
Es ist daher
T = Ty + &3 Y = Yky T e
Wir drehen nun unser Koordinatensystem um den Ursprung in

positivem Sinne um einen Winkel ¢
Die Koordinaten des Punktes Py, {yk) im neuen System seien

x,” und y.’".
Bekanntlich bestehen dann die Transformationsgleichungen:
%" = X cos € + Y, sin ¢
Up' = —xp sin & + Yy, cos &
Sowohl fiir Richtungsmessungen, wie fiir Winkelmessungen lauten
die Transformationsformeln fir die ,,Richtungskoeffizienten‘ a",ﬁ und

b;,‘, wie man leicht findet:

a’,ﬁ’ = aﬁ cos & + bﬂf sin &

by = r—a}f sin ¢ + b;: cos &
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Die Richtungskoeffizienten a und b transformieren sich also bei
einer Koordinatendrehung wie die Koordinaten x und y.
Die Koordinatentransformation fiir eine Translation interessiert

uns hier nicht, weil sich diese auf die &, » und spiter die x, p und X, Y
nicht geltend macht.

Man findet nun elementar:
k k ki ¢ » ks s
ap & + by e = ap’ &' + by mx
d. h.

a’,: & + bﬁ 7 ist invariant in bezug auf eine Koordinatendrehung.
Da ohne weiteres erkannt wird, daB f, invariant auf Drehung ist,

so finden wir aus (1), daB v, invariant auf Drehung ist, was man auch
leicht direkt erkennt.

Wir wihlen einen dem Punkt P(x, y,) (ausgeglichener Punkt)
benachbarten Punkt Py, v,). Dann gilt:

(2) Ph? Vh:ahIEI + 3+ s +aﬁ.’£k—!— b;fl)k +

+ ...t ap €, + by, + I
V}, ist natiirlich ebenfalls invariant auf Drehung.
Wir multiplizieren die Fehlergleichungen (1) mit der Gauf3’schen
Multiplikation af‘,, die die 2u Bedingungen erfiillen:
[@ ak] — 0; [P ak] — 0 ... [akak] — + 1; [bk o] — O
X [au ak] — O; [buak] = 0
Damit erhilt man:

[ak v] = & + [ak /]

Wenn [p vv] = Minimum ist, so ist bekanntlich
Y
(3 a) [ak v] = 0.
so dal
(4 a) & + ok /1 =0

Ein zweites Mal verwenden wir die Multiplikatoren ,8;;, die die
2u Bedingungen - !.-

[a* BK] = O; [b*BK] = O ... [ak BK] = O, [bk BK] = + 1
[au pK] = 05 [bu K] = O
Dann ist fiir das ausgeglichene System
(3 b) [Bk v] = 0 und wir erhalten
(4 b) e + [BEfl = 0
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Wenden wir die Multiplikatoren aﬁ und /3,1; auf die Gleichungen

(2) fir die V, an, so finden wir:
(5 a) [ak V] = ¥, + [0k []

(5 b) (BE V] =y + [BE
Nun wihlen wir Pz, y;) als neuen Koordinatennullpunkt und
setzen '
Xp = 4 — &3 Y = 9 —
Damit folgt aus (3), (4) und (5)
(6 a) X; = [ak V]
(6 b) | Y, =BV
Fir die X, und Y, gelten die Transformationsformeln fiir eine
Drehung des Koordinatensystems um ¢
X, = Xj cos ¢ + Y, sin ¢
Y, = —X sin ¢ + Y, cos ¢

Da die V, wie schon erkannt, gegen Drehung invariant sind, so
finden wir aus

X, = X, cos g + Y sing = [akV] cos ¢ 4 [BkV] sin ¢ = [ak'V]

8

Y, ) = — X, sine 4 Y, cos & = — [ak V] sin & + [Bk V] cos & = [BK'V]
(7 a) af’ = af cos & + BN sin &
(7 b) By = — af;' sin ¢ + }91,; cos &

D. h. die a und B transformieren sich bei einer Koordinatendrehung
wie die x und y.

Aus (7) erhalten wir:

ak Bk

(8a) p

I

[ ak’ ak']
E

[ak ak
p

— cos2s+2[

]sing cosa—l—{
p

" Bk’ Bk’ ' k Bk k Bk
(8h) —‘i 'Bk]g = [ak——qk sin? g — 2 [ = pﬁ ] sin & cos & + {Egﬁ—] cos?g

P P
rak! Bk k gk k Bk
(8¢) |° pﬁ _le = [aﬁﬁa sin £ cos & + {a pﬂ} (cos®e — sin%e) +
] ,

-t [E‘-ﬁ; sine cos ¢

k gk k Bk k Bk
Die [a pa }, [apﬂl und [ﬁ%] sind die Gewichtskoeffizien-
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ten, die sich aus den Normalgleichungen fiir die Unbekannten §&,, »,,

. 8 fk, Vgt o5 s fu, 1, mit Hilfe der Gewichtsgleichungen ergeben, in
denen die Absolutglieder resp. durch

—1, 0, ... 0,0 ... 0,0

o, —1, ... 0,0 ... 0,0
0,0 ... —1,0... 0,0
0,0 ...0 —1 ... 0,0
0,0 ... 0,0 ... —1,0
0, 0 0, 0 0, —1

ersetzt sind.
Nun ist bekanntlich

(9 a) miz, = m? [%gﬁ}
(9 b) m2y, = m? {B_];)Bi]

wo m der mittlere Fehler der Gewichtseinheit ist.
Ebenso ist natirlich:

: ak’ ok’
(10 a) mi', = me [Hr]e
ﬁkl ka]
g7 % | E_ P
(10 b) my, = m [ .,

Wir finden durch Einsetzen von (8 a) und (8 b) in (10 a) und (10 b):

k ok ak Bk k Bk
(11) mza;’k:m‘*”a paf] cosze+2[ B ]51necose+[ﬁ B]sm“’ }

Dieses m?%; wird ein Extremum, wenn

‘d mzxfli —
de

Das liefert, wenn die Werte von g, fiir die m?%’, ein Extremum
ist, mit w bezeichnet werden

_([ip“ﬁ] [Bkﬁk])sm 2w—}-2[akpﬁk] cos2w =0

oder

(12) tg 2w = = £ -
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Der Wert von w, der zum Maximum von m?, fiihrt, werde mit
w; bezeichnet. Fiir ihn stimmt das Vorzeichen von sin 2 w,; mit dem-

k Bk
jenigen von [_a_p/_S__] iberein. Damit ist w, eindeutig bestimmt.

Bezeichnen wir das Maximum von m?%/, mit A%, das Minimum
mit B2, so ist: ' :

(13a) A% = m2{ [ g ak] cos? w; 4 2 [akpﬁk] sin w; €o0S w; +
o[22 e
(13b) By — mZ{ [ak “k] cos? w, + 2 [ak Bk] sin w, COS oy -
[
oder da '
w, = w; + o
(13¢) B = mz{ [—akpak} sin? w, — [akpﬂk] sin w, cos w,; +

Durch einfache Umformungen erhalten wir auch die Gleichungen:

e

([ [ - [B2] [ e

p P | pP
e 22 [ o < [P 2][#4f]

Ganz leicht findet man aus den Formeln (13 a), (13 ¢) und (11)
die Gleichung:
(14) m’zy, = A% cos? w, + B sin?w, |/

Ak und Bk sind die grofle und die kleine Halbachse der sogenannten
mittleren Fehlerellipse. (14) stellt die Gleichung der sogenannten ,,Ful}-
punktkurve‘ der mittleren Fehlerellipse dar. :

Man beweist leicht, daB3 die Achsrichtungen dieser mittleren Fehler-
ellipse in bezug auf das Triangulationsnetz feste Richtungen sind,
unabhiingig von dem fiir die Ausgleichung verwendeten Koordinaten-

system, indem man findet:
k’ Bk’
2 [/, .
tg 2 w,) = [_aff’ak’] - [Bk, Bk,] = tg 2 (e,—8) |/
P £ p €




Somit ist

womit die obige Behauptung bewiesen ist.
Ferner findet man, daB sich die Halbachsen der mittleren Fehler-

ellipse in jedem Koordinatensystem gleich ergeben, indem
k! kl kl kl
[a_i)ﬂ_,]s cos? (w; —e¢) + 2 [abﬁ—f]e sin (w; — &) cos (w; — &) +

k' Bk’ k gk k Bk
+ [Bpﬂ]s sin? (w; —¢) = [ a_pf_f«__] cos? w,; + 2 [a’?ﬁ;] sin w; cos w;
k k! gk’ k' Bk’ ’ Bk’
+ [ﬁk'g] sin? w,, wenn man fir [a Q—-] , {a—ﬁv] und [Bkﬁf]
P p e p 1€ p 1€

die Ausdriicke (8) einsetzt.
Damit haben wir die Fehlerellipse fiir den Punkt P (z;, y,) ab-

geleitet und die gestellte Aufgabe ist gelost, soweit es sich um ver-
mittelnde Koordinatenausgleichung handelt.

b) Bedingte Triangulationsausgleichung.

Man erkennt ohne weiteres, dal3 die Bedingungsgleichungen, die
in Dreiecksnetzen auftreten, invariant in bezug auf die Drehung des
Koordinatensystems sind, da sie stets ohne Benutzung eines Koordi-
natensystems aufgestellt werden konnen. Wenn man praktisch die
Bedingung des Zusammenschlusses eines Kranzsystems oft unter
Zuhilfenahme von Koordinaten aufstellt, so geschieht dies nur aus
Bequemlichkeit. Die Bedingung existiert unabhéingig von irgendwelchem
Koordinatensystem.

Demgemifl sind auch die Verbesserungsbedingungsgleichungen
invariant in bezug auf Koordinatendrehung. Da die Verbesserungen v
invariant sind, so sind es also auch die Koeffizienten der v in diesen
Verbesserungsbedingungsgleichungen, denen wir die Form geben:

a v, + aGvy, + ... + Ui+ ... +a,v, +w; =0
(15) byv, + byvy, + ... + byv; + ..o+ by, + Wy, = 0
Clv1+czv2+..r.—i—civi+...+Cnvn+w3=0

Wir wollen jetzt ein rechtwinkliges Koordinatensystem einfiihren.
Als Ursprung wihlen wir den einen der beiden Punkte, auf die wir
das Netz beziehen. Die Richtung nach dem zweiten Bezugspunkt
wéahlen wir zunéchst als + x-Achse.

Wir berechnen aus der Ursprungsseite die Distanz vom Ursprung
bis zum kten Punkt (S;), was sich unter Mitnahme geeigneter Winkel
leicht durchfithren 14a8t. Ferner driicken wir den Winkel der Geraden
OK mit der + x-Achse aus (v,). Dann ist:

(15 a) ‘ X = S) COS vy
(15 b) Y = Sk sin Yk



Wir bezeichnen:

Wenn das Gewicht der i-ten Beobachtung mit p; bezeichnet wird,
so ist bekanntlich (siehe F. R. Helmert, Ausgleichungssrechnung, Leipzig
1907, SS. 246 und 247):

agp;'cﬁ2 bgoﬂ: 1’2 090.1 9 2
5 e 99“’99“’”][13 ] _[ p | l i
(16 a) m’zy, = m [ 5 e Y
5l 5
= p | P J
_' [agpy'z [bgoy.1' [cgay 2]2
U éﬂysﬁ-{{]* pl_Lp |
(16 b) m?y; = m [ = [aaW [ b [ ]
— — 1 - 2
. p | p

Dabei stellt m den mittleren Fehler der Gewichtseinheit dar.

Wir drehen nun das Koordinatensystem um den Ursprung O um
einen Winkel & in positivem Sinne. Die Koordinaten des Punktes K
in dem neuen System bezeichnen wir mit ;. und y,".

Es gelten dann die Gleichungen

(17 a) x; = x;, cos & + Y, sin ¢

s

(17 b) y,, = — x; sin € + y; cos ¢

Um die mittleren Fehler von x; und y’;. zu bestimmen, haben wir
die Grollen

0 '}, oY’y
L T e
zu ermitteln. Es ist:
0x’ ox oy .
(18) %" = — l.k = 81-}{ cos & + — lj,{ sin e = ¢ cos & + ¢ sin &
L ] 1
gy dw oy
(19) ov; = 89;.1, - 8% sin e + Wk cos € = — @ sin ¢ +@¥ cos ¢
1 L l

Nun ist aber

RETETl
Aus (18) folgt: ' '

(21) [ W})gﬂ’} = [ngam] cos? g + {gopcp } sinz g + 2 [quiyJ sin € cos ¢

(20) mzxk’umz{[ww]—[agy_f [_b_gx"IT [Cf"zrl,
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Leicht erkennt man auch die Richtigkeit der folgenden Formeln:

T 1T 5T s ELLT

L B L P ), e LB L e T
(22) [aa] [aa] cos?e+ [_a_a] sin®*¢ 42 [aa] singcose
P p p p
el [l ]
S S * 2 - 2
(23) [bb ] [_I_’b,l] cos® e+ [ﬁ1] sin® ¢ +
p P .
521] [
+ 2 [bb.l} sing¢ cos e
p
& 2 2 2
o] [ [
(24) — = cos®’ g + ————sin’ ¢ +
[ﬁ. 2] [ﬁ 2] [ﬁ 2]
P P P
-2 -
+ 2 [ e ] —=sin € cos ¢
B i
p ¢
Wir fiuhren die abkiirzenden Bezeichnungen ein:
2 2 2
RS v B S O
(252) Ou = [__p]_ [aa] . [bb ‘ ] o [cc‘}
e —i% ] — - 2
p P p
[cupy 2 [bgay_lr [cgpy_2]2
_ (e 1 pJl e 1 -LP 1
(& b) Q“_[ p } [aa] [bb ] ce
bb 2]
p P P
ol
ot 5l L PR D p 1 p p o
p p
[222 . 2] [£2L. )
p p
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Damit erhalten wir aus den Gleichungen (20) bis (24)
(26) mix,” = m? { ()11 cos? g 4+ @, Sin? g 4 2 Qyp_sin & cos e}

Auch hier konnen wir die Werte von & bestimmen, fir die m2z’;
ein Extremum wird.

Ganz analog zu der entsprechenden Betrachtung bei der wver-
mittelnden Ausgleichung finden wir, wenn wir den Wert von ¢ fiir den
m*’,. ein Maximum wird, mit w,, den Wert fiir den es ein Minimum
wird, mit w, bezeichnen:

_ ' 2 Q
. L =i .
( ) & - Qu - Q22

Das Vorzeichen von sin 2 w, stimmt mit dem Vorzeichen von Q,,
iiberein.

Ist wieder A%, das Maximum von m%’,, B?. das Minimum von
mPz’y, so finden wir aus den Formeln (20) bis (24)

(28a) A% = m? {Qn cos? w; + @y sin? w; + 2 Q,, sin w, cos wl}

(28b) BYL = m? {Qu cos? wy + Qg s.irl2 w, + 2 Q) sin w, cos wz}
oder da
wy, = wy + —g
(28¢) B = m? {Qn sin? w,; + @y €0s* w;, — 2 (J;, sin w, cos wl}
Durch einfache Umformung erhilt man ferner:
A% = m? fQu + Q2 tg wl} = e {Q22 + @, cotg w1}
B2, = m {Qu — Q;; cotg wl} = m? {Q22 — Q4 tg w,}
Auch hier ist:

(29) . .mg:l:k == Azk C052 w, + sz Sin2 wy

und A, und B, sind die grofe und kleine Halbachse der mittleren
Fehlerellipse.
Damit ist unsere Aufgabe auch fiir die bedingte Triangulations-
. ausgleichung gelost.
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