Zeitschrift: Schweizerische Zeitschrift für Vermessungswesen und Kulturtechnik =

Revue technique suisse des mensurations et améliorations foncières

Herausgeber: Schweizerischer Geometerverein = Association suisse des géomètres

Band: 19 (1921)

Heft: 6

Artikel: Zur Praxis einiger Ausgleichungsaufgaben [Fortsetzung und Schluss]

Autor: Hammer, E.

DOI: https://doi.org/10.5169/seals-186804

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 11.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

SCHWEIZERISCHE Zeitschrift für Vermessungswesen und Kulturtechnik

ORGAN DES SCHWEIZ. GEOMETERVEREINS

REVUE TECHNIQUE SUISSE DES MENSURATIONS ET AMÉLIORATIONS FONCIÈRES

ORGANE DE LA SOCIÉTÉ SUISSE DES GÉOMÈTRES

Redaktion: F. BAESCHLIN, Professor, Zollikon (Zürich)

Ständiger Mitarbeiter für Kulturtechnik: Prof. C. ZWICKY, Zürich, Bergstr. 131 Collaborateur attitré pour la partie en langue française: CH. ROESGEN, ingénieur-géomètre, Genève, 11, rue de l'Hôtel-de-Ville — Redaktionsschluß: Am 1. jeden Monats

Expedition, Inseraten- und Abonnements-Annahme: BUCHDRUCKEREI WINTERTHUR VORM. G. BINKERT, WINTERTHUR

Jährlich 12 Nummern erscheinend am zweiten Dienstag jeden Monats)

and 12 Inseraten-Bulletins erscheinend am vierten Dienstag jeden Monats)

No. 6

des XIX. Jahrganges der "Schweiz. Geometerzeitung".

14. Juni 1921

Jahresabonnement Fr. 12.— (unentgeltlich für Mitglieder)

Inserate:

50 Cts. per 1spaltige Nonp.-Zeile

Schweizerischer Geometerverein.

Mitteilung des Zentralvorstandes.

XVII. Hauptversammlung vom 18. Juni 1921 in Baden.

Erweiterung der Traktandenliste durch den rechtzeitig eingereichten Antrag des bernischen Geometervereins:

"Es ist die Mitgliederzahl des Zentralvorstandes auf neun zu erhöhen, um den Wünschen des Vereins der angestellten Geometer betreffs einer Vertretung im Zentralvorstand entgegenkommen zu können."

Küsnacht, den 25. Mai 1921.

Der Zentralvorstand.

Zur Praxis einiger Ausgleichungsaufgaben.

Von E. Hammer, Stuttgart.

(Fortsetzung und Schluß.)

$$(51) \begin{cases} v_{\alpha} = -3^{"}, 18 & \text{Die v in (51) weichen im Ma-} \\ v_{\beta} = +0^{"}, 82 & \text{ximum um 1 Einheit}_{1} \text{ von den} \\ v_{\gamma} = +10^{"}, 33 & Eggertschen \text{ ab.} \\ v_{a} = +1,44 \text{ mm} & \textbf{8. Andere Rechnung mit den} \\ v_{b} = +17,34 & \text{,,} & Eggertschen Bedingungsgleichun-} \\ v_{c} = -8,21 & \text{,,} & \text{gen (38). Bevor auf den Grund} \end{cases}$$

Die v in (51) weichen im Ma-

für die Anwendung der Gleichungen (45) in 7. näher eingegangen wird, mag noch darauf hingewiesen werden, daß man sich die Rechnung mit dem System (38) dadurch etwas erleichtern kann, daß man bei der zweimaligen Anwendung des Sinus-Satzes logarithmische Differenzen verwendet. Eggert hat dies nur deshalb nicht getan, weil diese Rechnungsweise, die später bei Ausgleichung von Triangulationsaufgaben eine so große Rolle spielt, a. a. O. noch nicht erklärt ist. Schreibt man die zwei letzten Gleichungen (38) in der Form

(52)
$$\frac{\underline{a} \cdot \sin \beta}{\underline{b} \cdot \sin \alpha} = 1$$
 und (53) $\frac{\underline{a} \cdot \sin \gamma}{\underline{c} \cdot \sin \alpha} = 1$,

so wird für 6-stellige logarithmische Rechnung das Linearmachen dieser zwei Gleichungen auf dem in (54) und (55) angezeigten Weg erreicht, wobei die neben die Logarithmen gesetzten logarithmischen Differenzen sich auf +1 mm Aenderung der Seiten und +1" Aenderung der Winkel in Einh, beziehen. Diese Zahlen sind so entstanden, daß nicht nur die neben dem gebrauchten Logarithmus stehenden Logarithmen oder Diff. 10" verwendet sind, sondern bei den Zahlenlogarithmen das Zehnfache der Nachbardifferenzen durch Ablesen der über und unter dem gesuchten Logarithmus stehenden Zahlen, bei den log, sin das Zehnfache durch Abzählen, wie oft auf fünf Zeilen nach oben und nach unten die zwei Zahlen vorkommen, um die es sich höchstens handeln wird; z. B. steht bei log. $\sin \gamma = 9.433$ 189 die Zahl 74 Einh, für 10", es kommt aber auf den je 5 Zeilen darüber und darunter 75 7-mal, 74 nur 3-mal vor, es ist also für 10" schärfer 74,7, für 1" 7,47 zu nehmen. Man erhält so ohne jede nennenswerte Mehrarbeit die Aenderung für 1" fast stets bis auf 1 Einh, richtig. Die Rechnung mit allen Zahlen für die zwei letzten Bedingungsgleichungen ist die folgende [die gemessenen Stücke siehe in (35)]:

a	4.899 306	5.50	a	4.899 306	5.50	1
sin β	9.841 368	-2.18	sin γ	9.433 189	7.47	5 2 a
Z	4.740 674	, a 6 ⁻	Z	4.332 495		100 E
b	5.065 975	3.73	С	4.658 021	9.55	(55)
sin α	9.674 653	3.93	sin α	9.674 653	3.93	` /
N	4.740 628		N	4.332 674		
Z: N	$w_2 = +46$	Einh	Z:N	$w_3 = -179$	Einh ₆	
	Z b sin α N	sin β 9.841 368 Z 4.740 674 b 5.065 975 sin α 9.674 653 N 4.740 628	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c }\hline sin & \beta & 9.841 & 368 & -2.18 & sin & \gamma \\\hline Z & & 4.740 & 674 & & & Z \\\hline b & & 5.065 & 975 & 3.73 & c \\ sin & \alpha & 9.674 & 653 & 3.93 & sin & \alpha \\\hline N & & 4.740 & 628 & & N \\\hline \end{array}$	$\begin{array}{ c c c c c c c c c }\hline sin & \beta & 9.841 & 368 & -2.18 & sin & \gamma & 9.433 & 189 \\ \hline Z & 4.740 & 674 & & Z & 4.332 & 495 \\ \hline b & 5.065 & 975 & 3.73 & c & 4.658 & 021 \\ sin & \alpha & 9.674 & 653 & 3.93 & sin & \alpha & 9.674 & 653 \\ \hline N & 4.740 & 628 & & N & 4.332 & 674 \\ \hline \end{array}$	$\begin{array}{ c c c c c c c c c }\hline sin & \beta & 9.841 & 368 & -2.18 & sin & \gamma & 9.433 & 189 & 7.47 \\ \hline Z & 4.740 & 674 & Z & 4.332 & 495 & \\ \hline b & 5.065 & 975 & 3.73 & c & 4.658 & 021 & 9.55 \\ sin & \alpha & 9.674 & 653 & 3.93 & sin & \alpha & 9.674 & 653 & 3.93 \\ \hline N & 4.740 & 628 & N & 4.332 & 674 & \\ \hline \end{array}$

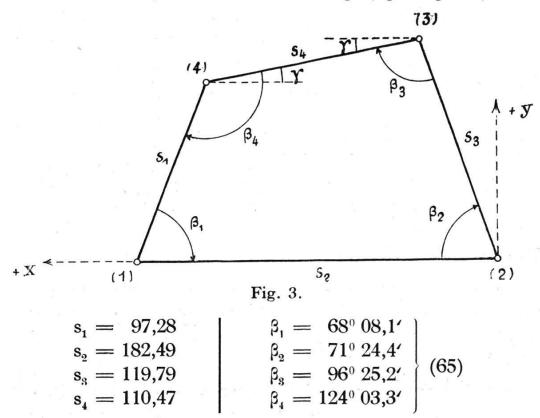
Die erste Bedingungsgleichung bleibt dieselbe wie in (45) und (47); das System der Koeffizienten aller drei Bedingungsgleichungen der v wird also das in (56) angegebene. Um hier wieder einmal zu zeigen, daß die Durchmultiplikation einer Bedingungsgleichung mit einer beliebigen Konstanten an der Wirksamkeit dieser Gleichung und am ganzen Ausgleichungsverfahren nichts ändert, sollen, um die Koeffizienten der drei Gleichungen einander anzunähern und somit die Rechnung etwas bequemer zu machen, die Koeffizienten von II. und III.

noch mit 5 durchdividiert werden, so daß als System sich ergibt (57), in dem rechts noch gleich die sich aus der Auflösung der in (58) angedeuteten Normalgleichungen sich ergebenden Werte der drei Korrelaten beigesetzt sind, nämlich die in (59) zusammengestellten Zahlen:

(58)
$$\begin{cases} \frac{6,00}{8} k_{1} - 2,46 k_{2} + 1,40 k_{3} - 8,0 = 0 \\ 8,64 + 4,88 + 9,2 \\ 12,98 - 35,8 \end{cases} \begin{cases} k_{3} = +4,36 \\ k_{2} = -3,88 \\ k_{1} = -1,28 \end{cases}$$
(59)

Damit wird (60) [g v v] = -[w k] = 181; die Ausrechnung der einzelnen v gemäß (57) liefert das System (61), aus dem nochmals zur Probe gebildet wird:

$$\begin{cases} v_{\alpha} = -3\text{",}32 \\ v_{\beta} = +0\text{",}87 \\ v_{\gamma} = +10\text{",}43 \end{cases} \text{ Summe und dazu } (62) \text{ [g v v]} = 181, \\ -8\text{",}0 = 0\text{",}02 \text{ übereinstimmend } \\ \text{with the state } 0, \text{ with the state } 0, \text{ wit$$


innerhalb der Rechnungsgenauigkeit überein mit (51) und mit (39). Die gleichförmige Verteilung der 8" des Winkelschlußfehlers, die man bei dem "Näherungs-Ausgleichungsverfahren" zuerst vorzunehmen pflegt, um erst nachher die Seitenfehler nach dem linearen Schlußfehler zu verteilen (wodurch jene gleichförmige Verteilung des w_{β} wieder zerstört wird), wird durch die gemeinsame Ausgleichung von Seiten und Winkeln stärker gestört, als es bei dem Näherungsverfahren zu geschehen pflegt.

9. Anwendung des Verfahrens der Gleichungen (45) auf allgemeine Fälle: geschlossenes Polygon. Der Grund für Annahme der zwei letzten Gleichungen (45) statt der zwei letzten Gleichungen (38) (jene bedeuten, um dies zu wiederholen: die Projektionen der Dreiecksseiten der vorigen Aufgabe auf zwei zueinander senkrechte Richtungen, die einer Dreiecksseite und die Richtung der zu der Seite gehörigen Höhe, müssen je = 0 sein; die zwei letzten Gleichungen (38) dagegen benützen die Projektionen der Dreiecksseiten auf zwei nicht zueinander senkrechte Richtungen) ist der, daß dieses Verfahren am einfachsten auch anwendbar und übersichtlich bleibt bei der Ausgleichung eines mit überschüssigen Stücken gemessenen, geschlossenen Polygonzugs.

Bleiben wir zunächst beim geschlossenen Polygon: Es seien in einem n-Eck alle n Winkel und alle n Seiten gemessen. Da das n-Eck durch (2n-3) unabhängige Stücke einfach vollständig bestimmt ist (es können also unter diesen Stücken nicht alle n Winkel sein, da diese durch eine Bedingungsgleichung verbunden sind), so müssen bei Messung aller 2 n Stücke des Polygons 3 unabhängige Bedingungsgleichungen vorhanden sein. Sie sagen aus: 1. die ausgeglichenen Winkel des Polygons müssen als Summe eine ganze Zahl mal 180° geben; 2. und 3. die Projektionen des mit ausgeglichenen Winkeln und Seiten konstruierten Polygons auf zwei nicht parallele und hier am besten und einfachsten senkrecht zueinander stehende Richtungen müssen je gleich 0 sein; d. h., es müssen die Gleichungen bestehen: (63) I. $\Sigma \beta = p \cdot 180^{\circ}$, wo p = (n-2) oder (n+2), wenn als Polygonwinkel in jedem Punkt der Winkel zwischen dem vorhergehenden Punkt links und dem folgenden Punkt rechts gilt und diese Numerierung gegen oder mit dem Uhrzeigersinn ohne Auslassung um das Polygon geht;

(64) $\begin{cases} III. & \Sigma (s \cdot \cos \alpha) = 0 \\ III. & \Sigma (s \cdot \sin \alpha) = 0 \end{cases}$ gonseiten bedeuten und α_k der mit den ausgeglichenen β berechnete Richtungswinkel von s_k in einem beliebig anzunehmenden System rechtwinkliger Koordinaten ist. Es ist auch hier gleich darauf hinzuweisen, daß zwischen dem geschlossenen Polygon und dem angeschlossenen Polygonzug kein grundsätzlicher Unterschied vorhanden ist; auch in dem letzten bestehen, wenn in allen Eckpunkten, Anund Abschlußpunkt mitgerechnet, der Polygonwinkel gemessen ist, und wenn alle Polygonseiten gemessen sind, drei Bedingungsgleichungen von der Form (63) und (64), wobei nur die fest gegebenen Werte der rechten Seiten dieser Gleichungen anders lauten.

Wir wollen nun die Gleichungen (63) und (64) auf das einfache Beispiel eines Vierecks anwenden, in dem alle Seiten und alle Winkel gemessen sind wie folgt (vgl. Figur 3).

Bei der Längenmessung ist geschätzt worden, daß der Messung der Strecke 100 m der mittlere Fehler ± 2 cm zuzuschreiben sei, und bei der Winkelmessung, daß dem einzelnen β der Winkelfehler $\pm 1/2$ anhafte. Die Gewichtseinheit beziehe sich bei den Seiten auf den Fehler ± 1 cm, bei den Winkeln auf ± 1 .

Jedes der β hat also das Gewicht 4; bei den Seiten wollen wir von den Gewichtsunterschieden in den Seiten 97 m, 120 m, 110 m ganz absehen, d. h. ihre mittleren Fehler zu ±2 cm, ihre Gewichte zu ½ ansetzen, bei s₂ als mittlern Fehler ±2½ bis 3 cm schätzen, g zu ⅓ annehmen. Die Bedingungsgleichungen, die (63) und (64) entsprechen, können wir, wenn die zwei letzten die Projektion auf die Seite s₂ und auf die dazu senkrechte Richtung ausdrücken sollen, ferner zunächst γ den Winkel bezeichnet, den s₄ mit s₂ bildet, gemäß der Figur so anschreiben:

wobei noch aus der Figur entnommen wird und in die zwei letzten Gleichungen noch einzusetzen ist (69) $\underline{\gamma} = 180^{\circ} - (\underline{\beta} + \underline{\beta}_3)$.

Bei einer so einfachen Figur wie einem Viereck können natürlich an sich außer den durch Projektion der Figur auf zwei Achsenrichtungen sich ergebenden zwei Bedingungsgleichungen noch eine ganze Anzahl anderer Beziehungen zwischen den s und den β verwendet werden; es mögen von ihnen angeführt werden:

$$\begin{array}{l} \underline{s_1} \ \underline{s_2} \ \sin \underline{\beta_1} \ + \underline{s_3} \ \underline{s_4} \ \sin \underline{\beta_3} \ = \ \underline{s_2} \ \underline{s_3} \ \sin \underline{\beta_2} \ + \ \underline{s_4} \ \underline{s_1} \ \sin \underline{\beta_4} \ ; \ \text{sodann} \\ \underline{s_2}^2 + \underline{s_3}^2 - 2 \, \underline{s_2} \ \underline{s_3} \ \cos \underline{\beta_2} \ = \ \underline{s_4}^2 + \underline{s_1}^2 - 2 \, \underline{s_4} \ \underline{s_1} \ \cos \underline{\beta_4}, \ \text{ebenso} \\ \underline{s_1}^2 + \underline{s_2}^2 - 2 \, \underline{s_1} \ \underline{s_2} \ \cos \underline{\beta_1} \ = \ \underline{s_3}^2 + \underline{s_4}^2 - 2 \, \underline{s_3} \ \underline{s_4} \ \cos \underline{\beta_3}. \end{array}$$

Indessen ist die Anwendung der obigen Gleichungen (67) und (68) jedenfalls einfacher.

Bezeichnen wir nun die gesuchten Verbesserungen der Seiten mit v und dem Index der Seite, die gesuchten Verbesserungen der Winkel mit v und dem der Winkelecke entsprechenden Akzent, womit demnach

$$(70) \begin{cases} \underline{s_1} = s_1 + v_1 & \underline{\beta_1} = \beta_1 + v' \\ \underline{s_2} = s_2 + v_2 & \underline{\beta_2} = \beta_2 + v'' \\ \underline{s_3} = s_3 + v_3 & \underline{\beta_3} = \beta_3 + v''' \\ \underline{s_4} = s_4 + v_4 & \underline{\beta_4} = \beta_4 + v'''' \end{cases}$$
 zu setzen ist, und also wird
$$(72) \underline{\gamma} = 180^{\circ} - (\beta_2 + v'' + \beta_3 + v''') \\ = 12^{\circ}10.4' - v'' - v''',$$

so erhält man durch Linearmachen der Gleichungen (67) und (68) diese in den v-Formen:

(67')
$$s_{1} \cos \beta_{1} + v_{1} \cos \beta_{1} - s_{1} \sin \beta_{1} \frac{v'}{\rho} + s_{3} \cos \beta_{2} + v_{3} \cos \beta_{2}$$

$$-v_{3} \sin \beta_{2} \frac{v''}{\rho} + s_{4} \cos \gamma + v_{4} \cos \gamma + s_{4} \sin \gamma \frac{v''}{\rho} + s_{4} \sin \gamma \frac{v'''}{\rho}$$

$$-s_{2} - v_{2} = 0.$$
(68') $s_{1} \sin \beta_{1} + v_{1} \sin \beta_{1} + s_{1} \cos \beta_{1} \frac{v'}{\rho} + s_{4} \sin \gamma + v_{4} \sin \gamma$

$$-s_{4} \cos \gamma \frac{v''}{\rho} - s_{4} \cos \gamma \frac{v'''}{\rho} - s_{3} \sin \beta_{2} - v_{3} \sin \beta_{2}$$

$$-s_{3} \cos \beta_{2} \frac{v''}{\rho} = 0.$$

In diesen Gleichungen sind die s_k in cm, ebenso die v_k in cm, die v^k in 'zu nehmen, also $\rho = 3438$ ' zu setzen. Die 5-stellige Rechnung der kein v enthaltenden Größen w_2 und w_3 dieser Gleichungen ist in (73) angegeben.

Die Koeffizienten der v in (67') und (68') können durchaus mit dem Rechenschieber (und auch ohne Benützung einer Tabelle der natürlichen Funktionswerte sin und cos bei Verwendung der S-Teilung der Zungenrückseite) berechnet werden. Man erhält für die Koeffizienten die hier angeschriebenen Zahlen:

Gleichung (67')

Koeff. v. v':
$$-\frac{s_1 \sin \beta_1}{3438} = -2,62$$

" v'': ... = -3,31 + 0,68 = -2,63

" v''': = $s_4 \frac{\sin \gamma}{3438} = +0,68$

Koeff. v. v': $=\frac{s_1 \cos \beta_1}{3438} = +1,05$

" v'': ... = -3,14-1,11 = -4,25

" v''': ... = -3,14-1,11 = -4,25

" v'': ...

Die Zusammenstellung der Koeffizienten der Bedingungsgleichungen der v findet sich damit in (76), die Ablesung der Koeffizienten der Normalgleichungen der Korrelaten in (77). Die Auflösung der Normalgleichungen (77) gibt die Zahlen (78):

(78)
$$\begin{cases} k_3 = -0.487 \\ k_2 = +0.486 \\ k_1 = -1.22 \end{cases}$$

Es wird also [g v v] = -[w k] = 7,05 (79).

Bildet man die einzelnen v, so erhält man die folgenden Werte (80):

übereinstimmend mit (79).

Rechnet man mit den verbesserten Winkeln und Seiten, die in (82) bis auf 0',01 in den Winkeln, auf 0,1 cm = 1 mm in den Seiten angeschrieben sind (also sachlich übertrieben genau), irgendwelche weitere Probe aus, z. B. eine der Gleichungen vor (10), so findet man keinen Widerspruch mehr. Dies muß sich auch zeigen, wenn nun die Koordinaten der Ecken in Beziehung auf irgend ein System berechnet werden, z. B. mit der Annahme : $x_2 = y_2 = 0,000$; $y_1 = 0,000$; R W. (2,1) = $0^{\circ} 0' 00''$ also $\alpha_2 = (1,2) = 180^{\circ} 0' 0''$ (d. h. der Nullpunkt des Systems in der Ecke 2, Richtung 2—1 als +x-Richtung)

Es ergeben sich mit diesen verbesserten β und s folgende Richtungswinkel und Koordinaten:

(83)
$$\begin{vmatrix} \underline{\alpha_{1}} = 291^{\circ} 52' 39'' & \underline{x_{2}} = 0,000 & \underline{y_{2}} = 0,000 \\ \underline{\alpha_{2}} = 180 \text{ angenommen} & \underline{x_{3}} = 38,206 & \underline{y_{3}} = 113,560 \\ \underline{\alpha_{3}} = 71^{\circ} 24' 17'' & \underline{x_{4}} = 146,207 & \underline{y_{4}} = 90,264 \\ \underline{\alpha_{4}} = 347^{\circ} 49' 39'' & \underline{x_{1}} = 182,451 & \underline{y_{1}} = 0,000 \end{vmatrix}$$

und das Viereck "schließt" damit auf das mm genau.

Es ist hier nicht ohne Interesse, mit diesem Ergebnis unseres Vierecks zu vergleichen, was das früher (und bis heute) gebräuchliche, ja allein übliche "Näherungs"-Verfahren der Ausgleichung eines solchen überbestimmten, nämlich mit 2 n Stücken gemessenen Polygons liefert. Dieses Verfahren besteht bekanntlich darin, daß man in dem Polygon den Winkelwiderspruch wa (Abweichung der Σβ von ihrem Sollwert) gleichförmig verteilt, sodann mit den gemessenen Seiten und den aus den "verbesserten" Winkeln ß sich ergebenden Richtungswinkeln die Koordinaten der Eckpunkte in dem angenommenen Achsensystem berechnet, und so den linearen Schlußfehler, zunächst getrennt w x und w y feststellt und diese w x und w y ,,zweckmäßig" verteilt. In der Regel wird dann nicht weiter beachtet, daß durch die Verteilung der wx und wy die Richtungswinkel der einzelnen Seiten, und damit also auch die "verbesserten" Polygonwinkel, wieder verändert werden; das Endergebnis der Rechnung sind eben nicht verbesserte Werte der ß oder s, sondern "näherungsweise ausgeglichene" Koordinaten der Polygonecken. Das im vorstehenden behandelte Vierecksbeispiel ist dem "Lehrbuch der elementaren praktischen Geometrie" von Hammer, Band I, Leipzig, 1911, entnommen; Seite 438 ebenda finden sich nach Abzug von je 0',25 = 15" an jedem gemessenen Winkel zur Verteilung von w_{β} und mit der Annahme (α_2) = 180° 0' 0" die folgenden Werte a der einzelnen Richtungswinkel: $(\alpha_1) = 291^{\circ} 52' 10''$, $(\alpha_2) = 180^{\circ} 0' 0''$, $(\alpha_3) = 71^{\circ} 24' 10''$,

 $(\alpha_4) = 347^{\circ} 49' 05''$, Werte, die von den oben in (83) berechneten endgültigen der strengen Ausgleichung in α_1 um 0',5, in α_4 fast 0',6 abweichen. Als Koordinaten der Ecken werden damit und mit den nicht verbesserten Seiten berechnet [s. (84)]:

$$\begin{array}{lll}
(\mathbf{x}_{1}) = 182,49 & (\mathbf{y}_{1}) = 0,00 \\
(\mathbf{x}_{2}) = 0,00 & (\mathbf{y}_{2}) = 0,00 \\
(\mathbf{x}_{3}) - 38,20 & (\mathbf{y}_{3}) = 113,53 \\
(\mathbf{x}_{4}) = 146,18 & (\mathbf{y}_{4}) = 90,22 \\
\hline
(\mathbf{x}_{1}) = 182,41_{5} & (\mathbf{y}_{1}) = -0,06 \\
\hline
\mathbf{x}_{1} = 182,46 & \mathbf{y}_{1} - 0,00 \\
\mathbf{x}_{2} = 0,00 & \mathbf{y}_{2} = 0,00 \\
\mathbf{x}_{3} = 38,21 & \mathbf{y}_{3} = 113,56 \\
\mathbf{x}_{4} = 146,22 & \mathbf{y}_{4} = 90,26
\end{array} \right\} (85)$$

Es zeigt sich also ein Widerspruch von $7^{1/2}$ cm in der Abszisse und von 6 cm in der Ordinate, oder linear ein Schlußfehler von $9^{1/2}$ cm; die "übliche" Verteilung dieses wx und wy und damit des Schlußfehlers gibt am angegebenen Orte als

endgültige Koordinaten der Ecken die Zahlen (85). Rechnet man hiernach die nach der "angenäherten" Fehlerverteilung vorhandenen Richtungswinkel, so findet man (endgültig) die Werte $\alpha_1 = 291^{\circ} 52', 5, \quad \alpha_2 = 180^{\circ} 0' 0"$ angenommen; $\alpha_3 = 71^{\circ} 24', 2, \quad \alpha_4 = 347^{\circ} 49', 6$, also Zahlen, die mit den oben in (83) berechneten α der strengen Ausgleichung gut stimmen, und ebenso zeigen sich die Seitenlängen nach der empirischen Ausgleichung durchaus innerhalb 1 cm mit (82) übereinstimmend.

Diese früher fast allgemein übliche Art der Näherungsausgleichung, erst Verteilung von w_{β} , dann Berechnung von w_{x} und w_{y} und Verteilung auch dieser Widersprüche, liefert in der Tat recht annehmbare Ergebnisse, und es ist wenig Grund dazu vorhanden, sie gemäß einem neuerdings mehrfach gemachten Vorschlage zugunsten einer andern Näherungsmethode zu ändern, die *nicht* erst w_{β} verteilt, sondern mit den nicht "verbesserten" β die Koordinaten der Polygonecken berechnet und die so sich zeigenden w_{x} , w_{y} wegschafft.

10. Weiteres über das strenge Verfahren in 9. Angeschlossener Polygonzug. Wenn jenes alte Annäherungsverfahren der Ausgleichung eines Polygons verlassen werden soll, so ist das strenge Verfahren 9. an seine Stelle zu setzen. Der Rechnungsaufwand wird ja bei großer Seitenzahl des Polygons damit etwas groß, schon bei dem oben behandelten Viereck nicht ganz unbedeutend;

immerhin sind in jedem Fall eines geschlossenen n-Ecks, dessen sämtliche n Winkel und sämtliche n Seiten gemessen sind, nur drei Bedingungsgleichungen vorhanden, und die Berechnung der Koeffizienten der einzelnen v in den zwei letzten dieser Bedingungsgleichungen (in der ersten kommen nur die v der Winkel vor und alle Koeffizienten sind 1), nämlich in Σ (s · cos α) soll = 0, Σ (s · sin α) soll = 0, braucht nicht so umständlich gemacht zu werden, wie es oben in 9. absichtlich geschehen ist. Ich sehe hier auch davon ab, allgemein gültige Regeln zur Ablesung dieser Koeffizienten der v₈ und der v_s in diesen zwei Projektions-Bedingungsgleichungen anzugeben; diese Regeln sind nicht allzu verwickelt, und die ganze Rechnung wird nicht allzu mühsam, wenn n nicht über 6 oder auch 8 geht. (Vergleiche zu dem bisher im Abschnitt II. Enthaltenen unter anderm auch den Aufsatz von Janko, "Die Ausgleichung von Abschlußfehlern und die Bestimmung von zulässigen maximalen Abschlußfehlern in Dreiecken und geschlossenen Polygonen", Oesterreichische Zeitschrift für Vermessungswesen, XVII, 1920, Seite 1 ff.; man kann dem Verfasser nicht überall beipflichten.)

Dagegen mag nochmals mit einigen Worten darauf hingewiesen werden, daß zwischen der strengen Ausgleichung eines angeschlossenen Zugs und der eines geschlossenen Polygons (nach 9.) gar kein grundsätzlicher Unterschied besteht. Führt der angeschlossene Zug von dem gegebenen Festpunkte I (z. B. Dreieckspunkt) (x_I y_I) als Anfangspunkt nach dem ebenfalls fest gegebenen Endpunkt II (z. B. wieder Dreieckspunkt) (x_{II} y_{II}) und sind außer in den eigentlichen Polygonpunkten 1, 2, 3, ... auch in I und II Polygonwinkel gemessen (in I zwischen einem seitlich des Zugs in großer Entfernung weiter gegebenen Festpunkt A mit den Koordinaten xa ya und dem ersten Zugpunkt 1, in II zwischen dem letzten Zugpunkt und dem ebenso seitlich gegebenen Festpunkt B mit den Koordinaten xb yb), so ist auch die Figur A, I, 1, 2, ... II, B, A ein geschlossenes Polygon, in dem alle Seiten gemessen oder fest gegeben (AB), und auch alle Polygonwinkel gemessen oder fest gegeben (die in A und B) sind. Oder wenn man nicht auf dieses geschlossene Polygon zurückgreifen will: Es sind auch in diesem angeschlossenen Zug drei und nur drei Bedingungsgleichungen für die strenge Ausgleichung vorhanden, nämlich:

- I) Σ β (die Winkel in I und II mit eingerechnet)
- = RW. (II B) RW. (IA) + k . 180°, wo k eine ganze Zahl ist, die leicht festgestellt werden kann; ferner
- II) $\Sigma (\underline{s} \cdot \cos \underline{\alpha}) = \underline{x_{II}} \underline{x_{I}},$ III) $\Sigma (s \cdot \sin \alpha) = y_{1i} - y_{1}$, wo die rechten Seiten dieser Gleichungen II und III ebenfalls fest gegebene Werte sind und die ausgeglichenen Seitenlängen mit s, die zugehörigen ausgeglichenen RW. mit α bezeichnet werden, d. h. $\underline{s_k} = s_k + v_k$, $\underline{\alpha_k} = \alpha_k + v'^k$ gesetzt wird. Die einzige, bei vielen Polygonpunkten (langen Zügen) etwas umständliche Arbeit ist die, die Wirkung der Verbesserungen der Richtungswinkel a in den Verbesserungen der Polygonwinkel β', β" ... auszudrücken. Schwierig aber ist die strenge Ausgleichung des angeschlossenen Polygonzugs keineswegs; auch sind stets nur drei Normalgleichungen aufzulösen, drei Korrelaten zu bestimmen. Diese strenge Ausgleichung ist deshalb von Eggert in der letzten Zeit mehrfach empfohlen worden. Sie setzt freilich auch noch voraus, daß man über die mittlern Fehler der Längenmessung und der Polygonwinkelmessung a priori gut unterrichtet ist, weil sonst die Gewichte nicht den wirklichen Verhältnissen entsprechend angesetzt werden können und deshalb die im Vergleich mit der "genäherten" Ausgleichung vermehrte Rechenarbeit wenig lohnend erscheinen muß.

Fiches et registres cadastraux.

Il est une question importante à étudier et qui présente la particularité d'intéresser autant les géomètres-conservateurs que les géomètres privés et que le public en général, c'est celle qui a trait au remplacement du système de registres cadastraux par celui des fiches.

Afin de démontrer plus facilement les désavantages que présente l'utilisation des registres tels qu'on les admet aujourd'hui, nous ne pouvons mieux faire que de résumer brièvement quels sont les registres qui peuvent être mis en usage en vue de la conservation.

On doit admettre tout d'abord la nécessité d'un registre, dit des numéros suivis, sur lequel on indique, pour chaque commune, la série continue et ininterrompue des parcelles dans leur