**Zeitschrift:** Schweizerische Zeitschrift für Vermessungswesen und Kulturtechnik =

Revue technique suisse des mensurations et améliorations foncières

**Herausgeber:** Schweizerischer Geometerverein = Association suisse des géomètres

**Band:** 19 (1921)

**Heft:** 11

**Artikel:** Prüfung von Kreisteilungen [Schluss]

Autor: Aregger, Alfred

**DOI:** https://doi.org/10.5169/seals-186822

#### Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

#### **Conditions d'utilisation**

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

### Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

**Download PDF:** 12.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

# Zeitschrift für Vermessungswesen und Kulturtechnik

ORGAN DES SCHWEIZ. GEOMETERVEREINS

# REVUE TECHNIQUE SUISSE DES MENSURATIONS ET AMÉLIORATIONS FONCIÈRES

ORGANE DE LA SOCIÉTÉ SUISSE DES GÉOMÈTRES

Redaktion: F. BAESCHLIN, Professor, Zollikon (Zürich)

Ständiger Mitarbeiter für Kulturtechnik: Prof. C. ZWICKY, Zürich, Bergstr. 131 Collaborateur attitré pour la partie en langue française: CH. ROESGEN, ingénieur-géomètre, Genève, 11, rue de l'Hôtel-de-Ville — Redaktionsschluß: Am 1. jeden Monats

Expedition, Inseraten- und Abonnements-Annahme: DUCHDRUCKEREI WINTERTHUR VORM. G. BINKERT, WINTERTHUR

Jährlich 12 Nummern (erscheinend am zweiten Dienstag jeden Monats)

und 12 Inseraten-Bulletins (erscheinend am vierten Dienstag jeden Monats) No. 11

des XIX. Jahrganges der "Schweiz. Geometerzeitung".

8. November 1921

Jahresabonnement Fr. 12.— (unentgeltlich für Mitglieder)

Inserate:
50 Cts. per Ispaltige Nonp.-Zeile

### Prüfung von Kreisteilungen.

Von Geometer Alfred Aregger im Militärgeographischen Institut der Argentinischen Republik.

(Schluß.)

Zur Praxis der Beobachtungen möchten noch folgende sehr wichtigen Punkte erwähnt werden:

Sowohl bei Mikroskop- wie Nonientheodoliten sind die Kreislagen derart genau zu wählen, daß entsprechende Mikroskop- oder Nonienablesungen möglichst gleich sind. Es ist dies meistens leicht auf einige Sekunden genau zu erreichen und hat den Zweck, Run, Schraubenfehler, Fehler der Nonienlänge etc. möglichst unschädlich zu machen, so daß dieselben in der Rechnung unberücksichtigt bleiben können. Beim Untersuchen von Nonientheodoliten liegt ein kleiner Kunstgriff noch darin, daß man zur Erlangung genügender Ueberteilung nicht den mit Null bezifferten Teilstrich des Nonius als null annimmt, sondern etwa den Strich 1', denn nur dadurch ist es möglich, daß man für beide Nonien beinahe an gleicher Stelle des Nonius ablesen kann, d. h. etwa innerhalb 30" bis 60".

Bei der Winkelmessung zur Bestimmung der Durchmesserkorrektion  $\tau$  sind die beiden anzuzielenden Punkte in ihrer Höhenlage so zu wählen, daß beide mit der gleichen Neigung des Fernrohres angezielt werden können. Beim Messen im Freien können mit Vorteil kleine Zieltäfelchen benützt werden, die an starken Pfählen in etwa 50 bis 100 m Entfernung befestigt werden. Beim Arbeiten im geschlossenen Raume wird man besser die Fernrohre zweier anderer Instrumente als Kollimatoren benützen. Beim Arbeiten auf so kurze Distanzen sind sehr feste, erschütterungsfreie Aufstellungen (Steinpfeiler) notwendig. Bei Schraubenmikroskopen wird an zwei benachbarten Teilstrichen abgelesen.

Bei der Bestimmung der halben Differenz der Fehler diametraler Teilstriche t ist folgendes zu beachten: Der Abstand  $180^{\circ} + 2 \delta$  der beiden Mikroskope eines Theodolits ist infolge von Temperatureinflüssen etc. relativ großen, raschen und ungleichmäßigen Veränderungen unterworfen. Die Größe  $\delta$  ist in unserm Verfahren zwar eliminiert, aber um diese Eliminierung nicht nur scheinbar zu machen, müssen d $\varphi$  und d $(\varphi + 180)$  wirklich unmittelbar nacheinander beobachtet werden.

Werden die Beobachtungen der Reihe nach im Hingang von 0° bis 180° und dann im Rückgang von 180° bis 0° ausgeführt, wie dies wegen der stets stattfindenden kleinen Exzentrizitätsänderungen sehr zu empfehlen ist, so ist als ε das Mittel aus den beiden bezüglichen Bestimmungen zu nehmen. Gut ist folgende Reihenfolge der Messungen: Serie 1, 2, 3, 4 im Hingang und dann Serie 4, 3, 2, 1 im Rückgang. Für die Untersuchung ist die Achse der Alhidade mit sehr wenig Oel zu versehen und ein ziemlich harter Gang zu wählen. Ferner darf die Beobachtung der vier zusammengehörenden Serien nicht mit Unterbrechungen erfolgen, und es darf der festgeklemmte Limbus nicht berührt werden.

Macht man acht Serien (Untersuchungsintervall =  $2\frac{1}{2}^{0}$ ), so wird man die Beobachtungen unterbrechen müssen. In diesem Falle sind die ersten vier Serien im Hin- und Rückgang unmittelbar nacheinander zu beobachten. Die Serien 5 bis 8 können dann ein andermal in gleicher Weise gemessen werden. Da durch diese Arbeitsunterbrechung eine Exzentrizitätsänderung zu befürchten ist, so ist aus den Serien 1 bis 4 das Glied  $r_1$  (sin  $\varphi$ — $0_1$ ) und daraus f' zu bilden (f' =  $\epsilon$ —r, (sin  $\varphi$ — $0_1$ ). Entsprechend sind die Serien 5 bis 8 zu behandeln. Erst diese so erhaltenen f' dürfen entsprechend der Bemerkung nach der Gleichung (28) in (27) und (28) eingesetzt werden. In

diesem Falle nehmen die Gleichungen (34) und (35) folgende Form an:

$$E'^2 = \frac{f' f'}{n-4}$$
,  $E''^2 = \frac{f'' f''}{n-6}$ ,  $E'''^2 = \frac{f''' f'''}{n-8}$ .

### IV. Beobachtungsprogramme.

Wesentlich für die Güte einer Kreisuntersuchung ist die richtige Wahl des Beobachtungsprogrammes. In der folgenden Tabelle ist eine zweckmäßige Reihenfolge der Beobachtungen sowohl für die Bestimmung von  $\tau\varphi$  als  $t\varphi$  nebst den zugehörigen Kreislagen angegeben. Diese Anordnung der Beobachtungen bezweckt namentlich, die während der Messung stattfindenden kleinen regelmäßigen Aenderungen des zu messenden Winkels oder der Exzentrizität des Kreises im Endresultate möglichst unschädlich zu machen. Für eine gute Untersuchung genügen vier Serien, während für eingehende Studien alle acht durchgeführt werden können.

Die Wahl der Kreislagen oder Kreisstellen ist speziell für Kreise getroffen, deren Teilungsintervall  $^{1}/_{6}$  oder  $^{1}/_{12}$  ost. Es ist bezweckt worden, daß sowohl innerhalb der Serien 1 bis 4 als auch der Serien 5 bis 8 die Minutenzahlen 0', 10', 20', 30', 40', 50' gleich oft vorkommen. Bei der ersten Methode werden die Kreislagen bezeichnet durch die Stellen, an welchen sich jeweils das Mikroskop oder der Nonius A beim Einstellen der ersten Richtung des zu messenden Winkels befindet.

Zur rechnerischen Bearbeitung des Beobachtungsmaterials kann mit Vorteil ein gewöhnlicher 25 cm-Rechenschieber dienen.

### V. Beispiele:

### A. Theodolit von Troughten und Simms, London.

Der Kreis von 16 cm Durchmesser ist in 10' geteilt und wird an zwei diametralen Nonien abgelesen, welche 10" direkt geben und 5" schätzen lassen. Im April und Mai 1915 wurde das scheinbar ungebrauchte Instrument von mir nach dem vierserigen Untersuchungsprogramm sowohl nach Durchmesserteilungsfehler, wie nach den halben Differenzen der Fehler diametraler Teilstriche geprüft.

# Beobachtungsprogramme.

|   | Sanum<br>für                                       |                                                    | Bed<br>achtu<br>num<br>für                         | ings-                                              | Kreislage<br>oder<br>Kreisstelle<br>φ                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sat<br>numi<br>für                                          | ner                                                         | Beo<br>achtur<br>numr<br>für                                | ngs-<br>ner                                                 | Kreislage<br>oder<br>Kreisstelle<br>φ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |                                                    |                                                    |                                                    | * * * *                                            |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |                                                             |                                                             |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ١ | # #<br># *                                         |                                                    | Ser                                                | 2.0                                                |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |                                                             | Serie                                                       |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|   | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9          | 18<br>17<br>16<br>15<br>14<br>13<br>12<br>11<br>10 | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9          | 72<br>71<br>70<br>69<br>68<br>67<br>66<br>65<br>64 | 0° 0′<br>20° 40′<br>40° 20′<br>60° 0′<br>80° 40′<br>100° 20′<br>120° 0′<br>140° 40′<br>160° 20′     | E X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 73<br>74<br>75<br>76<br>77<br>78<br>79<br>80<br>81          | 90<br>89<br>88<br>87<br>86<br>85<br>84<br>83<br>82          | 73<br>74<br>75<br>76<br>77<br>78<br>79<br>80<br>81          | 144<br>143<br>142<br>141<br>140<br>139<br>138<br>137<br>1.6 | 2º 30'<br>23' 10'<br>42° 50'<br>62° 30'<br>83° 10'<br>102° 50'<br>122° 30<br>143° 10'<br>162° 50'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|   |                                                    |                                                    | Seri                                               | e II                                               |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8 50 8                                                      | . X                                                         | Serie                                                       | e VI                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|   | 37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45 | 54<br>53<br>52<br>51<br>50<br>49<br>48<br>47<br>46 | 10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18 | 63<br>62<br>61<br>60<br>59<br>58<br>57<br>56<br>55 | 5° 10′<br>25° 50′<br>45° 30′<br>65° 10′<br>85° 50′<br>105° 30′<br>125° 10′<br>145° 50′<br>165° 30′  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 109<br>110<br>111<br>112<br>113<br>114<br>115<br>116<br>117 | 126<br>125<br>124<br>123<br>122<br>121<br>120<br>119<br>118 | 82<br>83<br>84<br>85<br>86<br>87<br>88<br>89<br>90          | 135<br>134<br>133<br>132<br>131<br>130<br>129<br>128<br>127 | 7° 40′<br>28° 20′<br>48° -′<br>67° 40′<br>88° 20′<br>108° -′<br>127° 40′<br>148° 20′<br>168° -′                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|   |                                                    |                                                    | Ser                                                | ie III                                             |                                                                                                     | Street, Square, Square |                                                             |                                                             | Serie                                                       | e VII                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|   | 19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27 | 36<br>35<br>34<br>33<br>32<br>31<br>30<br>29<br>28 | 19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27 | 54<br>53<br>52<br>51<br>50<br>49<br>48<br>47<br>46 | 10° 20′<br>30° 0′<br>50° 40′<br>70° 20′<br>90° 0′<br>110° 40′<br>130° 20′<br>150° 0′<br>170° 40′    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 91<br>92<br>93<br>94<br>95<br>96<br>97<br>98<br>99          | 108<br>107<br>106<br>105<br>104<br>103<br>102<br>101        | 91<br>92<br>93<br>94<br>95<br>96<br>97<br>98<br>99          | 126<br>125<br>124<br>123<br>122<br>121<br>120<br>119<br>118 | 12° 50′<br>32° 30′<br>53° 10′<br>72° 50′<br>92° 30′<br>113° 10′<br>132° 50′<br>152° 30′<br>173° 10′                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |                                                    |                                                    | Ser                                                | ie IV                                              |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             | 1                                                           | Serie                                                       | VIII                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|   | 55<br>56<br>57<br>58<br>59<br>60<br>61<br>62<br>63 | 72<br>71<br>70<br>69<br>68<br>67<br>66<br>65<br>64 | 28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36 | 45<br>44<br>43<br>42<br>41<br>40<br>39<br>38<br>37 | 15° 30′<br>35° 10′<br>55° 50′<br>75° 30′<br>95° 10′<br>115° 50′<br>135° 30′<br>155° 10′<br>175° 30′ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 127<br>128<br>129<br>130<br>131<br>132<br>133<br>134<br>135 | 144<br>143<br>142<br>141<br>140<br>139<br>138<br>137        | 100<br>101<br>102<br>103<br>104<br>105<br>106<br>107<br>108 | 117<br>116<br>115<br>114<br>113<br>112<br>111<br>110<br>109 | 18° — 40° 37° 40° 58° 20° 78° — 60° 40° 118° 20° 138° — 61° 157° 40° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 178° 20° 20° 20° 20° 20° 20° 20° 20° 20° 20 |

### 1. Durchmesserteilungsfehler.

Die Winkelmessung wurde im geschlossenen, dunkeln Raume gemacht. Das Instrument ist auf festem, isoliertem Steinpfeiler gestellt worden. Die beiden Theodolite, welche als Kollimatoren verwandt wurden, hatten ebenfalls Aufstellung obiger Qualität. Für die Ablesung der Nonien wie für die Beleuchtung der Fäden der Kollimatoren diente elektrisches Licht. An einem Tage wurden nur die 18 Doppelmessungen (Sätze) einer Serie gemacht. Zwischen den Serien I und III, sowie III und II wurde das Instrument vom Pfeiler abgenommen.

### 2. Halbe Differenzen der Fehler diametraler Teilstriche.

Die Beobachtungen wurden im Freien vorgenommen und daher ist eine etwas weniger gute Ablesungsgenauigkeit erzielt worden als bei der Winkelmessung zur obgenannten Untersuchung. Nach der im Teil III begründeten, größern Genauigkeit dieser zweiten Prüfungsart erklärt sich auch, daß die Resultate dennoch eine größere Genauigkeit haben, als diejenige der Prüfung nach Durchmesserteilungsfehler.

Zur Vereinfachung des entsprechenden Berechnungsformulares führen wir folgende neue Bezeichnungen ein:

Bei  $\varphi$  von  $0^{\circ}$  bis  $180^{\circ}$  in erster Beobachtung (Hingang)  $B\varphi - A\varphi = d_1;$ 

bei  $\varphi$  von 0° bis 180° in zweiter Beobachtung (Rückgang)  $B\varphi - A\varphi = d_3;$ 

bei  $\varphi$  von 180° bis 360° in erster Beobachtung (Hingang)  $B\varphi - A\varphi = d_2;$ 

bei  $\varphi$  von 180° bis 360° in zweiter Beobachtung (Rückgang)  $B\varphi - A\varphi = d_4$ .

An Hand der 36 Werte von (p-a) wurde berechnet:

$$[(p-\alpha) \sin 2\varphi] = -3.22;$$
  $[(p-\alpha) \cos 2\varphi] = -28.60$   $[(p-\alpha) \sin 4\varphi] = +33.26;$   $[(p-\alpha) \cos 4\varphi] = +39.54$ 

$$[(p-\alpha) \sin 4\varphi] = +33.26;$$
  $[(p-\alpha) \cos 4\varphi] = +39.54$ 

$$[(p-\alpha) \sin 6\varphi] = -5.01;$$
  $[(p-\alpha) \cos 6\varphi] = -16.02$ 

Nach den Gleichungen (14) berechnet sich nun:

tg 
$$(\alpha - 0_2) = \frac{+3.22}{-28.60} = -0.1126$$
; sin  $(\alpha - 0_2)$  muß negativ werden

tg 
$$(2\alpha-0_4) = \frac{-33.26}{+39.54} = -0.841$$
; sin  $(2\alpha-0_4)$  muß positiv werden

1. Durchmesserteilungsfehler.

(Mittelwert des gemessenen Winkels in derselben Kreislage = 450 + p).

| No. des Kr     |              |                |                |                     | -                          |                |        |        |       |                |       |                  |
|----------------|--------------|----------------|----------------|---------------------|----------------------------|----------------|--------|--------|-------|----------------|-------|------------------|
| 241253         | Kreislage    | Satzmittel     | nittel         | $\frac{p_1+p_2}{2}$ | p—α                        | $(p-\alpha)^2$ | Δ      | V1     | V1 V1 | V <sub>2</sub> |       | V2 V2            |
| р́1 р2         | 9-           | p <sub>1</sub> | p <sub>2</sub> | d =                 |                            | ,              | +      |        |       | +              | 1     |                  |
| 1 18           | 00.00        | 27."5          | 28."7          | 28."1               | +1."9                      |                | 25."0  |        | 625   | 12."5          |       | 156              |
| 2 17           | 20° 40'      | 36."2          | 27."5          | 31."8               | +5."6                      | 31.4           | 7."5   |        | 26    | 5."0           | X     | 22               |
| 3 16           | 40° 20'      | 26."2          | 17."5          | 21."8               | -4."4                      |                | 17."5  |        | 306   | 15."0          |       | 225              |
| 4 15 (         | ,0 .09       | 28."8          | 25."0          | 56."6               | 1.0+                       |                | 7."5   |        | . 26  | 2,"0           |       | 52               |
| 5 14 8         | 80° 40'      | 31."2          | 25."0          | 28."1               | +1."9                      | •              | 7."5   |        | 26    | 20."0          |       | 400              |
| 6 13 10        | 000 20       | 28."7          | 32."5          | 30."6               | 4."4                       |                | 7."5   |        | 26    | 15."0          |       | 225              |
| 1              | 20° 0'       | 23."7          | 17."5          | 20."6               | -5."6                      | 31.4           | 12."5  |        | 156   | 15."0          |       | 225              |
| 8 11 14        | 40° 40'      | 21."2          | 26."2          | 23."7               | -2."5                      |                | 2."2   |        | 9     | 17."5          |       | 306              |
| 10             | 160° 20′     | 23."7          | 25."0          | 24."4               | -1."8                      |                | 2."2   |        | 9     |                | 5."0  | 25               |
|                | 0.00         |                |                | 236."0              | +0."2                      | 118.7          | 900    | 0.,,00 | 1323  | 105."0         | 5."0  | 1612             |
|                |              |                | 8              | = 26."2             |                            |                |        |        |       |                |       |                  |
|                |              |                |                |                     |                            | 1571           | 71 110 | 00"0   | 020   | 0".98          | 0,, 6 | 1011             |
| Die Messung de | der Serie II | II ergan:      | 8              | 97.7                |                            | 1.401          | 71.0   | 3      | 600   | 00.00          | 9     | 1011             |
| " " "          | "            | III "          | 8              | = 25."3             |                            | 84.0           | 77."5  | 0,,,00 | 755   | 55."0          | 2,"2  | 468              |
| "              | " "          | " NI           | 8              | = 32."7             |                            | 96.3           | 77."0  | 00,,0  | 877   | 33."0          | 4."0  | 231              |
|                |              |                |                |                     |                            |                | 315."5 | 0.,,00 | 3814  | 279."0         | 14."5 | 3322             |
|                |              |                |                |                     |                            |                |        |        |       | +315."5        |       | 3814             |
|                |              |                |                |                     |                            |                |        |        |       | -14."5         |       |                  |
| Sur            | Summen at    | aus den Serien | Serien 1       | bis IV:             | IV: $[p-\alpha]^2 = 453.1$ | = 453.1        |        |        | [v]   | +580 "0        | [v v] | $[v \ v] = 7136$ |

$$tg (3\alpha - 0_6) = \frac{+5.01}{-16.02} = -0.313; sin (3\alpha - 0_6) \frac{\text{muß negativ}}{\text{werden}}$$

$$\alpha - 0_2 = 353^{\circ} 34' \quad 2\alpha - 0_4 = 139^{\circ} 56' \quad 3\alpha - 0_6 = 342^{\circ} 37'$$

$$\alpha = 45^{\circ} 00' \quad 2\alpha = 90^{\circ} 00' \quad 3\alpha = 135^{\circ} 00'$$

$$-0_2 = 308^{\circ} 34' \quad -0_4 = 49^{\circ} 56' \quad -0_6 = 207^{\circ} 37'$$

$$0_2 = 51^{\circ} 26' \quad 0_4 = 310^{\circ} 04' \quad 0_6 = 152^{\circ} 23'$$

$$\frac{\mathbf{r}_2}{\mathbf{r}_2} = \frac{-3.22}{25,45 \sin (\alpha - 0_2)} = \frac{+28.60}{25,45 \cos (\alpha - 0_2)} = \frac{1.''13}{25}$$

$$\frac{\mathbf{r}_4}{\mathbf{r}_6} = \frac{+33.26}{36.00 \sin (2\alpha - 0_4)} = \frac{-39.54}{36.00 \cos (2\alpha - 0_4)} = \frac{1.''44}{25.45 \cos (3\alpha - 0_6)} = \frac{-5.01}{25.45 \cos (3\alpha - 0_6)} = \frac{-5.01}{25.45 \cos (3\alpha - 0_6)} = \frac{0.''66}{25.45 \cos (3\alpha - 0_6)}$$
Obige Werte für  $0_2, 0_4, 0_6$  und  $r_6, r_6, r_6$  geben uns folgende

Obige Werte für  $0_2$ ,  $0_4$ ,  $0_6$  und  $r_2$ ,  $r_4$ ,  $r_6$  geben uns folgende Gleichung für die systematische Durchmesserkorrektion  $\tau \varphi$ :

$$\tau \varphi = 1.$$
"13 sin (2  $\varphi$  -51° 26′) + 1."44 sin (4  $\varphi$  -310° 04′ + 0."66

$$\sin (6\varphi - 152^{\circ} 23').$$

Nach dieser Gleichung berechnet sich die in Figur Nr. 1 dargestellte Kurve der systematischen Durchmesserkorrektion. Mit Hilfe dieser Kurve kann ein Winkel  $\alpha$ , der in einer Kreislage  $\varphi$  beobachtet ist, vom Einfluß  $\Delta \tau \varphi$  der regelmäßigen Teilungsfehler des Kreises nach folgender Formel befreit werden:

$$\Delta \tau \varphi = \tau(\varphi+2) + \alpha - \tau \varphi.$$

Die Anwendung dieser Gleichung auf die Winkelmessung unserer Untersuchung liefert die interessante Figur Nr. 2, in welcher auch die Größen (p— $\alpha$ ) nach den betreffenden  $\varphi$  geordnet aufgetragen sind. (Es ist ersichtlich, daß bei Berechnung der Koeffizienten  $r_8$ ,  $r_{10}$ ,  $0_8$ ,  $0_{10}$ , die Kurve bedeutend besser an die Beobachtungen angepaßt würde. Bei guten Kreisen sollten aber diese Verbesserungen klein sein.)

Zur Berechnung der mittlern Fehler nach Gleichungen (15) bis (18) haben wir:

doppelter Schleppfehler 
$$\gamma = \frac{[v]}{k} = \frac{580''}{72} = 8.''06$$
;  $\gamma^2 = 65.0$ 

$$\frac{\mu^2}{m} = \frac{1}{4} \left( \frac{[v \ v]}{k} - \gamma^2 \right) = \frac{1}{4} \left( \frac{7136}{72} - 65.0 \right) = \frac{8.55}{m}$$

$$\frac{1}{4} \mu^2 = 2.14$$
;  $\mu = \pm 2.''92$ 

 $(\mu = mittlerer Beobachtungsfehler in einem doppelt gemessenen$ Winkel.)

$$[z \ z] = [(p-\alpha)^2] = 453.1$$

$$[z' \ z'] = 453.1 - \frac{1}{18}(3,22^2 + 28,60^2) = 407.1$$

$$[z'' \ z''] = 407.1 - \frac{1}{18}(33,26^2 + 39,54^2) = 258.8$$

$$[z''' \ z'''] = 258.8 - \frac{1}{18}(5.01^2 + 16,02^2) = 243.2$$

$$\frac{1}{2}M^2 = \frac{453.1}{64} = 7.08; \ \tau^2 = 7.08 - 2.14 = 4.94; \ \underline{\underline{z} = 2.22}$$

$$\frac{1}{2}M^2 = \frac{407.1}{60} = 6.79; \ \tau'^2 = 6.79 - 2.14 = 4.65; \ \tau' = 2.216$$

### 2. Halbe Differenz der Fehler

| d <sub>3</sub> | φ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | d <sub>2</sub>                                                                                                                    | d <sub>4</sub>                                                                                                                                                            | $\begin{vmatrix} d_1 - d_2 \\ -4 \varepsilon_1 \end{vmatrix}$                                                                                                                                                     | $\begin{vmatrix} d_3 - d_4 \\ = 4 \epsilon_{II} \end{vmatrix}$ | , eI                                                  | εII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | εI—εII                                                | $ (\varepsilon^{I}-\varepsilon^{II})$                 |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|
| +15"           | 1800 04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <br>  <del> </del> +15"                                                                                                           | <del></del>                                                                                                                                                               | + 5"                                                                                                                                                                                                              | 1 - 10"                                                        | <b>4</b> 1."2                                         | - 2."5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>⊥</b> 3 "7                                         | 13.7                                                  |
| 1              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                   |                                                                                                                                                                           | 11                                                                                                                                                                                                                |                                                                |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       | 0.0                                                   |
|                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                   | 1 500                                                                                                                                                                     | 110                                                                                                                                                                                                               |                                                                |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       | 14.4                                                  |
|                | The second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                   |                                                                                                                                                                           | 11                                                                                                                                                                                                                |                                                                |                                                       | 1 2 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                       | 6.8                                                   |
| 1 .            | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                   |                                                                                                                                                                           | 11                                                                                                                                                                                                                |                                                                |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       | 6.2                                                   |
| 1 .            | I amount to the state of the st |                                                                                                                                   |                                                                                                                                                                           | 11                                                                                                                                                                                                                |                                                                |                                                       | I III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | I can see a                                           |                                                       |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7                                                                                           | 1                                                                                                                                                                         |                                                                                                                                                                                                                   |                                                                |                                                       | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                       | 1.4                                                   |
| 1 5            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                 | 100                                                                                                                                                                       | M Company                                                                                                                                                                                                         |                                                                |                                                       | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                       | 0.0                                                   |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                   |                                                                                                                                                                           |                                                                                                                                                                                                                   | 55 (5 10.00)                                                   | . U                                                   | 1 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                       | 0.0                                                   |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                   |                                                                                                                                                                           |                                                                                                                                                                                                                   |                                                                |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | l.                                                    | 49.3                                                  |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                   |                                                                                                                                                                           | Aus o                                                                                                                                                                                                             | ler Serie                                                      | II wur                                                | le erhalt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | en:                                                   | 36.6                                                  |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                   |                                                                                                                                                                           |                                                                                                                                                                                                                   |                                                                |                                                       | - crimare                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                       | 798                                                   |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                   |                                                                                                                                                                           | »                                                                                                                                                                                                                 |                                                                | **************************************                | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                       | 69.1                                                  |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ``                                                                                                                                |                                                                                                                                                                           | Sumn                                                                                                                                                                                                              | ien aus                                                        | den Serie                                             | en I bis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | IV:                                                   | 234.8                                                 |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                   |                                                                                                                                                                           |                                                                                                                                                                                                                   |                                                                |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       |                                                       |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                   |                                                                                                                                                                           |                                                                                                                                                                                                                   |                                                                |                                                       | $q^2 = \frac{1}{}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 234.8                                                 | = 1.63;                                               |
|                | +15"<br>+30"<br>+45"<br>+40"<br>+40"<br>+35"<br>+35"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | +15" 180° 0'<br>+30" 200° 40'<br>+30" 220° 20'<br>+45" 240° 0'<br>+40" 260° 40'<br>+40" 280° 20'<br>+35" 300° 0'<br>+35" 320° 40' | +15" 180° 0' +15"<br>+30" 200° 40' +20"<br>+30" 220° 20' +20"<br>+45" 240° 0' + 0"<br>+40" 260° 40' +15"<br>+40" 280° 20' +10"<br>+35" 300° 0' +10"<br>+35" 320° 40' + 0" | +15" 180° 0' +15" +25"<br>+30" 200° 40' +20" +25"<br>+30" 220° 20' +20" +10"<br>+45" 240° 0' + 0" -10"<br>+40" 260° 40' +15" + 0"<br>+40" 280° 20' +10" + 5"<br>+35" 300° 0' +10" +15"<br>+35" 320° 40' + 0" + 5" | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$          | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $ \begin{vmatrix} +15" & 180^{0} & 0' & +15" & +25" & +5" & -10" & +1."2 \\ +30" & 200^{0} & 40' & +20" & +25" & +5" & +5" & +1."2 \\ +30" & 220^{0} & 20' & +20" & +10" & +5" & +20" & +1."2 \\ +45" & 240^{0} & 0' & +0" & -10" & +45" & +55" & +11."2 \\ +40" & 260^{0} & 40' & +15" & +0" & +30" & +40" & +7."5 \\ +40" & 280^{0} & 20' & +10" & +5" & +25" & +35" & +6."2 \\ +35" & 300^{0} & 0' & +10" & +15" & +15" & +20" & +3."8 \\ +35" & 320^{0} & 40' & +0" & +5" & +30" & +30" & +7."5 \\ +30" & 340^{0} & 20' & +5" & +10" & +20" & +20" & +5."0 \\ \end{vmatrix} $ Aus der Serie II wurd aus den Serie Summen aus den Serie | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |

$$q^2 = \frac{1}{4} \frac{234.8}{36} = 1.63;$$

Abstand der Nonien = 
$$180^{\circ}-2\delta$$
 =  $179^{\circ}59'38.''8 \pm 0.''4$ 

Mittlerer Fehler der Ablesung eines Nonius =  $\sqrt{1.63} \cdot \sqrt{2} = \pm 3.''6$ 

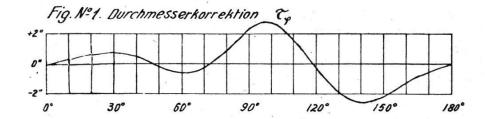
Lineare Exzentrizität =  $\frac{r_1 \cdot R}{\rho} = \frac{9.''9 \cdot 80}{\rho''}$  =  $0.0038 \text{ mm}$ 

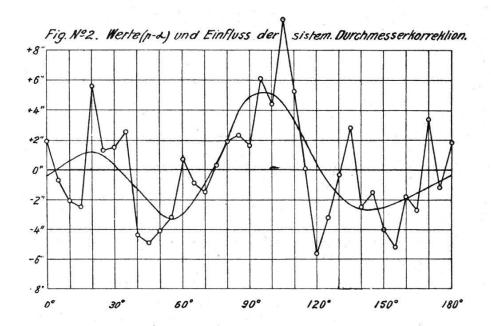
$$\frac{1}{2}M''^{2} = \frac{258.8}{56} = 4.62; \ \tau''^{2} = 4.62 - 2.14 = 2.48; \ \tau'' = 1.''57$$

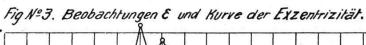
$$\frac{1}{2}M'''^{2} = \frac{243.2}{52} = 4.67; \ \tau'''^{2} = 4.67 - 2.14 = 2.53; \ \underline{\tau'''} = 1.''59$$

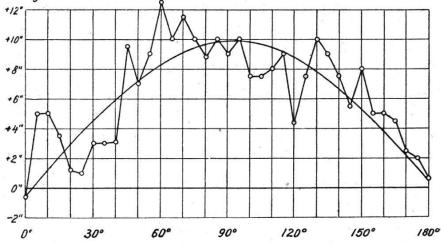
2. Halbe Differenz der Fehler diametraler Teilstriche.

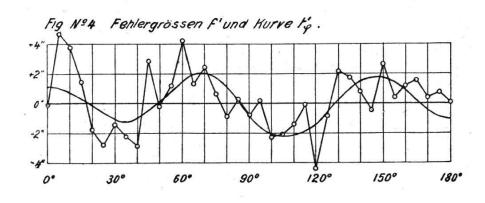
In Figur Nr. 3 sind die 36 Beobachtungsgrößen  $\varepsilon$  dargestellt und ist auch die danach berechnete Exzentrizitätskurve  $\varepsilon \varphi = 9.$ "9 sin ( $\varphi$ —30 03') eingezeichnet.

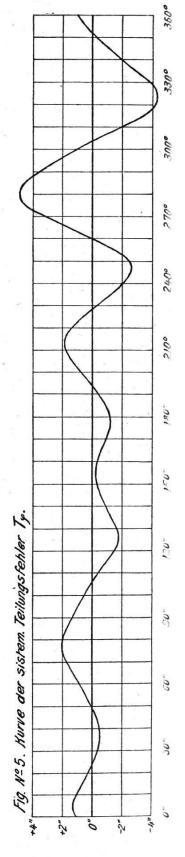

Die Fortführung der Rechnung ergab zunächst folgende Produktensummen:


$$\begin{array}{lll} [\mathrm{f'} \sin 3\,\varphi] = + \ 6.60; & [\mathrm{f'} \sin 5\,\varphi] = - \ 1.06 \\ [\mathrm{f'} \cos 3\,\varphi] = - \ 10.08; & [\mathrm{f'} \cos 5\,\varphi] = + \ 29.73 \end{array}$$


Aus diesen Werten berechnen sich nun folgende Größen:


## diametraler Teilstriche.


| -                                                            | $\begin{vmatrix} d_3 + d_4 \\ = 4 \varsigma_{II} \end{vmatrix}$                                                                                                                      | δn                                                       | ε                                                                                                    | 88                        | ε sin φ                                | ε cos φ                                       | φ-01                                     | $\begin{vmatrix} \epsilon \varphi = \\ r_I \sin(\varphi - \theta_I) \end{vmatrix}$ | $\begin{vmatrix} f \\ = (\epsilon - \epsilon \varphi) \end{vmatrix}$                                  | fI fI                                                          |  |  |
|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------|----------------------------------------|-----------------------------------------------|------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|--|--|
| +35"<br>+45"<br>+45"<br>+45"<br>+60"<br>+45"<br>+35"<br>+30" | +55<br>+40<br>+35<br>+40<br>+45<br>+50                                                                                                                                               | +12."5<br>+10."6<br>+10."0<br>+12."5<br>+11."2<br>+10."6 | $\begin{array}{r} -0.66 \\ +1.62 \\ +3.61 \\ +12.65 \\ +8.68 \\ +7.65 \\ +4.64 \\ +7.65 \end{array}$ | 1<br>10<br>156<br>77      | +2.01 $+10.82$ $+8.68$ $+7.37$ $+3.81$ | +1.12 $+2.36$ $+6.25$ $+1.42$ $-1.34$ $-2.20$ | 17° 37′<br>37° 17′<br>56° 57′<br>77° 37′ | +3."0<br>+6."0<br>+8."3<br>+9."7<br>+9 "8                                          | $ \begin{array}{r} -0."1 \\ -1."8 \\ -2."9 \\ +4."2 \\ -0."9 \\ -2."3 \\ -4."4 \\ +0."8 \end{array} $ | 0.01<br>3.24<br>8.41<br>17.64<br>0.81<br>5.29<br>19.36<br>0.64 |  |  |
| +30"                                                         | 10.00                                                                                                                                                                                | $+\frac{8.8}{+94.4}$                                     |                                                                                                      | $\frac{25}{400}$          | + 1.68                                 | _4.71                                         | 1570 17                                  |                                                                                    | +1."2                                                                                                 | 1.44                                                           |  |  |
|                                                              |                                                                                                                                                                                      | +96."5<br>+98."6<br>+92."0<br>+381."5                    |                                                                                                      | 477<br>529<br>491<br>1897 | <del>-</del> 47.07                     | -3.17<br>-4.70                                |                                          |                                                                                    |                                                                                                       | 45.62<br>34.94<br>11.08<br>148.48                              |  |  |
|                                                              | $ \frac{\delta = \frac{+381.5}{36} = +10.\text{"6}}{M = \sqrt{\frac{q^2}{n}} = \pm 0.\text{"2}}  $ $ tg 0_I = \frac{+9.44}{+177.12} = +0.0532;                                     $ |                                                          |                                                                                                      |                           |                                        |                                               |                                          |                                                                                    |                                                                                                       |                                                                |  |  |














$$tg \ 0_{3} = \frac{+\ 10.08}{+\ 6.60} = +\ 1.527; \quad tg \ 0_{5} = \frac{-29.73}{-\ 1.06} = +\ 28.0$$

$$\underline{\frac{0_{3} = 56^{\circ}\ 47'}{18}} = \frac{0_{5} = 267^{\circ}\ 57'}{18}$$

$$\underline{\underline{r_{3}}} = \frac{1}{18} \frac{+\ 6.60}{\cos 0_{3}} = \frac{1}{18} \frac{+\ 10.08}{\sin 0_{3}} = \underline{0.''67}$$

$$\underline{\underline{r_{5}}} = \frac{1}{18} \frac{-1.06}{\cos 0_{5}} - \frac{1}{18} \frac{-29.73}{\sin 0_{5}} = \underline{1.''65}$$

woraus wir folgende Interpolationsgleichung erhalten:

 $f f = \epsilon \epsilon$ 

$$t'\varphi = 0.$$
 "67  $\sin (3\varphi - 56^{\circ} 47') + 1.$  "65  $\sin (5\varphi - 267^{\circ} 57')$ .

Die Fehlergrößen f' sowie die Kurve für t' $\varphi$  sind in Fig. Nr.4 dargestellt. (Auch hier ist zu bemerken, daß bei Berechnung der Größen r<sub>7</sub>, r<sub>9</sub>, 0<sub>7</sub> und 0<sub>9</sub> eine passendere Kurve erhalten worden wäre. Diese Verbesserungen sollten aber, wie früher bemerkt, bei guten Kreisen unbedeutend sein.) Ferner haben wir:

1897;

$$f'' f'' = 148.48;$$

$$f''' f''' = 148.48 - 18 \cdot 0.67^{2} = 140.40;$$

$$f'''' f'''' = 140.40 - 18 \cdot 1.65^{2} = 91.40;$$

$$E^{2} = \frac{[\epsilon \epsilon]}{n} - \frac{1897}{36} = 52.70$$

$$E'^{2} = \frac{[f' f']}{n-2} = \frac{148.48}{34} = 4.37$$

$$E''^{2} = \frac{[f'' f'']}{n-4} = \frac{140.40}{32} = 4.39$$

$$E'''^{2} = \frac{[f''' f''']}{n-6} = \frac{91.40}{30} = 3.47$$

$$t^{2} = E^{2} - q^{2} = 52.70 - 1.63 = 51.07;$$

$$t^{2} = E'^{2} - q^{2} = 4.37 - 1.63 = 2.74;$$

$$t'' = \pm 1.''65$$

$$t''^{2} = E''^{2} - q^{2} = 4.39 - 1.63 = 2.76;$$

$$t''' = \pm 1.''66$$

$$t'''^{2} = E'''^{2} - q^{2} = 3.47 - 1.63 = 1.84;$$

$$t''' = \pm 1.''66$$

### 3. Totale Teilungsfehler einer Kreisstelle.

Der regelmäßige Teilungsfehler T $\varphi$  einer Kreisstelle erhalten wir durch Addieren der Gleichungen für  $T\varphi$  und  $t'\varphi$ . Wir haben daher:

$$\frac{T\varphi = 1."13 \sin (2\varphi - 51^{\circ} 26') + 0."67 \sin (3\varphi - 56^{\circ} 47')}{+ 1."44 \sin (4\varphi - 310^{\circ} 04') + 1."65 \sin (5\varphi - 267^{\circ} 57')}{+ 0."66 \sin (6\varphi - 152^{\circ} 23')}$$

Die numerische Auswertung dieser Gleichung liefert unsere Figur Nr. 5.

Ebenso lassen sich nach den Gleichungen (47) die mittlern Teilungsfehler berechnen. Wir erhalten:

Das T sagt uns, daß beim Arbeiten mit nur einem Nonius (Polygonwinkelmessung) jeder einfach gemessene Winkel einen mittlern Exzentrizitäts- und Teilungsfehler in sich hat von  $7.5\sqrt{2} = +10.5$  (= +32.4 neuer Teilung).

### B. Theodolit Nr. 8335 von Bamberg, Berlin.

Der Kreis von 36 cm Durchmesser ist in  $^{1}/_{12^{0}}$  geteilt und wird an zwei Schraubenmikroskopen abgelesen, wobei 0."2 geschätzt werden. Die Prüfung nach dem achtserigen Programm ergab folgende mittlere Teilungsfehler:  $\tau = 0$ ."54,  $\tau''' = 0$ ."37, t' = 0."59, t''' = 0."42,  $T^{I} = 0$ ."80,  $T^{VI} = 0$ ."56.

Buenos Aires, Juni 1915.

Alfred Aregger.

### Cours d'introduction de la S. V. G. O.

D'entente avec la rédaction du journal, le comité de la Société vaudoise des géomètres officiels a décidé la publication des conférences données à l'occasion du cours d'introduction qui eut lieu à Lausanne les 18 et 19 mars 1921.

Ces publications se feront par l'organe du journal, au fur et à mesure de la place disponible. Nous commencerons dans le numéro de ce jour par la conférence de M. Baltensperger.