Zeitschrift: Schweizerische Zeitschrift fur Vermessungswesen und Kulturtechnik =

Revue technique suisse des mensurations et améliorations fonciéres

Herausgeber: Schweizerischer Geometerverein = Association suisse des géometres

Band: 26 (1928)

Heft: 9

Artikel: Einfuhrung in die Vektorrechnung und die vektorielle Ausgleichung
[Fortsetzung]

Autor: Baeschlin, F.

DOl: https://doi.org/10.5169/seals-190805

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 27.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-190805
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

SCHWEIZERISCHE

Leitschrift fir Vermessungswesen und Kufturtechnik

ORGAN DES SCHWEIZ. GEOMETERVEREINS
REVUE TECHNIQUE SUISSE DES MENSURATIONS ET AMELIORATIONS FONCIERES

ORGANE DE LA SOCIETE SUISSE DES GEOMETRES

Redaktion: F, BAESCHLIN, Professor, Zollikon (Ziirich)

Standiger Mitarbeiter fiir Kulturtechnik : Dr. H. FLU CK, Dipl. Kulturingenieur, Neuchatel, 9, Passage
Pierre qui roule (beurl). — Redaktionsschluf: Am 1. jeden Monats.

Expedition, Inseraten- und Abonnements-Annahme :
BUCHDRUCKEREI WINTERTHUR VORM. G. BINKERT, WINTERTHUR

DErschemend " i NO 9 Abonnemente:
am 2. Dienstag jeden Monats | Schweiz . Fr. 12.— ishrli
der |l . . Fr. 12.— jéhrlich
|| des XXVI. Jahrganges der Ausland . . . , 15, .

»Schweiz. Geometerzeitung*.
Inserate:

50 Cts. per lIspaltige Nonp.-Zeile H 10. September 1928

Unentgelthch fiir Mitglieder des
Schweiz. Geometervereins

Einfithrung in die Vektorrechnung und die
vektorielle Ausgleichung.
Von Prof. F. Baeschlin.

(Fortsetzung.)

Es sind dabeil zwei Wiinsche zu erfiillen: Erstens sollen die Figuren
mathematisch mdoglich sein; zweitens sollen die Fehler-Vektoren so
klein als mdglich werden.

Die erste Forderung wird bei einem Vektornetz ausgedriickt durch
die in notwendiger und hinreichender Anzahl aufzustellenden Be-
dingungen fiir die Seitenvektoren.

Die vektorielle Bedingung moge fiir ein ebenes Polygon in allge-
nmeiner Form wie folgt bezeichnet werden.

(50) Bei beobachteten Vektoren: [a ;) " W]+ W = 0,
(51) also fiir die Fehlervektoren: [ajj - dW;] — W = 0,
wo i von 1 bis n, k von 1 bis r zdhlt; a ist + 1, — 1 oder 0.

Die Formeln (43) und (44) sind besondere Fille hiervon.

Die zweite Forderung bringt bekanntlich eine Willkiir mit sich.
Hier soll sie rechnerisch folgendermaflen ausgedriickt werden:

Die skalare Quadratsumme der Fehlervektoren soll ein Minimum
werden. Die vektorielle Quadratsumme ist bekanntlich gleich Null,
kommt also hier nicht in Betracht. Das skalare Quadrat eines Fehler-
vektors ist:

(52) aW, dW) = (dA''W + A’ -dw' W, dA"W + A'dw | W)
= (dA"® + (A'-dw")? = |dW'|.

Die beiden GriBlen dA’ und A''dw’ haben gleiche ‘Dimensionen.
Fiir sie werden sich im allgemeinen verschiedene Gewichte ergeben,
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da die Messungen der Strecken und Winkel auf verschiedene Weisen
und unabhingig von einander geschehen. Es seien ¢%; und p?; sonach im
voraus gegebene Gewichte fiir die Streckung und die Querverschwen-
kung der i-ten Netzseite.

Es ist dann ‘
[9% " (dA')* + p?i- (A’ dw')?]
mit Riicksicht auf Bedingungen zum Minimum zu machen.

Versteht man unter £ Korrelatvektoren, so lautet dann die
serweiterte Minimumsbedingung“ in vektorieller Form: )

(53) [(gi-dA’i - Wi+ pi-ai- Wi, gi -dA; - Wi+ pj-a'i-|W;)]
r

— 22Xk ([ajr -dWi] — Wy, L) = Minimum in bezug auf die
1

2n+r GroBen d A’j, a’j, und 8 = Lj 8.
Dabei bedeutet a; = A’j dw’;.
Die 2 n + r Normalgleichungen lauten:
(54) 8 min & min & min
gaa; =Y da; =Y o8k
Fiihrt man die Differentiationen aus, so erhilt man fiir dA’;:
r
(65  C9i Wi, gi dA’ ;W +pj-di-Wi) — 4% Caik Wi, ) =0
fur a’;j:
i
56)  (pi Wi, 9i"dA’; Wi+ pidiWi) — Bl Mg W'is 2T = 0
fir L:
(57)  laik * dW'i]— W = [ajf " (dA’; W; + a'; " [W;)] — Wy = 0.

Durch Ausfithren der skalaren Multiplikationen findet man die
Unbekannten d A’ und a’ zunichst als Funktionen der L und der Winkel

W LQ):

1 I: _|
(58) dA'j = g - Xk ajp © Lj * cos (W; L)
) 1 S |
(59) dj= —, . Sk aj " L+ cos (Wi 8)
Pi 1
i —
- iz Xk ajp © L ° sin Wi L)
Pi*1

Setzt man diese Werte in die Gleichung (57) ein, so entstehen r
lineare Vektorgleichungen mit der Unbekannten Lj und den Winkeln
(Wi L), namlich:

ajk r - =
(60) gt %k aj * Lp * cos (W; Bk |- Wy

. r _
;l_ﬁ (%k ajk - L - sin (W; Ek))' Iﬁl’i]— Wi = 0
i
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Aus jeder dieser r-Gleichungen gewinnt man zwei Zahlengleichungen
durch Spalten mittels 2.

Ersetzt man in ihnen die Winkel (W; B)) gemil der Formel:
(61) LW L) = < W; W) + U, L)
entwickelt die sin und cos dieser Summen und zieht zusammen, so
erhiillt man 2 r-Gleichungen fur die 2 r-Unbekannten

Ly - cos (W, ) und Lk * sin (W L)
Daraus ergeben sich dann Zahlen fiir die Unbekannten dA’, a’ und
dw'.
Aus (60) lassen sich weitere Bestimmungs- oder Kontrollgleichungen
herleiten durch Spalten mittels geeigneter Vektoren, etwa mittels den £.

Zu weiteren Kontrollen dienen die mehrfachen Ausdriicke fiir die
kleinste Quadratsumme der Fehlervektoren; man gewinnt sie einmal
aus diesen selbst, auch aus den £, aus den 2 und endlich aus den
Produkten (2B, £).

Alle diese Berechnungen werden erleichtert durch Anlegen einer
Winkeltafel. Thre beiden Eingéinge sind die Vektoren %A, 28 und £; den
Tafelinhalt bilden die im Uhrzeigersinne gezihlten Winkel zwischen den
Vektoren als Funktionen der (abgestimmten) Dreieckswinkel. Die Tafel
wird nach und nach ausgefiillt, soweit, als Winkel gebraucht werden.

Ich sehe davon ab, diese allgemeine Theorie auf bestimmte Figuren,
etwa ein Dreieck, anzuwenden und verweise diesbheziiglich auf Schu-
mann [6], pag. 10 bis 20.

Bevor ich zu der von K. Friedrich aufgestellten Vektorausgleichung
mit Hilfe von Gaufl}’schen Vektoren iibergehe, mochte ich noch in Kiirze
zeigen, wie ich mir, in Uebereinstimmung mit R. Helmert, die Ausglei-
chung eines vollstindig ausgemessenen Dreieckes nach der klassischen
Methode der kl. Qu. vorstelle.

Es seien a’, B’ und 9’ die gemessenen Dreieckswinkel, a’, b’ und ¢’
die gemessenen Dreiecksseiten, wihrend m,, mg, m,, Tresp. mgq, mp,
m . die Zugehorigen m. IF. bezeichnen.

Wir erhalten die folgenden notwendigen und hinreichenden Be-
dingungsgleichungen:

62) (o' +da)+ (B +dB)+ (¥ + dy) — 180° = 0.
(63) a4 dad _ sin (@' +d )
bV +db sin(B + dPp)
64) a +da _ sin (o’ 4 d a’)
¢+ dc sin(y +dy)

Die beiden Seitengleichungen werden wir in Brigg’schen Logarith-
men ansetzen und sie in der bekannten Weise im Anschlufl an die
Berechnung des log. Widerspruches linearisieren.

Wir erhalten so die Verbesserungsbedingungsgleichungen in der
Form

65) do + dpf +dy + Wy = 0.
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(66) pg-da + pgdf +pydy +pg da+ppdb +pedd

+ Wir = 0.
(67) gq - do +qpdpf +qydy +qq dad +qgpdb+qgcdd
+ Wrrr = 0.

Py und p¢, p B und ¢q p sind Null.

Es handelt sich nun darum, die Gewichte der Winkel und der
Seiten geeignet anzusetzen.

Setzen wir die Gewichte der 3 Winkel und der 3 Seiten, resp. g4,
9B 9 und ggq, gp und g,

(68) somtga'maz:gﬁ mﬁ2=gcmyzzl.

Diese einander gleichen Produkte aus den Gewichten in die Quadrate
der m. F. setzen wir gleich der Einheit, womit wir nur eine besondere
Festsetzung iiber die Gewichtseinheit treffen.

Es ist aber auch
(69) ga mg®>=gp mp*® = g¢mct
Es stellt sich die Frage, ob wir berechtigt sind, die Gewichtseinheit

der Seitenmessungen so anzusetzen, dal} diese einander gleichen Pro-
dukte auch gleich eins zu setzen sind.

Ich bejahe diese Frage mit Helmert, Die Ausgleichungsrechnung
nach der M. d. kl. Qu., 2. Auflage, Leipzig 1907, pag. 98, wo wir folgendes
lesen:

, Verallgemeinerung der Bedeutung der Gewichtszahlen. In manchen
Anwendungen der M. d. kl. Qu. kommt es vor, dal3 die Beobachtungen
[ und daher auch ihre Verbesserungen A in verschiedenen MaBeinheiten
ausgedriickt sind und unter Umstéinden als heterogene Groflen auch

nicht auf eine solche reduziert werden konnen. Alsdann hat man sich
2

an die Form ([l%] ein Minimum) zu wenden, in welcher nur absolute

Zahlen vorkommen, da die Quotienten A% : u? ohne Benennung sind.
Wir kénnen nun auch die Benennung der A und p ohne Fehler in der

2
Form [iz] wegstreichen und fiir die jetzt absoluten Zahlen u,?, w2, u,® etc.

durch Vergleichung mit einer passend gewihlten Zahl u? andere
Zahlen ¢,, g,, g5 ... einfiihren, genau so, als sollten Gewichte berechnet
werden. Wir werden dann wieder auf die Form ([A% * g] ein Minimum)
gefithrt und die Rechnung gestaltet sich wie frither. Nur bei der Berech-
nung des m. FF. miissen wir uns erinnern, dal3 in dieser Form der m. F.
als eine absolute Zahl iiberhaupt bedeutungslos ist und erst durch Be-
ziechung auf die verschiedenen heterogenen Beobachtungsgriéflen eine
Bedeutung und Benennung erhalt. Soweit Helmert. Beziiglich der

2
Berechtigung der Form ([;':;] ein Minimum) verweise ich auf Helmert
a. a. 0., pag. 97, I, und 98 oben.
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2
Die Form [3—2] ein Minimum) ist nach diesem Zitat die primire,

die Form ([A% - g] ein Minimum) die daraus abgeleitete.
Fir unsern Fall ist also
Gy - gey W, Eyp (i‘!’)z @by ey .
mer T omg T omyr mge omy o T
als Ausgleichungsbedingung anzusetzen.
Setzt man nun
(71)  gq 1mqg* = gﬁ'mﬁzz gy'myz = ga Mqg® = gp mp:
—— gca mc = 1,
so geht die Ausgangsform {iiber in die folgende:
72) gq @aP+gR @R+ gydyY)+ga @)Y+ gp )
' + g¢ (d¢’)?2 = min.
Man erhilt also dieselbe Minimumssumme aus der Form (A2 ¢) nur,
wenn man die Gewichte fiir die Winkel und die Gewichte fiir die Seiten
so ansetzt, daB3 allgemein das Produkt aus dem Gewicht in das Quadrat

des m. F. gleich Eins wird. Damit ist die Begriindung fir den willkiir-
lich erscheinenden Ansatz:

(73) ga (M@? = gp (mp*) = g¢ (me) =1
gegeben. Wir stehen also mit diesem Ansatz auf dem Boden der klassi-
schen M. d. kl. Qu.

Setzen wir daher

1 1

(74) == o2 9a = mg2
1 1

9B = m g 9b= e
| 1

T myp ¢ me

so muf} also

(75) ga (da)+gpAP)Y + 9, Wy)+ ga(dd) + gp (dD)
+ g¢ (dc')? = min, .

werden, unter Beriicksichtigung der 3 Verbesserungsbedingungsglei-

chungen.

Das Problem 14t sich also formal nach der Methode der bedingten
Ausgleichung behandeln.

In ganz analoger Weise erledigt sich die strenge Ausgleichung
eines beidseitig angeschlossenen Polygonzuges.

Beachten wir die Einfachheit der Bedingungsgleichungen im Falle
des vollstindig ausgemessenen Dreieckes, so ist ein Zweifel erlaubt,
ob die vektorielle Ausgleichung hier einen Vorteil bietet. Bei allgemeinen
geschlossenen Polygonen, die aber in der Ausgleichungspraxis selten
vorkommen, liegen die Verhiltnisse allerdings fur die vektorielle Aus-
gleichung gilinstiger.
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Vekiorielle Ausgleichung uniler Beniilzung von Gauf’schen Vekioren
nach K. Friedrich.

Ich folge zur Darlegung dieser Methode den Veréffentlichungen
von K. Friedrich [3], [7] und [8].

Ich wiahle als erstes Beispiel den iiberbestimmten Vorwirtsab-
schnitt.
Auf den durch rechtwinklige Koordinaten gegebenen Punkten

Py (x,, y) Po (s, 1), Ps (25, yg)> -+ - ¢ - - Pn (xp, yn) usw., seien nac
einem zu bestimmenden Neupunkt P (g p) die ebenen Neigungen a,

a, . . . .an mit gleicher Genauigkeit bekannt, indem etwa auf jedem

Festpunkt der Winkel zwischen einer festen Richtung und der Neu-
richtung gemessen worden sei.

Die Neigungen a; ay.... ap stellen also die Amplituden der Vek-
toren von den Festpunkten zum Neupunkt P dar.

Wir bestimmen nun zunichst fiir den Punkt P Niherungskoordi-
naten, etwa durch einfaches Vorwirtseinschneiden von P, und P, aus.

Die Né&herungskoordinaten von P seien x, und y,. Machen wir
fiir die definitiven Koordinaten von P den Ansatz

(76) =+ dx
y=1y,+ duy,
so erhalten wir die Beobachtungsgleichungen:
W+ dy) —uy,
(g + d g)—x,
Yo + dy) — Yn
Y@ + do) — 2 |
und daraus in bekannter Weise die Fehlergleichungen:

(77) a, + d a; = arclyg

an+ dap=arct

12 1"

(78) dalrzv**wg sin ¢, © dx 4ﬁf§f cos ¢, dy + (¢, — ay)
1 1
rn "
dap—— P singn - dz+ £ cos on dy + (¢n — an)
Sn Sn
wo 0w — Jo—
lg ¢ = T, — x,
79 —
( ) tg Yn = yL,,,,_qI}

die ¢ also die sog. Nidherungsneigungen darstellen, wihrend die s die
Entfernungen von den Festpunkten zum N#herungspunkt P, (x,, U,)
sind.

Wir setzen zur Abkiirzung
(80) " Pn

Dabei wollen wir die s in ecm ausdriicken, damit die r von der
Groflenordnung eins werden und fiir die numerische Rechnung iiber-
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haupt in cm rechnen, resp. in Sekunden, soweit es sich um Winkel-
grollen handelt.
Die Absolutglieder (¢ — a) bezeichnen wir abkiirzenderweise mit L
Die Fehlergleichungen werden dann:
81) day=—r, "dxsing + r,dy - cos g + [
daop = —rpdxsin gy + rp-dy  cos ¢on + I
Wir wollen nun den Vektor P, P, den gesuchten Endvektor, mit
z g bezeichnen; er hat also den Betrag z und die Amplitude g.
Ersichtlich ist
(82) dx =z cos{
dy =z " sin {.
Damit gehen aber die Fehlergleichungen in die folgende Form iiber:
(83) da = 1z sin (—¢) + L
dap=rp "z sin ({—%pn) + [n
Nun soll aber nach der M. d. kl. Qu.
(84) [d a?] = min. werden.
Dies bedingt, dall
(85) 0l]d a?] 0 |d a?]
de =0 und (550) =
Die Differentiation nach d x liefert:

[2da ° 1 sing] = 0.

(86) oder [r * da * sing] =
Die Differentiation nach d y liefert analog:
(87) [r - da - cos¢] =

Multipliziert man (86) mit der imaginiren Einheit i und addiert
die beiden Gleichungen (86) und (87), so erhilt man
[r* da(cos ¢+ i)sing] = 0.
oder '
(88) [(rda))] = 0
wo die rda als Vektoren mit einer Amplitude gleich den Niherungs-
neigungen ¢ aufgefalit werden.
Diese Gleichung [(rd a)c?] = 0 nennt Friedrich die Vekforprobe.
" Da nach (78)
dap = —Tm singym dx + rmp cos gy dy + Iy
so folgt aus der Vektorprobe (88) die Gleichung
(89) [(—r* - sing "dx + r®cospdy+ Irg] = 0

oder
(89a) - [—r sin ¢ ° r(P] dx + [r cos ¢ " 1] dy + [(Ir)g] = 0.
Wir setzen .
T UM o
P B Bt =~ @7

'm €OS gy = 5
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und erhalten aus (89a)

(90) [_ %ﬂ rﬁP] dzx + [f‘ﬁ%‘? ,-cp] dy+ [(Ir)y] = 0

Multiplizieren wir den ersten Summenausdruck mit i und fiithren
die Multiplikationen durch, beachtend, dal Ty " Ty = 1'22(P und
g "I'—p = r?, so erhalten wir:

idzx

O1)  Irty — 11 L35 4 [ty + 11 Yy [r)] = 0.

Dies konnen wir auch schreiben:
92) (%) — 1) 19% 4 (rtgl + [ E2 — — 1)l
2 2 b § 2 ¢l
Diese Gleichung ist folgender geometrischen Interpretation fihig,
die zu einer einfachen Konstruktion von d x und d y fiihrt.

Die rechte Seite von (94) ist ein Vektor, den wir durch die Vek-
torsumme der GréBen (I r) finden, die wir mit den Amplituden (180 + o)
versehen.

Dieser Vektor ist gleich der Summe der Vektoren

1d@ d
(Irt] — [P 555 und  ([r%] + (7)) 5

Der Vektor ([r3,] — [r?]) -”21-—“: ist aber der um 90° gedrehte
Vektor
dzx
(Irg) — (1)
da ja i = 1gq ist.
Wir erhalten so das folgende gra-

phische Verfahren zur Bestimmung
von d x und d y (Fig. 9).

1. Man setzt von einem beliebigen
Nullpunkt O aus die Quadratevon ry,
r, .... mit zugehorigem verdoppeltem
Richtungswinkel (also unter 2 ¢;, 2 ¢,
....) aneinander und trigt an den so
erhaltenen Endpunkt G in der Null-
richtung und entgegengesetzt dazu die
Quadratsumme r,2+4+ r,2 .... = [r?]
= ¢ an; Endpunkte R und Q.

2. Man setzt vom Nullpunkt O

aus die GroBen Lry, Liry .... unter
den zugehérigen Richtungswinkeln
180 4+ ¢;, 180 + 9,5, ..... aneinander

und fallt vom so erhaltenen Endpunkt L
aus das Lot auf 0Q, das OR (oder
die Verlidngerung davon) in Z schneidet.

\ In ¢cm sind dann die Koordinaten-
Fig. 9: verbesserungen
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0z
Z 1L

d y ist positiv oder negativ, je nachdem die Strecke OR denselben
oder den entgegengesetzten Richtungssinn hat wie OZ. d x ist positiv
oder negativ, je nachdem die Strecke O(Q, um 90° im positiven Sinne
weitergedreht, denselben oder den entgegengesetzten Richtungssinn
hat wie ZL.

3. Die Hauptachse der Fehlerellipse ist gegeben durch die Hal-
bierungslinie des Richtungswinkels von OG, den wir mit 2 y bezeichnen.

Die Halbachsen A 4+ B der Fehlerellipse (zugleich die grolite
und die kleinste mittlere Verschiebung) sind gegeben durch

2
[ A2 — m2max o 2—m und
q(1—y9)
(95) ] I o
o m - T R SR
mn = 41 + g)
wobei -
_ : : : . [da * da]
m = Gewichtseinheitsfehler = LU0 B o i
. (n — 2)

und g das Verhiltnis
oG . .
o ist (so daB also OG = g * q ist).
Das Punktgewicht ist:

4__
Der mittlere Punktfehler ist:
7 L
VP
S 1:92@ 2y

Fiir den Beweis der Tatsachen unter 3. verweise ich auf K. Fried-
rich [7]. (Vide Literaturverzeichnis).

Auch beziiglich der Konstruktion des Riickwirtseinschnittes aus
Richtungsmessungen und des vereinigten Vorwirts- und Riickwirts-
einschnittes verweise ich auf dieselbe Stelle, da es mir hier nur darauf
ankam, das Grundsitzliche der Friedrichschen Vektormethode dar-
zulegen.

Hingegen gebe ich hier noch die Zahlen, die zu der Figur 9 gefiihrt
haben.

Es handelt sich um das bekannte Rechenbeispiel aus Jordans
Handbuch der Vermessungskunde, Band I.
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y x
Steuerndieb. . . . . . . . . . =—19 888 m 668 —25 951 m 884
Aegidins . . . . . . . . . . . —23 271 813 —28 308 395
Wasserturm . . . . . . . . . —25 538 488 —29 071 474
Burg . . . . . .. .. ... —2b 842 799 —24 977 399
Hochschule (Nidherung) . . . . —24 709 800 —26 868 300

i ” . 2| \

| Auben- | Genihert E:l??et o—a| S (g) 9 o | i

| richtung | a | =1 kln‘ Km _ "
Steuerndieb. . . . . .[259° 1414”7157 1 ~0.”4 4.91|0.18 | 158 5:—0.17
Aegidius . . . . . . .315 02231. 032. 6-1. 6[ 2.0411.02 270 1|—1.62
Wasserturm . . . . . . 20 36 46. 7/50. 0/—3. 3/235|077| 41 2!—2.90
Burg . . .. ... . .[149 0414 212 3+1. 9220 0.88 208 14178

| g= 28
0z 6.08
dyu2OR:2 3.8844—3.1 cm
ZL 0.78
dux 2. 00 = —2 9 35 = —0.7 cm
2y = 3040 20’ » = 1520 10’
oG 1.47
SR VT Tr T
n—2

/__—_2_ —
mlnax = 0.8 l/ ﬁ{;ilj? — i0.9 cm

5 S
m min — 0.8 l/z:g5+L47 = j:0.5 cm

Das Punktgewicht wird:

P = 2'485 (1 — 0.52%) = 0.52

Der mittlere Punktfehler wird:

Zum Schlusse stelle ich noch die beniitzte Literatur zusammen:

~No. [1] bis [6] pag. 105 (Fulinote).

[7] K. Friedrich, Vektorielle Ausgleichung. (Deutsche) Zeitschrift fiir

Vermessungswesen, 1925, pag. 1 und ff.

[8] K. Friedrich, Ueber Punktgenauigkeit. (Deutsche) Zeitschrift fir

Vermessungswesen, 1927, pag. 33—41 und 65—79.

[91 W. v. Ignatowsky, Die Vektoranalysis und ihre Anwendungen in
der theoretischen Physik. 2 Bénde. Leipzig und Berlin, 1909. -
[10] Gibbs-Wilson, Vector Analysis. A text-book for the use of stu-

dents of mathematics and physics. New-York-London, 1907.
Zollikon, Juni 1928. F. Beschlin.
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