Zeitschrift: Schweizerische Zeitschrift für Vermessungswesen und Kulturtechnik =

Revue technique suisse des mensurations et améliorations foncières

Herausgeber: Schweizerischer Geometerverein = Association suisse des géomètres

Band: 19 (1921)

Heft: 9

Artikel: Graphische Ausgleichung beim Rückwärts-Einschneiden

Autor: Zwicky, C.

DOI: https://doi.org/10.5169/seals-186816

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 11.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

gemacht, so müssen wir diese Werte mit $\sqrt{2}$ multiplizieren, um den entsprechenden wahrscheinlichen Betrag T^{I} , T^{II} , T^{IV} , T^{VI} oder T^{I} , T^{III} , T^{V} genähert zu erhalten.

(Fortsetzung folgt.)

Graphische Ausgleichung beim Rückwärts-Einschneiden.

Von C. Zwicky, Professor an der Eidg. Technischen Hochschule, Zürich.

Einleitung.

Der trigonometrischen Punktbestimmung durch reines Rückwärtseinschneiden kommt namentlich bei Vermessungen kleineren Umfanges eine große Bedeutung zu, also insbesondere bei der Einzelvermessung eines größern Landgutes oder einer öffentlichen Waldung, sowie bei den Vermessungsübungen mit Studierenden

In allen diesen Fällen handelt es sich bei der trigonometrischen Grundlage nur um die Bestimmung von ganz wenigen Neupunkten; diese Bestimmung erfolgt dann am zweckmäßigsten nach der Methode des Rückwärtseinschneidens, weil damit die Winkelmessungen auf solche bei den Neupunkten allein beschränkt werden können.

Um einerseits gegen grobe Fehler vollständig gesichert zu sein, und um anderseits einen Einblick in die Genauigkeit der Messungen und der daraus abgeleiteten Koordinaten zu gewinnen, wird man indessen doch auch unter den obigen einfachen Verhältnissen einzelne überschüssige Messungen ausführen, so daß jeweils die Aufgabe einer Punktbestimmung mit Ausgleichung vorliegt.

Diese Ausgleichung kann dann entweder analytisch nach der Methode der kleinsten Quadrate, oder auf konstruktivem Wege durchgeführt werden. — Im nachfolgenden soll nun hiefür ein neues graphisches Verfahren mitgeteilt werden, das in vielen Fällen der analytischen Methode vorzuziehen sein dürfte.

A.

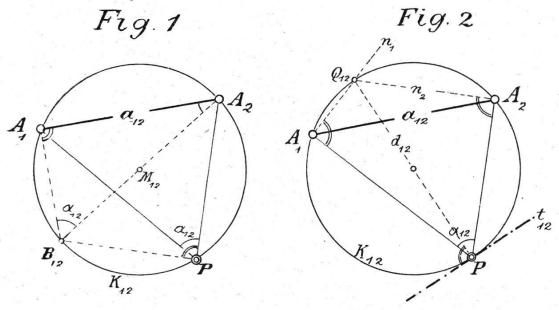
Geometrische Grundlagen.

1. Für zwei Zielpunkte. (Figuren 1 und 2.)

Wird auf dem zu bestimmenden Neupunkt P der Winkel α_{12} zwischen den beiden Festpunkten A_1 und A_2 gemessen, so ist dadurch ein *Ort* für die Lage von P bestimmt: es liegt P auf der

Peripherie des Kreises K_{12} , der durch die Strecke A_1 $A_2 = a_{12}$ als Sehne und den Winkel α_{12} als zugehöriger Peripheriewinkel definiert ist.

Zieht man nun in Figur 1 zu K₁₂ den Durchmesser A₂ B₁₂,



so sind im Kreisviereck A_1 A_2 P B_{12} die Winkel bei A_1 und bei B_{12} je 90 Grad, und es ist ferner:

$$\not \supseteq$$
 A₁ P A₂ = α_{12} = $\not \supseteq$ A₁ B₁₂ A₂, folglich $\not \supseteq$ A₁ A₂ B₁₂ = 90^{0} — α_{12} .

Es kann somit das Dreieck A_1 A_2 B_{12} aus der Basis a_{12} und ihren anliegenden Winkeln $A_1 = 90^{\circ}$, $A_2 = 90^{\circ} - \alpha_{12}$ konstruiert werden. Mit dem Durchmesser A_2 B_{12} ist dann auch der Kreis K_{12} bestimmt.

In Figur 2 ist der durch P gehende Durchmesser P $Q_{12} = d_{12}$ gezeichnet; damit ergibt sich \nearrow P A_1 $Q_{12} = 90^0 = \nearrow$ P A_2 Q_{12} . Man findet daher Q_{12} als Schnittpunkt der beiden Normalen:

$$n_1 \perp P A_1$$
 durch A_1 und $n_2 \perp P A_2$ durch A_2 .

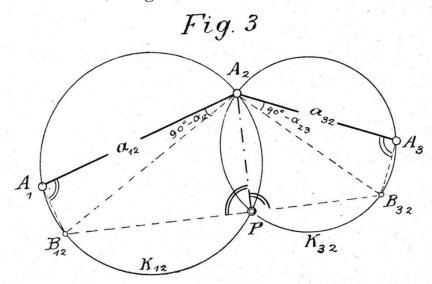
Zieht man nun noch durch P die Gerade $t_{12} \perp P Q_{12}$, so stellt t_{12} die Tangente des Kreises K_{12} im Punkte P dar.

2. Für drei Zielpunkte. (Figuren 3 und 4.)

Ist auf P außer dem Winkel α_{12} auch noch der Winkel A_2 P $A_3 = \alpha_{23}$ gemessen worden, so ergibt sich aus A_2 $A_3 = a_{23}$ und α_{23} ein Kreis K_{23} als zweiter Ort für P; ferner liefern A_1 A_3 = a_{13} und $\alpha_{13} = \alpha_{12} + \alpha_{23}$ einen dritten Kreis K_{13} durch P.

Unter vorläufiger Außerachtlassung dieses dritten Ortes K_{13} erkennt man: da die Kreise K_{12} und K_{23} beide durch A_2 gehen, so muß auch ihr zweiter Schnittpunkt P reell sein, so daß durch

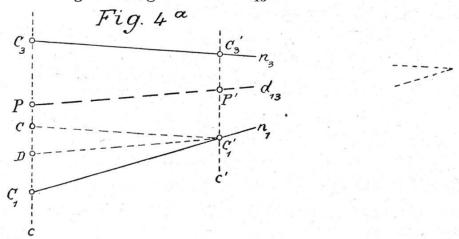
die Messung der beiden Winkel α_{12} und α_{23} der Punkt P eindeutig bestimmt ist. Und da der erste Schnittpunkt A_2 zum voraus gegeben ist, so muß für P eine lineare Konstruktion, d. h. eine solche ohne Zirkel, möglich sein.



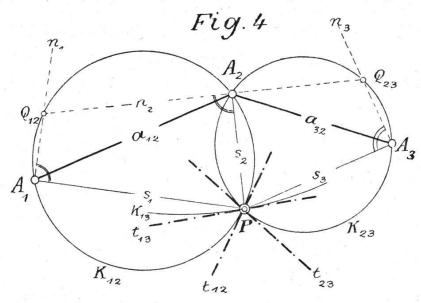
Diese letztere ergibt sich denn auch in einfacher Weise wie folgt: Wir bestimmen in Figur 3 gemäß A, 1 die Endpunkte B_{12} und B_{32} der durch A_2 gehenden Durchmesser in K_{12} und K_{32} = K_{23} ; dann ist $\not \subset B_{12}$ P A_2 = $\not \subset B_{32}$ P A_2 = 90°, folglich $\not \subset B_{12}$ P B_{32} = 180°. Man findet somit P als Fußpunkt der Normalen durch A_2 zur Geraden B_{12} B_{32} .

In Figur 4 erhält man nun ferner mit dem dritten Zielpunkt A_3 durch diesen die Normale n_3 zu P A_3 , welche als Schnittpunkte mit den frühern Normalen n_1 und n_2 die Endpunkte Q_{13} und Q_{23} der Durchmesser d_{13} und d_{23} durch P liefert. Die durch P gezogenen Normalen zu d_{12} , d_{13} und d_{23} stellen dann schließlich die Kreistangenten t_{12} , t_{13} und t_{23} in P dar.

Anmerkung. In Figur 4 fällt Q₁₃ außerhalb des Zeichnungs-



blattes; die Tangente t_{13} ist dann nach dem in Fig. 4a dargestellten Verfahren bestimmt worden. Durch P ist eine beliebige Gerade c gezogen, welche n_1 und n_3 in C_1 und C_3 schneidet; auf der Geraden c' // c mit den Schnittpunkten C'_1 und C'_3 ist



der Punkt P' aus C' P' = $C P \cdot \frac{c'_1 c'_3}{c_1 c_3}$ bestimmt worden. Alsdann liegt P' auf d_{13} , so daß $t_{13} \perp P$ P' ist. — Wäre statt des Punktes P auf d_{13} die *Richtung* von d_{13} gegeben, so ziehe man C'_1 C // n_3 und C'_1 D // d_{13} ; dann ist $C_1 P = C_1 D \cdot \frac{c_1 c_3}{c_1 c}$. Von letzterer Hilfskonstruktion wird später Gebrauch gemacht werden.

3. Für mehr als drei Zielpunkte. (Figur 5.)

Werden für die Bestimmung des Neupunktes P allgemein z > 3 Zielpunkte zugrunde gelegt, so lassen sich diese letzteren $\binom{z}{3}$ mal zu dreien kombinieren, und jede dieser Kombinationen führt zu einem besondern Näherungspunkt (P) für P. Jedem Näherungspunkt (P) = P_{hik} entsprechen drei Normale n_h , n_i und n_k , sowie drei Kreistangenten t_{hi} , t_{hk} und t_{ik} durch P_{hik} .

In einem trigonometrischen Netzplan für den Neupunkt P und die Festpunkte $A_1, A_2, \ldots A_z$, der etwa im Maßstabe 1:20~000 gezeichnet wird, fallen indessen die sämtlichen Näherungspunkte (P) mit dem wahren Punkte P vollständig zusammen. Damit erhält man in diesem Plan nur z Normale n_i , welche $\binom{z}{2}$ Schnittpunkte Q_{ik} und ebenso viele Tangenten t_{ik} ergeben, wobei nun die letzteren alle durch den gleichen Punkt P gehen.

Im speziellen ergibt sich somit für:

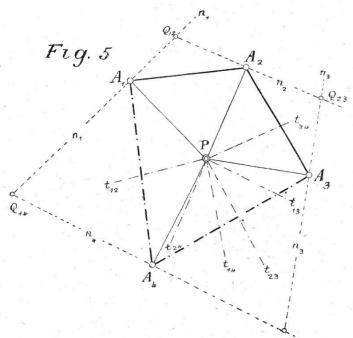
Anzahl der Zielpunkte A_i : z = 3 4 5 6 7 8

",, Tangenten t_{ik} : $\binom{z}{2}$ = 3 6 10 15 21 28

"," Punkte P_{hik} : $\binom{z}{3} = 1$ 4 10 20 35 56.

Mit wachsender Zahl z nimmt somit namentlich die Anzahl der Näherungspunkte (P) sehr rasch zu.

Da nun bei dem hier in Frage stehenden Ausgleichungsverfahren stets sämtliche Näherungspunkte berücksichtigt werden müssen, so erkennt man, daß sich dasselbe nur dann als



zweckmäßig erweisen wird, wenn die Anzahl z der Zielpunkte höchstens 5 beträgt; diese Voraussetzung wird aber gerade bei den hier vorzugsweise ins Auge gefaßten kleinern Vermessungen in der Regel erfüllt sein.

Zur bessern Uebersicht sind in der Figur 5, sowie in dem später behandelten Rechnungsbeispiel sogar nur vier Zielpunkte in Berücksichtigung gezogen.

B.

Rechnungsgrundlagen.

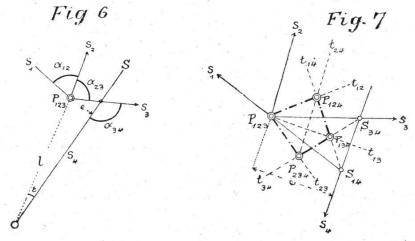
1. Koordinatenberechnung aus drei Zielpunkten.

Hiefür benutzen wir die Festpunkte A₁, A₂ und A₃, für deren Auswahl und Numerierung folgende Grundsätze maßgebend sind:

- a) die Strahlen nach P sollen günstige Schnitte ergeben;
- b) die Winkel a_{12} und a_{28} sollen beide kleiner als 180° sein;
- c) der Punkt A₁ soll links und A₃ soll rechts von P A₂ liegen.

Bei Berücksichtigung dieser Gesichtspunkte geben wir bei der Berechnung der Koordinaten von P der Methode mittelst eines Hilfswinkels µ*) den Vorzug vor derjenigen mit dem Collinschen Kreise. Es sind dann nur für P allein die Koordinaten zu berechnen, und bei etwas systematischerem Rechnungsgange ergeben sich stufenweise durchgreifende Rechenproben.

Den aus A_1 , A_2 und A_3 berechneten Näherungspunkt (P) bezeichnen wir allgemein mit P_{123} , und speziell mit $P^{(4)}$, falls



nur ein einziger überschüssiger Zielpunkt A_4 in Betracht gezogen wird, der dann in $P^{(4)}$ allein nicht zur Geltung gelangt.

- 2. Berücksichtigung des Zielpunktes A₄ (Figur 6).
- a) Dieser überschüssige Punkt A_4 bestimmt nach Figur 6 mit dem Näherungspunkt $P^{(4)}$ die Gerade A_4 $P^{(4)}$, deren Azimut λ und Länge 1 aus den Koordinaten von A_4 und $P^{(4)}$ zu berechnen ist.
- b) Durch A_4 ziehen wir ferner den Strahl A_4 $S=s_4$, der dadurch definiert ist, daß er mit dem Strahl A_3 $P^{(4)}$ den auf P gemessenen Winkel α_{34} einschließt. Mit dem, der Berechnung unter B,1 entnommenen Azimut σ_3 von A_3 $P^{(4)}$ ergibt sich dann als Azimut σ_4 von A_4 S:

$$\sigma_4 = \sigma_3 + \alpha_{34}.$$

c) Aus diesen beiden Azimuten λ und σ_4 ergibt sich nun für den Parallax-Winkel ϵ bei A_4 :

$$P^{(4)} A_4 S = \epsilon = \sigma_4 - \lambda_4,$$

woraus für den senkrechten Abstand e des Punktes $P^{(4)}$ von der Geraden A_4 S folgt:

$$e = 1 \cdot \sin \epsilon = 1 \cdot \frac{\epsilon''}{\rho''}$$
.

^{*} Siehe Jordan, II. Band.

Die Werte von a und e geben bereits einen charakteristischen Einblick in die Genauigkeit für die Bestimmung des Punktes P; viel wichtiger ist indessen die Verwertung von e für die Ermittlung der übrigen Näherungspunkte (P) auf konstruktivem Wege.

3. Berücksichtigung eines weitern Zielpunktes A₅.

Bei zwei überschüssigen Punkten A_4 und A_5 erhält man mit dem Näherungspunkt P_{123} die beiden Rechnungsstrecken l_4 und l_5 , sowie die beiden Messungsstrahlen s_4 und s_5 , aus denen sich die Ausgleichungselemente s_4 , s_5 und s_4 , s_5 ergeben.

C.

Graphische Ausgleichung.

1. Die Strahlen nach den Zielpunkten.

Unter Zugrundelegung eines sehr großen Maßstabes — etwa 2:1 bis 1:5, je nach der Größe des Abstandes e — konstruieren wir in Figur 7 den Punkt $P^{(4)}$ aus seinen unter B,1 berechneten Koordinaten. In diesem Punkte $P^{(4)}$ schneiden sich die drei Strahlen $A_1 P^{(4)} = s_1$, $A_2 P^{(4)} = s_2$ und $A_3 P^{(4)} = s_3$, und zwar so, daß sie miteinander die gemessenen Winkel α_{12} und α_{23} einschließen. Die Richtungen dieser Strahlen können hinreichend genau der Figur 5 entnommen werden. Dabei gilt, wenn S_{12} den Schnittpunkt von s_1 mit s_2 bezeichnet,

$$S_{12} = S_{13} = S_{23} = P^{(4)}$$
.

Der Messungsstrahl A_4 $S=s_4$, der als eine Parallele zur Geraden A_4 P in Figur 5 betrachtet werden kann, geht um den unter B,2 berechneten Abstand e neben $P^{(4)}$ vorbei und wird von s_1 , s_2 und s_3 in den nun nicht mehr zusammenfallenden Punkten S_{14} , S_{24} und S_{34} geschnitten.

2. Konstruktion der übrigen Näherungspunkte.

Gemäß A,2 ergibt sich jeder Näherungspunkt (P) als Schnittpunkt von drei Kreisen K. Von diesen letztern kommen nun in Figur 7 nur ganz kurze Bögen in Betracht, welche die zugehörigen Punkte (P) einschließen. Zufolge des sehr großen Maßstabes dieser Figur dürfen dann jene Bögen durch die betreffenden Tangenten t ersetzt werden, deren Richtungen wieder der Figur 5 entnommen werden können.

Den Näherungspunkt $P_{124} = P^{(3)}$, der sich als Schnittpunkt der drei Kreise K_{12} , K_{14} und K_{24} ergibt, findet man nun durch Konstruktion sehr einfach wie folgt:

der durch $S_{12} = P^{(4)}$ gehende Kreis K_{12} hat daselbst die Richtung von t_{12} ,

der durch S₁₄ auf s₄ gehende Kreis K₁₄ hat daselbst die Richtung von t₁₄,

der durch S₂₄ auf s₄ gehende Kreis K₂₄ hat daselbst die Richtung von t₂₄.

Es schneiden sich somit t₁₂, t₁₄ und t₂₄ im gesuchten Punkt P₁₂₄. Damit ergibt sich für die sämtlichen vier Näherungspunkte (P)

 $P_{123} = Schnittpunkt der Tangenten t_{12}, t_{13}, t_{23} durch S_{12}$, beziehungsweise S_{13} und S_{23} ;

 $P_{124} = Schnittpunkt der Tangenten <math>t_{12}$, t_{14} , t_{24} durch S_{12} , beziehungsweise S_{14} und S_{24} ;

 P_{134} = Schnittpunkt der Tangenten t_{13} , t_{14} , t_{34} durch S_{13} , beziehungsweise S_{14} und S_{34} ;

 P_{234} = Schnittpunkt der Tangenten t_{23} , t_{24} , t_{34} durch S_{23} , beziehungsweise S_{24} und S_{34} .

Nach Ablesung der Näherungs-Koordinaten (y) und (x) aus der Figur 7 erhält man aus diesen durch Mittelbildung für die Koordinaten y, x des ausgeglichenen Punktes $P_{1234}=P$:

$$P\left\{ \begin{array}{l} y = \frac{1}{4} \cdot \left\{ y_{123} + y_{124} + y_{134} + y_{234} \right\} \\ x = \frac{1}{4} \cdot \left\{ x_{123} + x_{124} + x_{134} + x_{234} \right\} \end{array} \right.$$

Aus den Abweichungen $y-(y)=\eta$ und $x-(x)=\xi$ kann man dann schließlich auch noch die mittleren Koordinatenfehler m_y und m_x der Punkte (P), sowie M_y und M_x für P berechnen.

Kommt außer A_4 noch ein weiterer überschüssiger Zielpunkt A_5 in Betracht, so treten zu den sechs S-Punkten S_{12} . S_{34} noch die vier weitern, auf s_5 liegenden Punkte S_{15} , S_{25} , S_{35} und S_{45} hinzu. Den zehn S-Punkten entsprechen dann ebenso viele Tangenten t, die sich je zu dreien in den zehn Näherungspunkten P_{123} ... P_{345} schneiden.

(Schluß folgt.)