Zeitschrift: Schweizerische Zeitschrift für Vermessungswesen und Kulturtechnik =

Revue technique suisse des mensurations et améliorations foncières

Herausgeber: Schweizerischer Geometerverein = Association suisse des géomètres

Band: 19 (1921)

Heft: 5

Artikel: Zur Praxis einiger Ausgleichungsaufgaben [Fortsetzung]

Autor: Hammer, E.

DOI: https://doi.org/10.5169/seals-186803

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 13.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Am Schlußbankett im "Du Pont" waren 80 Herren anwesend, und im Verlaufe der Diskussion wuchs die Teilnehmerzahl auf zirka 120. Herr Präsident Baumgartner verdankte im Namen der Versammlung mit treffenden Worten den Herren Referenten die Vorträge bestens und schloß seine Ansprache, indem er mit Freude das gute Einvernehmen zwischen Vermessungsingenieur und Grundbuchgeometer hervorhob und damit der Hoffnung Ausdruck verlieh, daß dies dem guten Gelingen der Grundbuchvermessung unseres Schweizerlandes dienen möge. Nach den Worten des Herrn Präsidenten wurde die Diskussion eröffnet, welche erfreulicherweise sehr rege benutzt wurde. Die vielen Fragen wurden von den einzelnen Referenten jeweils in erschöpfender Weise beantwortet. Einläßlich darauf einzugehen, fehlt hier der Raum. Eine Sammlung zugunsten der notleidenden Kollegen in Oesterreich (Zeitschrift) ergab den schönen Betrag von Fr. 120. —.

Obwohl um 6 Uhr der offizielle Schluß der lehrreichen Tagung verkündet wurde, war dies vielmehr erst das Zeichen des Präsidenten zur Ueberleitung vom ernsten Teil der Arbeit zum darauf folgenden fröhlichen, zweiten Teil. Die flotte Stimmung brachte es mit sich, daß manches frohe Lied zur Laute erklang und daß manche alte Erinnerung wieder aufgefrischt wurde. Nur zu bald kam die Stunde des Abschiedes, in welcher man mit herzlichem Händedrucke und mit einem

"Auf Wiedersehen im nächsten Jahre!" auseinanderging.

Horgen, im März 1921. Henri Huber.

Zur Praxis einiger Ausgleichungsaufgaben.

Von E. Hammer, Stuttgart.

(Fortsetzung.)

Die Ausrechnung der einzelnen v gibt (27), was mit (14) zu vergleichen ist (Quadratsumme genügend stimmend mit der

(27)
$$\begin{cases} v_1 = +5,0 \text{ cm} & \text{aus obiger Rechnung, n\"{a}mlich 59,5}; \\ v_2 = -4,3 & \text{die Verteilung der v in (27) ist ansprechender als die in (14). Zwar} \\ v_3 = +2,2 & \text{sprechender als die in (14). Zwar} \\ v_4 = -3,3 & \text{ist hier m}_1 = \sqrt{\frac{59}{4-3}} = \pm 7,6 \text{ cm (28)}, \end{cases}$$

also nicht kleiner, sondern sogar etwas größer als in (15) und der mittlere Fehler von z' ist (29) m $z = \frac{7.6}{\sqrt{4.3}} = \pm 3.1$, also etwas größer als z' selbst, dieses also unsicher bestimmt; endlich zeigen (30) $m_x = +4.5$ cm und $m_y = +9.3$ cm etwas größere Beträge als in (16); gleichwohl wird man es für wahrscheinlich halten dürfen, daß das Meter der Lattenmessung um den kleinen Betrag von etwa 1/4 mm verkürzt werden sollte, um es mit dem Koordinatenmeter vergleichbar zu machen. Dieser Betrag braucht nicht in der Lattenlänge zu liegen, sondern kann durch die Bei zahlreichern und besonders Messungsweise bedingt sein. feinern Längenmessungen als hier in dem Beispiel angenommen sind, wird man bei der vorliegenden Aufgabe jedenfalls gut tun, zu versuchen, ob nicht die Einführung eines z-Gliedes angezeigt ist, das den oben besprochenen systematischen Fehler berücksichtigt.

Bei dem vorliegenden Zahlenbeispiel mit fast gleich langen L, bei deren Gewichtsfestsetzung ja auch von der Verschiedenheit abgesehen wurde, könnte man diese Untersuchung eines regelmäßigen Fehlers noch abkürzen, indem man die c' in (22) als gleich betrachtet und dann nach dem Schreiberschen Verfahren z' eliminiert. Man hat dazu bekanntlich von allen a den Betrag $\frac{[a]}{n}$, von allen b den Betrag $\frac{[b]}{n}$, von allen l den Betrag $\frac{[l]}{n}$ abzuziehen, womit die folgende Tafel der Koeffizienten der Verbesserungsgleichungen und der Normalgleichungen und Auflösung der nur noch zwei Normalgleichungen (Rechenschieber) sich ergibt:

										1 1
	a'	b'	l'	a'a'	a'b'	a'l'	b'b'	b' <i>l</i> '	l'l'	
	-0,83	-0,13	+2	0,69	+0,11	-1,66	0,02	- 0,26	4	
	0,87	+0,48	-5	0,76	-0,42	+4,35	0,23	_2,40	25	
(31)	+1,10	+0,26	+7	1,21	+0,29	+7,70	0,07	+1,82	49	(32)
	+0,60	-0,62	-4	0,36	-0,37	-2,40	0,38	+2,48	16	
Probe	0	-0,75	0	3,02	-0,39	+7,99	0,70	+1,64	94	
	Ta ====================================	+0,74						· 1		
						1	1	1		

Das Ergebnis der ziemlich vereinfachten Rechnung (33) stimmt also noch fast vollständig überein mit dem von (24) bis (26').

$$\begin{vmatrix}
3.02 \times -0.39 & y + 7.99 &= 0 \\
0.70 & + 1.64 & -21 \\
-0.05 & + 1.03
\end{vmatrix}
\begin{vmatrix}
94 \\
-0.21 \\
0.70 & y - 0.39 & x + 1.64 &= 0 \\
3.02 & + 7.99 & -4 \\
-0.22 & + 0.91
\end{vmatrix}$$

$$\begin{vmatrix}
94 \\
-21 \\
0.65 & y + 2.67 &= 0 \\
y & -0.22 & + 0.91
\end{vmatrix}$$

$$\begin{vmatrix}
0.70 & y - 0.39 & x + 1.64 &= 0 \\
3.02 & + 7.99 & -4 \\
-0.22 & + 0.91
\end{vmatrix}$$

$$\begin{vmatrix}
0.70 & y - 0.39 & x + 1.64 &= 0 \\
3.02 & x + 7.99 & -4 \\
-0.22 & + 0.91
\end{vmatrix}$$

$$\begin{vmatrix}
0.70 & y - 0.39 & x + 1.64 &= 0 \\
3.02 & x + 8.90 &= 0
\end{vmatrix}$$

$$\begin{vmatrix}
0.70 & y - 0.39 & x + 1.64 &= 0 \\
3.02 & x + 8.90 &= 0
\end{vmatrix}$$

$$\begin{vmatrix}
0.70 & y - 0.39 & x + 1.64 &= 0 \\
3.02 & x + 8.90 &= 0
\end{vmatrix}$$

$$\begin{vmatrix}
0.70 & y - 0.39 & x + 1.64 &= 0 \\
3.02 & x + 8.90 &= 0
\end{vmatrix}$$

$$\begin{vmatrix}
0.70 & y - 0.39 & x + 1.64 &= 0 \\
3.02 & x + 8.90 &= 0
\end{vmatrix}$$

$$\begin{vmatrix}
0.70 & y - 0.39 & x + 1.64 &= 0 \\
3.02 & x + 8.90 &= 0
\end{vmatrix}$$

$$\begin{vmatrix}
0.70 & y - 0.39 & x + 1.64 &= 0 \\
3.02 & x + 8.90 &= 0
\end{vmatrix}$$

$$\begin{vmatrix}
0.70 & y - 0.39 & x + 1.64 &= 0 \\
3.02 & x + 8.90 &= 0
\end{vmatrix}$$

$$\begin{vmatrix}
0.70 & y - 0.39 & x + 1.64 &= 0 \\
3.02 & x + 8.90 &= 0
\end{vmatrix}$$

$$\begin{vmatrix}
0.70 & y - 0.39 & x + 1.64 &= 0 \\
3.02 & x + 8.90 &= 0
\end{vmatrix}$$

$$\begin{vmatrix}
0.70 & y - 0.39 & x + 1.64 &= 0 \\
3.02 & x + 8.90 &= 0
\end{vmatrix}$$

$$\begin{vmatrix}
0.70 & y - 0.39 & x + 1.64 &= 0 \\
3.02 & x + 8.90 &= 0
\end{vmatrix}$$

$$\begin{vmatrix}
0.70 & y - 0.39 & x + 1.64 &= 0 \\
3.02 & x + 8.90 &= 0
\end{vmatrix}$$

$$\begin{vmatrix}
0.70 & y - 0.39 & x + 1.64 &= 0 \\
3.02 & x + 8.90 &= 0
\end{vmatrix}$$

$$\begin{vmatrix}
0.70 & y - 0.39 & x + 1.64 &= 0 \\
3.02 & x + 8.90 &= 0
\end{vmatrix}$$

$$\begin{vmatrix}
0.70 & y - 0.39 & x + 1.64 &= 0 \\
3.02 & x + 8.90 &= 0
\end{vmatrix}$$

$$\begin{vmatrix}
0.70 & y - 0.39 & x + 1.64 &= 0 \\
3.02 & x + 8.90 &= 0
\end{vmatrix}$$

$$\begin{vmatrix}
0.70 & y - 0.39 & x + 1.64 &= 0 \\
3.02 & x + 8.90 &= 0
\end{vmatrix}$$

$$\begin{vmatrix}
0.70 & y - 0.39 & x + 1.64 &= 0 \\
3.02 & x + 8.90 &= 0
\end{vmatrix}$$

$$\begin{vmatrix}
0.70 & y - 0.39 & x + 1.64 &= 0
\end{vmatrix}$$

$$\begin{vmatrix}
0.70 & y - 0.39 & x + 1.64 &= 0
\end{vmatrix}$$

$$\begin{vmatrix}
0.70 & y - 0.39 & x + 1.64 &= 0
\end{vmatrix}$$

$$\begin{vmatrix}
0.70 & y - 0.39 & x + 1.64 &= 0
\end{vmatrix}$$

$$\begin{vmatrix}
0.70 & y - 0.39 & x + 1.64 &= 0
\end{vmatrix}$$

$$\begin{vmatrix}
0.70 & y - 0.39 & x + 1.64 &= 0
\end{vmatrix}$$

$$\begin{vmatrix}
0.70 & y - 0.39 & x + 1.64 &= 0
\end{vmatrix}$$

$$\begin{vmatrix}
0.70 & y - 0.39 & x + 1.64 &= 0
\end{vmatrix}$$

$$\begin{vmatrix}
0.70 & y - 0.39 & x + 1.64 &= 0
\end{vmatrix}$$

$$\begin{vmatrix}
0.70 & y - 0.39 & x + 1.64 &= 0
\end{vmatrix}$$

$$\begin{vmatrix}
0.70 & y - 0.39 & x + 1.64 &= 0
\end{vmatrix}$$

$$\begin{vmatrix}
0.70 & y - 0.39 & x +$$

Auch weichen die nach (31) und (33) sich ergebenden v, nämlich:

um nur 2 mm von den v in (27) ab. Das z-Glied (rund ½ mm pro 1 Meter Verkürzung der gemessenen L) findet sich hier erst nachträglich. Indessen wird dieser Fall sehr nahezu gleicher L bei unserer Aufgabe in Wirklichkeit nicht vorkommen und so der Ansatz der Verbesserungsgleichungen nach (23) vorzuziehen sein.

II. Die zweite dieser von Eggert behandelten Aufgaben ist die Seite 147 am angegebenen Ort aufgestellte Ausgleichung eines ebenen Dreiecks, in dem alle sechs Stücke gemessen sind; sie hat mit Rücksicht auf Polygonausgleichung vielleicht mehr praktisches Interesse als die vorstehende. Die Daten bei Eggert lauten wie in (35). Da drei unabhängige Stücke des Dreiecks, unter denen also mindestens eine Seite sein muß, genügen, um das Dreieck "einfach" (ohne Ueberbestimmung) geometrisch zu

müssen 6—3 = 3 Bedingungsgleichungen vorhanden sein. Zur Gewichtsbestimmung ist a. a. O. angenommen: $m_{\alpha} = m_{\beta} = m_{\gamma} = \pm 7$ "; $m_a = \pm 8$ mm, $m_b = \pm 12$ mm, $m_c = \pm 5$ mm. Läßt man also dem mittlern Fehler ± 5 , der bei den Winkeln " und bei den Seiten mm bedeutet, das Gewicht 1 entsprechen, so sind als Gewichte der gemessenen Stücke anzunehmen:

(36)
$$g_{\alpha} = g_{\beta} = g_{\gamma} = \frac{1}{2};$$
 $g_{a} = \frac{1}{3}, g_{b} = \frac{1}{6}, g_{c} = 1.$

- 6. Die Bedingungsgleichungen. Als die vorhandenen drei unabhängigen Bedingungsgleichungen nimmt Eggert die folgenden an, deren erste man als die einfachsten Koeffizienten aufweisend jedenfalls mitsprechen lassen wird, nämlich die Winkelsummengleichung (Su-Gl.) und ferner zwei Gleichungen, die sich aus dem Sinussatz des Dreiecks ergeben, also:
- (37) eine Su-Gl. und zwei Si-Gleichungen. Die Gleichungen lauten also (hier und in allem folgenden bedeuten die stark unterstrichenen Buchstaben oder Zahlen die ausgeglichenen Werte, also z. B. $c = c + v_c$, $\alpha = \alpha + v_\alpha$) wie in (38):
- in (38): $(38) \begin{cases} \frac{\alpha}{a} + \frac{\beta}{b} + \frac{\gamma}{b} 180^{0} = 0 & \text{Die zwei letzten (wobei an Stelle der dritten ich auch die } \frac{1}{a} \cdot \sin \frac{\gamma}{b} \frac{1}{a} \cdot \sin \frac{\gamma}{b} = 0 & \text{bei an Stelle der dritten Gleichung natürlich auch die } \frac{1}{a} \cdot \sin \frac{\gamma}{b} \frac{1}{a} \cdot \sin \frac{\gamma}{b} = \frac{1}{a} \cdot$

Das Beispiel eines Dreiecks mit allen 6 gemessenen Stücken ist sehr geeignet, die Notwendigkeit vor Augen zu führen, sich von der gegenseitigen Unabhängigkeit der aufgestellten Bedingungsgleichungen zu überzeugen. Ich würde z. B. wünschen, daß ein Anfänger in der Ausgleichungsrechnung sich bei Gelegenheit dieser Aufgabe fragt: Weshalb sollen in den Gleichungen (38) a und α je zweimal, b, c, β, γ aber nur einmal vorkommen? Symmetrischer wäre doch, alle 6 Stücke je zweimal vorkommen zu lassen, d. h. auf die erste Gleichung (38), die Su-Gleichung, zu verzichten, und als die drei Bedingungsgleichungen alle drei Formen des Sinus-Satzes in vollständiger, zyklischer Vertauschung anzuschreiben, d. h. die drei folgenden Bedingungsgleichungen zu verwenden:

		\mathbf{v}_{α}	\mathbf{v}_{β}	v_{γ}	Va	\mathbf{v}_{b}	v _c	w	
9 Jinana	I	-0,50	-0,28	· +0,55	+0,69	-0,47	•	+5,8	
Bedingung Gleichung			+0,16	+0,55	•	+0,27	-0,69	-16,4	(43)
	III	+0,19	•	-0,37	0,27		+0,47	+8,8	
ж	$\frac{1}{g} =$	2	2	2	3	6	1	2 ·	1 195"

von Normalgleichungen der Korrelaten k_1 , k_2 , k_3 . Löst er aber nun dieses Gleichungssystem auf, so findet er zunächst 3,41 $k_1-0,86$ $k_2-0,75$ k_3 +5,8=0 für k_3 ganz genau $\frac{0}{0}$. Die 1,57 -0,73 -16,4 Aufgabe ist also mit diesem 0,78 +8,8 Ansatz (41) nicht lösbar. Weshalb? Der Leser beantworte sich die Frage selbst.

7. Andere Bedingungsgleichungen als in (38). Dagegen ist nun allerdings doch die Frage berechtigt: Gibt es nicht doch Gründe, bei dieser Aufgabe zum Teil andere Bedingungsgleichungen zu wählen als (38)? Daß man die Su-Gleichung der Winkel als die eine Gleichung beibehalten wird, ist schon oben angedeutet, sie hat die einfachsten möglichen Koeffizienten; an die Stelle des Sinus-Satzes aber kann auch jede beliebige andere zwischen Seiten und Winkeln eines ebenen Dreieckes bestehende Beziehung treten. Was ist der Sinus-Satz? Er sagt in der Form (41): Die Summe der Projektionen der drei Seiten eines Dreiecks auf die Richtung senkrecht zu einer Seite des Dreiecks (nämlich zu der Seite, die in der betreffenden Satzform nicht vorkommt), ist Null; z. B. heißt a sin β —b sin α = 0 die Summe der Projektionen der drei Dreiecksseiten auf die Richtung senkrecht zu c (in der c selbst die Projektion 0 gibt) ist 0, und

entsprechend für die zwei andern Formen von (41). Nimmt man also das System der Bedingungsgleichungen (38), so stellt man neben die Su-Gleichung der Winkel zwei Si-Bedingungen, von denen die erste sagt: die Projektionssumme der drei Seiten des Dreiecks auf die Richtung senkrecht zu c muß 0 sein; die zweite ebenso auf die Richtung senkrecht zu b. Allgemein also eben: Summe der Projektionen der drei Seiten auf zwei verschiedene Richtungen je = Null.

Es liegt nun also nahe, als solche zwei verschiedene Richtungen nicht zwei um einen beliebigen (Dreiecks-) Winkel verschiedene zu wählen, sondern zwei zueinander senkrechte, nämlich neben der Richtung senkrecht zu einer Dreiecksseite (also die Richtung der einen Höhe des Dreiecks), was den "Sinus-Satz" ergibt, die Richtung dieser Seite selbst, was den "Cosinus-Satz" oder "Projektionssatz" des Dreiecks gibt; z. B. also neben die jedenfalls beizubehaltende Gleichung (38) 1 zu stellen die zwei weitern Gleichungen:

$$\begin{cases} \underline{a \cdot \sin \gamma - \underline{c} \cdot \sin \alpha} = 0 & \text{(,,Sinus-Satz" mit a, c, Projektion des Dreiecks auf die Richtung hb)} \\ \underline{a \cdot \cos \gamma + \underline{c} \cdot \cos \alpha - \underline{b}} = 0 & \text{(,,Projektionssatz" auf die Seite b).} \end{cases}$$

Die Reihenfolge der Bedingungsgleichungen nach vorstehender Ueberlegung in unserem Beispiel mag also sein:

I.
$$\left\{ \begin{array}{l} \underline{\alpha} + \underline{\beta} + \underline{\gamma} - 180 = 0 \\ \underline{a} \cdot \cos \underline{\gamma} + \underline{c} \cdot \cos \underline{\alpha} - \underline{b} = 0 \\ \underline{a} \cdot \sin \underline{\gamma} - \underline{c} \cdot \sin \underline{\alpha} = 0 \end{array} \right\}$$
 (45) Damit erhalten wir als Bedingungsgleichungen für die v, nachdem

die II. und III. Gleichung linear gemacht sind:

$$(46) \begin{cases} I. \ v_{\alpha} + v_{\beta} + v_{\gamma} - w_{1} = 0 \\ II. \ -\frac{c}{\rho} \sin \alpha \cdot v_{\alpha} - \frac{a}{\rho} \cdot \sin \gamma \cdot v_{\gamma} + \cos \gamma \cdot v_{a} + \cos \alpha \cdot v_{c} \\ -v_{b} + w_{2} = 0 \end{cases}$$

$$III. \ -\frac{c}{\rho} \cos \alpha \cdot v_{\alpha} + \frac{a}{\rho} \cos \gamma \cdot v_{\gamma} + \sin \gamma \cdot v_{a} - \sin \alpha \cdot v_{c} \\ + w_{3} = 0 \end{cases}$$

Die Ausrechnung für die w gibt, bei II. und III. ebenfalls mit 6-stelligen Logarithmen, wie in 6.:

 $w_1=-8,0,\ w_2=+24,0,\ w_3=-8,8,$ und für die Koeffizienten der v die folgende Tabelle:

(48) $\begin{cases} \frac{6,00}{9,59} & k_1 - 0,41 & k_2 + 0,36 & k_3 - 8,0 = 0 \\ 9,59 & + 0,33 & + 24,0 & \text{gen der Korrelaten } k_1, \\ 0,79 & -8,8 & k_2, & k_3 & \text{werden damit die} \end{cases}$

links in (48) mit den erforderlichen Zahlen angeschriebenen Gleichungen; ihre Auflösung gibt:

(49) $k_3 = +12,05$, $k_2 = -2,89$, $k_1 = +0,41$, wie oben in (47) gleich rechts beigefügt ist. Es ergibt sich damit:

(50) [g v v] = —[w k] = 179; ferner erhält man gemäß (47) für die einzelnen v die in (51) zusammengestellten Zahlen, deren [g v v] = 177 genügend mit (50) und ebenso mit der Eggertschen Zahl, vgl. (40) stimmt, so daß auch m₁ nicht merklich von der Eggertschen Zahl abweicht.

(Fortsetzung folgt.)

Sammlung «Pro Austria».

Mitteilung über Eingänge: Fr. 10. — Von H. H., Bern Von J. Baltiner, Basel 14.— 10. — Von E. Vogel, Grundbuchgeometer, Lyß Sammlung anläßlich des Vortragskurses in Zürich 120. — 16. -Von Ungenannt Bis 1. April 1921 eingelaufen Fr. 170.— Die Sammlung wird fortgesetzt und den Kollegen bestens empfohlen.

Zeitschriftenschau.

1. Schweizerische Bauzeitung. Heft No. 15. Wettbewerb für den Ausbau des Länggaß-Quartieres in Bern (Fortsetzung). — Heft No. 17. Wettbewerb für den Ausbau des Länggaß-Quartieres in Bern (Schluß). Eine Station für drahtlose Telegraphie in der