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Einführung in die Vektorrechnung und die
vektorielle Ausgleichung.

Von Prof. F. Baeschlin.
(Fortsetzung.)

Wenn wir den Anfangspunkt des Vektors als fest annehmen, so
kommen nur die Aenderungen b) und c) in Betracht. Der Endpunkt
des Vektors erleidet bei gleichzeitigem Auftreten dieser beiden Aenderungen

eine vektorielle Verschiebung, die wir nun untersuchen wollen.
Eine différentielle Streckung des Vektors 3t kommt auf eine

différentielle Aenderung des Betrages A, d. i. dA hinaus, wobei aber die
Streckung ein Vektor mit der Richtung von 3t, oder gleichbedeutend
von 3t ist.

Die différentielle Streckung ist daher
dA " I.

Eine reine Drehung des Vektors 3t um den Winkelbetrag dw ergibt
am andern Ende des Vektors eine Querverschiebung, die ihrem Betrage
nach gleich ist

A ¦ dw.
Aber auch diese Querverschiebung ist ein Vektor, dessen Richtung

mit der Bichtung des zu 3t senkrechten Einheitsvektors 131 zusammenfällt.

Die Querverschiebung ist daher
A ¦ dw ¦ i3I.

3t vermag wegen der Konstanz seiner Länge (eins) lediglich seine

Richtung zu ändern. Gemäß Fig. !3 ist die Aenderung bestimmt durch
[df • 31.

Die Größe jd3I ist gleichbedeutend mit dw
dw |d3Tj
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Fig. 5.

Die Gesamtverschiebung d3t am Ende des Vektors 31 setzt sich

aus den Elementarverschiebungen dA • 3t und A ¦ dw • 3t im Sinne
einer Vektorsumme zusammen (Fig. 5).

Es ist daher
(19) M dA ¦ 1 + A • dw ¦ j3t dA ¦ I + A ¦ \d&\ ' 3t.

Aus Figur 5 erkennt man sofort:
(20) jdSti \f(dA)*~+~ {A~dw)*

tg <* (3td3l) ^Für ebene Vektoren gelten folgende Beziehungen:
(21) cos (13133) + sin (1 33) sin j3t 33) —cosati)

cos (S ,93) — sin (1 93) sin (1 193) + cos (3t_93_)

cos (93 |3l) + sin (1 93) sin (93 [91) + cos (IS)
cos (|93l) - —sin (IS) sin (|93lT —cos (3tJ3)_

tg (3X93) — cotg (1 93) tg (93 |I) + cotg (3193)

(22) ([93, 3t]) ([3Î, 93]) f cos (3t, 93)

Für die Variation nach einem Vektor kann man, einer von Prof.
E. Müller herrührenden Definition gemäß, festsetzen:

Ist die Zahl F eine Funktion des Vektors 9t, so sei der Differentialquotient

von F(3t) nach 31 jener Vektor, dessen skalares Produkt mit
d3t gleich der Variation von F ist. Darnach kann man schreiben:

(23) dF(3I) - f™, m)
Für F ([31, 93}) als Funktion zweier Vektoren folgt durch

sukzessive Variation beider:

(24) -lr,r._-Çq^r.)+Ç£tf-\ir
Anderseits ist nach früherm

d(l% 93}) - ([93, d9I}> + ([9t, d93])

Solange als 91 und 93 veränderliche, voneinander unabhängige
Vektoren sind, folgt aus dem Vergleich der beiden Andrücke

(25)
8 ([9t, 93})

831
93;

8 ([3t, 93})
8 93

8 ([93, 3t})
893

31.
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Aus (23), (21) und (14) ist die Analogie mit der Differentiation von
Zahlenprodukten ersichtlich. Sie erstreckt sich auch auf die implizite
Differentiation; es ist

8 F (31) _ (18 F (9t) 8 311

8 A ~ \ 831 ' 8 A(26)

so insbesondere:
8 ([91, 93})

(27) (8 ([91, 93}) 831

"e"A \ 83t ' 8A
Mit Hilfe dieser Formeln erhält man für

d3l dA ¦ 3t + A • dw • J3I

setzen wir A ¦ dw a, so ist:
d3t dA ¦ 3t + a ¦ ,3t.

8 ([91,91]) _ o a 8([d3t, d3t})

([93,91}) B ¦ cos (93 9t).

(28) dA
8 (d9t, d3t)

da

2 • A.

2 • a

8 dA
8([ d3t,_d3l])

8!d3t'

2 • dA.

A2

A2

d3t

dw.
Eine lineare Vektorgleichung kann durch skalare Multiplikation

mit 31 und mit 131 in je eine lineare Zahlengleichung verwandelt werden.
Wir nennen diesen Prozeß „Spalten" nach dem Vektor 3t. Die Ergebnisse

können geometrisch als Projektionen gedeutet werden; die eine
bezieht sich auf die Bichtung des Multiplikators, die andere auf die zu
ihm senkrechte Richtung.

Die bisher betrachteten ebenen Vektoren sind sog. Hamilton'sche
Vektoren.

Nun sind aber in der Ebene auch noch andere Vektoren, die sog.
Gauß'schen Vektoren im Gebrauch, die aus der Darstellung der
komplexen Zahlen in der Ebene folgen.

Sei a + b i
eine komplexe Zahl mit dem reellen Bestandteil a und dem imaginären
b i, wo i V—1 ist.

C. F. Gauß stellte diese komplexe Zahl bekanntlich als einen Punkt
der Ebene dar, indem er zwei senkrechte Koordinatenaxen wählte.

Im Hinblick auf die geodäti-Reetle
/Tx«

T
&

c
Fig. 6.

sehen Anwendungen wählen wir die
reelle Axe nach oben, die imaginäre
Axe nach rechts positiv.

Die komplexe Zahl a + b i wird
dann dargestellt durch einen Punkt
mit den rechtwinkligen Koordinaten
a und b.

Diesem Punkt (a, b) kommt
der Radiusvektor

TaT~(29) r + Va2 + b2

zu, der mit der + a-Axe den Winkel <f>, die sog. Amplitude, bildet.
Der Strahl r stellt einen ebenen Vektor dar, den wir durch r^ be

zeichnen, r nennen wir den Betrag von a y b i, oder r.^.
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Es ist:
öj + h i rx ,fl

Dann ist:
(«! + bt i) + (a2 + b2 i)

Setzen wir:
(30)

a2 + b2 i r2 y2

(«i + a2) y (bx

a1 y a2 a s
b, y b, b o

h) t-

Dann ist:
(31) (% + b1 i) y (a2 y b2i) as+ bs i
wieder ein Vektor mit den Komponenten a s und b s, dem Betrag r s

und der Amplitude tp s.
Aus der Fig. 7 erkennt man sofort, daß der Vektor r s s aus den

Vektoren rx ^ und r2 m genau so hervorgeht,

wie der Hamilton'sche Vektor
£ 9t + 93

aus den Vektoren 9t und 93.

Für die Gauß'schen Vektoren gilt
also dasselbe geometrische Additionsgesetz

wie für die bisher betrachteten ebenen
Hamilton'schen Vektoren.

Die komplexe Zahl
ay bi

kann, wie man aus Figur 6 erkennt, auch

a
K.

ÄJ

a.

o
Fig. 7.

geschrieben werden :

(32) r cos tf + r ¦ sin tp
¦ i a + b i.

Nun wird in der Theorie der komplexen Zahlen gezeigt, daß

(33) r cos tp -r- r • sin tp
• i

ist, wo e die Basis der natürlichen Logarithmen ist, und tp in analytischem
Maße ausgedrückt wird.

Daraus ergibt sich ohne weiteres
(34) ,i 'fi'1 's¦Pi

2
%

I 'i>2

?ü)

Dies ist wieder ein Vektor der hier betrachteten Art mit dem Betrag
(rj r2) und der Amplitude (tpj + tp2).

Das so eingeführte Produkt ist also ein Vektorprodukt. Ein skalares
Produkt wird bei den Gauß'schen Vektoren nicht gebildet.

i (fi — 'fa)(35) rTh lllll
r2<p2 r2e1^

Der Quotient zweier Vektoren ist also wieder ein Vektor mit dem
V'fl ?2

Betrag 0 und der Amplitude (<px—tp2).
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<*> (r/=(re'>f ,".e'-%=(:^
Die n- Potenz des Vektors r r„ ist also wieder ein Vektor mit dem

Betrag (r n) und der Amplitude (n tp).

Dies gilt für ganze und gebrochene, positive und negative
Exponenten.

Die hier betrachteten Gauß'schen ebenen Vektoren haben gegenüber
den Hamilton'schen Vektoren den großen Nachteil, daß sie an ein
Koordinatensystem gebunden sind. Solange nur Vektorsummen oder
Differenzen auftreten, brauchen wir allerdings das Koordinatensystem
nicht.

Die Operation der Summe ist bei Gauß'schen Vektoren vom
Koordinatensystem unabhängig, sie ist invariant.

Dies gilt aber nicht mehr von den Operationen des Produktes, des

Quotienten und der Potenz.
Der gewaltige Vorteil der Invarianz aller Vektoroperationen, die

wir bei den Hamilton'schen Vektoren hervorgehoben haben, geht also
bei der Verwendung der Gauß'schen Vektoren verloren.

Dagegen können wir bei Verwendung der Gauß'schen Vektoren
durch die Operationen 2. Stufe (Multiplikation, Division) wieder ebene
Vektoren erhalten, was bei den Hamilton'schen Vektoren nicht der
Fall ist.

Bei den Gauß'schen ebenen Vektoren gibt es kein skalares Produkt.
Hingegen kann man so etwas wie ein skalares Quadrat erhalten.

Bekanntlich ist das Produkt zweier konjugierter komplexer Zahlen
reell.

a y b i r =r
a — b i r x

—tp
(37) (a + b i) V-(a-7>0 a2 + b* r2.

Bezeichnen wir den zu dem Vektor r konjugierten Vektor mit
r, so ist:
(37 a) r • 7 r2.

Wenn wir irgendeine Gleichung zwischen Gauß'schen Vektoren
haben, so gilt dieselbe Gleichung auch für die konjugierten Vektoren, denn
jeder Gauß'sche Vektor kann als komplexe Zahl geschrieben werden;
eine Gleichung zwischen komplexen Zahlen zerfällt aber immer in zwei
Gleichungen, je eine für die reellen und die imaginären Bestandteile.
Daraus ist der vorstehend formulierte Satz ohne weiteres als richtig
zu erkennen.

Z.B.r + s 0.
V

r (cos tp y i sin y) y s (cos i/r + i sin i/i) 0.

Daraus:
r cos tp + s cos ijj 0

r sin y y s sin <ji 0.

Deshalb ist auch:
r (cos tp — i sin f + s (cos ifi — i sin ip) 0.

also r + s i 0.
—tp —ifi
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Wenn bei der Umformung einer Gleichung zwischen Gauß'schen
Vektoren über die Rechnung mit komplexen Zahlen die imaginäre
Einheit i endgültig in der Formel bleibt, so kann diese dadurch entfernt
werden, wenn man sich vor Augen hält, daß

+ i — *
_|_ go' und — '' 1

90 ist-

(38) Wenn z. B. z « i • a ist, so folgt daraus

(39) z j.
1

+ 90
• a

a
a

a + 9Q, oder

(4°) «a r^PP=^-90
a a

(41) oder es sei z £ -j- j— a (a _ 90) u. s. t.

Ebenso kann man unangenehme Minuszeichen wegschaffen, wenn
man beachtet, daß — 1 liso ist.

Anwendung der Vektorrechnung auf geodätische Ausgleichungsaufgaben.
Nach dieser allgemeinen Einleitung gehen wir nun dazu über, die

Vektorrechnung auf geodätische Ausgleichungsaufgaben anzuwenden.
Es liegen hier zwei prinzipiell verschiedene Bearbeitungen vor.
Oberst K. Friedrich verwendet die Gauß'schen ebenen Vektoren

(vide seine Veröffentlichung [3], [7] und [8]).
Hofrat Professor Dr. Ing. Dr. R. Schumann verwendet die ebenen

Hamilton'schen Vektoren (vide die Veröffentlichungen [4], [5] und [6]).
Wir wollen zuerst die Schumann'sche Methode kurz darlegen.

Vektorieller Ausgleich ebener geodätischer Netze bei Verschiedenheit der
Gewichte für Strecken und Richtungen nach Schumann.

Ich folge im wesentlichen der letzten Veröffentlichung von
Schumann [6J.

„Jeder Seite eines ebenen Dreieckes kommt Länge und Richtung
zu, sie darf mithin als Vektor angesehen werden. Die sämtlichen
Vektoren einer Triangulation sollen ein mathematisch mögliches Netz
bilden; sind ihre Beträge und die Winkel zwischen ihnen beobachtet,
so werden wegen der unvermeidlichen Beobachtungsunsicherheit beim
Zusammensetzen zu geschlossenen Figuren kleine Widersprüche (Schlußfehler)

entstehen; auch diesen kommt Länge und Richtung zu, von
ihnen werden die ersteren kleine Größen sein.

Um zu erreichen, daß die Schlußfehler verschwinden, sowie daß
die Dreiecke aneinanderschließen, erteilt man den Seiten vektoren
kleine Verbesserungen, denen wiederum Länge und Richtung zukommt;
die Beträge dieser Verbesserungsvektoren sind ebenfalls kleine Größen.

Unabhängig von der Definition eines Vektors besteht die Tatsache,
daß im allgemeinen wohl Winkel, nicht aber Richtungen gemessen
werden können (abgesehen von der Messung mit Boussoleninstrumenten)
und hierdurch entsteht zunächst eine grundsätzliche Schwierigkeit.
Je drei Vektoren bilden, allein ihren Richtungen nach, stets ein Dreieck
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ohne Widerspruch, mögen sie fehlerhaft oder fehlerlos, ausgeglichen
oder unausgeglichen sein, ihre Richtungen sind unabhängig voneinander;
sie unterliegen keiner Bedingung.

Dagegen liefern drei gemessene Winkel im allgemeinen immer
einen Widerspruch."

Schumann will diese grundsätzliche Schwierigkeit dadurch
umgehen, daß er die Ausgleichung in Teile zerlegt. Der Netzausgleich
soll zunächst den Winkelschluß des einzelnen Dreieckes, und dann erst
den Netz-Zusammenschluß umfassen.

Leider führt aber dieses Verfahren nicht zu demselben Resultat,
wie wenn die M. d. kl. Qu. auf die gemessenen Elemente angewendet
wird. Hierin liegt meines Erachtens der gewichtigste Einwand gegen
die Schumann'sche vektorielle Ausgleichung.

Nun ist ja ohne weiteres zuzugeben, daß die M. d. kl. Qu. eine von
unendlich vielen möglichen Ausgleichungsprinzipien ist und man sich
bei praktischen Rechnungen oft bewußt von ihr emanzipiert, im Interesse

der Vereinfachung der Rechnung. Aber ich muß gestehen, daß
es mich stößt, wenn ein Ausgleichungsprinzip nicht konsequent
angewendet wird, was im vorliegenden Falle zutrifft. Es stößt mich um so

mehr, als die gewählte Berechnungsmethode uns einfach zwingt, im
Sinne Schumanns vorzugehen und wir nicht freiwillig, nach Vergleichung
mit den korrekten Ausgleichungsergebnissen, im Interesse der
Vereinfachung der Bechnung, auf die letzte Schärfe verzichten.

Ich müßte dann mindestens verlangen, daß die neue Methode
bedeutend geringere Rechenarbeit erfordert, als die klassische M. d. kl.
Qu. Um den Leser in den Stand zu setzen, selbst beurteilen zu können,
ob und in wie weit dies der Fall ist, trete ich hier eingehend auf diese
Vektor-Ausgleichung ein. Ich werde am Schlüsse des Aufsatzes zeigen,
wie ich mir die Anwendung der klassischen Methoden der M. d. kl. Qu.
auf das vorliegende Problem vorstelle.

Wir wollen also in Uebereinstimmung mit Schumann den Dreiecksschluß

in bekannter Weise, mit oder ohne Rücksicht auf Gewichte, wie
sie etwa durch vorausgegangenen Stationsausgleich oder irgendwie
erhalten sein können, durchgeführt denken.

Der zweite Teil des Ausgleichs soll dann vektoriell durchgeführt
werden.

Als geschlossene, geodätische Figuren treten meist Dreiecke auf;
bedeuten 9t, 93, (£ entweder die wahren oder auch die ausgeglichenen
Seiten eines ebenen Dreieckes, so lautet die vektorielle Bedingung für
den Dreiecksschluß
(42) 91 ^ 93 -P £ 0.

Sie ist notwendig und hinreichend.
Beobachtete oder gemessene Größen, mögen durch einen obern

Strich gekennzeichnet werden; dann tritt an die Stelle der vorigen
Gleichung:
(43) 3t' + 33' -r (£' + 3ß 0,

wo 9B W " 3B einen Widerspruchsvektor bedeutet.
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d93'; <£ <£' d£'.
Nun ist:

31 3t' + (M'; 93 93'

Dann geht (42) über in
(44) d3l' + d93' + d<T — 9B 0.

Die drei Fehlervektoren sind die Unbekannten; 9B muß aus
bekannten Stücken berechnet werden. Als beobachtet oder gemessen
erscheinen die Längen der Dreieckseiten und die Dreieckswinkel. Für

einen Vektor 3t' werden ge-
"» braucht: Betrag A' und seine

Richtung. Für A' ist die
Länge der Dreiecksseite zu
nehmen; zwischen den
Dreieckswinkeln und den
Vektorrichtungen bestehen gemäß
Figur 8, folgende Beziehungen,
wenn et", ß" und y" die im

Figur 8. Dreieck auf 180° abgestimm¬
ten Winkel bedeuten.

y (93' 31') 180°+ y"
y ((£' 93') 180°+ a"
T (91' £') 180°+ ß"

o r
w

(45) y (31' 93')

y (93' (£')

y (£' 9t')

180°— y"
180°— a"
180° — ß"

Wird der Winkel zwischen 9B und einer Seite, etwa 3t', bekannt,
so sind durch (4,5) auch y (3B 93) und y (9B1) bekannt; es wird:
(46) -£(9B93') 180°+ <(9B3t') — y"

<£(9B<r) 180°+ -$(9B9l') + ß"
Zur Berechnung von 9B dient (43); zwei durch Spaltung mittels

Vektors erhaltene Gleichungen würden genügen. Zur Kontrolle kann
man aus (43) sechs Gleichungen ableiten durch skalare Multiplikation
mit I', 31', 93', ;93', £' und '£'.

Wir erhalten folgendes System:
(47) W-sin (9B3T) + B'sin y" —C'-sin ß" sa

W-cos (3B31') —A' + B' cos y" + C cos ß" pa
Wsin (3B 93') —A' sin y" + C" sin a" sfl
W-cos (3B ^8') +A' cos y" —B' + C cos a"
Wsin (3B(£') + A' sin ß" —B' sin a" s

W-cos (3BS') +A' cos ß" + B' cos a'
Hieraus folgt für die gesuchten Winkel:

Pß

y
-c p,

(48) lg (3B3I), -; <<7(9B93') ß.
; tg(WV) y

c a P ß
' P y

Danach kann W mehrfach bestimmt werden, rechnerisch am sichersten

mittels einer Quadrattafel aus \s2 + p2; s und p sind kleine Größen.
Es würde genügen, einen der drei Winkel zu bestimmen, etwa

y (933 91')- Mit Hilfe von (46) kann er dreifach bestimmt werden; wie
bei IV wird man das einfache Mittel weiter benutzen.
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Zwei weitere Kontroll-Gleichungen findet man aus (43) durch skalare
Multiplikation mit 9B und 3B; dieses Spalten liefert die beiden
Gleichungen:

<49) + A'- sin (9t'3ß) + B' sin (93'9B) + C" • sin (<E'9B) 0

+ A'- cos (9t'9ß) + B' cos (93'9B) + C • cos (S'3B) + W 0
Nunmehr kann zum vektoriellen Ausgleich geodätischer Figuren

bei beliebigen Gewichten für die gemessenen Stücke, nämlich Strecken
und Winkel, übergegangen werden. (Fortsetzung folgt.)

Näherungskonstruktion für das apollonische
Berührungsproblem.

Die Lösung des Problems, die Kreise zu zeichnen, welche drei
gegebene Kreise berühren, ist zwar auch direkt, d. h. ohne allmähliche
Annäherung möglich, beispielsweise auf dem Umwege der Inversion

*,.

rÔ

A

Kg-1
mit reziproken Radien. Dabei ist aber eine gewisse Fertigkeit in der
Anwendung dieser nicht allgemein bekannten Methode unumgänglich.
Eine Aufgabe aus der Praxis führte mich kürzlich auf eine viel einfachere,
wenn auch nur angenäherte Lösung. Ob diese schon sonst irgendwo
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