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Essai sur la théorie vectorielle des moindres carrés.

Pans D’article ci-aprés, je veux montrer comment on peut em-
ployer le calcul vectoriel au probléme de la compensation par la méthode
des moindres carrés. Cependant ce petit travail ne sera pas complet.
Comme cette théorie des moindres carrés est trés connue, je n’ai pas
voulu la traiter en entier; j’ai uniquement choisi quelques chapitres
pour montrer la méthode.

Il est bien entendu que la méthode vectorielle ne présentera aucun
avantage pour la résolution numérique d’un probléme. Pour résoudre
numériquement un probléme, on sera quand méme forcé d’introduire
les vecteurs par leurs composantes, ce qui nous donnera les formules
toujours employées jusqu'a présent. Par contre, pour la théorie, la
méthode vectorielle est excellente et certainement bien supérieure a
la méthode analytique, telle que nous I’avons toujours employée jusqu’a
présent. La méthode vectorielle donne des résultats trés concentrés
et elle nous permet de voir le probléme dans tout son ensemble sans
passer par chaque observation particuliere. ’

Introduction.
Le nombre vecloriel.

Dans le cas général, pour considérer le probléme de la compensa-
tion par la méthode des moindres carrés, il nous faut introduire la notion
du nombre vectoriel.

Un nombre vectoriel peut étre représenté géométriquement par
un vecteur a n dimensions. Il ne nous suffit donc plus de considérer
que 'espace d’Euclide; il nous faut introduire des espaces a n dimensions.

En algebre, les quantités étudiées peuvent étre fonction de plu-
sieurs variables indépendantes qui sont mesurées par des unités dif-
férentes et également indépendantes. On appellera nombre vectoriel
la somme des valeurs de ces n variables prises avec leurs unités.

On écrira donc un nombre vectoriel de la fagon suivante:

(1) T = 5% + % + ... -+ £, 0,
Les x;, @, .... ..x, sont donc les composantes algébriques et les
Zi Zy .... Z, sont les unités de mesure correspondantes. Ces unités ne

sont généralement pas des vecteurs par leur nature; elles peuvent par
exemple étre un poids, une longueur, etc., mais rien ne nous empéche
de leur donner un caractére vectoriel. Nous n’avons qu’a considérer

un espace fictif 4 n dimensions et prendre les z, z, .... z, suivant

la direction des axes indépendants dans cet espace. Le nombre vectoriel
sera donc bien représenté géométriquement par un vecteur dont les
composantes seront:
5 T By B wiws By By
Cet espace a n dimensions n’est pas un espace réel, mais un espace
fictif. I n’y a qu’un seul espace réel connu: c’est I’espace d’Euclide,
donc I’espace a trois dimensions. Nous ne pouvons pas nous représenter
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un espace a n dimensions. Un point quelconque de notre espace est
parfaitement déterminé par trois éléments. Nous ne pouvons pas le
déterminer par l'indication de quatre éléments par exemple, sinon les
quatre éléments seront liés par une équation de la forme

a, z; + Q3 Z, + a3 z3 + a3 z4 = 0

et nous pourrons donc exprimer l'un quelconque d’entre eux en fonc-
tion des autres.

Cependant nous ne savons pas si un espace a n dimensions peut
exister ou non; ce que nous savons, c’est qu’il n’existe pas pour notre
perception. La physique nous donne bien des exemples de phéno-
menes qui se produisent dans la nature, mais qui ne peuvent pas étre
con¢us par nos organes. Considérons par exemple le cas du spectre.
On peut le ramener a trois couleurs fondamentales qui sont le rouge,
le jaune et le bleu. Ces trois couleurs représentent trois unités de mesure
distinctes et indépendantes. Mais il existe d’autres couleurs ou plutét
d’autres rayons que nos yeux ne peuvent pas percevoir. Les physiciens
ont découvert les rayons ultra-violets et les rayons infra-rouges dont
les propriétés sont analogues a celles des rayons visuels; ils sont de
méme nature et ne différent que par la longueur d’onde.

Nous voyons donc par ce petit exemple que tout ce que nous

apercevons nous donne une traduction fausse et nous en arrivons a
la conception de la relativité.

Addition et soustraction de nombres vectoriels.

L’addition et la soustraction de deux ou plusieurs nombres vec-
toriels s’effectue de la facon suivante:

Soit: a =z, + B + .... + z, a,
b =20, + 20, + .... + 2z, b,
a—+ b=z + b))+ z(a+ b))+ .... +2z, (a, + by
a—b==z(q,— b))+ z(@—>b)+ .... +2, (¢, — b))
(C’est donc la méme regle que pour les vecteurs ordinaires. L’équation
vectorielle a = 0 est donc équivalente aux n équations algébriques:
i = 0 iy = 0 suus caslly =10

Nous voyons déja par la P'avantage de la méthode vectorielle;
c’est une méthode plus concentrée que la méthode analytique. Au lieu
d’écrire n équations algébriques, nous n’avons besoin que d’une seule
équation vectorielle.

Soit m un nombre algébrique. On voit facilement que l’on a:

ma = z; ma, + z, may, + .... + z, ma,

ce qui dérive immédiatement de 1’addition des nombres vectoriels.

Produit algébrique de deux nombres vecloriels.

De méme que pour les vecteurs ordinaires, il faut considérer deux
produits qui sont le produit algébrique et le produit vectoriel.
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Le produit algébrique doit étre défini de facon a rester encore
juste quand n = 3, c’est-a-dire quand il s’agit d’un vecteur ordinaire.
Nous sommes conduits a définir le produit des unités comme suit:

55 =1, 2 8 = 1 sivy By By == 1
%n B =0 % % = 0 z4z5=0....zizi=0
ce qui nous donne: z; z; = 1 z; z; = 0

Ce produit est donc un nombre algébrique. Il faut cependant

remarquer que les unités z; z, .... z, doivent étre indépendantes:

elles doivent étre représentées au point de vue géométrique par des
axes rectangulaires.

Pour le carré d’'un nombre vectoriel, nous avons donc:
a* = g " @ =8>+ &+ isn. + @2

c’est donc la grandeur ou le module du nombre vectoriel.

Nombres vectoriels du second ordre.

Soient
a=2z20 + % a + .... + 2, a,
b =20 + 2bg + s0in + 2, by
C = 2 ¢+ %2 €+ .... + Z,¢,
Introduisons A = z; a + z, b + z5 ¢

Ce sera un nombre vectoriel du second ordre. De la méme facon, nous
pouvons définir un nombre vectoriel d’un ordre quelconque.

Dérivée tolale d’une fonction algébrique a plusieurs variables

I oe= Pl oy sins B) == F (@)

z €tant un nombre vectoriel: £ =4 & + & T3 .. T %, &,
dr = z dx; + z de; + ... + z, dz,
oF oF oF
dF(.I:)— del -+ Id.’l%—%- EET +8_1:ndx"

On appelle dérivée totale de la fonction algébrique F (x) par rap-
port a la variable vectorielle x, la somme des dérivées partielles prises
avec leurs unités de mesure.

. @F oOF oF
F(x)--zla—xl—kzza;»{—....-}—zna—xn

On a alors pour la différentielle totale
dF = F* {x) dx

La moyenne arithmélique.

Nous avons observé une certaine grandeur n fois, ce qui nous a

donné les n résultats: L, §, .... [,

ou bien sous forme vectorielle:
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L=5x L4+ %L+ ... +2,1;
Considérons en outre le vecteur
z =5+ Z+ .... + 2z,

La wvaleur la plus probable de l'inconnue est donnée par la moyenne
arithmétique, donc:

x:lzL
n

Nous constatons facilement que I'équation v = z *x — L est égale
a zéro. Nous avons:
V =20, + 2,0 + .... + 2, U,

= & (B—0L) + BE—d) + ... 4 &, (B— L)
:zx—L:%zsz#L:O e 4 1. 4y

L.es calculs numériques se facilitent passablement en introduisant
une valeur approchée de l’inconnue, soit xr,, valeur donnée par:

1
To = A Lo
On a alors:
x, + dx = 111 z (L, + 4L)
1
A = — z - AL
n

Calcul de Uerreur moyenne pour le cas d’observations de méme poids.

L’erreur moyenne est définie par la formule

€€ €2

S A S

e étant un nombre vectoriel ayant pour composantes
€ =2 ¢ + 26+ .... + 2z, €,

Les ¢; sont ce qu'on nomme des erreurs vraies; ce sont les dif-

férences entre la valeur vraie de I’'inconnue, soit X, et les valeurs obser-
vées, donc:

61 - X I l].

: =% (X—b) + 4(X—=05) + ..ss + 25 (X = 1)

€ = X — I

Les écarts entre la valeur la plus probable de I'inconnue x et les obser-

vations [, I, .... [, sont désignés par v, v, .... v,
Donc

v1 = L~ Il

v =2z v t+ v t+ .... + 2z, v,
v, = ¢ — 1,

=g @—h) + @ —L + isss + 2, (— 1)
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v=2( + 2%+ .... +z))— &L+ L4+ ... +2,1)
{v:za: — L de méme pour e
e = zX — L

En retranchant ces deux équations 1'une de 1’autre, on obtient:
e —p =2 (X — x)
€e = v+ 2z (X —2x)
Cette formule se simplifie encore en remarquant que v — 0, ce qui
est une caractéristique de la moyenne arithmétique. On a donc:
e =z (X —x
Sl {u + z(Xﬁzrc)}2 =¥ 4+ 2vz(X —1zx) + 22 (X —2x)2

€ = v + n (X — x)?
Multiplions 1’équation € = z (X — x) par z et élevons-la ensuite au

carré,
e =22 (X — ) = n (X — x)

(z €)2 = n? (X — x)?
A présent, éliminons P’expression (X — x) entre les deux équations:
e = v¥ 4+ n (X — x)?
{(Ze)* = n? (X — x)?
ce qui nous donne:

€e = v

(ze)?
2
T n

On simplifie cette derniére expression en remarquant qu’on a
approximativement:

2
(ze)* = {(z1 + 2zt e+ 7)) Bt e+ .. ~I—zn€n)}
= (g + &+ .... + g,)f ~ ¢
ce qui nous donne:
2
L J— 2 E,
€ v + n
E2 v2
n  n—I1

Nous obtenons I’expression cherchée qui nous donne Ierreur
moyenne en fonction de wv.

V5 -VaZ,
F=V n = Vi

Nous obtenons immeédiatement les relations avec la méthode
classique (analytique) en remarquant qu’on a: '

2= 92+ 0¥+ wiia + 00
v =v, + U, + .... + v,

Remarque:

I

[vv]

[v]

|

(A suivre.)
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