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Einführung in die Vektorrechnung und die
vektorielle Ausgleichung.

Von Prof. F. Baeschlin.

(Fortsetzung.)

Es sind dabei zwei Wünsche zu erfüllen: Erstens sollen die Figuren
mathematisch möglich sein; zweitens sollen die Fehler-Vektoren so
klein als möglich werden.

Die erste Forderung wird bei einem Vektornetz ausgedrückt durch
die in notwendiger und hinreichender Anzahl aufzustellenden
Bedingungen für die Seitenvektoren.

Die vektorielle Bedingung möge für ein ebenes Polygon in
allgemeiner Form wie folgt bezeichnet werden.
(50) Bei beobachteten Vektoren: [<x j /<¦

¦ 51',] + 2B k 0,

(51) also für die Fehlervektoren: [a ; & • M'i] — SB/f 0,

wo i von 1 bis n, k von 1 bis r zählt; a ist + 1, — 1 oder 0.

Die Formeln (43) und (44) sind besondere Fälle hiervon.
Die zweite Forderung bringt bekanntlich eine Willkür mit sich.

Hier soll sie rechnerisch folgendermaßen ausgedrückt werden:
Die skalare Quadratsumme der Fehlervektoren soll ein Minimum

werden. Die vektorielle Quadratsumme ist bekanntlich gleich Null,
kommt also hier nicht in Betracht. Das skalare Quadrat eines
Fehlervektors ist:
(52) ([dît', dît'}) ([dA'-W + A'-dw'-%\ dA'"W y A'¦ dw'¦ \W ^

'dA')2 + (A'-dw')2 \cfil'\2.
Die beiden Größen dA' und A'-dw' haben gleiche Dimensionen.

Für sie werden sich im allgemeinen verschiedene Gewichte ergeben,
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da die Messungen der Strecken und Winkel auf verschiedene Weisen
und unabhängig von einander geschehen. Es seien g2i und p2{ sonach im
voraus gegebene Gewichte für die Streckung und die Querverschwenkung

der i-ten Netzseite.
Es ist dann

[g*i ¦ (dA')2 + p2i • (A'dw')2]
mit Rücksicht auf Bedingungen zum Minimum zu machen.

Versteht man unter äk Korrelatvektoren, so lautet dann die
„erweiterte Minimumsbedingung" in vektorieller Form:
(53) [(Igt -dA'i ¦ Wi + pi ¦ a'i ¦ \W{, gt ¦ dA'( -H'i+ Pi -a't-^'i })]

r
— 2Si ([.[a-ik'd-l'i] — 2B£> &kl) Minimum in bezug auf die

2 n + r Größen d A'i, a'i, und 2k Lk"2k.
Dabei bedeutet a(- A'i "dw'i.
Die 2 n + r Normalgleichungen lauten:

(54) 8 min 8 min 8 min
ITdÄT ° TTäY ° TT&T °

Führt man die Differentiationen aus, so erhält man für dA'i '¦

(55) (IgfW'i, grdA'i"Wiypi-a'i.\%'ii) — r)k(laik-Wi, äkJ)=0
1

für a'i :

(56) ([pj ¦ \W(, g( "dA'i W'i+Pia'i -|«'f }) — Sfc ([«»'!«'/, %]) - 0
1

für äk:

(57) [aik " «',-]— 2B* [a/* • (dA'f I'j + o'f • |«'/)] — 2Bjt 0.

Durch Ausführen der skalaren Multiplikationen findet man die
Unbekannten dA' und a' zunächst als Funktionen der L und der Winkel
(31' ii):

(58) dA'i ~2 • S A: a/fc • I* ' cos (¥'/ flfc)
»f 1

(59) a'i TL.zk aik • Lk • cos (,«',• £*)
Pz 1

1 r -
P i2 1

Setzt man diese Werte in die Gleichung (57) ein, so entstehen r
lineare Vektorgleichungen mit der Unbekannten Lk und den Winkeln
(Wi &k)> nämlich:

(60) g* ¦ (kk aik ¦ Lk ¦ cos (Wi %rik\'Wi

+p? (fk a(k 'Lk 'sin (*'z'ß/c)) |W/ r œ*= °
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Aus jeder dieser r-Gleichungen gewinnt man zwei Zahlengleichungen
durch Spalten mittels SBft.

Ersetzt man in ihnen die Winkel (Wi S8k) gemäß der Formel:
(61) <x (Wi &k) * Wi Wt) + (W_ äk)
entwickelt die sin und cos dieser Summen und zieht zusammen, so
erhält man 2 r-Gleichungen für die 2 r-Unbekannten

Lk ¦ cos (W_ £/f) und Lk • sin (W_ 2k).
Daraus ergeben sich dann Zahlen für die Unbekannten dA', a' und

dw'.
Aus (60) lassen sich weitere Bestimmungs- oder Kontrollgleichungen

herleiten durch Spalten mittels geeigneter Vektoren, etwa mittels den £.

Zu weiteren Kontrollen dienen die mehrfachen Ausdrücke für die
kleinste Quadratsumme der Fehlervektoren; man gewinnt sie einmal
aus diesen selbst, auch aus den £, aus den SB und endlich aus den
Produkten ([ 9B, äj).

Alle diese Berechnungen werden erleichtert durch Anlegen einer
Winkeltafel. Ihre beiden Eingänge sind die Vektoren Sl, SB und fl; den
Tafelinhalt bilden die im Uhrzeigersinne gezählten Winkel zwischen den
Vektoren als Funktionen der (abgestimmten) Dreieckswinkel. Die Tafel
wird nach und nach ausgefüllt, soweit, als Winkel gebraucht werden.

Ich sehe davon ab, diese allgemeine Theorie auf bestimmte Figuren,
etwa ein Dreieck, anzuwenden und verweise diesbezüglich auf
Schumann [6], pag. 10 bis 20.

Bevor ich zu der von K. Friedrich aufgestellten Vektorausgleichung
mit Hilfe von Gauß'schen Vektoren übergehe, möchte ich noch in Kürze
zeigen, wie ich mir, in Uebereinstimmung mit R. Helmert, die Ausgleichung

eines vollständig ausgemessenen Dreieckes nach der klassischen
Methode der kl. Qu. vorstelle.

Es seien a', ß' und y' die gemessenen Dreieckswinkel, a', V und c'
die gemessenen Dreiecksseiten, während ma, mß, my resp. m a, m bf
m c die Zugehörigen m. F. bezeichnen.

Wir erhalten die folgenden notwendigen und hinreichenden
Bedingungsgleichungen:

(62) (a' y da') y (ß' + d ß>) + (y' + d y') — 180° 0.

(63) a' y da' sin (a' + d a')
b' + db'~ sin (ß' + d ß')

(64) a' + da' sin (a' + d a')
c' + de' sin (y' + d y')

Die beiden Seitengleichungen werden wir in Brigg'schen Logarithmen

ansetzen und sie in der bekannten Weise im Anschluß an die
Berechnung des log. Widerspruches linearisieren.

Wir erhalten so die Verbesserungsbedingungsgleichungen in der
Form
(65) da' + dß' + dy' + Wj 0.
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(66) pa"da' + pßdß' + pydy' + pa-da'+pbdb' + pcdc'
+ Wn 0.

(67) qa"da'yqßdß' + qYdy'+qa-da'+qbdb'+qcdc'
+ WHI 0.

p y und p c P ß und q /> sind Null.

Es handelt sich nun darum, die Gewichte der Winkel und der
Seiten geeignet anzusetzen.

Setzen wir die Gewichte der 3 Winkel und der 3 Seiten, resp. </a>

g ß, g y und g a, 9 b und 9 o
(68) so ist g a

¦ m a2 g ß
• m ß2 g c m y2 1.

Diese einander gleichen Produkte aus den Gewichten in die Quadrate
der m. F. setzen wir gleich der Einheit, womit wir nur eine besondere
Festsetzung über die Gewichtseinheit treffen.

Es ist aber auch

(69)„ 9 a ' m a2 g b ' m b2 g c m c2.

Es stellt sich die Frage, ob wir berechtigt sind, die Gewichtseinheit
der Seitenmessungen so anzusetzen, daß diese einander gleichen
Produkte auch gleich eins zu setzen sind.

Ich bejahe diese Frage mit Helmert, Die Ausgleichungsrechnung
nach der M. d. kl. Qu., 2. Auflage, Leipzig 1907, pag. 98, wo wir folgendes
lesen:

„Verallgemeinerung der Bedeutung der Gewichtszahlen. In manchen
Anwendungen der M. d. kl. Qu. kommt es vor, daß die Beobachtungen
l und daher auch ihre Verbesserungen A in verschiedenen Maßeinheiten
ausgedrückt sind und unter Umständen als heterogene Größen auch
nicht auf eine solche reduziert werden können. Alsdann hat man sich

an die Form _\ ein Minimum) zu wenden, in welcher nur absolute

Zahlen vorkommen, da die Quotienten À2 : p2 ohne Benennung sind.
Wir können nun auch die Benennung der À und p ohne Fehler in der

Form I ^1 wegstreichen und für die jetzt absoluten Zahlen /u,,2, p22, p32 etc.

durch Vergleichung mit einer passend gewählten Zahl p.2 andere
Zahlen glt g2, g3 einführen, genau so, als sollten Gewichte berechnet
werden. Wir werden dann wieder auf die Form ([A2 ¦ g] ein Minimum)
geführt und die Rechnung gestaltet sich wie früher. Nur bei der Berechnung

des m. F. müssen wir uns erinnern, daß in dieser Form der m. F.
als eine absolute Zahl überhaupt bedeutungslos ist und erst durch
Beziehung auf die verschiedenen heterogenen Beobachtungsgrößen eine
Bedeutung und Benennung erhält". Soweit Helmert. Bezüglich der

Berechtigung der Form (I—j-Jein Minimum) verweise ich auf Helmert

a. a. O., pag. 97, II, und 98 oben.
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Die Form I—j lein Minimum) ist nach diesem Zitat die primäre,

die Form ([A2 ¦ g] ein Minimum) die daraus abgeleitete.
Für unsern Fall ist also

(70) (da;)2 (djy_ (dyj2 (day (d b')2 (de-,2 _ma2 m ß2
+ m y2 + m a2 + m b2 + m c2

'

als Ausgleichungsbedingung anzusetzen.
Setzt man nun

(71) g a
• m aa g ß

• m ß2 g y
• m y2 g a

• m a2 " g b ' ™ b2

ffc2 /nc 1,

so geht die Ausgangsform über in die folgende:
72) g a

¦ (d a')2 + g ß" (d ß')2 y g y(d y')2 y g a (d a')2 + g b (d b')2

+ gc (de')2 min.
Man erhält also dieselbe Minimumssumme aus der Form (A2 g) nur,

wenn man die Gewichte für die Winkel und die Gewichte für die Seiten
so ansetzt, daß allgemein das Produkt aus dem Gewicht in das Quadrat
des m. F. gleich Eins wird. Damit ist die Begründung für den willkürlich

erscheinenden Ansatz:
(73) g a

¦ (m a)2 g b • (m b2) g c
¦ (m c)2 1

gegeben. Wir stehen also mit diesem Ansatz auf dem Boden der klassischen

M. d. kl. Qu.
Setzen wir daher

(74> 9 a ——_ g am a*
1

m ßi
1

m y2

9ß wJ_ 9b

9y= =T-Ï 9 c

1

m a2

1

m h2

1

so muß also

(75) ga" (d a')2 + gß(d ß')2 + gy(d y')2 + g a (d a')2 + g b (d b')2

+ gc (de')2 min.
werden, unter Berücksichtigung der 3 Verbesserungsbedingungsglei-
chungen.

Das Problem läßt sich also formal nach der Methode der bedingten
Ausgleichung behandeln.

In ganz analoger Weise erledigt sich die strenge Ausgleichung
eines beidseitig angeschlossenen Polygonzuges.

Beachten wir die Einfachheit der Bedingungsgleichungen im Falle
des vollständig ausgemessenen Dreieckes, so ist ein Zweifel erlaubt,
ob die vektorielle Ausgleichung hier einen Vorteil bietet. Bei allgemeinen
geschlossenen Polygonen, die aber in der Ausgleichungspraxis selten
vorkommen, liegen die Verhältnisse allerdings für die vektorielle
Ausgleichung günstiger.
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Vektorielle Ausgleichung unter Benützung von Gauß'schen Vektoren
nach K. Friedrich.

Ich folge zur Darlegung dieser Methode den Veröffentlichungen
von K. Friedrich [3], [7] und [8].

Ich wähle als erstes Beispiel den überbestimmten Vorwärtsabschnitt.

Auf den durch rechtwinklige Koordinaten gegebenen Punkten
Pi (x1, j/J. Pi (x2, y2), -Ps (x3, y3)> Pn (xn, Un) usw., seien nac
einem zu bestimmenden Neupunkt P tx, y) die ebenen Neigungen a,

a2 .an mit gleicher Genauigkeit bekannt, indem etwa auf jedem
Festpunkt der Winkel zwischen einer festen Richtung und der
Neurichtung gemessen worden sei.

Die Neigungen % a2 an stellen also die Amplituden der
Vektoren von den Festpunkten zum Neupunkt P dar.

Wir bestimmen nun zunächst für den Punkt P Näherungskoordinaten,

etwa durch einfaches Vorwärtseinschneiden von Px und P2 aus.

Die Näherungskoordinaten von P seien x0 und y0. Machen wir
für die definitiven Koordinaten von P den Ansatz
(76) x x0 y d x

y y0y dy,
so erhalten wir die Beobachtungsgleichungen:

(77) -H-.-««.i»ÌÌ3 S
(Vo y d y) — yn

a n y d a n arctg T> —
(x0 -+- a x) — xn

und daraus in bekannter Weise die Fehlergleichungen:
p" p"(78) dax — " sin tp, • dx + -*— cos <p, dy + (ft — ax)
s, sx

p" p"da n — r sin <pn • dx + ^ cos <pn dy + (yn — an)
sn

ig f. f=f
(79)

tg ,n
»TTZÀ
X0 Xji

die f also die sog. Näherungsneigungen darstellen, während die s die
Entfernungen von den Festpunkten zum Näherungspunkt P0 (x0, y0)
sind.

Wir setzen zur Abkürzung
(80)

'i
P
— r.

"n
Dabei wollen wir die s in cm ausdrücken, damit die r von der

Größenordnung eins werden und für die numerische Rechnung über-
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haupt in cm rechnen, resp. in Sekunden, soweit es sich um Winkelgrößen

handelt.
Die Absolutglieder (tp — a) bezeichnen wir abkürzenderweise mit l.

Die Fehlergleichungen werden dann:

(81) d ax — t-j • d x sin <pt + rt • d y • cos tpt + lx

d an — rn d x sin <fn + rn • d y ¦ cos <fn + /n.

Wir wollen nun den Vektor P0 P, den gesuchten Endvektor, mit
zg bezeichnen; er hat also den Betrag z und die Amplitude g.

Ersichtlich ist
(82) d a: z ¦ cos £

d y z - sin £.

Damit gehen aber die Fehlergleichungen in die folgende Form über:

(83) da, r, • z ¦ sin (£—<p,) + /,
d an rn ¦ z " sin (£—fn) + ln-

Nun soll aber nach der M. d. kl. Qu.
(84) [d a2] min. werden.

Dies bedingt, daß
(85) 8 [d a2] _ /8 [d a2]lì. [rf °TT\

\ ddu /0 und ' J 0.Wi V g dy
Die Differentiation nach d x liefert:

[—2 d a ' r ¦ sin tp] 0.

(86) oder [r • d a • sin tp] 0.

Die Differentiation nach d y liefert analog:
(87) [r • d a • cos tp] 0.

Multipliziert man (86) mit der imaginären Einheit i und addiert
die beiden Gleichungen (86) und (87), so erhält man

[r ¦ d a (cos tp -f i) sin tp] 0.

oder
(88) l.rda)f] 0

wo die r d a als Vektoren mit einer Amplitude gleich den Näherungsneigungen

tp aufgefaßt werden.
Diese Gleichung [(/• d a)?] 0 nennt Friedrich die Vektorprobe.

Da nach (78)
d a-m —rm sin 9m dx + rm c°s fm dy y lm

so folgt aus der Vektorprobe (88) die Gleichung

(89) [(—r2 ¦ sin tp
• d x + r2 cos tp d y + lr,A 0

oder
(89a) [•—r sin tp

• r^\ d x + [r cos tp
¦ r^] d y + [(Zr),p] 0.

Wir setzen

rm sin fm

rm cos fm

rm.fm-rm_-fm
2 i

rmtfm + rm_-fm
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und erhalten aus (89a)
(90) r r,f — r —y A dx + I !> + "9 f.K»+ [(/ r)J 0i o/ f I ~ I 2 'f|"«T ivi ' i'f j

Multiplizieren wir den ersten Summenausdruck mit i* und führen
'<? atp

[r2 1>V + r2] "^ + [(/ r)«p] 0

die Multiplikationen durch, beachtend, daß rm • rm r\n und

rm ¦ r —,n r2, so erhalten wir:

- r2] i|fE + [^ + rS] ^
Dies können wir auch schreiben:

([r\9] - [r2]) ^ + ([r22.f] + [r2]) ^ -
Diese Gleichung ist folgender geometrischen Interpretation fähig,

die zu einer einfachen Konstruktion von d x und d y führt.
Die rechte Seite von (94) ist ein Vektor, den wir durch die

Vektorsumme der Größen (l r) finden, die wir mit den Amplituden (180 + tp)

versehen.
Dieser Vektor ist gleich der Summe der Vektoren

(91)

(92) ¦ld rh

Der

dr\f] —

Vektor ([r22,0

[r2
i dx

2
und ([r2M] + [r2]) dy

M)
''

ist aber der um 90° gedrehte

Vektor
Zî ±¥

et,

I90 ist.

[r2])
cl x

da ja i
Wir erhalten so das folgende

graphische Verfahren zur Bestimmung
von d x und d y (Fig. 9).

1. Man setzt von einem beliebigen
Nullpunkt O aus die Quadratevon r„
r2 mit zugehörigem verdoppeltem
Richtungswinkel (also unter 2 <px, 2 tp2

aneinander und trägt an den so
erhaltenen Endpunkt G in der
Nullrichtung und entgegengesetzt dazu die
Quadratsumme ry2 y r22 [r2]

q an; Endpunkte ü und Q.
2. Man setzt vom Nullpunkt O

aus die Größen lt rlt l2 r2 unter

Fig. 9.

den zugehörigen Richtungswinkeln
180 + ft, 180 + tp2, aneinander
und fällt vom so erhaltenen Endpunkt L
aus das Lot auf OQ, das OR (oder
die Verlängerung davon) in Z schneidet.

In cm sind dann die
Koordinatenverbesserungen
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y OR

w c. ZL
dX=2'OQ

d y ist positiv oder negativ, je nachdem die Strecke OR denselben
oder den entgegengesetzten Richtungssinn hat wie OZ. d x ist positiv
oder negativ, je nachdem die Strecke OQ, um 90° im positiven Sinne
weitergedreht, denselben oder den entgegengesetzten Richtungssinn
hat wie ZL.

3. Die Hauptachse der Fehlerellipse ist gegeben durch die
Halbierungslinie des Richtungswinkels von OG, den wir mit 2 y bezeichnen.

Die Halbachsen A + B der Fehlerellipse (zugleich die größte
und die kleinste mittlere Verschiebung) sind gegeben durch

2 m2

(95)

wobei

" max " 9(1-9)
B2 -m2 - - 2m'B - m mln - q d + 9)

Gewichtseinheitsfehler

und

~\T[da ¦ da]

und g das Verhältnis
OG

9
Das Punktgewicht ist

2)

ist (so daß also OG g • q ist).

P | (1 - y2)

Der mittlere Punktfehler ist:
mM -=VP

„*-! /"l + y cos 2 ym* M y - 2

m Y-~g-cos 2-r
'"y - 1V1 l/ 2

Für den Beweis der Tatsachen unter 3. verweise ich auf K. Friedrich

[7]. (Vide Literaturverzeichnis).

Auch bezüglich der Konstruktion des Rückwärtseinschnittes aus
Richtungsmessungen und des vereinigten Vorwärts- und
Rückwärtseinschnittes verweise ich auf dieselbe Stelle, da es mir hier nur darauf
ankam, das Grundsätzliche der Friedrichschen Vektormethode
darzulegen.

Hingegen gebe ich hier noch die Zahlen, die zu der Figur 9 geführt
haben.

Es handelt sich um das bekannte Rechenbeispiel aus Jordans
Handbuch der Vermessungskunde, Band I.
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V

Steuerndieb —19 888 m 668

Aegidius —23 271 813
Wasserturm —25 538 488

Burg —25 842 799
Hochschule (Näherung) —24 709 800

x
—25 951 m 884
—28 308 395
—29 071 474
—24 977 399
—26 868 300

Außen-

richtnng

Genähert

f
Beobachtet

a

tp—a
1

s

in Km
(?)' Ir

Steuerndieb
Aegidius
Wasserturm
Burg

259° 14'|14."7
315 02 31. 0

20 36 46. 7

149 04 14. 2

[V]

[8]

[9]

[10]

dy
OZ

dx 2

OR ~

ZL
ÖQ ~

2 y 3040 20'
OG

15." 1

32. 6

50. 0

12. 3

6.08
3.88

-0."4 4.91

-1. 6 2.04

-3. 3i2.35
+ 1. 9 2.20

0.18
1.02

0 77

0.88

158° 5

270 1

41 2

298 1
I

-0.17
-1.62
-2.90
-1.78

q 2.85

3.1 cm

o 0-78
-22.35 -°-7cm

y 152° 10'
L47
2785TT- 0.52

\TT 0.

0.8 \T
m min 0.8 |/ ^

85—1.47

85 1.47

±0.9 cm

±0.5 cm

Das Punktgewicht wird:

P 2-f- o 0.522) 0.52

Der mittlere Punktfehler wird:
0.8M ±1.1 cm.

V0.52
Zum Schlüsse stelle ich noch die benützte Literatur zusammen:
No. [1] bis [6] pag. 105 (Fußnote).
K. Friedrich, Vektorielle Ausgleichung. (Deutsche) Zeitschrift für
Vermessungswesen, 1925, pag. 1 und ff.
K. Friedrich, Ueber Punktgenauigkeit. (Deutsche) Zeitschrift für
Vermessungswesen, 1927, pag. 33—41 und 65—79.
W. v. Ignatowsky, Die Vektoranalysis und ihre Anwendungen in
der theoretischen Physik. 2 Bände. Leipzig und Berlin, 1909.
Gibbs-Wilson, Vector Analysis. A text-book for the use of
students of mathematics and physics. New-York-London, 1907.
Zollikon, Juni 1928. F. Beeschlin.
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