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Einfithrung in die Vektorrechnung und die

vektorielle Ausgleichung.

Von Prof. F. Baeschlin.
(Fortsetzung.)

Wenn wir den Anfangspunkt des Vektors als fest annehmen, so
kommen nur die Aenderungen b) und c¢) in Betracht. Der Endpunkt
des Vektors erleidet bei gleichzeitigem Auftreten dieser beiden Aende-
rungen eine vektorielle Verschiebung, die wir nun untersuchen wollen.

Eine differentielle Streckung des Vektors U kommt auf eine diffe-
rentielle Aenderung des Betrages A, d.i. dA hinaus, wobei aber die
Streckung ein Vektor mit der Richtung von A, oder gleichbedeutend
von A ist.

Die differentielle Streckung ist daher

dA - W,

Eine reine Drehung des Vektors % um den Winkelbetrag dw ergibt
am andern Ende des Vektors eine Querverschiebung, die ihrem Betrage
nach gleich ist

A - dw.

Aber auch diese Querverschiebung ist ein Vektor, dessen Richtung
mit der Richtung des zu U senkrechten Einheitsvektors |A zusammen-
fallt. Die Querverschiebung ist daher

A - dw - W
A vermag wegen der Konstanz seiner Linge (eins) lediglich seine
Richtung zu dndern. Gemif Fig. 5 ist die Aenderung bestimmt durch
AU
Die GroBe d ist gleichbedeutend mit dw
dw = |dq



Fig. 5.

Die Gesamtverschiebung d2 am Ende des Vektors A setzt sich
aus den Elementarverschiebungen dA - und A - dw - A im Sinne
einer Vektorsumme zusammen (Fig. 5).

Es ist daher

(19) d = dA A+ A dw - A =dA A + A - |d¥ - A
Aus Figur 5 erkennt man sofort:

(20) dA = V(dA) + (A - dw)?
A dw
Fiir ebene Vektoren gelten folgende Beziehungen:

(21)  cos (JUB) = + sin AB) sin (AB) = — cos (AB)
cos (A |B) = —sin AB) sin A |B) = -+ cos (A B)
cos (BIA) = +sin@AB) sin (BA) = + cos AB)
cos (|BA) = —sin AB) sin (BA) = — cos (AB)
tg (AB) = —cotgAB) tg (BA) = + cotg AB)

(22) (B, ) = (A, BY) = + cos (A, B)

Fiir die Variation nach einem Vektor kann man, einer von Prof.
E. Miiller herrithrenden Definition gemil, festsetzen:

Ist die Zahl F eine Funktion des Vektors 2, so sei der Differential-
quotient von F(A) nach A jener Vektor, dessen skalares Produkt mit
d gleich der Variation von F ist. Darnach kann man schreiben:

(23) dF ) = ([dF ) dﬂ)

Fir F = (%, B) als Funktion zweier Vektoren folgt durch suk-
zessive Variation beider:

@4) d QU B) = (3@1 D) dﬂl) (a (¥, B) d%)

Anderseits ist nach fritherm
dq, B) — (B, dA) + (U, dBY
Solange als %A und B verinderliche, voneinander unabhiingige
Vektoren sind, folgt aus dem Vergleich der beiden Andriicke

8 QI, a ’ 23 a ’
(3} jﬁ@= + B3 _((Tmﬂs_")a:”_(g}%»: + %
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Aus (23),‘ (24) und (14) ist die Analogie mit der Differentiation von
Zahlenprodukten ersichtlich. Sie erstreckt sich auch auf die implizite
Diflerentiation; es ist

(26)
so insbesondere:

(27) 8(‘21 %D (8 €8 SBD, gjﬂ) = (B,A) = B - cos (BA).

Mit Hllfe dieser Forme]n erhilt man fuar
dA = dA A + A dw - A

0 F (A) Ggpuam
oA ~ U ou’ oA

setzen wir A - dw = a, so ist:
dl = dA U + a- N
g (A A __ 8(0’%1 any
(28) S = 0 M F e = 2 *dA.
d (¥, dn) | o dl, dau) C A2 - T
T = 2 a 8 ‘dQI = 2 A ‘d?I
=2 A?. dw.

Eine lineare Vektorgleichung kann durch skalare Multiplikation
mit A und mit A in je eine lineare Zahlengleichung verwandelt werden.
Wir nennen diesen Prozel3 ,,Spalten‘ nach dem Vektor . Die Ergeb-
nisse koénnen geometrisch als Projektionen gedeutet werden; die eine
bezieht sich auf die Richtung des Multiplikators, die andere auf die zu
ihm senkrechte Richtung.

Die bisher betrachteten ebenen Vektoren sind sog. Hamilton’sche
Vektoren.

Nun sind aber in der Ebene auch noch andere Vektoren, die sog.
Gaul)’schen Vektoren im Gebrauch, die aus der Darstellung der kom-
plexen Zahlen in der Ebene folgen.

Sei a+ bi
eine komplexe Zahl mit dem reellen Bestandteil a und dem imaginiren
bi, wo i = y—1 ist.

C. F. Gaul} stellte diese komplexe Zahl bekanntlich als einen Punkt
der Ebene dar, indem er zwei senkrechte Koordinatenaxen wihlte.
Im Hinblick auf die geodati-
@-|7xe schen Anwendungen Wéi?lle.;n wi'r'die

reelle Axe nach oben, die imaginire
& 7 Axe nach rechts positiv.
[ . Die komplexe Zahl a + b i wird
7 :.a _ dann dargestellt durch einen Punkt
mit den rechtwinkligen Koordinaten
a und b.

Diesem Punkt (a, b) kommt
der Radiusvektor
(29) r=+ Va* 4 b
zu, der mit der 4+ a-Axe den Winkel ¢, die sog. Amplitude, bildet.

Der Strahl r stellt einen ebenen Vektor dar, den wir durch Ty be-
zeichnen. r nennen wir den Betrag von a -+ b i, oder ry.

0 Jnuﬂ'i r'/:(:r(’
&-/re
Fig. 6.
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Es ist: ‘
Cll + bll — I'l ',Pl
a2 _I— bzi = 1’2 ('PQ.
Dann ist:
(ap + byi) + (ay + by i) = (@ + @) + (by + by) 1.

Setzen wir:
(30) a + a = ag

by + by = by
Dann ist:
(31) (@, + by D) + (@, 4 by i) = ag+ byl
wieder ein Vektor mit den Komponenten a ¢ und b g, dem Betrag r g
und der Amplitude ¢ g.

Aus der Fig. 7 erkennt man sofort, dal3 der Vektor r ¢ , ¢ aus den

@

Vektoren r; ¢, und r, 4, genau so hervor-
geht, wie der Hamilton’sche Vektor

‘‘‘‘‘‘‘‘‘ == C=UA+ B

ty:lag, aus den Vektoren A und B.
P A5 S | Fiir die Gauly’schen Vektoren gilt
bt L -.-é’-{ also dasselbe geometrische Additionsge-
2 2, : setz wie fiir die bisher betrachteten ebenen

' : : Hamilton’schen Vektoren.
o . ' Die komplexe Zahl

a-+-bi

Fig. 7. y :
8 kann, wie man aus Figur 6 erkennt, auch

geschrieben werden:

(32) rcosg+4r-sing-i=a-+ bi.
Nun wird in der Theorie der komplexen Zahlen gezeigt, dal}
(33) rcos'p-‘rr'sin'p‘i:r'el"?:r?

ist, wo e die Basis der natiirlichen Logarithmen ist, und ¢ in analytischem
Ma@le ausgedriickt wird.
Daraus ergibt sich ohne weiteres
(34) L% [ ¢
F * Py = .
1y, Iy - r; e Iy &
- (o + 92)
= Py Pyl =TT
* 8 172 (ot 92)
Dies ist wieder ein Vektor der hier betrachteten Art mit dem Betrag
(r; r;) und der Amplitude (¢, + 9,).
Das so eingefuhrte Produkt ist also ein Vektorprodukt. Ein skalares
Produkt wird bei den Gaul}’schen Vektoren nicht gebildet.

r i .

(35) o _me B (ﬁ) Qi — ) _ (?‘1.) |
r, ©, I, e L9, I‘2I r2/ 0y 0y

Der Quotient zweier Vektoren ist also wieder ein Vektor mit dem

Betrag (;1) und der Amplitude (o;—,).
2
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(36) (rc?)n " (r eigo)n R P n,‘o _ (rn)n’{“

Die n-Potenz des Vektors r 0 ist also wieder ein Vektor mit dem

Betrag (r ™) und der Amplitude (n ¢).

Dies gilt fiir ganze und gebrochene, positive und negative Expo-
nenten.

Die hier betrachteten Gauf3’schen ebenen Vektoren haben gegeniiber
den Hamilton’schen Vektoren den groBlen Nachteil, dal sie an ein
Koordinatensystem gebunden sind. Solange nur Vektorsummen oder
Differenzen auftreten, brauchen wir allerdings das Koordinatensystem
nicht.

Die Operation der Summe ist bei Gaufy’schen Vektoren vom
Koordinatensystem unabhingig, sie ist invariant.

Dies gilt aber nicht mehr von den Operationen des Produktes, des
Quotienten und der Potenz.

Der gewaltige Vorteil der Invarianz aller Vektoroperationen, die
wir bei den Hamilton’schen Vektoren hervorgehoben haben, geht also
bei der Verwendung der Gaul3’schen Vektoren verloren.

Dagegen konnen wir bei Verwendung der Gauly’schen Vektoren
durch die Operationen 2. Stufe (Multiplikation, Division) wieder ebene
Vektoren erhalten, was bei den Hamilton'schen Vektoren nicht der
Fall ist.

Bei den Gaul}’schen ebenen Vektoren gibt es kein skalares Produkt.
Hingegen kann man so etwas wie ein skalares Quadrat erhalten.

Bekanntlich ist das Produkt zweier konjugierter komplexer Zahlen
reell.

a+ bl:]"tpz ¥
a — bi = r —
. =
(37) (@ + bi) V-(a—bi) = a® + b = rx

Bezeichnen wir den zu dem Vektor r konjugierten Vektor mit
T, so ist:

(37 a) r-r = ri.

Wenn wir irgendeine Gleichung zwischen Gauf’schen Vektoren
haben, so gilt dieselbe Gleichung auch fiir die konjugierten Vektoren, denn
jeder Gaul¥’sche Vektor kann als komplexe Zahl geschrieben werden;
eine Gleichung zwischen komplexen Zahlen zerfidllt aber immer in zwei
Gleichungen, je eine fur die reellen und die imagindren Bestandteile.
Daraus ist der vorstehend formulierte Satz ohne weiteres als richtig
zu erkennen.

ABI‘(?-T'S!/;*O

r (cos ¢ + i sin g) + s (cos f + i sin ) = 0.
Daraus:

rcos -4 scosyy=20

r sin ¢ + s sin ¢ = 0.
Deshalb ist auch:

r (cos » — i sin ¢) + s (cos p — i sin ) = 0.

also r s = 0.
—p T Sy
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Wenn bei der Umformung einer Gleichung zwischen Gauf}’schen
Vektoren iiber die Rechnung mit komplexen Zahlen die imaginire
Einheit i endgiiltig in der Formel bleibt, so kann diese dadurch entfernt
werden, wenn man sich vor Augen hilt, dal}

5 e o ang +i:1+90,und—.i=1+9015t.
(38) Wenn z. B. 2= [ a i ist, so folgt daraus

B9) "2 r=1490" %y Qa4 oy 096

40)  ag,= == B {00

. a, a
(41) oder es sei ZC=T=1—§6=

, Ebenso kann man unangenehme Minuszeichen wegschaffen, wenn
man beachtet, dall — 1 = 11gg ist.

a (g — 90) u.s. t.

Anwendung der Vektorrechnung auf geoddtische Ausgleichungsaufgaben.
Nach dieser allgemeinen Einleitung gehen wir nun dazu liber, die

Vektorrechnung auf geoditische Ausgleichungsaufgaben anzuwenden.
Es liegen hier zwei prinzipiell verschiedene Bearbeitungen vor.
Oberst K. Friedrich verwendet die Gaufy’schen ebenen Vektoren

(vide seine Verdffentlichung [3], [7] und [8]).

Hofrat Professor Dr. Ing. Dr. R. Schumann verwendet die ebenen

Hamilton’schen Vektoren (vide die Verdffentlichungen [4], [5] und [6]).
Wir wollen zuerst die Schumann’sche Methode kurz darlegen.

Vektorieller Ausgleich ebener geoddtischer Nelze bei Verschiedenheit der
Gewichte fiir Strecken und Richtungen nach Schumann.

Ich folge im wesentlichen der letzten Verdéffentlichung von Schu-
mann [6].

,,Jeder Seite eines ebenen Dreieckes kommt Linge und Richtung
zu, sie darf mithin als Vektor angesehen werden. Die simtlichen Vek-
toren einer Triangulation sollen ein mathematisch maogliches Netz
bilden; sind ihre Betrige und die Winkel zwischen ihnen beobachtet,
so werden wegen der unvermeidlichen Beobachtungsunsicherheit beim
Zusammensetzen zu geschlossenen Figuren kleine Widerspriiche (SchluB-
fehler) entstehen; auch diesen kommt Linge und Richtung zu, von
ihnen werden die ersteren kleine Grollen sein.

Um zu erreichen, dall die SchluBfehler verschwinden, sowie daf
die Dreiecke aneinanderschlielen, erteilt man den Seitenvektoren
kleine Verbesserungen, denen wiederum Linge und Richtung zukommt;
die Betrage dieser Verbesserungsvektoren sind ebenfalls kleine Gro(len.

Unabhingig von der Definition eines Vektors besteht die Tatsache,
daB im allgemeinen wohl Winkel, nicht aber Richtungen gemessen
werden konnen (abgesehen von der Messung mit Boussoleninstrumenten)
und hierdurch entsteht zunichst eine grundsatzliche Schwierigkeit.
Je drei Vektoren bilden, allein ihren Richtungen nach, stets ein Dreieck
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ohne Widerspruch, mogen sie fehlerhaft oder fehlerlos, ausgeglichen
oder unausgeglichen sein, ihre Richtungen sind unabhingig voneinander;
sie unterliegen keiner Bedingung.

Dagegen liefern drei gemessene Winkel im allgemeinen immer
einen Widerspruch.* 7

Schumann will diese grundsatzliche Schwierigkeit dadurch um-
gehen, daBl er die Ausgleichung in Teile zerlegt. Der Netzausgleich
soll zunidchst den Winkelschlu3 des einzelnen Dreieckes, und dann erst
den Netz-Zusammenschlufl umfassen.

Leider fiihrt aber dieses Verfahren nicht zu demselben Resultat,
wie wenn die M. d. kl. Qu. auf die gemessenen Elemente angewendet
wird. Hierin liegt meines Erachtens der gewichtigste Einwand gegen
die Schumann’sche vektorielle Ausgleichung.

Nun ist ja ohne weiteres zuzugeben, dafl die M. d. kl. Qu. eine von
unendlich vielen maglichen Ausgleichungsprinzipien ist und man sich
bei praktischen Rechnfmgen oft bewul3t von ihr emanzipiert, im Inter-
esse der Vereinfachung der Rechnung. Aber ich mul3 gestehen, dal
es mich sto3t, wenn ein Ausgleichungsprinzip nicht konsequent ange-
wendet wird, was im vorliegenden Falle zutrifft. Es sté3t mich um so
mehr, als die gewihlte Berechnungsmethode uns einfach zwingf, im
Sinne Schumanns vorzugehen und wir nicht freiwillig, nach Vergleichung
mit den korrekten Ausgleichungsergebnissen, im Interesse der Verein-
fachung der Rechnung, auf die letzte Schiirfe verzichten.

Ich mii8te dann mindestens verlangen, dall die neue Methode
bedeutend geringere Rechenarbeit erfordert, als die klassische M. d. kl.
Qu. Um den Leser in den Stand zu setzen, selbst beurteilen zu kénnen,
ob und in wie weit dies der Fall ist, trete ich hier eingehend auf diese
Vektor-Ausgleichung ein. Ich werde am Schlusse des Aufsatzes zeigen,
wie ich mir die Anwendung der klassischen Methoden der M. d. kl. Qu.
auf das vorliegende Problem vorstelle.

Wir wollen also in Uebereinstimmung mit Schumann den Dreiecks-
schlul3 in bekannter Weise, mit oder ohne Riicksicht auf Gewichte, wie
sie etwa durch vorausgegangenen Stationsausgleich oder irgendwie
erhalten sein konnen, durchgefiihrt denken.

Der zweite Teil des Ausgleichs soll dann vektoriell durchgefiihrt
werden.

Als geschlossene, geoditische Figuren treten meist Dreiecke auf;
bedeuten A, B, € entweder die wahren oder auch die ausgeglichenen
Seiten eines ebenen Dreieckes, so lautet die vektorielle Bedingung fir
den Dreiecksschlul}

(42) A4+ B4 € =0.

Sie ist notwendig und hinreichend.

Beobachtete oder gemessene Grélen. moigen durch einen obern
Strich gekennzeichnet werden; dann tritt an die Stelle der vorigen
Gleichung:

(43) . WL+ B4+ 4+ W=40,
wo MW == W - W einen Widerspruchsvektor bedeutet.
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Nun ist:

N=A 4+ a’; B =B' + dB"; L = ¢ + db'.

Dann geht (42) tiber in
(44) dW + dB’ + d¢’ — W = 0.

Die drei Fehlervektoren sind die Unbekannten; I muf3 aus be-
kannten Stiicken berechnet werden. Als beobachtet oder gemessen
erscheinen die Lingen der Dreieckseiten und die Dreieckswinkel. Fir

g einen Vektor A’ werden ge-
Sl TN < braucht: Betrag A’ und seine
Richtung. Fir A’ ist die
A4’ Linge der Dreiecksseite zu
nehmen; zwischen den Drei-
eckswinkeln und den Vektor-
\ richtungen bestehen gemaf Fi-
gur 8 folgende Beziehungen,

s" N wenn o', B und 9" die im
Figur 8. Dreieck auf 180° abgestimm-
ten Winkel bedeuten.
(45) LA B) = 180°— 9" I (B'UW) = 180°+ 5"
L (B ) = 180°—a"” <L (E B) = 180°+ o”
L@ W) = 180°—pB” <L WE) = 180°+ B”

Wird der Winkel zwischen I und einer Seite, etwa U’, bekannt,
so sind durch (45) auch < (W B) und < (W €) bekannt; es wird:
(46) L (WYB’) = 180°4 L (WA') — »”
L(WE') = 180°+ < (WA') + B”
Zur Berechnung von W dient (43); zwei durch Spaltung mittels
Vektors erhaltene Gleichungen wiirden geniigen. Zur Kontrolle kann
man aus (13) sechs Gleichungen ableiten durch skalare Multiplikation

mit AW, A, B’, B, T und ¢’

Wir erhalten folgendes System:

(47) W-sin (WA') = + B'-sin o —C'-sin B’ = s,
W:-cos (IBA') = —A" + B’ cos ¢’ + C’ cos B’ = pgy
W:sin (W B') = —A’ sin y"” + C’ sin o” = sB
W-cos (I B’') = +A’ cos y" —B’ 4 ' cos o’ = pﬁ
W:-sin (IBC') = + A’ sin B” —B’ sin o’ = s
W-cos (WBCE') = 4 A’ cos B” + B’ cos a”

Hieraus folgt fiir die gesuchten Winkel:

Y
O'= p

Y

S a S B s y
(48) fg (WW, =25 tg (WB) = L5 g(we) =7
P a P B P Y
Danach kann W mehrfach bestimmt werden, rechnerisch am sicher-
sten mittels einer Quadrattafel aus Vys? - [75; s und p sind kleine GréQen.
Es wiirde geniigen, einen der drei Winkel zu bestimmen, etwa
< (W A’). Mit Hilfe von (46) kann er dreifach bestimmt werden; wie
bei W wird man das einfache Mittel weiter benutzen.
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Zwei weitere Kontroll-Gleichungen findet man aus (43) durch skalare
Multiplikation mit 9 und ; dieses Spalten liefert die beiden Glei-
chungen:

(49) + A’ sin (WW) + B'sin (B'W) + C'* sin (C’'W) = 0
+ A’ cos (WW) + B’'cos (B'W) + C'-cos (W) + W = 0

Nunmehr kann zum vektoriellen Ausgleich geoditischer Figuren
bei beliebigen Gewichten fiir die gemessenen Stiicke, namlich Strecken
und Winkel, iibergegangen werden. (Fortsetzung folgt.)

Niherungskonstruktion fiir das apollonische
Beriihrungsproblem.

Die Losung des Problems, die Kreise zu zeichnen, welche drei
gegebene Kreise beriihren, ist zwar auch direkt, d. h. ohne allmihliche
Anndherung mdoglich, beispielsweise auf dem Umwege der Inversion

== \

)

"‘1

=
/ /'z;g, 7

mit reziproken Radien. Dabei ist aber eine gewisse Fertigkeit in der
Anwendung dieser nicht allgemein bekannten Methode unumginglich.
Eine Aufgabe aus der Praxis fithrte mich kiirzlich auf eine viel einfachere,
wenn auch nur angendherte Losung. Ob diese schon sonst irgendwo
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