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Ableitung der mittleren Fehlerellipse für Triangulationspunkte
ohne Benutzung der Theorie von der partiellen Aequivalenz.

Von Dr. C. F. Baeschlin, Zollikon.

Die wichtigste Anwendung der mittlem Fehlerellipse liegt auf
dem Gebiete der Triangulation. Eine vollständig einwandfreie
Herleitung dieses Hilfsmittels der Fehlertheorie besteht bis jetzt nur
gestützt auf die Theorie der partiellen Äquivalenz. Nun ist aber diese
Theorie für viele Vermessungsfachleute zu abstrakt; das hat zur Folge
gehabt, daß die Fehlerellipse in der Triangulationspraxis lange nicht
die allgemeine Verwendung gefunden hat, die sie verdient. Einzelne
in der Literatur veröffentlichte Ableitungen der mittlem Fehlerellipse
sind nur für vermittelnde Einzelpunkteinschaltungen einwandfrei.
Dagegen besteht meines Wissens keine methodisch einwandfreie Herleitung

der Fehlerellipse für vermittelnde Mehrpunkteinschaltungen und
für bedingte Ausgleichung.

Diese Lücke möchte diese Mitteilung schließen.

a) Vermittelnde Koordinatenausgleichung.

Die Fehlergleichungen, die den n Beobachtungen in einem
Triangulationsnetz entsprechen, seien

Ph vh «ft & + bh Vi + «* h + hï Vk +
«A L + K Vu + fh

Das Gewicht der zu dieser Fehlergleichung gehörenden Beobachtung

sei ph.



Diese Gleichung kann sich sowohl auf Richtungsmessungen, wie
auf Winkelmessungen beziehen. Im Falle von Richtungsmessungen
denken wir uns die Orientierungsunbekannten der einzelnen Stationen
vorgängig eliminiert, etwa nach dem Schreiber'schen Verfahren
fingierter Fehlergleichungen mit negativen Gewichten.

Dabei ist für Richtungsmessungen bekanntlich

sm zik ,k „ ws *ik
ik "ik

th — zik lik

zik Näherungsneigung vom Punkte i nach dem Punkte À-.

sik Entfernung P_ Pk.

lik provisorisch orientierte Richtungsmessung

Für Winkelmessungen dagegen ist:

»ft +P

_ JSÌnZik _
sin ZU k-1 \

\ sik si, kl j

COS z

yik *i,k-\

th (zik ~zl,k-l) ~wh

wo wh eine Winkelmessung auf dem Punkte P_ ist.
Die £k, -qk sind die Komponenten der Verschiebung, die vom

Näherungspunkt P(xk ykt)) zum ausgeglichenen Punkt P(xk, yk) führt.
Es ist daher

xk xk0 + hi Uk yko + Vk-

Wir drehen nun unser Koordinatensystem um den Ursprung in
positivem Sinne um einen Winkel e.

Die Koordinaten des Punktes Ptxk yyk) im neuen System seien

xk' und yk'.
Bekanntlich bestehen dann die Transformationsgleichungen:

xk xk cos e + yk sin e

yk — xk sin e + yk cos e.

Sowohl für Richtungsmessungen, wie für Winkelmessungen lauten
die Transformationsformeln für die „Richtungskoeffizienten" a*, und

ft*, wie man leicht findet:

«ft' «ft cos e + »ft sm e

ft*' — a* sin e y ft* cos e
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Die Richtungskoeffizienten a und ft transformieren sich also bei
einer Koordinatendrehung wie die Koordinaten x und y.

Die Koordinatentransformation für eine Translation interessiert
uns hier nicht, weil sich diese auf die f, -q und später die x, X) und X, Y
nicht geltend macht.

Man findet nun elementar:

«ft & + »ft % «ft' h' + »ft' Vk'
d. h.

«h fk + »ft Vk is*- invariant in bezug auf eine Koorclinatendrehung.
Da ohne weiteres erkannt wird, daß fh invariant auf Drehung ist,

so finden wir aus (1), daß vh invariant auf Drehung ist, was man auch
leicht direkt erkennt.

Wir wählen einen dem Punkt P(xk, yk) (ausgeglichener Punkt)
benachbarten Punkt P(gk, t)k). Dann gilt:

(2) ph
'

Vh V èi y »ft1 Vi + ¦ ¦ ¦ + «ft ** + »ft % +

+ • • • + «U«, + »/I vu + h
Vh ist natürlich ebenfalls invariant auf Drehung.

Wir multiplizieren die Fehlergleichungen (1) mit der Gauß'schen

Multiplikation a£, die die 2u Bedingungen erfüllen:

[a1 ak] 0; [ft1 a*] 0 [a* a*] + 1; [6* a^] 0

Ät*. [au ak] 0; [ft« ak] 0

Damit erhält man:

[ak v] Çk + [ak /j

Wenn [piin] Minimum ist, so ist bekanntlich

(3 a) [ak v\ 0.

so daß

(4 a) 4 + [ak /] 0

Ein zweites Mal verwenden wir die Multiplikatoren ßk, die die
2 u Bedingungen ; -

[a1 ßk] 0; [ft1 ßk] 0 [ak ßk] 0, [bk ßk] + 1

[a>c ßk] 0; [b" ßk] 0

Dann ist für das ausgeglichene System

(3 b) [ßk v] 0 und wir erhalten

(4 b) r,k + [ßk f] 0
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Wenden wir die Multiplikatoren a* und ß\ auf die Gleichungen
(2) für die Vk an, so finden wir:

(5 a) [o* V] xk + [ak f]

(5 b) [ßk V] x)k + [ßk f]

Nun wählen wir P{xk, yk) als neuen Koordinatennullpunkt und
setzen

xk ** — f/c! Yk x)k -- Vk

Damit folgt aus (3), (4) und (5)

(6 a) Xk [ak V]

(6 b) Yk [ßk V]

Für die Xk und Yk gelten die Transformationsformeln für eine

Drehung des Koordinatensystems um e

Xk Xk cos e + Yk sin e

Yk —Xk sin e + Yk cos e

Da die V, wie schon erkannt, gegen Drehung invariant sind, so
finden wir aus

Xk' Xk cos e + Yk sin e [ak V] cos e + [ßkV] sin e [ak'V]

Yk' — Xk sin e + Yk cos e — [ak V] sin e + [ßk V] cos e [ßk' V]

(7 a) a*/ ajj cos e + ß\ sin e

(7 b) ß%' — a* sin e + /S£ cos e

D. h. die a und ß transformieren sich bei einer Koordinatendrehung
wie die x und y.

Aus (7) erhalten wir:

/0 [ ak' ak'] [ a* a*1 0 [ a* ßk ] [ßk ßk\
(8a) cos2 e + 2 ^ sm e cos e + r sin2 e

,ou [ ßk' ßk'] [akak] _ „[ ak ßk ] ,1^ ßk]
(8b) ——r _ sin2 e — 2 — sin e cos e + - cos2 e

/o [ak'ßk'"] [akak] [^/3*1, „(8c) ^— — sm e cos £ + — (cos2 e — sin2 e) +
P Ì Lp

-—!— sm« cos e

aA' a.k 1 r ak ßk "] \ ßk ßk
Die ' \ und - r sind die Gewichtskoeffizien-

p J I p J Lp
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ten, die sich aus den Normalgleichungen für die Unbekannten £1; rjt,
fj., rjk, i;u, rju mit Hilfe der Gewichtsgleichungen ergeben, in

denen die Absolutglieder resp. durch

—1, 0, 0, 0 0, 0

0, —1, 0, 0 0, 0

0, 0 —1, 0 0, 0

0, 0 0, —1 0, 0

0, 0 0, 0

0, 0 0, 0

ersetzt sind.
Nun ist bekanntlich

-1, 0

0, —1

(9 a)

(9 b)

k „k
X,.

m- Vk m-

r gk a
L P

ßk ßk

wo m der mittlere Fehler der Gewichtseinheit ist.
Ebenso ist natürlich:

(10 a)

(10 b)

m'x ;

m'„'k

nv TTi

Wir finden durch Einsetzen von (8 a) und (8 b) in (10 a) und (10 b):

[ßk ßk]I [ak ak] [ ak ßk 1 [ßk ßk"] \(11) m2x k=m2l cos2 e + 2 ^— sin e cos e + ~ r sin2 e >

uj t e

Dieses m2x'k wird ein Extremum, wenn

d m- x k
ds

0

Das liefert, wenn die Werte von e, für die m2x'k ein Extremum
ist, mit w bezeichnet werden

oder

(12)

akßk

tg 2w

P

ßk ßk
P



Der Wert von &>, der zum Maximum von m2x'k führt, werde mit
a>x bezeichnet. Für ihn stimmt das Vorzeichen von sin 2 mix mit dem-

r ak ßk I
jenigen von —¦ überein. Damit ist a>t eindeutig bestimmt.

Bezeichnen wir das Maximum von m2x'k mit A2k, das Minimum
mit B2k, so ist:

(13 a) A\ m2i \a a j cos2 a^ y 2 [a ^ 1 sin cux cos oix +

(13 b) B\ m2\ \akak~\ cos2 to2 + 2
I" a* Pfc 1 sin a,2 cos a>2

PPUwaix

oder da
+ [7>.„«

2

ak ßkl
P J sin Wx cos oij +

+ [«lcos2Wl
(13 c) B\ m2 { [—^] sin2 o,1 - 2 [^

Durch einfache Umformungen erhalten wir auch die Gleichungen:

A, m.([^i] + [^],g „,) „.{ [*£] + [*£.]_«._.)

^=TimTTTTy--Tm-m*T
Ganz leicht findet man aus den Formeln (13 a), (13 c) und (11)

die Gleichung:

(14) m2xk A2k cos2 ct>x + B2k sin2 aix ^

Ak und Bk sind die große und die kleine Halbachse der sogenannten
mittleren Fehlerellipse. (14) stellt die Gleichung der sogenannten
„Fußpunktkurve" der mittleren Fehlerellipse dar.

Man beweist leicht, daß die Achsrichtungen dieser mittleren Fehlerellipse

in bezug auf das Triangulationsnetz feste Richtungen sind,
unabhängig von dem für die Ausgleichung verwendeten Koordinatensystem,

indem man findet:

ak' ßk'

-ygk'ak'\ %ßi'WT tg 2 {Wl~S) \/



Somit ist
wx' cx>x — e

womit die obige Behauptung bewiesen ist.
Ferner findet man, daß sich die Halbachsen der mittleren Fehlerellipse

in jedem Koordinatensystem gleich ergeben, indem

[
a*' a*-l cos2 (co, — e) + 2 [-CtÌ-^--je sin (cu,. — e) cos (co, — e) +

[ßk'ßk'] [ ak ak] _
T ak ßk"\

+ \-r-—ts.\ sin2 (co, —fi) cos2 co,+ 2 — sin co, cos co, +

[ßkßki - ,¦¦ fa*' ak'] [ak'ßk'] [ßk'ßk'~\+ [JLJL.\ 51„»ö„ wenn man fur [——Je> [—f-\e™* [—ß ~\e

die Ausdrücke (8) einsetzt.
Damit haben wir die Fehlerellipse für den Punkt P (xk, yk)

abgeleitet und die gestellte Aufgabe ist gelöst, soweit es sich um
vermittelnde Koordinatenausgleichung handelt.

b) Bedingte Triangulationsausgleichung.

Man erkennt ohne weiteres, daß die Bedingungsgleichungen, die
in Dreiecksnetzen auftreten, invariant in bezug auf die Drehung des

Koordinatensystems sind, da sie stets ohne Benutzung eines
Koordinatensystems aufgestellt werden können. Wenn man praktisch die
Bedingung des Zusammenschlusses eines Kranzsystems oft unter
Zuhilfenahme von Koordinaten aufstellt, so geschieht dies nur aus
Bequemlichkeit. Die Bedingung existiert unabhängig von irgendwelchem
Koordinatensystem.

Demgemäß sind auch die Verbesserungsbedingungsgleichungen
invariant in bezug auf Koordinatendrehung. Da die Verbesserungen v
invariant sind, so sind es also auch die Koeffizienten der v in diesen
Verbesserungsbedingungsgleichungen, denen wir die Form geben:

(15)

Wir wollen jetzt ein rechtwinkliges Koordinatensystem einführen.
Als Ursprung wählen wir den einen der beiden Punkte, auf die wir
das Netz beziehen. Die Richtung nach dem zweiten Bezugspunkt
wählen wir zunächst als + x-Achse.

Wir berechnen aus der Ursprungsseite die Distanz vom Ursprung
bis zum Arten Punkt (Sk), was sich unter Mitnahme geeigneter Winkel
leicht durchführen läßt. Ferner drücken wir den Winkel der Geraden
OK mit der + x-Achse aus (vk). Dann ist:
(15 a) xk Sk cos vk
(15 b) yk Sk sin vk

«1 "1 + a2 v2 + ¦ + ai vi + + anvn + Wx 0

»1 Vx + b2 v2 + ¦ + »! vi + + bn"n + w2 0

Cx Vx + c2 v2 y + Cj vi + + cn vn + ">„ 0



Wir bezeichnen:
8 x

~d~l
dVk
8 1:

<Pi«

Wenn das Gewicht der ;'-ten Beobachtung mit pi bezeichnet wird,
so ist bekanntlich (siehe F. R. Helmert, Ausgleichungssrechnung, Leipzig
1907, SS. 246 und 247):

rap*!2 1 bcp*
_

"I r ecp

X inXWa. ip L P

r HM

T-«yg Ä.attJBCüB L P J

m )ft

(16 a) m2xk m2

(16 b) m2yk m1

Dabei stellt m den mittleren Fehler der Gewichtseinheit dar.
Wir drehen nun das Koordinatensystem um den Ursprung O um

einen Winkel e in positivem Sinne. Die Koordinaten des Punktes K
in dem neuen System bezeichnen wir mit xk' und yk'.

Es gelten dann die Gleichungen

(17 a) xk xk cos e y yk sin e

(17 b) Vk Xu sin e yk cos e

Um die mittleren Fehler von x'k und y'k zu bestimmen, haben wir
die Größen

zu ermitteln. Es ist:

(18) py

(19) <py_'

dx\
di,

c Il k

8lt

Nun ist aber

8x\
dir

8xk
eit

3 x
~~TTÌ

Vi*

cos e

sine

8 u'k
-8lT= W

8 Vk
r sin e cp* cos e + cp_v sin £

dVk
y- COS £ — cp* sin £ +cp_V COS Ê

r \aspxy \TyT.T2 \C(fx'. 2

(20, /n2* ' - m2 l"^*-' 1 - L P J - L_P I _ L_P

(21)

Aus (18) folgt:

L p
COS2 £ -f-

r ?» 9»~\
y 2 | | ï
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Leicht erkennt man auch die Richtigkeit der folgenden Formeln:

acpx'V- rayai2 ray»]2 [ acp*l [ acpul

-L^Q- LEI cos*e+ -ULÌ- sin2e+2
L~P"J L~pi

sinecose
1 aal T aal T aal T aal

P J LP

»^'.ll2 f^.ii2 f^" il2

lt ftV4- "w+
P J Lp ["•']

bcpx a rftjW_2

+ 2 y-t-—T, T J sine cos £
bb-l][bb

L P

[^-•2J2
r-P -L V2 s c°s2 e + r

P r sin2 e

f 2 i-P-JJ-f- J

sin £ cos £

P

Wir führen die abkürzenden Bezeichnungen ein:

I" a co*]2 \ b cpx

[cp*cpx] _
[ p \

_
[ p

11
L p J r «al r ftft 1i

c<py2

P Ì Lp

r_aj^l2 r bcp- y [cjpy_ ]2

(25 b, O - \ *" ** 1 - L P J - L P J Lp J

p rz«r j^-il "pr.oi

(25 c) öl2 [-M-]

¦ 2

a cpx] [ a cpü] [ b cpx ] [ b cpv

aa] [ bb

Pi LP

ITT IT-2!
BM
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Damit erhalten wir aus den Gleichungen (20) bis (24)
(26) m2xk m2 { Q„ cos2 e + Q22 sin2 £ + 2 ß,j_sin e cos £ }

Auch hier können wir die Werte von £ bestimmen, für die m2x'k
ein Extremum wird.

Ganz analog zu der entsprechenden Betrachtung bei der
vermittelnden Ausgleichung finden wir, wenn wir den Wert von e für den
m2x'k ein Maximum wird, mit a>x, den Wert für den es ein Minimum
wird, mit w2 bezeichnen:

(27) tg 2 co - -2 Gl2
Gii — Q2

Das Vorzeichen von sin 2 co, stimmt mit dem Vorzeichen von Q12

überein.
Ist wieder A2k das Maximum von m2x'k, B2k das Minimum von

m2x'k, so finden wir aus den Formeln (20) bis (24)

(28 a) A2k ni2 \Qxx cos2 co, + Q22 sin2 co, + 2 Q,2 sin a>x cos Wx}

(28 b) B2k m2 JQ,, cos2 co2 + Q22 sin2 co2 + 2 Q12 sin w2 cos co2}

oder da

co2 co, + -g

(28 c) B2k m2 \Qxx sin2 cox + Q22 cos2 co, — 2 Q,2 sin a>x cos co,}

Durch einfache Umformung erhält man ferner:

A\ m2 [Qxx y Qi2 tg co,} m2 {Q22 + Q12 cotg co,}

B\ m2 {Qxx — Q12 cotg co,} m2 {Q22 — Q12 tg co,}

Auch hier ist:

(29) m2xk A2k cos2 Wx + B\ sin2 co.

und Ak und Bk sind die große und kleine Halbachse der mittleren
Fehlerellipse.

Damit ist unsere Aufgabe auch für die bedingte Triangulationsausgleichung

gelöst.
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