Zeitschrift: Schweizerische Zeitschrift für Vermessungswesen und Kulturtechnik =

Revue technique suisse des mensurations et améliorations foncières

Herausgeber: Schweizerischer Geometerverein = Association suisse des géomètres

Band: 18 (1920)

Heft: 2

Artikel: Statik der Luft-Seilbahnen [Schluss]

Autor: Zwicky, C.

DOI: https://doi.org/10.5169/seals-186210

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 11.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Gewissen; wenn dies nirgends einrostet, so wird es immer eine Verständigung geben.

Herblingen, den 2. Februar 1920.

Für den Vorstand

des schweiz. Verbandes angestellter Grundbuchgeometer, Der Aktuar: *J. Bührer*.

Statik der Luft-Seilbahnen.

Von C. Zwicky, Professor an der Eidgen. Technischen Hochschule Zürich. (Schluß.)

Aus der Figur 10, bezw. aus der $2^1/_2$ mal größer gezeichneten Originalfigur dazu, ergibt sich nun die nachfolgende Tabelle G. Daraus ersieht man, daß die Längenzunahmen Δ z und Δ s für alle drei Annahmen zu z nur wenig differieren, und daß bei den Zugkräften S_A und S_B die Verhältniszahlen v_A und v_B viel kleiner sind als die Zahl v, die sich aus der Vergleichung der beiden Poldistanzen für Q=0 und für Q>0 ergibt, nämlich aus:

$$H_0 = \frac{G}{2 (p_2 - p_1)}$$
 and $H = \frac{G + 2 Q}{2 (p_2 - p_1)}$, mit $V = \frac{H - H_0}{H_0} = \frac{2 Q}{G}$.

Die große Abweichung der Zahlen v_A und v_B gegenüber v erklärt sich nun aus zwei Gründen:

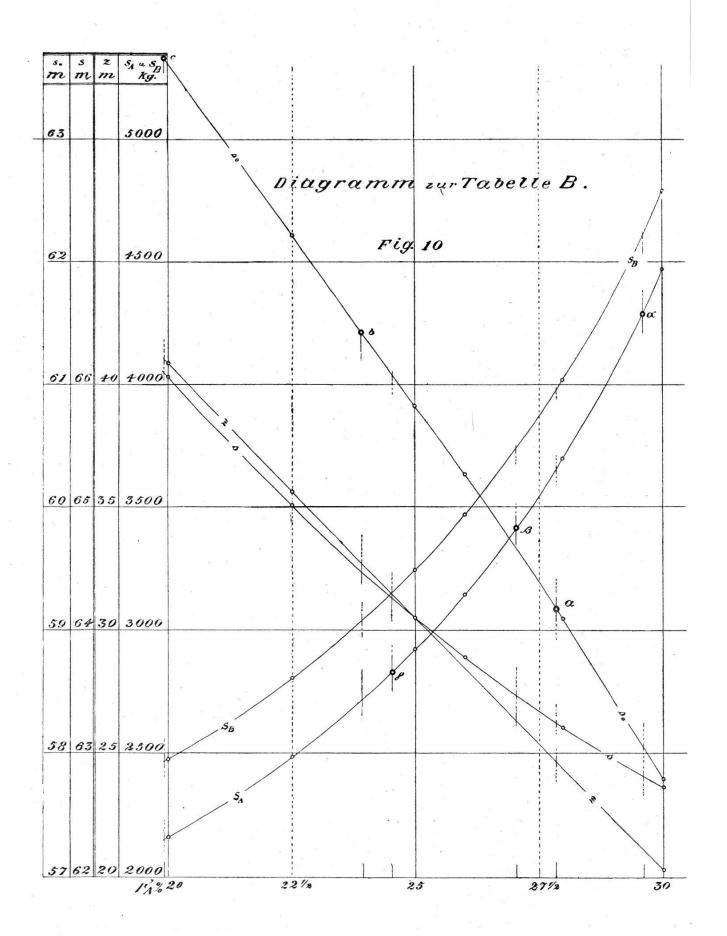
a) Zunächst ist die Seilkurve K_0 mit der Poldistanz H_0 nicht identisch mit der Seilkurve K', aus welcher K hervorgeht. Für z=40,00 m ist z. B.:

bei K_0 = Parabel nach der Tabelle B: $(p_A)_0 = 20,00~^0/_0$ bei K_0 = Kettenlinie nach der Figur 10: $(p_A)_0 = 20,40~^0/_0$ während für K' gilt: $(p_A)_0 = 20,40~^0/_0$ p' $_A$ = 23,92 $^0/_0$

Haupttabelle G siehe Seite 33.

Damit hängt auch zusammen, daß im Beispiel unter II, 1, b) für Q = G die Zugkräfte S_A und S_B wesentlich unter dem doppelten Betrage dieser Zugkräfte für das mit G belastete gleich lange Seil bleiben.

b) Der Zunahme der Zugspannungen infolge der Vermehrung der Seilbelastung steht eine Verminderung der erstern zu-



Haupttabelle G.

		P No.	a	b	с	d
Angriff	fspunkt von Q	x m	400	400	400	400
		z m	32	40	48	3
	$\eta = s_0$	m	859.18	861.41	863.66	
	$\xi=p'_A$	0/0	27.85	23.92	19.90	27.50
	z	m	32.00	40.00	48.00	32.69
gen	z'	,	24.65	32.65	41.00	25.34
Längen	$\Delta z = z - z'$,	7.35	7.35	7.00	7.35
	S	m	863.96	865.27	866.88	864.06
	s'	,	863.24	864.55	866.10	863.34
	$\Delta s = s - s'$,,	0.72	0.72	0.78	0.72
	S_A	kg	4284	3405	2818	4177
	S'A	"	3650	2715	2145	3537
	$\Delta S_A = S_A - S_A$, ,	634	690	673	640
Kräfte	$v_A = \frac{\Delta S_A}{S_{A'}}$	0/0	17.4	25.4	31.3	18.1
	S_{B}	kg	4684	3812	3222	4578
	S _B '	,	3970	3035	2465	3858
	$\Delta S_{B} = S_{B} - S_{B}$, ,	714	777	757	720
	$v_{B} = \frac{\Delta S_{B}}{S_{B}}$	0/0	18.0	25.6	30.7	18.7
a <u>a</u>	$v = \frac{2 Q}{G}$	0/0	100.2	$\frac{\times 230}{865} = 5$	3.1 %	

folge der Seilverlängerung gegenüber. Wenn nun bei dem nur mit G belasteten Seil die Neigung p_A um $2^{1/2}\ ^0/_0$ abnimmt, so entspricht

einer Abnahme derselben von 30 $^{0}/_{0}$ auf $27^{1}/_{2}$ $^{0}/_{0}$, $22^{1}/_{2}$ $^{0}/_{0}$ auf 20 $^{0}/_{0}$ eine Zunahme von z um 5.12 m 5.37 m

" " " s " 0.62 " 1.05 "

Abnahme " σ " 869 kg 309 kg

Beim weniger ausgebogenen Seil hat daher eine kleinere Verlängerung eine wesentlich größere Spannungsabnahme zur Folge und deshalb findet bei diesem durch Hinzutreten einer Verkehrslast relativ eine viel geringere Zunahme der Zugkräfte statt.

Daraus erkennt man, daß die Beanspruchung durch Verkehrslasten — und zwar insbesondere bei wenig ausgebogenen Seilen und namentlich bei Seilen aus Drähten mit einem gegenüber massiven Seilen wesentlich kleinern Elastizitätsmodul (E = 0,35.E*) — bei weitem nicht so bedenklich ist, als man aus der Formel für H anzunehmen geneigt ist.

Aus den Werten Δz , Δs , ΔS_A und ΔS_B für die drei Annahmen a, b, c für z von P sind durch Interpolation die obigen Differenzen für $p'_A=27,5~^0/_0$ ermittelt worden. Diese führen dann zu den Werten $z~(=z'+\Delta z)$, s, S_A und S_B für diejenige Seilkurve K zur Belastung mit G und Q, welche aus K' mit $p'_A=27,5~^0/_0$ hervorgeht. (Vergl. Kolonne d in Tabelle G.)

III.

Seil mit einem Gegengewicht LA.

Bei einem solchen Seil ist die Zugkraft S_A für alle Belastungen gleich groß und damit kann sich auch die Zugkraft S_B nur wenig ändern, wenn die Belastung sich ändert. Der Frage nach den maximalen Werten der Zugkräfte kommt daher hier keine große Bedeutung zu; dagegen ist die Form der Seilkurve hier insofern maßgebend, weil dadurch der Durchhang des Seiles an der Laststelle bedingt wird.

- 1. Einzellast Q am gewichtslosen Seil.
- a) Theorie. Aus den Figuren 8a und 8b ergibt sich:

$$\begin{aligned} h &= p_1 \ x + p_2 \,.\, (l - x) = p \,.\, l \\ p_2 &= \frac{p \,l - p_1 \,x}{l - x} \quad \text{und} \quad p_2 - p_1 = \frac{l}{l - x} \,.\, (p - p_1) \end{aligned}$$

$$\begin{split} H = & \frac{Q}{p_2 - p_1} = \frac{l - x}{l} \cdot \frac{Q}{p - p_1} \\ S_1 = & L_A = H \cdot \sqrt{1 + p_1^2} = \frac{l - x}{l} \cdot \frac{\sqrt{1 + p_1^2}}{p - p_1} \cdot Q. \end{split}$$

Hieraus folgt:

$$l-x = \frac{p-p_1}{\sqrt{1+p_1^2}} \cdot \frac{L_A}{Q} \cdot l.$$

Nimmt man nun für die Neigung p_1 einige rundzahlige Werte an, so kann man die zugehörigen Werte l—x berechnen, womit dann die Koordinaten x, y von P, sowie die Kräfte S_1 und S_2 bestimmt sind.

b) Anwendung. Für Q=G=865 kg und $L_A=3460$ kg =4. Q (womit L_A dem Werte 3537 kg der Zugkraft S_A für die Kettenlinie zu $p_A=27.5$ % ziemlich nahe kommt) ergibt sich nun:

$$v = \frac{l-x}{l} = \frac{0.40-p_1}{\sqrt{1+p_1^2}} \cdot \frac{3460}{865} = 4 \cdot \frac{0.40-p_1}{\sqrt{1+p_1^2}}.$$

Damit erhält man für einige Annahmen zur Neigung p, von AP:

p ₁		0/0	0.15	0.20	0.25	0.2705	0.30	0.35	0.40
Längen	$l-x = v \cdot l$	_	90	627	465	400	306	151	0
	$\mathbf{x} = l - (l - \mathbf{x})$	m	10	173	335	400	494	649	800
	$y = p_1 \cdot x$	n	1.50	34.6	83.8	108.2	148.2	227.2	320.0
	$\mathbf{z_p} = (\mathbf{p} - \mathbf{p_1}) \mathbf{x}$	"	2.50	34.6	50.2	51.8	49.4	32.4	0
Zugkräfte	$p_2 = \frac{h - y}{l - x}$	_	0.403	0.454	0.508	0.5295	0.561	0.614	5
	$H = \frac{Q}{p_2 - p_1}$	kg	3420	3400	3350	3340	3310	3270	3 5
	$S_1 = H \cdot \sqrt{1 + p_1^2}$	n	3460	3460	3460	3460	3460	3460	9
	$S_2 = H.\sqrt{1 + p_2^2}$	n	3690	3740	3760	3780	3790	3830	1 2

Der Seildurchhang z_P für den Lastangriffspunkt P wird für $x=\frac{1}{2}=400$ m ein Maximum, während die Zugkraft S_2 in PB mit wachsendem x von P langsam zunimmt.

Für die Seillänge $s = s_1 + s_2 = \sqrt{x^2 + y^2 + \sqrt{(l-x)^2 + (h-y)^2}}$ erhält man zu $p_1 = 0.15$ 0.2705 0.35 s = 865.33 m 867.00 864.86 m.

Das Seilgewicht bleibt daher für alle Lagen von P ziemlich konstant, indem sich dasselbe wegen der nahezu konstant bleibenden mittleren Spannung proportional der Seillänge s ändert.

- 2. Das durch Eigengewicht und Verkehrslast beanspruchte Seil.
- a) Theorie. Wir gehen wieder wie unter 1. von der Annahme eines bestimmten Wertes für den Seildurchhang z_P aus; die damit berechnete Zugkraft S_A muß dann mit dem Werte des Gegengewichtes L_A übereinstimmen. Daher liefert in Figur 10 die Kurve $S_A' = f(p_A')$ als Abszisse ξ zum Kurvenpunkte mit der Ordinate $\eta = S_A$ die Neigung p_A' derjenigen Kettenlinie K', welche durch Hinzutreten der Verkehrslast Q in die für z_P berechnete Seilkurve K übergeht.
- b) Anwendung. Auch hier ziehen wir wieder nur eine Verkehrslast in Betracht, deren Angriffspunkt P die Abszisse $x = \frac{l}{2}$ besitzt, weil sich hiefür der größte Seildurchhang z ergibt.

Das Seilgewicht nehmen wir wieder als konstant an, und zwar wie früher zu G=865 kg. Die den Werten z=32, 40 und 48 m entsprechenden Punkte P numerieren wir mit Rücksicht auf Figur 10 mit α , β und γ (statt mit a, b und c), wobei noch δ den zu $p_A{}'=27,5\,{}^0/_0$ gehörenden Punkt P bezeichnet. Dann wird:

<u> </u>		201			
Annahme für P	No.	α	β	Υ	ò
Z	m	32.00	40.00	48.00	38.54
$\eta = S_A = S_A'$	kg	4284	3405	2818	3537
$\xi = p_A'$	0/0	29.60	27.05	24.52	27.50
$\Delta z = z - z'$	m	+ 10.98	+13.75	+16.60	+13.20
$\Delta s = s - s'$	m	+ 1.16	+1.83	+2.63	+1.71
$\Delta S_{B} = S_{B} - S_{B}'$	kg	+ 84	+77	+76	+79

H.

Kontinuierliches Seil mit mehreren Unterstützungspunkten.

In den vorangegangenen Abschnitten ist die statische Berechnung einer Luftseilbahn mit einer einzigen Spannweite für alle möglichen Befestigungen und Belastungen des Seiles in eingehender Weise zur Erörterung gelangt. Zum Schlusse soll nun auch noch das Wesentliche für die Berechnung eines Seiles mit mehreren Spannweiten mitgeteilt werden.

Im Detail werden dabei die gleichen Berechnungsmethoden zur Anwendung gelangen müssen. Als neues Moment treten hier nur noch die Beziehungen zwischen den einzelnen Spannweiten hinzu, die an Hand der Figuren 11a und 11b leicht überblickt werden können.

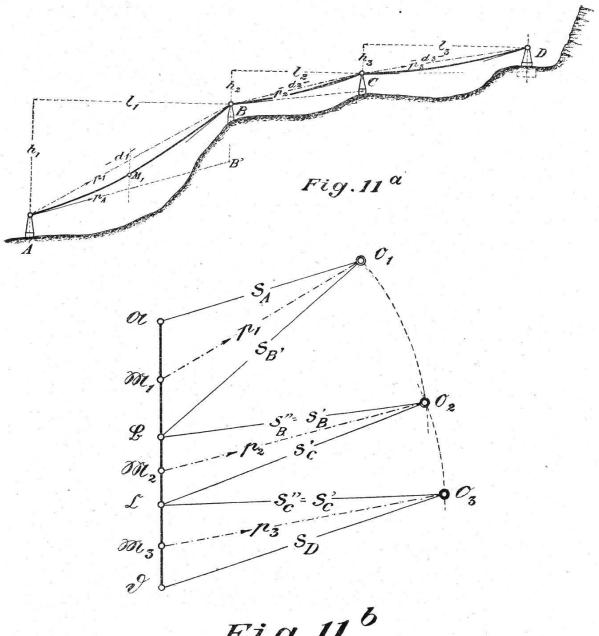


Fig. 11 b

Wir beschränken uns dabei auf die Erläuterung des graphischen Verfahrens, wobei wir noch voraussetzen, das Seil habe auf seiner ganzen Länge den gleichen Querschnitt und die Seilkurven für Eigengewichtsbelastung seien derart flach, daß dieselben als Parabeln betrachtet werden können.

Das Seil sei an zwei Zwischenpunkten B und C, sowie an den Endstützen A und D unterstützt, wobei dasselbe bei B und C über Rollen gleiten kann. Die totale Entfernung l zwischen A und D wird dann in drei Spannweiten l_1 , l_2 und l_3 mit den Steigungen h_1 , h_2 und h_3 zerlegt, woraus sich die Längen d_1 , d_2 und d_3 der Sehnen und deren Neigungen p_1 , p_2 und p_3 berechnen lassen.

In Anbetracht der stets relativ sehr geringen Längenunterschiede s_i — d_i kann man für die Gewichte G_i hinreichend genau setzen:

$$G_i = g \cdot d_i$$

so daß auch diese direkt aus den Dimensionen li und hi berechnet werden können.

1. Wir setzen nun zunächst nur eine Belastung mit den Eigengewichten G_1 , G_2 und G_3 voraus und nehmen dabei noch an, es sei für die erste Spannweite l_1 die Neigung p_A , oder der Seildurchhang z_1 oder die Zugkraft S_A gegeben. Alsdann zerlegen wir in Figur 11b die Vertikale $\mathfrak{A} \mathfrak{D} = [G_i]$ in die sechs Strecken:

$$\mathfrak{A} \, \mathfrak{M}_1 = \mathfrak{M}_1 \, \mathfrak{B} = {}^{1}/{}_{2} \, \, \mathsf{G}_1 = \frac{\mathsf{g}}{2} \, . \, \mathsf{d}_1$$

$$\mathfrak{B} \, \mathfrak{M}_2 = \mathfrak{M}_2 \, \mathfrak{C} = {}^{1}/{}_{2} \, \, \mathsf{G}_2 = \frac{\mathsf{g}}{2} \, . \, \mathsf{d}_2$$

$$\mathfrak{C} \, \mathfrak{M}_3 = \mathfrak{M}_3 \, \mathfrak{D} = {}^{1}/{}_{2} \, \, \mathsf{G}_3 = \frac{\mathsf{g}}{2} \, . \, \mathsf{d}_3 ,$$

worauf wir durch die Punkte \mathfrak{M}_1 , \mathfrak{M}_2 und \mathfrak{M}_3 die Parallelen g_1 , g_2 , g_3 zu den Sehnen AB, BC und CD in Figur 11a ziehen.

Mit B B' = $h_1 - p_A \cdot l_1$ oder B B' = 4 z_1 liefert A B' die Seiltangente t_A in A; daher erhält man den auf g_1 liegenden Pol \mathfrak{D}_1 des Kräftepolygons zu l_1 aus $\mathfrak{A} \mathfrak{D}_1 \parallel t_A$ oder $\mathfrak{A} \mathfrak{D}_1 = S_A$;

für das Kräftepolygon zu l_2 ist \mathfrak{D}_2 auf \mathfrak{g}_2 mit $\mathfrak{B} \, \mathfrak{D}_2 = \mathfrak{B} \, \mathfrak{D}_1$ und für das Kräftepolygon zu l_3 ist \mathfrak{D}_3 auf \mathfrak{g}_3 mit $\mathfrak{C} \, \mathfrak{D}_3 = \mathfrak{C} \, \mathfrak{D}_2$.

Die Tangenten t_B " $\parallel \mathfrak{B} \mathfrak{D}_2$ und t_C " $\parallel \mathfrak{C} \mathfrak{D}_3$ ergeben auf den

Vertikalen durch C und D die Abschnitte C' C = $4z_2$ und D' D = $4z_3$, womit nun sowohl die Form der Seilkurven s_i als auch die Größe der Zugkräfte S_A , S_B '; S_B ", S_C '; S_C ", S_D bestimmt sind.

Hieraus ersieht man, daß diese Zugkräfte für alle Spannweiten annähernd gleich groß ausfallen und insbesondere in ihrer Größe viel weniger von den Dimensionen der einzelnen Spannweiten l als von den Neigungen p der Sehnen AB, BC und CD abhängig sind, jedoch von A bis D fortwährend etwas zunehmen.

- 2. Tritt im ersten Felde zum Gewichte G_1 noch eine Verkehrslast Q hinzu, so wird falls das Seil bei A und D verankert ist das Seilstück s_1 etwas verlängert und gleichzeitig s_2 und s_3 etwas verkürzt, indem sich das Seil bei B etwas mehr als bei C gegen A hin verschiebt, bis wieder $S_B' = S_B''$ und $S_C' = S_C''$ wird, während die dem spannungslosen Zustande entsprechende Seillänge s_0 unverändert bleiben muß. Die für die Befriedigung dieser Bedingungen sich ziemlich kompliziert gestaltenden Berechnungen kann man sich in vielen Fällen ersparen, wenn man erwägt, daß dabei für das Seilstück s_1 die Verhältnisse etwas günstiger liegen als bei einem Seil mit nur einer Spannweite, bei der eine Seilverschiebung bei B nicht möglich ist.
- 3. Ist das Seil bei A mit einem Gegengewicht versehen und im zweiten Feld auch mit Q belastet, dann bleibt das Kräftedreieck $\mathfrak{A} \, \mathfrak{D}_1 \, \mathfrak{B}$ ganz unverändert, beim $\Delta \, \mathfrak{B} \, \mathfrak{D}_2 \, \mathfrak{C}$ ändert $\mathfrak{B} \, \mathfrak{C}$ die Größe, $\mathfrak{B} \, \mathfrak{D}_2$ die Richtung und $\mathfrak{C} \, \mathfrak{D}_2$ die Größe und Richtung, während im $\Delta \, \mathfrak{C} \, \mathfrak{D}_3 \, \delta$ nur die Grundlinie $\mathfrak{C} \, \delta$ ganz unverändert bleibt. Das zweite Feld ist dabei nach dem unter G III beschriebenen Verfahren zu behandeln. Um den Betrag der Verlängerungen von \mathfrak{s}_2 und \mathfrak{s}_3 wird sich das Gegengewicht bei A nach aufwärts bewegen.

Eine neue Polygonpunktversicherung.

Die Erfahrung weist darauf hin, daß für eine gute Vermessung nicht nur eine genaue Messung, sondern auch eine gute, dauerhafte Versicherung der Vermessungsfixpunkte von