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Das ankommende Abwasser passiert zuerst einen Sandfang mit
Rechen, in welchem es von schwereren mineralischen und den leichteren
sperrigen Stoffen befreit wird. Dann gelangt es in die eigentliche Klir-
anlage. Dieselbe besteht aus einem rechteckigen Becken, in welches
zwel Absetz- oder Klirrinnen eingebaut sind, deren Winde nach unten
dachformig zusammenlaufen und der Linge nach einen Schlitz offen
lassen. Das Abwasser tritt unter Tauchwinden in die Absetzrinnen
ein und durchflieBt dieselben mit ganz geringer Geschwindigkeit.
Dabei scheiden sich die im Abwasser vorhandenen ungelésten Schmutz-
stoffe aus, sinken zu Boden und rutschen durch den Bodenschlitz in
den FFaulraum. Das so geklirte Wasser flieBt dann unter einer Tauch-
wand hindurch nach dem Ablaufkanal und durch diesen dem Altbach zu.

Der im Faulraum sich ansammelnde Schlamm macht dort einen
lingeren Faulprozel3 durch, wobei, hauptsiachlich durch die Tatigkeit
von Kleinlebewesen, ein Abbau der organischen Stoffe stattfindet.
Der Schlamm geht dabei in eine geruchlose Masse iiber, welche in ein-
facher Weise mittels Wasseriiberdruck aus dem Faulraum nach einem
seitlichen Schlammkanal abgelassen werden kann, von wo er mit natiir-
lichem Gefille nach dem Pumpensumpf flieBt. Von hier kann der
Schlamm mittels einer Pumpenanlage entweder direkt nach einer Zapf-
stelle oder nach den Schlammteichen gepumpt werden, wo er leicht
bis zur Stichfestigkeit trocknet.

Der Schlamm besitzt den Dungwert eines guten Stallmistes und
wird zweifellos von den Landwirten gerne abgeholt werden.

Die Anlage ist so projektiert, dafl sie spéter leicht erweitert werden
kann.

Essai sur la théorie vectorielle des moindres carrés.

(Suite et fin.)

La propagalion des erreurs.

Avant de passer au cas général, je considére la fonction
Y = AL avec
A=z a4+ a6+ .... + 2,0,
L=z LU+2z L+ .. + 2,10,
Donnons a4 L un accroissement AL
Y + 4Y = AL + A" AL
A¥ = 4 » dL
(4YP = (4 * 4L)*
ou bien en posant 4Y =p, et AL =p = + Zy g + Z o £ -
pyt = (Ap)?



— 53 —
Si nous introduisons A et p avec leurs composantes, on obtient:
My = (@ + Gope + o Ay py)?

~ (@ ) + (@ ) + ..+ (@, pp)?

Nous négligeons les doubles produits parce que nous admettons que
les erreurs sont de nature accidentelle

F’yz = (a i) + (@ )2 + .... + (an Hn)a
Considérons a présent le cas général:
Y = F (L)
Y + 4Y = F (L) + F’' (L) AL
AY = F" (L) - 4L

Nous voyons par la que le cas général peut étre ramené au cas Y = AL.
La solution est immédiate. L

pt = [F (@) ;»}2

, o oF oF ' oF
F (L) = & A —{—z‘2 ol H mrwr b By 3ln.
b=tz £ P + ... = Z, s,
, oF oF oF
« F (L) p= =* 3[ My 61 P = v 81 Hn
oF o oF 4 oF
P'y2 = (81 Pl) + (le Mz) o PR (ﬁn_ Hn)

Calcul de Uerreur moyenne de la moyenne arithmétique.

La moyenne arithmétique est donné par

x:—LzL
n

L’erreur moyenne de l'une quelconque des n mesures est

_ l/ v?
K= n—1
Pour trouver l'erreur a craindre sur la moyenne arithmétique, nous
n’avons qu’a appliquer la loi de la propagation des erreurs.

dx

dL =7 *

dx 2 1 1
mt = (ar 1) = e 20 = e

Ry — ——
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Remarque:

Pour la recherche de l’erreur moyenne dans le cas d’observations
d’inégale précision, la méthode vectorielle différe trés peu de la méthode
ordinaire et c’est pour cette raison que je ne la traite pas.

Les observalions médiates.
Considérons le cas de trois inconnues, les observations ayant le
méme poids. Nous avons I'équation aux erreurs:
v=axr + by + ¢z + 1
=20 + Z, & + .... + 2z, a,
= 2; by + z, by + ..

— s e e @

P o=y

C’est une équation vectorielle a n dimensions. Introduisons des
nombres vectoriels du second ordre

avec

S o Q

A =zia+ zb+ z3c¢ ITiéme ordre
X =zzx + 20 + 23 2 ‘ Iier ordre
L’équation aux erreurs devient:
v = AX + 1

Il nous faut déterminer X de fagon a ce que »? soit minimum, donc
v = (AX)?2 4+ (AX) Ll + B2

dv?

m:(AX)A-{—AI:O

(AX + D) A =0

C’est donc I’équation normale. Si nous introduisons A et X avec
leurs composantes, on obtient:

(ax + by + ez + D (za+ 2,0+ 2,¢) =0

[aax—i—aby—}—acz—i—al:O
abx + bby + bez + bl = 0
lacx-i—bcy—}—ccz—}—cl——_—o

Le cas d’observation d’inégale précision se traite absolument
de la méme facon si I'on pose:
a=211/f’:al+22\/f);az+ .
b

Remarque:

Si I’équation aux erreurs n’est pas linéaire, on la développe en
série; le développement étant absolument le méme que pour le cas
d’une seule variable.

v=F (X) + 1
v = F (X, ++ AX) + 1
v~ F (X)) + F (X,) 4X + 1
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La dérivée F’ (X,) s’appelle le gradient de F (x) et on I’emploie
surtout dans le calcul vectoriel a trois dimensions.
F’ (X,) = grad F (X,) = 4F (X,)

Observations conditionnelles,

Pour fixer les idées, considérons le cas de 4 observations l, [,
l;, 1, et de trois équations de condition; on a:
Gy + @ 2, + @ 2, + a3 23 + a4, = 0
Co + € Xy + € Ty + €3 X3 + € X

ou bien sous forme vectorielle

Il
o o

[ AX =0
BX + b, = 0

avec ‘

=4 X f % Xy Z3 Xy o+ Zy Xy
= 23 A + %y Gy + Z3 Q3 + Z4 4y
= 2y By F siun

= Z; ¢ + ..

Les trois équations de condition peuvent étre remplacées par
une seule équation vectorielle qui est:

KX + m=0

Qb b

en posant:
' K

m

zZ A+ 2B+ 27 C
Zy Qg + 2z by + 23 ¢¢

Il

Dans ce cas on a en effet:
KX + m =1z AX + zg BX + zg CX + zyay + 2z, by + z3¢ = O
c. q. 1. d.
Introduisons a présent les valeurs observées, soit [, [, I,

Nous avons:
X =L + v

KL + m=uw w =2z, W, + 2z Wy + 23 W,
KL+ v)=—m
S K v+ w=20

C’est ce qu’on appelle 1’'équation de condition aux corrections.
Il nous faut donc déterminer v de facon a ce que I'équation de con-
dition soit vérifiée et qu’on ait en outre, en considérant des observa-
tions de méme poids: v? = minimum. Les conditions a remplir sont
donc
Kv +w =20

v?2 — Minimum
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Nous formons I’équation suivante:
' F = v 4+ A (Kv + w)
avee A =z A+ 2 A+ g A

v doit donc vérifier les conditions suivantes:

F" = )
Kv 4+ w =20
donc
29 4+ AK = 0
Kv + w = 0
Posons pour simplifier A = —2k ce qui nous donne:
v = kK
et en introduisant la valeur de v dans la seconde équation:
K- -(kK)+ w =20 équation corrélative
Cette équation nous permettra de trouver k et a l'aide de v = kK
nous détermineront v, ce qui nous permettra de trouver l'inconnue X
au moyen de la relation X = L + wv. Nous retrouvons facilement

les formules classiques en introduisant K, k et w avec leurs compo-
santes; on a: o
K=2z A+ 2z B+ .2, C-
k zZ, ky + z ky + z3 ks
W =z Wy + Z, Wy, + Z3 Wy

AAk, + ABk, + ACk, + w, —
ABk, + BBk, + BCk, + w, =
ACk, + BCk, + CCk, + w,

Lausanne, le 2 janvier 1936. W. Bachmann,
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Ueber eine neue selbstreduzierende Kippregel der
Firma Kern & Cie., A.-G., Aarau.

Von W. Leemann, Kantonsgeometer, Ziirich.

An verschiedenen Tachymeler-Theodoliten* sind z. T. schon vor
langerer Zeit Einrichtungen zur direkten Ablesung der reduzierten
Entfernungen und Hoéhenunterschiede an vertikal aufgestellter Latte
angebracht worden, dagegen fehlte es bis heute an einer selbstreduzie-
renden Kippregel. Die Firma Kern & Cie. hatte zwar. bereits im. Jahre
1918 auf Anregung des Verfassers einen ,,Autoréducteur fiir den Me8-
tisch konstruiert, doch vermochte sich dieses Instrument nicht durch-
zusetzen. Der Grund hiefiir diirfte vornehmlich darin gelegen haben,

* Vgl. Zeitschrift fiir Instrumentenkunde, Jahrg. 1898, S. 241, 1900, S. 32,
1902, S. 21 (Tachymeter Hammer-Fennel) und Jahrg. 1931, S. 579, sowie 1932,
S. 38 (Theodolit Butenschén).
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