Zeitschrift: Schweizerische Zeitschrift für Vermessungswesen und Kulturtechnik =

Revue technique suisse des mensurations et améliorations foncières

Herausgeber: Schweizerischer Geometerverein = Association suisse des géomètres

Band: 35 (1937)

Heft: 6

Artikel: Eine räumliche Transformation

Autor: Muggli, H.

DOI: https://doi.org/10.5169/seals-196655

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 11.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

E. Winkler (i. d. Einl. dieses Aufsatzes genau zitierte und hier verarbeitete Abhandlung).

Die Probleme nur im Ueberblick und in Streiflichtern darstellend:

- E. Brückner, Die schweizerische Landschaft einst und jetzt.
 - (Rektoratsrede. XVIII. Jahresb. d. Geogr. Ges. Bern, 1898/99.)
- H. Dörries, Zur Entwicklung der Kulturlandschaft im nordostschweizerischen Alpenvorlande.

(Mitteil. d. Geogr. Ges. Hamburg 1928, S. 180/202.)

- O. Flückiger, Zur Geographie des Menschen auf dem Boden der Schweiz.
 (Beil. z. Progr. d. Höheren Töchterschule Zürich 1910.)
- O. Frohnmeyer, Gempenplateau und unteres Birstal. Eine anthropogeographische Studie auf Grund der Karten und Pläne seit dem 17. Jahrhundert. Dissertation, Basel 1917.
- NB. Die Frohnmeyersche Arbeit reiht sich zwischen die von H. Wegelin und die von Ad. Roemer ein.

Eine räumliche Transformation.

Von H. Muggli, dipl. Math., Rüschlikon.

Vorbemerkung der Redaktion.

Die Transformation, die in der nachstehend veröffentlichten Arbeit untersucht wird, ist von praktischer Bedeutung bei den stereoskopischen Raumautographen.

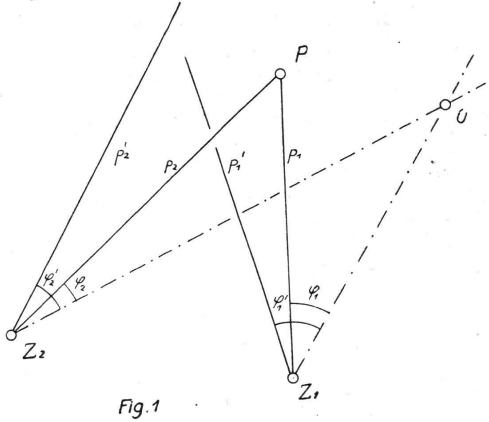
Wenn wir in der Luftphotogrammetrie mit derselben photographischen Kammer zeitlich nacheinander zwei Aufnahmen machen und sie nach der Entwicklung in zwei Kammern einlegen, die der Aufnahmekammer identisch sind, und sie in dieselbe gegenseitige Orientierung bringen, die die Aufnahmekammer bei den beiden Aufnahmen hatte, so schneiden sich die je zwei Strahlen, die in jeder der beiden Kammern je einem bestimmten Punkte des Originalgeländes entsprechen. In diesem Falle ist die Transformation des Originalgeländes, das sogenannte "Raummodell", dem Original ähnlich. Richten wir nun gegen die Kammerobjektive je ein auf unendlich fokussiertes Fernrohr mit den Angularvergrößerungen n_1 respektive n_2 , so daß ihre Achsen in konjugierte und daher sich schneidende Strahlen des Raummodelles fallen, so bilden die Bildstrahlen, die andern konjugierten Punkten des Raummodelles entsprechen, die räumliche Transformation, die in diesem Aufsatz näher untersucht wird. Diese Transformation stellt das dar, was als stereoskopisches Bild der Umgebung des durch die Achsen eingestellten Punktes des Raummodelles durch die sogenannte "geometrische Methode" entsteht (Vgl. Baeschlin und Zeller, Lehrbuch der Stereophotogrammetrie, Zürich 1934, Seiten 187 und 188). Während bei dieser Transformation die Achsen unverändert bleiber, werden sie in dem praktischen Falle, der bei den Raumautographen verwirklicht wird, gedreht, bis sie parallel sind. Außerdem werden im allgemeinen die transformierten Büschel um ihre Achsen gedreht, so, daß der Originalstrahl und der transformierte nicht mehr in derselben Ebene liegen.

Der Verfasser der vorliegenden Studie beabsichtigt auch diese allgemeine Transformation zu untersuchen, wenn er dazu die Zeit findet, die ihm seine berufliche Tätigkeit gegenwärtig nicht übrig läßt. Durch die vollständige Untersuchung dieser komplizierteren räumlichen Transformation wird, wie ich glaube, eine wertvolle Bereicherung der Elemente einer Theorie des stereoskopischen Sehens geboten werden können.

F. Baeschlin.

Das geometrische Problem, das in dieser Arbeit behandelt werden soll, läßt sich etwa folgendermaßen formulieren:

Die Punkte Z_1 und Z_2 seien die Träger von je einem räumlichen Strahlbüschel. Jedes Büschel enthalte einen ausgezeichneten Strahl, die Achse des Büschels. Von den beiden Achsen wird vorausgesetzt, daß sie sich in einem Punkt O schneiden. Wir bezeichnen mit p_1 einen beliebigen Strahl des ersten Büschels, mit p_2 einen solchen des zweiten Büschels und mit φ_1 bzw. φ_2 die Winkel zwischen p_1 bzw. p_2 und den zugehörigen Achsen.



Die beiden Büschel werden nun transformiert, so daß p_1 in p_1' , p_2 in p_2' , φ_1 in φ_1' und φ_2 in φ_2' übergeht. Dabei sollen folgende Gesetze erfüllt sein:

1. Jeder Strahl liege mit seinem transformierten in derselben Ebene.

2.
$$\begin{array}{ccc} \operatorname{tg} \, \varphi_{1}^{\, \prime} &= \, n_{1} \operatorname{tg} \, \varphi_{1} \\ \operatorname{tg} \, \varphi_{2}^{\, \prime} &= \, n_{2} \operatorname{tg} \, \varphi_{2} \end{array}$$

Wir betrachten speziell solche Strahlen p_1 und p_2 , die sich in irgendeinem Punkt P des Raumes schneiden. Die transformierten Strahlen p_1' und p_2' werden sich aber im allgemeinen nicht mehr schneiden, d. h. die Transformation der Büschel erzeugt keine Transformation der Punkte des Raumes; es werden vielmehr nur gewisse ausgezeichnete Punkte transformiert.

Welchen Bedingungen müssen die Strahlen p_1 und p_2 bzw. der Punkt P genügen, damit sich die transformierten Strahlen p_1' und p_2' ebenfalls in einem Punkt P' schneiden, und welcher Art ist die Abbildung der Punkte P auf die P'.

Das ebene Problem.

Wir betrachten zunächst nur die Punkte, die in derjenigen Ebene liegen, die durch die beiden Achsen geht. Liegen P und damit p_1 und p_2 in dieser Ebene, so ist das auch der Fall für p_1' und p_2' ; diese schneiden sich also oder sind parallel. P wird daher, wenn man auch unendlich ferne Punkte zuläßt, stets auf einen Punkt P' abgebildet, der ebenfalls in dieser Ebene liegt. Die Abbildung ist ein Spezialfall einer quadratischen Transformation; eine solche führt Gerade im allgemeinen in Kegelschnitte über, welche durch Z_1 und Z_2 gehen. Es würde zu weit führen, diese Abbildung hier zu diskutieren. Man findet sie z. B. behandelt bei Döhlemann, "Geometrische Transformationen".

Das räumliche Problem.

Wir setzen jetzt voraus, daß die Strahlen p_1 und p_2 nicht in der Ebene liegen, die von den Achsen aufgespannt wird. Trotzdem sollen sich nicht nur p_1 und p_2 , sondern auch ihre transformierten p_1' und p_2' schneiden. Die Schnittpunkte seien wieder P und P'.

Da p_1 und p_1' mit der Achse Z_1O in der selben Ebene liegen sollen, ebenso p_2 und p_2' mit Z_2O , so müssen O, P und P' auf einer Geraden, der Schnittgeraden der beiden Ebenen liegen. h_1 und h_2 seien die Lote von Z_1 und Z_2 auf diese Gerade, q der Abstand der beiden Fußpunkte, a_1 und a_2 die Winkel der Lote mit den zugehörigen Achsen. Aus der Figur liest man folgende Beziehungen ab:

(1)
$$h_2 \operatorname{tg} (\alpha_2 - \varphi_2) - h_1 \operatorname{tg} (\alpha_1 - \varphi_1) = q$$

$$h_2 \operatorname{tg} (\alpha_2 - \varphi_2') - h_1 \operatorname{tg} (\alpha_1 - \varphi_1') = q$$

Berücksichtigt man, daß

$$tg \varphi_1' = n_1 tg \varphi_1
tg \varphi_2 = n_2 tg \varphi_2$$

und setzt man zur Abkürzung

so erhält man durch Vereinfachung das Gleichungssystem

(2)
$$\frac{h_1 u}{\cos^2 a_1} - \frac{h_2 v}{\cos^2 a_2} + D u v = 0$$

$$\frac{n_1 h_1 u}{\cos^2 a_1} - \frac{n_2 h_2 v}{\cos^2 a_2} + n_1 n_2 D u v = 0$$

Es sei vorläufig n_1 verschieden von n_2 . Wir gehen aus von einer beliebigen Geraden durch O (aber nicht in der Ebene der Achsen) und werden zeigen, daß sie außer O noch genau einen ausgezeichneten Punkt enthält. Dazu lösen wir das obige Gleichungssystem nach u auf. Die einzige von Null verschiedene Lösung (u = 0 ergibt den Punkt 0) ist

$$u = \text{tg } \varphi_1 = \frac{n_2 - n_1}{n_1 (n_2 - 1)} \quad \frac{h_2}{D \cos^2 \alpha_2}$$

Berechnen wir noch den Abstand des ausgezeichneten Punktes P von O.

$$tg (a_1 - \varphi_1) = \frac{n_1 (n_2 - 1) D \cos^2 \alpha_2 tg \alpha_1 - (n_2 - n_1) h_2}{n_1 (n_2 - 1) D \cos^2 \alpha_2 + tg \alpha_1 (n_2 - n_1) h_2}$$

$$\overline{OP} = h_1 (tg \alpha_1 - tg [\alpha_1 - \varphi_1])$$

$$= h_1 \frac{h_2 (n_2 - n_1) (1 + tg^2 \alpha_1)}{n_1 (n_2 - 1) \cos^2 \alpha_2 \cdot D + tg \alpha_1 (n_2 - n_1) h_2}$$

Um einen Überblick über alle ausgezeichneten Punkte zu gewinnen, führen wir die Polarkoordinaten r, ϑ, χ_1 und χ_2 ein; und zwar ist r = OP, ϑ gleich dem Winkel zwischen OP und der Normalen auf die beiden Achsen, χ_1 bzw. χ_2 gleich dem Winkel zwischen der Normalprojektion von OP auf die Achsenebene und der ersten bzw. der zweiten Achse. Damit ergeben sich die folgenden Beziehungen (s. Fig. 2):

 $\sin \alpha_1 = \sin \vartheta \cos \chi_1$

$$\sin \alpha_{1} = \sin \vartheta \cos \chi_{1} \qquad h_{1} = r_{1} \cos \alpha_{1}
\sin \alpha_{2} = \sin \vartheta \cos \chi_{2} \qquad h_{2} = r_{2} \cos \alpha_{2}$$

$$q = r_{2} \sin \alpha_{2} - r_{1} \sin \alpha_{1}$$

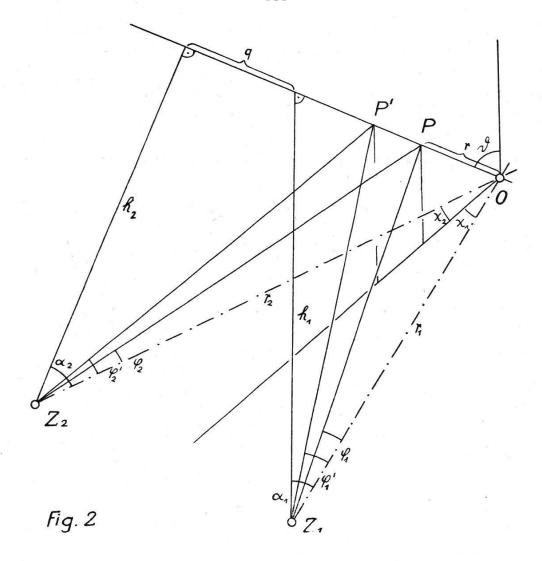
$$D = \frac{r_{1} \operatorname{tg} \alpha_{2}}{\cos \alpha_{1}} - \frac{r_{2} \operatorname{tg} \alpha_{1}}{\cos \alpha_{2}}$$

$$OP = r = \frac{(n_{2} - n_{1}) \cdot r_{1} \cdot r_{2}}{\sin \vartheta \left[n_{1} (n_{2} - 1) r_{1} \cos \chi_{2} - n_{2} (n_{1} - 1) r_{2} \cos \chi_{1}\right]}$$

$$(3) \frac{n_{2} (n_{1} - 1)}{r_{1}} \cdot r \cdot \cos \chi_{1} \cdot \sin \vartheta - \frac{n_{1} (n_{2} - 1)}{r_{2}} r \cos \chi_{2} \sin \vartheta = n_{1} - n_{2}$$

Ist $n_1 = n_2$, so hat das Gleichungssystem (2) nur dann von O verschiedene Lösungen, wenn D = 0 ist; die zweite Gleichung ist dann eine Folge der ersten. In diesem Fall haben wir unendlich viele Lösungen, wobei wir z. B. u beliebig annehmen dürfen. Das bedeutet, daß nur diejenigen Geraden durch O von Null verschiedene ausgezeichnete Punkte enthalten, für die D = 0 ist, und daß alle Punkte einer Geraden, für die D=0 ist, ausgezeichnete Punkte sind. Mit unsern Polarkoordinaten erhalten wir die Gleichung:

$$(3') D \cdot \cos \alpha_1 \cdot \cos \alpha_2 = (r_1 \cos \chi_2 - r_2 \cos \chi_1) \sin \vartheta = 0$$



Ein Punkt ist dann und nur dann ausgezeichneter Punkt, wenn seine Koordinaten diese Gleichung befriedigen. (3') ist als Spezialfall in (3) enthalten.

Die Gleichung (3) stellt eine Ebene dar, welche auf der Ebene der Achsen senkrecht steht. Ist $n_1 = n_2$, so geht sie durch O.

Es bleibt noch die Frage nach der Art der Abbildung der Punkte P auf die P'. Die P' liegen in der Ebene, deren Gleichung wir aus (3) erhalten, indem wir dort n_1 durch $\frac{1}{n_1}$ und n_2 durch $\frac{1}{n_2}$ ersetzen.

Die Ebene der P und die der P' schneiden sich in einer Geraden, welche zusammenfällt mit der Schnittgeraden s der beiden Normalebenen zu den Achsen in den Punkten Z_1 und Z_2 . Denn für alle Punkte von s ist $\varphi_1 = \varphi_2 = 90^{\circ}$ und damit auch $\varphi_1' = \varphi_2' = 90^{\circ}$. D. h. die Punkte werden in sich selbst übergeführt.

Die Abbildung der Punkte P auf die P' ist eine Zentralprojektion mit dem Zentrum O; denn O, P und P' liegen ja auf einer Geraden.

Ist $n_1 = n_2$, so liegen P und P' in derselben Ebene. Die Abbildung ist eine Kollineation mit O als Zentrum und s als Achse. Um das einzusehen, schneiden wir die Strahlen p_1 und p_1' mit der Normalebene zu

 Z_1O in O. Wie man aus den Transformationsgesetzen abliest, besteht zwischen den Durchstoßpunkten der p_1 und denjenigen der p_1' eine Ähnlichkeit mit O als Ähnlichkeitszentrum. Durch Zentralprojektion geht eine solche in eine perspektive Kollineation über (Projektionszentrum Z_1).

Schweizerischer Geometerverein.

Protokoll

der XXIII. ordentlichen Delegiertenversammlung vom 1. Mai 1937 in Yverdon.

Zur ordnungsgemäß einberufenen Delegiertenversammlung haben sich folgende Vertreter der Sektionen und Gruppen eingefunden:

Aargau-Basel-Solothurn: Hablützel, Basel; Hartmann, Lenzburg.

Bangerter, Fraubrunnen; Froidevaux, Biel; Vogel, Lyß. Bern:

Genoud, Châtel-St-Denis. Freiburg:

Genf: Panchaud, Genf; Baudet M., Genf.

Graubünden:

Ostschweiz: Kundert, St. Gallen; Gsell, Sulgen.

Tessin: Tosi, Massagno.

Etter, Vevey; Pouly, Lausanne. Waadt:

Waldstätte: Widmer, Luzern. Wallis:

Carrupt, Sierre. Vogel, Pfäffikon; Steinegger, Schaffhausen. Zürich-Schaffhausen:

2. Gruppen:

Verband der selbständig praktizierenden Grundbuchgeometer: Schärer, Baden; Werffeli, Effretikon. Vereinigung der Beamten-Grundbuchgeometer: Lattmann, Zürich.

Vom Zentralvorstand waren Präsident Bertschmann, Zürich, und Kassier Kübler, Bern, anwesend. Ferner wohnte auch der Redaktor der Zeitschrift, Prof. Dr. Baeschlin, Zollikon, der Versammlung bei.

1. Eröffnung. Zentralpräsident Bertschmann übernimmt statutengemäß den Vorsitz und eröffnet um 11 Uhr die Sitzung mit einem Begrüßungswort. Die Versammlung bestimmt sodann Kassier Kübler zum Protokollführer, Hablützel-Basel und Froidevaux-Biel als Stimmenzähler und Etter-Vevey als Uebersetzer.

Es wird zur Kenntnis genommen, daß Kollege Panchaud die Lei-

tung der Sektion Genf übernommen hat.

- 2. Jahresbericht Jahresrechnung. Entsprechend der vorgeschlagenen Tagesordnung wird vorerst das Protokoll der letzten ordentlichen Delegiertenversammlung vom 9. Mai 1936 in Bern, bekanntgegeben in der Juninummer 1936 der Zeitschrift, genehmigt. Sodann findet der Jahresbericht des Präsidenten, publiziert in der Märznummer 1937, die Billigung der Vertreter. Ebenso wird auch der Rechnungsbericht, der ebenfalls der Märznummer beigelegen ist, nach einigen ergänzenden Bemerkungen des Zentralkassiers und Bekanntgabe des Revisionsberichtes, unter Verdankung abgenommen und der Hauptversammlung zur Genehmigung empfohlen. Eine Anregung von Schärer, Baden, betreffend Aenderung der Ausgestaltung des Rechnungsberichtes nimmt der Zentralvorstand zur Prüfung entgegen.
- 3. Budget. Bei der Beratung des Budget begründet Hablützel, Basel, den von der Sektion Aargau-Basel-Solothurn dem Zentral-