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très soigneusement faits et contenus dans les carnets d'angles,
nous renseignent exactement sur le point visé et nous
permettent d'identifier, encore aujourd'hui, les objets visés il
y a une centaine d'années et de décider si les points sont
restés les mêmes ou s'ils ont été modifiés ou, finalement, si
les points sont à considérer comme disparus et perdus.
Tous ces points, sauf les points perdus, peuvent servir encore
aujourd'hui à des relevés purement topographiques avec
leurs valeurs transformées dans le système de projection
cylindrique actuel. (a suivre.)

Lot-Abweichungen und Laplace-Gleichung.
Von Prof. Dr. C. F. Baeschlin, Zollikon.

Wenn wir auf der Erdoberfläche eine Haupttriangulation
durchführen, so sind durch die Messung einer Basis und der Dreieckswinkel
die Längen der Dreiecksseiten bestimmt, wenn wir über die Krümmungsverhältnisse

desjenigen Teiles der mathematischen Erdoberfläche
einigermaßen orientiert sind, auf dem die Triangulation ausgeführt
wird. Dagegen fehlt uns eine Orientierung dieser Triangulation. Zu ihrer



Beschaffung bestimmen wir in einem geeigneten Punkte 0, dem sogen.
Fundamentalpunkt durch direkte astronomische Messungen die
geographische Breite cp0 und die geographische Länge A„, sowie das
geographische Azimut cto-j nach einem Punkte P1 der Triangulation, der mit 0
direkt verbunden ist. Wir wählen ein geeignetes Rotations-Ellipsoid,
ein sogen. Referenzellipsoid, das in der Umgebung des Punktes 0' mit
den geographischen Koordinaten <p„ und Au Krümmungsverhältnisse
aufweist, die möglichst gut mit den Krümmungen der mathematischen
Erdoberfläche in der Umgebung des Punktes O übereinstimmen. Man
kann dieses Referenzellipsoid nun in eine solche Lage bringen, daß
seine Normale im Punkte O' (tp0, A„) mit der Normalen der mathematischen

Erdoberfläche im Punkte O (y„, Aj) zusammenfällt. Die Rotationsachse

des gewählten Referenzellipsoides wird im allgemeinen nicht mit
der Erdachse zusammenfallen, sondern ihr nur parallel sein.

Mit Hilfe des Azimutes a^ können wir unsere Triangulation auf
dem Referenzellipsoid orientieren. Wir wählen zur Berechnung der
Dreiecksseiten die Krümmungsverhältnisse des Referenzellipsoides.
Dabei sprechen wir als Dreiecksseiten die geodätischen Linien zwischen
den Dreieckspunkten an. Die gemessenen Winkel sind auf die sogenannten
geodätischen Winkel, d. h. die Winkel zwischen den geodätischen
Linien, überzuführen. Da die Krümmungen des Geoides von denjenigen
des angenommenen Referenzellipsoides etwas abweichen, so werden
die Winkelreduktionen auf die geodätischen Linien des Geoides etwas
abweichen von den Reduktionen auf die geodätischen Linien des
Referenzellipsoides. Nach strengen Untersuchungen von Helmert, durchgeführt
in „Die mathematischen und physikalischen Theorien der Höheren
Geodäsie I. Teil, Leipzig 1880", sind die Aenderungen der Seiten,
welche sich durch die ellipsoidische Rechnung gegenüber der strengen
geoidischen Rechnung ergeben, ganz bedeutend kleiner als die mittleren
Fehler der Seiten, wie sie aus den mittleren Fehlern der beobachteten
Winkel hervorgehen, sofern die Höhenwinkel der gemessenen
Richtungen nicht groß sind. Diese Bedingung ist bei einer Triangulation
I. Ordnung im allgemeinen ohne weiteres erfüllt infolge der verhältnismäßig

langen Seiten.
Wir erhalten auf diese Weise je eine Triangulation auf dem Geoid

und auf dem Referenzellipsoid, so daß die Dreiecke beider praktisch
kongruent sind.

Wir berechnen nun mit Hilfe der sogenannten „geodätischen
Hauptaufgabe" aus den ausgeglichenen Winkeln und Seiten der
Triangulation auf dem Referenzellipsoid, ausgehend vom Fundamentalpunkt
und dem Ausgangsazimut a0., sukzessive die geographischen Koordinaten
cpQ und Xa aller Dreieckspunkte für das Referenzellipsoid, sowie die
Azimute der geodätischen Linien, also der Dreiecksseiten.

Wenn wir auf dem Triangulationspunkt Pn die geographischen
Koordinaten durch direkte astronomische Beobachtungen bestimmen,
wie auch das geographische Azimut von Pn nach PL, so können wir
daraus die geographischen Koordinaten cp^> ^n fur die Projektion
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von Pn auf das Geoid P'n (ausgeführt mit Hilfe der durch Pn gehenden

Lotlinie) berechnen, ebenso wie das Azimut der geodätischen Linie

an n" welche durch die Projektionen von Pn und P'n geht. cp_\ und A£

bestimmen die Stellung der Lotlinie, d. h. der Normalen zum Geoid
im projizierten Punkt von Pn. Im allgemeinen weichen die Größen
cp1^, A£ und a£ n, von den durch die geodätische Uebertragung gefundenen

sogenannten geodätischen Elementen^, A^ und af, n, auf dem Referenzellipsoid

ab, weil die Geoidnormale von Pn nicht parallel zur Ellipsoid-
normalen von P'n ist. Das zeigt, daß das Geoid von dem angenommenen
Referenzellipsoid abweicht. Wir denken uns durch P'n eine Parallele

zur Geoidnormalen gezogen. Den Winkel, welchen diese Parallele mit
der Ellipsoidnormalen bildet, nennen wir die totale Lotabweichung 0n
im Punkte Pn für das angenommene Referenzellipsoid.

Es soll nun 0n aus der Vergleichung der astronomischen Elemente

Vn, A„, a£ „, mit den geodätischen Elementen cp\\, Xf_, ann, bestimmt
werden.

Bestimmung der Lotabweichung.

Da wir das Referenzellipsoid im Fundamentalpunkt 0 berührend
an das Geoid gelegt haben (die beiden Normalen fallen zusammen),
so haben wir:

?ao 9l
K AJ

a g
a0.j — a0.j

Wir legen um den Punkt P'n eine Kugel vom Radius Eins, schneiden

mit ihr die verschiedenen Linien und Ebenen und erhalten so die
nachstehende Figur 1.

Z£ ellipsoidisches (geodätisches) Zenit von Pn Schnitt
der Ellipsoidnormalen durch P'n mit der Kugel.

Z£ wirkliches (astronomisches Zenit) von Pn Schnitt
der Parallelen durch P'n zur Geoidnormalen von Pn.

N Schnitt der Parallelen zur Erdachse durch P'n mit
der Kugel.

Pn' Schnitt der Parallelen zur Ziellinie Pn Pn, mit der
Kugel.

zn zn — ®n totale Lotabweichung von Pn.

e_\ geodätisches Nordazimut der Lotabweichung.

180° + «JJ astronomisches Nordazimut der Lotabweichung.

Q Fußpunkt des Großkreises durch Z_\ normal zum
geodätischen Meridian durch Z\\.
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Zn Q Cn Meridiankomponente der Lotabweichung @n von Zj\,
nach Norden positiv gezählt.

Q Z^ 7]n I. Vertikalkomponente der Lotabweichung &n, nach
Osten positiv gezählt.

Aus dem rechtwinkligen sphärischen Dreieck NQZ1^, mit dem
rechten Winkel bei Q, erhalten wir:

cos (Ag - X_\) tg 9n ¦ cotg {epl y fn)

sin rjn sin (A» — A°) cos ^
A^ — A£ ist höchstens eine Minute sexagesimal. Wir dürfen daher

ohne Gefährdung der Genauigkeit der abzuleitenden Formeln setzen:

cos (A£ —A°) 1.

sin (Ag-AZ) arc (Xn - Xn,



— 9 —

Damit erhalten wir:
tg (<p«n y in) tg cpn

und daraus

(1) L - 9l-9l
(2) Vn (Xi-Xany coscpl -(Ag-Ag)" cosffg

in Sekunden

Aus dem rechtwinkligen sphärischen Dreieck Z£ ZQn Q folgt:
(3) g„ Qncoseg ^ gnfinj

In der geodätischen Literatur finden wir oft die Formel

Vn + (AS-A») cos?«

Dabei sind die geographischen Längen nach Osten positiv gezählt,
was dem allgemeinen Gebrauch widerspricht, oder es wird rj nach
Westen positiv gezählt. Dann ist aber der Drehsinn des Winkels egn

gegen den Uhrzeigersinn gerichtet, was der allgemeinen geodätischen
Praxis widerspricht. Aus diesen Gründen entscheiden wir uns für das
in den Formeln (1) bis (3) adoptierte System.

Für positives £n liegt das astronomische Zenit nördlich vom
geodätischen I. Vertikal durch das geodätische Zenit.

Für positives -qn liegt das astronomische Zenit östlich vom geodätischen

Meridian durch das geodätische Zenit.
Das sphärische Dreieck Zn Zgn Pn, gibt nach einer Neper'schen

Analogie

-Int + .9n;nt\
_ ____T ~_-ZT TL t„ / @'

sin
2

wenn wir die Bezeichnungen einführen:

<,w Winkel Pn,ZlZl

(T

wn,m Winkel Pn, Zn ¦ Verlängerung von Zgn Zn

Daraus folgt mit für alle Fälle genügender Genauigkeit, im
Hinblick auf die Kleinheit von &n (maximal eine Minute)

(4) K,n> "- wn,m ®n cotS -n,m sin K, m

Das Dreieck N Z^ Zg gibt nach einer Neper'schen Analogie:

sin / fn ' £n \

t (vn + vU \~2— te„
cotg (-^— - tg
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Daraus folgt, da starke Annäherung an die Pole auf näher als 2°
a g

praktisch nicht in Frage kommt, und daher —'L——— stets so klein

bleibt, daß der Sinus durch den Arcus ersetzt werden darf
(5) Sn - d ®n tg <Pn sin 4

Aus der Figur 1 erkennen wir die Beziehungen:
a9an,ni

Daraus folgt

a° y wa k9- aa y ma *aan,ni i wn,m ~ fn> an,m s Wn.nt en

aa
n, ni (Usti ~ iK.ni— <m)

und weiter, unter Beachtung von (4) und (5):

an,n> — <n/ ®n sin «n tg <p\\ — &n cotg Cn, n> sin wn,m
Unter Beachtung der Beziehungen für r)n und £n ergibt sich daraus :

(6a) an,m — an,nt
_

Vn tg Vn ~ Vn cotg Çn> COS ag, n, +
+ Cn COtg ff>n/ Sin ag>n,

oder auch:

(6b) <n. - ag,n, Vn tg yn + ®n ^ « n, ~ eg) Cotg ff, n^

Da ff n, im allgemeinen sehr nahe an 90° liegt, weil in Haupt-
triangulierungen keine großen Zielneigungen auftreten, so ist für die
meisten Zwecke genügend genau

<,m - <m Vn tg <Pn

oder
(8) Vn i<m - <m) «>tg vi

In niedrigen Breiten, wo cotg cp groß wird, ist die Bestimmung
von rj aus Azimutmessungen sehr ungenau, um am Aequator ganz zu
versagen.

Aufstellung der Laplace-Gleichung.

Setzt man die beiden Werte für r)n nach (2) und (8) einander gleich,
so erhält man

Km ~ <m) cotgrf -(Ag - Ag) cos epl

oder einfacher

(9) <,m - <m + (Ag - Ag) sin yg 0

Das ist die von Laplace aufgestellte und nach ihm benannte
Gleichung.

Wenn man ff n, + 90 ° annimmt, und daher cotg ff > n, nicht
vernachlässigt, so erhält man eine etwas kompliziertere Gleichung, die
wir aber hier nicht aufstellen wollen. Wir verweisen diesbezüglich auf
eine kürzlich veröffentlichte Arbeit des Verfassers1.

1 Baeschlin, CF., Rapport sur la répartition et l'utilisation pratique des

points de Laplace. Bulletin géodésique 1936, No 52, page 433, formule (9a).
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Es muß hier ausdrücklich darauf hingewiesen werden, daß die
Formel (9) auf der Voraussetzung beruht, daß im Fundamentalpunkt O

die Lotabweichungskomponenten £0 un(i Vo gleich Null seien. Es geht
also nicht an, bei einer größern Triangulation die Laplace-Gleichung (9)
zwischen zwei beliebigen Punkten anzuwenden; sie darf nur zwischen
dem Fundamentalpunkt und einem Außenpunkt verwendet werden.

Man kann sich zwar von dieser Beschränkung befreien, wenn man
die Formeln aufstellt, die sich ergeben, wenn man auch für den
Fundamentalpunkt 0 eine Lotabweichung annimmt. Da die Ableitung ziemlich

umständlich ist und eine recht komplizierte Formel resultiert,
sehen wir hier davon ab, diese Rechnung durchzuführen. Wir
verweisen auf die oben zitierte Veröffentlichung des Verfassers1.

Verwendung der Laplace- Gleichungen für die Ausgleichung eines
Dreiecksnetzes.

Wir gehen von der einfachen Laplace-Gleichung (9) aus

<m -- <m + (Ag-Ag) sin epl 0.

Infolge der Fehler an den 5 in dieser Gleichung auftretenden
Elementen wird die rechte Seite von (9) von Null verschieden sein;
wir wollen diesen Wert mit a> bezeichnen.

Bevor wir an die Lösung der gestellten Aufgabe herantreten,
müssen wir uns Rechenschaft geben, wie wir uns die Größen ag n,

und Ag verschaffen.
Der Fundamentalpunkt O sei mit dem Punkt Pn durch eine

Triangulation verbunden; wir wählen aus dieser Triangulation eine möglichst
direkt von O nach Pn führende Dreieckskette. Wir gleichen in den

Dreiecken dieser Kette die Winkel auf 180° aus und rechnen mit Hilfe
der so ausgeglichenen Winkel die Seiten OPlt PiP2, -¦¦ -Pn—l -^n-

Aus den ausgeglichenen Winkeln bilden wir die Brechungswinkel
w in dem Polygon aus geodätischen Linien, das auf möglichst direktem
Weg den Punkt Pn mit dem Fundamentalpunkt O verbindet.

Das geodätische Azimut von OP1 oq.j bestimmen wir aus dem
auf dem Fundamentalpunkt 0 astronomisch beobachteten Azimut von
OPq aJJ 0, durch Zufügung des Winkels w0

Oo-i a-o-o' + wo

Aus diesem Azimut und der Länge der geodätischen Linie OP^
s0.i berechnen wie die geodätischen rechtwinkligen Koordinaten von
Px : x1 und ylt wo wir die Koordinaten von 0

x0 0 und z/0 0

setzen.

1 Baeschlin, C. F., Rapport sur les répartition et l'utilisation pratique des

points de Laplace. Bulletin géodésique 1936, No 52, page 436, formule 11).
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Nach Helmert, Höhere Geodäsie, I. Teil, 9. Kapitel, § 7, S. 419,
Formeln (1), (2), (3) und (4) erhalten wir:

2

(10)

yy «„.i sin a,.t °\^~ - + G15

Zldo.j.

Vi COS a0.! \ 1

R

Vi
2R2 6i?2 GL

R + 2R
OU

Hier haben wir zur Abkürzung gesetzt

R»

"o-i so-i cos a0.j
«Vi Vi sin a0.t

N0 • Ma, wo b die kleine Achse der Meridianellipse des

Referenzellipsoides ist.

e1 sin2 cp„; e2

R stellt den sogenannten „mittleren Krümmungsradius" des
Fundamentalpunktes dar.

Aa0.y Oi-o — a„.! — 180°.

Die Winkel a stellen die Winkel dar, welche eine geodätische Linie
mit der Parallelen durch den Scheitel zum Ausgangsmeridian durch O

bildet. Wir wollen diese Winkel „Neigungen" nennen, in Analogie zu
der ebenen Koordinatenrechnung; wir zählen sie vom Nordast der
Parallelen aus, positiv im Uhrzeigersinn.

Die Neigung der geodätischen Linie Px P2, ax.u wird
0l-2 Oi-o + Wl
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Es ist aber
Oi-o <Vi + 180° + Zitto.!

Mit Hilfe von a^ und s^ berechnen wir y2, x2 und Aax.

1 \ Jj2^

(10a)

iJi

ZlOj.2

f/l + «V \h

1 + Vy

2R2

- fl-2

f2l-2
6R2

2 R2

Rr fi j Ji ' 2R
Damit ergibt sich die Neigung der geodätischen Linie P2 P3, a2.3

a2.s a2., -I- w2
wobei

u2.i OJ.., + 180° + Aa^
So fahren wir weiter bis zum Punkt P„

(10b)

Un Vn-1 -lu y xv \ ""-1'"
1—l,n I fn—1 i

y "n—l,n J —o r>2

/2 2

I 1 I Un Vn~1'
n-1 - un-l,n \ + \ 2 Rz 6 R.

Aa n—l.n

WO

«n—l,n ] Vn—1

"n-l,n s

2 i?

n—l,n

"n-l,n - Än-l,n "" un-l,n
Daraus leitet man die Neigung der geodätischen Linie Pn Pn„

a„,n„ ab, nach welcher das astronomische Azimut auf Pn beobachtet
worden ist. Wir erhalten:

an,m z r a" "—1 w"
Es ist

xn,n—l

¦'n.n—l an—l,n 180° + A n

Setzen wir den Wert für an_1 n ein und gehen zurück bis auf a" 0„ so

folgt
w0 y wy y w2 y y wn y A a0.i + A ax.2 yxo, ü'

+ A a„_2. n__ y A a„_i>n + (n-1) 180°
oder

(11)

ii i n

*n,nt <.0t +y wi + V Aai-t, i + (»-1) 180°

i o i 1

Damit wir das Azimut der geodätischen Linie Pn Pn, erhalten

(a£ n,) müssen wir die sogenannte „Meridiankonvergenz" tn zufügen.
Es ist dies der Winkel, den die Parallele durch Pn zum Meridian durch
den Fundamentalpunkt O mit dem Meridian durch Pn bildet. Wir
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a c
(13) Vn - -V7-
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zählen diesen Winkel zwischen den Nordästen der beiden Linien im
Uhrzeigersinn.

Nach Helmert, Höhere Geodäsie, I. Teil, S. 460, Formeln (3) ergibt
sich unter Beschränkung auf Glieder bis zur 4. Ordnung(\ "2

1 +\~cos*<pn y Gl4 j

n
• K" t. C sin' <pn\

Wn \ 6 P"2 I

Damit wird:

(14) A" "-a^^rl1 +- 6P»* j
Setzen wir diesen Wert für An in (12) ein, so folgt

«« /" Vn Wn P" t„ „ L 1 K2
_

K_[ si"2 Vn\
(15) tn + tg Cpn \\ + ¥^COS2 Cpn y &-yj_ J

Den Ausdruck für A a(__ ; können wir noch etwas umformen; es

ist nach Helmert, Höhere Geodäsie, I. Teil, S. 418, Formel (9)

,t AxAai_^=-p" R

Dabei ist

Ax x

y (1__v2 + iAxy
R \ 6i?2

'

12 R2

2-V^ i
Ax ¦ Ay

R2 + 6 R2

i —1

_!_ {AyY \
8R2 j

e2 sin 2 tp0 + Gl,

xi _! + X

2

V, _i + y idy yt— y,_! y 2

Beachten wir nur die Glieder 2. Ordnung, so ist
Ax • y _,^J-l.i =—p—R2- +G14

und damit wird
i n

de) 2 ja*-i.i=- -ÇyAx • »

z i
UAx-y ist aber genähert die Fläche zwischen dem Polygonzug

Oj Pj P2 Pj Pn, der Ordinate von Pn und dem Meridian
durch O.

Somit wird, richtig bis auf Glieder 3. Ordnung
i n

(17) 2 ^l-l.l=-£
i 1

wo E der sphäroidische Exzeß der oben bezeichneten Figur ist.
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Somit erhalten wir
i n

(18) <m «8-0, + 2 Wi~E
i 0

«/„ wn ¦ p" I A-2 cos2 cpn Xn2 sin2 <?„ \

tgf„(l +- 3p,2
- + -

6p/„ -)
Die Laplace-Gleichung lautet

<„' — «n,n'+Sin^n(Ag— Ag) Ol.

Rechnen wir dies aus, so erhalten wir:
i n

o-n.m - <<V + Sin p„ A«-V w. + £ _^"^' tg 9n.

i o

/l o.
A"2 • COS2 ?» An2 Sin2 cpn \

I1 +- ^7^2- -67"2 -/ - sm cpn ¦ Ag »
Nun ist aber

-^.3.+^ «,*('+fir*)
so daß wir erhalten

i n

an,n' — ao,0' + Ag sin cpn —2__ wi + E

i o

Vn Wn P" • tg <Pn X'n cos2 Vn

In erster Näherung ist nach Formel (14) oben

* cos ,„ - ^ W" '"
a

Damit erhalten wir die endgültige Formel
i n

(19) ag,,, -aa0>0, y Ag sin cpn —^] », + E

i 0

Man erkennt daraus, daß der von der geodätischen Uebertragung
herrührende Teil der Laplace-Gleichung ist

(20) E - IJL- Wn* p" tg ?„ «,

Wenn daher zur geodätischen Uebertragung fehlerhafte Elemente
verwendet werden (w und s), womit die Koordinaten der Punkte
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Pi, P2, P-, Pn fehlerhaft werden, so hat das auch zur Folge
daß E und yn sich ändern.

EAxu tIn (20) ist E p" —=~- von der 2. Ordnung klein, wenn wir p—

und —:L- von der 1. Ordnung klein annehmen, während das 2. Glied von cu.,R "

Vn
welches —\- enthält, von der 3. Ordnung klein ist. Es genügt daher für
die Abschätzung des mittleren Fehlers von a> herrührend aus der
Unsicherheit der Koordinaten x und y, nur den mittleren Fehler von E
in Betracht zu ziehen.

Wir haben den mittleren Fehler von EAx • y für eine Dreieckskette
aus gleichseitigen Dreiecken berechnet, wobei die sämtlichen Dreiecks-
winkel mit demselben mittleren Fehler p behaftet angenommen worden
sind, wobei aber auf die Ausgleichung der drei Winkel in jedem Dreieck

verzichtet worden ist. Dadurch wird der mittlere Fehler des
Ausdruckes EAx • y bestimmt zu groß erhalten. Wir gehen hier auf diese

Berechnung nicht näher ein, sondern geben nur das Ergebnis.
Wir finden

m«. < /*"-£- Y2'n3
wo s die Länge einer Dreiecksseite und n die Anzahl der Seiten zwischen
dem Fundamentalpunkt O und dem Laplacepunkt Pn ist.

Mit
p, 1"; s 50 km; n 10; R 6371 km finden wir

mw„ < 0."00275

Mit p 1"; s 100 km; n 10; R 6371 km finden wir

m^tt < 0."011.

Da die letzten Annahmen sicher extreme sind, so ist durch diese

Fehleruntersuchung zweifellos gezeigt, daß der Einfluß der geodätischen
Elemente auf den Widerspruch der Laplace'schen Bedingungsgleichung
unter allen Umständen vernachlässigt werden darf.

Das Ergebnis unserer Untersuchung im Bericht über die
Verteilung und die praktische Verwendung der Laplace-Punkte an die
Internationale Vereinigung für Geodäsie anläßlich ihrer Versammlung
vom September 1936 in Edinburg1 wird also durch diese strengere
Prüfung vollkommen bestätigt.

Auf die weiteren Fragen, welche in jenem Berichte behandelt
worden sind, treten wir hier nicht ein. Es lag uns nur daran, hier eine
strengere Ableitung für den aus den geodätischen Elementen folgenden
Widerspruch der Laplace-Gleichung zu geben. Er erweist sich als von
der 2. Ordnung klein und nicht, wie man auf den ersten Blick schließen

1 Baeschlin, C. F., Rapport sur la répartition et l'utilisation pratique des

points de Laplace. Bulletin géodésique 1936, No. 52, page 442.
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möchte, von der ersten Ordnung. Sein Fehlereinfluß ist daher gegenüber
den Fehlern der astronomischen Elemente und der Winkel des Dreiecksnetzes

verschwindend. Damit ist aber erst die einwandfreie Verwendung
der Laplace-Gleichungen als Bedingungsgleichungen für die
Ausgleichung von Triangulationsnetzen gewährleistet.

Herbstversammlung der Sektion
Zürich-Schaffhausen.

Samstag, den 12. Dezember 1936, fand im Restaurant „Du Pont"
in Zürich die ordentliche Herbstversammlung der Sektion Zürich-
Schaffhausen statt. Der späte Zeitpunkt der Tagung war begründet
durch einige pendente Geschäfte, die der Vorstand noch vorher zu
erledigen hoffte.

Präsident Vogel konnte in seinen Eröffnungsworten eine erfreulich
große Zahl von Vereinsmitgliedern begrüßen. Es war dies nicht anders
zu erwarten, bildete doch das Haupttraktandum „Aktuelle Fragen
über Arbeitsbeschaffung" reichlich Stoff zur Diskussii n.

Bereits seit längerer Zeit sind die Arbeitsmöglichkeiten in unserm
Berufe zusammengeschrumpft. Das Fortschreiten der Grundbuchvermessung

muß wegen der eingeschränkten Kredite verlangsamt
werden, tiefbautechnische Arbeiten, die sehr oft an Geometerbureaux
vergeben werden, kommen wegen der allgemeinen Depression auf
dem Baumarkt weniger zur Ausführung. Auch auf dem Gebiete der
Meliorationen, insbesondere der Güterzusammenlegungen, ist ein
Stillstand eingetreten, als Folge fehlender Mittel liei Staat, Gemeinde und
Landwirtschaft. An die Aufnahme neuer Unternehmen soll gewiß mit
Vorsicht geschritten werden, doch wichtige Argumente sprechen
dafür, daß solche nicht einfach sistiert werden dürfen. Meliorationen
tragen wesentlich zur Arbeitsbeschaffung bei, sprechende Beispiele
finden wir bei den zwei schaffhauserischen Gemeinden Herblingen und
Beringen. Beide Orte haben ziemlich viele, früher in der Metallindustrie
beschäftigte Arbeiter, für die dringend Xotstandsprojekte
bereitgestellt werden mußte. Beim Wegebau anläßlich der Güterzusammenlegung

konnten während mehreren Jahren viele Beschäftigung finden. —
Die Schaffung neuer Erwerbsmöglichkeiten, die Vereinfachung der
Betriebsverhältnisse, die Vermehrung der Produktion sind alles Momente
die volkswirtschaftlich solche Unternehmen rechtfertigen. Bei der
politischen Unsicherheit unserer Zeit soll die wirtschaftliche Unabhängigkeit

unseres Landes so weit als möglich gefördert werden.
Zu diesen Problemen Stellung zu nehmen, von den vorhandenen

Arbeilsmöglichkeiten diejenigen auszuwählen, die selbst in einer Krisenzeit

verantwortet werden können, war das Hauptthema unserer Tagung.
Der Vorsitzende gab in einem längern Exposé die Schritte des

Vorstandes bekannt, die er hinsichtlich Arbeitsbeschaffung
unternommen hat. Den präsidialen Ausführungen folgte eine reichlich
benützte Diskussion, die wertvolle Anregungen zeitigte.

So wurde u. a. die Förderung der Uebersichtspläne gewünscht,
die als Grundlage der neuen Kartenwerke, nicht beliebig hinausgeschoben
werden darf. In verschiedenen Kantonen, die aus frühern Jahren
Vermessungen besitzen, wäre dies ohne vorhergehende Parzellarvermessung
möglich.

Im engen Zusammenhang mit den vorhandenen Arbeitsmöglichkeiten
steht auch die Frage des Nachwuchses. Während bei den

Vermessungstechnikern bereits gewisse Richtlinien aufgestellt wurden, sind
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