**Zeitschrift:** Schweizerische Zeitschrift für Vermessungswesen und Kulturtechnik =

Revue technique suisse des mensurations et améliorations foncières

**Herausgeber:** Schweizerischer Geometerverein = Association suisse des géomètres

**Band:** 19 (1921)

**Heft:** 10

**Artikel:** Graphische Ausgleichung beim Rückwärts-Einschneiden [Schluss]

**Autor:** Zwicky, C.

**DOI:** https://doi.org/10.5169/seals-186819

#### Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

#### **Conditions d'utilisation**

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

#### Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

**Download PDF:** 12.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

# Graphische Ausgleichung beim Rückwärts-Einschneiden.

Von C. Zwicky, Professor an der Eidg. Technischen Hochschule, Zürich. (Schluß.)

D.

### Rechnungsbeispiel.

#### 1. Die Daten.

Dieselben sind unsern diesjährigen Vermessungsübungen auf der Wollishofer Allmend mit dem zweiten Kurse der Forstschule entnommen. Der Punkt P liegt auf dem rechten Ufer der Sihl; die Winkel sind mit einem fünfzölligen Nonientheodolit von Kern durch zentrische Repetitionsmessung bestimmt worden.

| Zielpunkte                                                  |                                                                 | Koord                                         | linaten                      | Winkel                     |                                            |  |
|-------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------|------------------------------|----------------------------|--------------------------------------------|--|
| No.                                                         | Name                                                            | y                                             | x                            | No.                        | α· T                                       |  |
| A <sub>1</sub> A <sub>2</sub> A <sub>3</sub> A <sub>4</sub> | Kirche Wiedikon<br>Kirche Enge<br>Villa Zollinger<br>Signal Uto | +81442.86 $+82405.39$ $+82485.44$ $+79590.09$ | + 46 326. 00<br>+ 44 876. 86 | $a_{12}$ $a_{23}$ $a_{34}$ | 34° 57′ 44″<br>71° 50′ 52″<br>168° 01′ 36″ |  |

## 2. Berechnung des Näherungspunktes $P_{123}$ .

Obschon diese grundlegende Berechnung als allgemein bekannt vorausgesetzt werden darf, geben wir dieselbe in der nachfolgenden Tabelle doch *in extenso* wieder, weil dieser eine Anordnung zugrunde liegt, die sich nach unsern langjährigen Erfahrungen bei der Benutzung durch die Studierenden als zweckmäßig bewährt hat.

Derselben mögen noch folgende Bemerkungen beigefügt werden:

Tabelle «Rückwärts-Einschneiden» siehe beistehend.

a) Bei den Basislinien a<sub>12</sub> und a<sub>32</sub>, sowie bei den gemessenen Winkeln α<sub>12</sub> und α<sub>23</sub> ist der gemeinsame Index 2 weggelassen worden. Die Azimuthe sind mit dem Buchstaben ν oder σ bezeichnet, je nachdem sie aus festen Koordinaten berechnet oder durch Beifügung von Winkeln gebildet sind.

- b) Die Azimut-Kontrollen mittelst der Größen S und D sind durch Prüfung der Koordinatendifferenzen vervollständigt. Bei der Bestimmung der Azimute v sind diese mit soviel Stellen berücksichtigt, als man mittelst Rechenschieberinterpolation erhalten kann; nur damit kann eine gute Uebereinstimmung bei der doppelten Berechnung der Basislogarithmen erreicht werden; für letztere wird dann für die weitere Berechnung diejenige aus der größern Koordinatendifferenz zugrunde gelegt.
- c) Die logarithmischen Zahlen sind durch Verwendung eines doppelten Kolonnenstriches hervorgehoben. Von der Beifügung des Indexes n für die Logarithmen zu negativen Zahlen ist absichtlich Umgang genommen worden, weil der Quadrant für ν und die Vorzeichen für die Koordinatenunterschiede y—y<sub>1</sub> ... viel einfacher aus den Vorzeichen der Zahlen Δy und Δx, beziehungsweise aus der Größe der Azimute σ, beurteilt werden kann.
- d) Obschon die gemessenen Winkel nur auf ganze Sekunden angegeben sind, so sind die daraus abgeleiteten weitern Dreieckswinkel und Azimute σ doch mit Zehntelssekunden berücksichtigt, weil dies einerseits bei der Interpolation mit dem Schieber keine Mehrarbeit bedingt und weil damit namentlich eine gute Uebereinstimmung bei der doppelten Bestimmung der Koordinaten von P erzielt werden kann.

## 3. Der überschüssige Zielpunkt $A_4$ .

Aus den soeben berechneten Koordinaten des Näherungspunktes  $P_{123}$  und denjenigen des Festpunktes  $A_4$  ergibt sich für das Azimut  $\lambda$  und die Länge l des Rechnungsstrahles  $A_4$   $P_{123}$ :

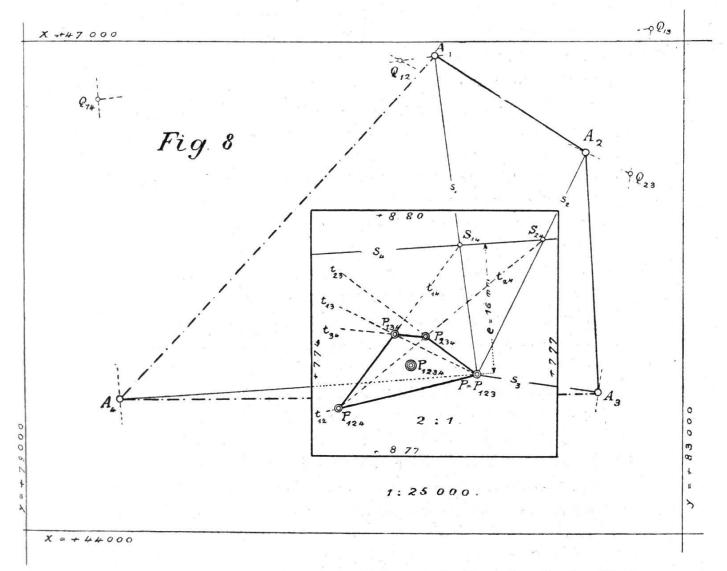
$$\lambda = 85^{\circ} 53' 37'',53$$
 und  $l = 2163.22$  m.

Anderseits erhält man für das Azimut 64 des Messungsstrahles A S:

$$\sigma_4 = \sigma_3 + \alpha_{34} = 277^{\circ} 52' 00'', 0 + 168^{\circ} 01' 36'' = 85^{\circ} 53' 36'', 0.$$

Hieraus folgt dann für die beiden Ausgleichungselemente  $\varepsilon = \sigma_4 - \lambda = -1$ ",5 und  $\varepsilon = l \cdot \sin \varepsilon = 0,016$  m.

Da hier  $\epsilon$  negativ ausfällt, muß der Rechnungsstrahl  $A_4$   $P_{123}$  um  $A_4$  nach *rückwärts* gedreht werden, um in die Richtung des Messungsstrahles  $A_4$  S zu gelangen. Der zum erstern senkrechte Abstand e ist somit von  $P_{123}$  aus nach oben abzutragen,



worauf man A<sub>4</sub> S als die Parallele zu A<sub>4</sub> P<sub>123</sub> durch den Endpunkt der Strecke e erhält.

### 4. Konstruktion der Näherungspunkte (P) (Figur 8).

Es wird zunächst in kleinem Maßstabe das Polygon der Festpunkte A<sub>i</sub> gezeichnet, und zwar am einfachsten als Pauskopie aus dem ohnehin anzufertigenden trigonometrischen Netzplan. Nach Eintragung des Punktes P werden die Strahlen A<sub>i</sub>P und deren Normalen n<sub>i</sub> durch A<sub>i</sub> gezogen; die letztern liefern als Schnittpunkte die Punkte Q<sub>ik</sub>. Der Figur 8 liegt diesbezüglich der Maßstab 1: 25 000 zugrunde.

Nun wird in der gleichen Figur der Punkt P als Näherungspunkt  $P_{123}$  betrachtet und von ihm aus in sehr großem Maßstabe (2:1) der Abstand e=16 mm  $\perp$   $A_4$  P aufgetragen, womit man dann  $s_4$  als Parallele zu  $A_4$  P erhält. Die Strahlen  $s_1$ ,  $s_2$  und  $s_3$  durch P liefern auf  $s_4$  die Schnittpunkte  $S_{14}$ ,  $S_{24}$  und  $S_{34}$ .

Von den zu den Durchmessern  $d_{ik} = PQ_{ik}$  senkrechten Tangenten t.. werden  $t_{12}$ ,  $t_{13}$  und  $t_{23}$  durch P, dagegen  $t_{14}$ ,  $t_{24}$  und  $t_{34}$  durch die entsprechenden Punkte  $S_{ik}$  auf  $s_4$  gezogen. Als Schnittpunkte dieser Linien t erhält man dann die vier Näherungspunkte (P). In Figur 8 fällt der Punkt  $S_{34}$  außerhalb des Blattes; die Lage von  $t_{34}$  ist daher nach dem in der Anmerkung zu A,1 beschriebenen Verfahren zu bestimmen.

Die Zusammenfassung der den Figuren 5 und 7 entsprechenden Konstruktionen in der Figur 8 — der einzigen praktisch anzufertigenden Zeichnung! — hat den Vorteil, daß damit die Parallelverschiebung der Linien s und t fortfällt, womit eine erhebliche Vereinfachung der konstruktiven Arbeit erzielt wird.

Aus dem Viereck der Näherungspunkte (P), das eine Vergleichung mit der Fehlerellipse nahelegt, ergibt sich dann schließlich als Schwerpunkt seiner Ecken der ausgeglichene Punkt P<sub>1234</sub>.

In Anbetracht des im vorliegenden Beispiel besonders klein ausgefallenen Abstandes e mußten die aus der Figur 8 abgelesenen Näherungskoordinaten (y) und (x) mit drei Dezimalstellen berücksichtigt werden, obschon die Koordinaten von P<sub>123</sub> nur mit zwei Dezimalen berechnet worden sind. Die mm-Ungenauigkeiten der letztern machen sich dann naturgemäß in vollem Betrage auch bei den Koordinaten des ausgeglichenen Punktes geltend.

| (P)              | Ordinaten    |                  | Abs       | (P) P =                                                         |                                                                        |           |                            |
|------------------|--------------|------------------|-----------|-----------------------------------------------------------------|------------------------------------------------------------------------|-----------|----------------------------|
|                  | (y)<br>m     | $\eta = y - (y)$ | ηη<br>mm² | (x)<br>m                                                        | $\begin{array}{c c} \xi = \mathbf{x} - (\mathbf{x}) \\ mm \end{array}$ | ξξ<br>mm² | $\sqrt{\eta^2 + \xi^2}$ mm |
| P <sub>123</sub> | +81 747.760  | -8               | 64        | <del> </del> <del> </del> <del> </del> <del> </del> 44 978. 780 | +1                                                                     | 1         | 8                          |
| P <sub>124</sub> | . 743        | +9               | 81        | . 775                                                           | +6                                                                     | 36        | 11                         |
| P <sub>134</sub> | . 750        | +2               | 4         | . 785                                                           | -4                                                                     | 16        | 4                          |
| P <sub>234</sub> | . 754        | _2               | 4         | . 785                                                           | -4                                                                     | 16        | 4                          |
| $\Sigma$         | 3.007        | +1               | 153       | 3. 125                                                          | -1                                                                     | 69        |                            |
| P                | +81 747. 752 |                  |           | +44 978. 781                                                    |                                                                        |           |                            |

Hieraus ergeben sich als mittlere Koordinatenfehler m, m und M, M für die Punkte (P) und den Punkt P

$$\begin{split} m_y &= \sqrt{\frac{[\eta\,\eta]}{n-1}} = \sqrt{\frac{153}{4-1}} = \pm 7,1 \text{ mm} \\ m_x &= \sqrt{\frac{[\xi\,\xi]}{n-1}} = \sqrt{\frac{69}{4-1}} = \pm 4,8 \text{ mm} \\ M_y &= \frac{m_y}{\sqrt{n}} = \frac{7,1}{\sqrt{4}} = \pm 3,55 \text{ mm} \\ M_x &= \frac{m_x}{\sqrt{n}} = \frac{4,8}{\sqrt{4}} = \pm 2,40 \text{ mm} \end{split}$$

Damit erhält man als Schlußergebnis der Ausgleichung:

$$P \left\{ \begin{array}{l} y = +81\ 747,752 \pm 0,004\ m \ x = +44\ 978,781 \pm 0,002\ m. \end{array} \right.$$

E.

### Schlußbemerkungen.

Aus den vorstehenden Ausführungen dürfte der Leser zweifellos die Ueberzeugung gewonnen haben, daß das vorgeführte graphische Ausgleichungsverfahren gegenüber der analytischen Ausgleichung nach der Methode der kleinsten Quadrate folgende Vorteile besitzt:

- 1. Dasselbe erfordert viel weniger Arbeit;
- 2. Die Konstruktionen sind sehr einfach und übersichtlich, so daß dieselben nach einmaliger Ausführung nicht leicht wieder vergessen werden; bei der analytischen Methode ist dies aber entschieden viel weniger der Fall.
- 3. Irrtümer bei der Konstruktion sind sehr wenig wahrscheinlich, und das Zusammentreffen je dreier Tangenten im gleichen Punkte liefert ein maßgebendes Kriterium für die exakte Ausführung der Zeichnung.
- 4. Die Beträge der Abstände e und insbesondere die Unterschiede bei den Koordinaten der einzelnen Näherungspunkte (P) gestatten, die Genauigkeitsverhältnisse in sehr anschaulicher Weise zu beurteilen. Durch Vergleichung der einzelnen Näherungskoordinaten mit den Koordinaten des ausgeglichenen Punktes lassen sich übrigens auch die mittleren Fehler der letztern sehr einfach bestimmen.
- 5. Aus obigem ergibt sich, daß die Anwendung dieses graphi-

schen Verfahrens insbesondere denjenigen Technikern zu empfehlen sein wird, die nicht ständig mit Vermessungs- arbeiten zu tun haben, also speziell den Bau- und Kulturingenieuren.

Den erwähnten Vorzügen stehen folgende Nachteile gegenüber:

- 1. Mit zunehmender Anzahl der Anschlußpunkte A nimmt der Zeitaufwand für die Konstruktion sehr rasch zu, und diese büßt zudem an Uebersichtlichkeit erheblich ein falls sämtliche Kombinationen jener Punkte in Berücksichtigung gezogen werden. Läßt man aber einzelne dieser Kombinationen weg, so haftet der Bestimmung des Punktes P eine gewisse Willkürlichkeit an.
- 2. In rein theoretischer Hinsicht ist zu beachten, daß die nach dem graphischen und dem analytischen Verfahren ausgeglichenen Punkte nicht ganz identisch sind. Die daherigen Abweichungen werden sich indessen praktisch nur bei Triangulationen höherer Ordnung geltend machen; bei diesen kommen aber Punktbestimmungen durch reines Rückwärtseinschneiden wohl kaum vor.
- 3. Bei der Ausgleichung nach der Methode der kleinsten Quadrate wäre es theoretisch zulässig, die Koordinaten des Näherungspunktes mit bloß 5-stelligen Logarithmen zu berechnen. Bei der graphischen Ausgleichung ist dies dagegen durchaus unzulässig, weil die Näherungskoordinaten nicht nur direkt zur Mittelbildung der Koordinaten von P verwertet werden, sondern weil die Ungenauigkeiten in der Bestimmung der erstern sich auch bei den graphisch bestimmten Koordinaten der weitern Näherungspunkte direkt geltend machen würden.

In Würdigung obiger Verhältnisse ergibt sich, daß die hier beschriebene graphische Ausgleichungsmethode vorzugsweise für die Bestimmung von Punkten vierter Ordnung in Betracht kommen wird.

Kann dabei an eine sorgfältig durchgeführte Triangulation dritter Ordnung angeschlossen werden, dann wird man sich mit vier Anschlußpunkten begnügen können, die dann wohl immer so ausgewählt werden können, daß sich für die vier Strahlen s = PA günstige Schnitte ergeben.

Unter diesen Verhältnissen werden bei der Anwendung des obigen graphischen Ausgleichungsverfahrens deren Vorteile gegenüber der analytischen Methode ihre Nachteile entschieden namhaft überwiegen. Diesem Umstande kommt gegenwärtig eine besondere Bedeutung zu, weil die sehr gespannten finanziellen Verhältnisse beim Bunde und in den Kantonen gebieterisch fordern, daß die Kosten der Vermessungen soviel wie irgend möglich herabgemindert werden.

Zürich, im August 1921.

Professor C. Zwicky.

### Prüfung von Kreisteilungen.

Von Geometer Alfred Aregger im Militärgeographischen Institut der Argentinischen Republik.

(Fortsetzung statt Schluß.)

Es dürfte hier auch noch am Platze sein, zu erörtern, was die Teilungsfehler für eine Wirkung auf den mittlern Fehler einer gemessenen Richtung haben. Nach den Untersuchungen über den Durchmesserteilungsfehler ergibt sich, daß eine in einer Kreislage beobachtete Richtung den mittlern Durchmesserteilungsfehler  $\tau$  in sich hat. Drehen wir nun den Kreis um 90°, wird also  $\varphi_2 = \varphi_1 + 90°$ , so ist aus der Gleichung (10) leicht ersichtlich, daß dann das erste Glied (und auch das dritte) der Reihe das entgegengesetzte Vorzeichen annimmt und somit im Mittel der Beobachtungen eliminiert wird und der zu erwartende mittlere Fehler in einer Richtung (wenigstens) auf  $\tau'$  und im Mittel beider Messungen noch auf einen geringeren Betrag gesunken ist. Bei vier gleichmäßig über den Halbkreis verteilten Kreislagen bleibt in einer einmalig gemessenen Richtung im Mittel von vielen Fällen nur noch der Fehler  $\tau'''$  und im Mittel-

wert der vier Messungen  $\frac{\tau'''}{\sqrt{4}}$  übrig. Nachher ist allgemein bei n Kreislagen der Betrag des übrig bleibenden Teilungsfehlers  $\frac{\tau'''}{\sqrt{n}}$  wobei wie gesagt n > 3 sein muß. Für drei Kreislagen kommt annähernd der Fehler  $\frac{\tau''}{\sqrt{3}}$  in Betracht. Und weil praktisch  $\tau'''=t'''$  ist, gilt allgemein die Formel: