Zeitschrift: Schweizerische Zeitschrift für Vermessungswesen und Kulturtechnik =

Revue technique suisse des mensurations et améliorations foncières

Herausgeber: Schweizerischer Geometerverein = Association suisse des géomètres

Band: 18 (1920)

Heft: 1

Artikel: Statik der Luft-Seilbahnen [Fortsetzung]

Autor: Zwicky, C.

DOI: https://doi.org/10.5169/seals-186204

Nutzungsbedingungen

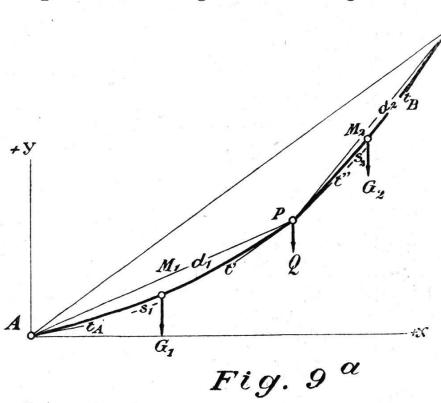
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more


Download PDF: 11.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Statik der Luft-Seilbahnen.

Von C. Zwicky, Professor an der Eidgen. Technischen Hochschule Zürich. (Fortsetzung.)

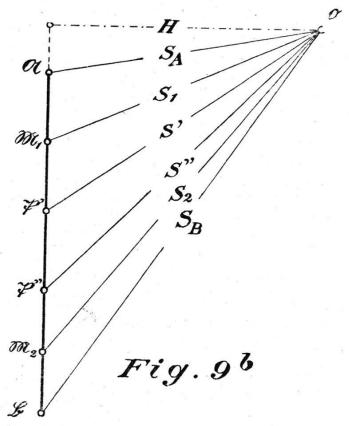
In Fig. 9a sind die Tangenten in den Bogenmitten M, und

M₂ parallel zu den Sehnen AP und PB; sie haben daher die Neigungen:

$$p_1 = \frac{y}{x}$$
 und $p_2 = \frac{h-y}{l-x}$.

Zerlegt man nun im Kräftepolygon der Fig. 9b (siehe folgende Seite) die Gesamtlast $\mathfrak{AB} = G + Q$ in die nachfolgenden fünf Abschnitte:

$$\mathfrak{A} \ \mathfrak{M}_1 = \mathfrak{M}_1 \ \mathfrak{P}' = \frac{G_1}{2} \qquad \text{und} \qquad \mathfrak{P}'' \ \mathfrak{M}_2 = \mathfrak{M}_2 \ \mathfrak{B} = \frac{G_2}{2},$$


dann erhält man den Pol D aus:

$$\mathfrak{M}_{1} \mathfrak{O} \parallel AP$$
 und $\mathfrak{M}_{2} \mathfrak{O} \parallel PB$;

hieraus ergibt sich für die Poldistanz H:

$$H = \frac{\mathfrak{M}_{1} \ \mathfrak{M}_{2}}{p_{2}-p_{1}} = \frac{^{1/_{2}} G_{1} + Q + ^{1/_{2}} G_{2}}{p_{2}-p_{1}}, \text{ also}$$

$$H = \frac{G + 2 Q}{2(p_{2}-p_{1})}$$

Als spezielle Neigungen bei der Seilkurve erhält man:

$$\text{für } \widehat{AP} \begin{cases} \text{in } A \colon p_A = p_1 - \frac{G_1}{2\,H} \\ \text{in } P \colon \ p' = p_1 + \frac{G_1}{2\,H} \end{cases} \text{für } \widehat{PB} \begin{cases} \text{in } P \colon p'' = p_2 - \frac{G_2}{2\,H} \\ \text{in } B \colon \ p_B = p_2 + \frac{G_2}{2\,H} * \end{cases}$$

Aus diesen vier Seilneigungen erhält man nun für die beiden Kurvenstücke \widehat{AP} und \widehat{PB} als Seildurchhänge z_1 und z_2 zu ihren Bogenmitten M_1 und M_2 , sowie als Pfeilhöhen f_1 und f_2 und damit als Bogenlängen s_1 und s_2 , sowie als gesamte Bogenlänge s:

$$z_1 = (p'-p_A) \cdot \frac{x}{8} = \frac{G_1}{2H} \cdot \frac{x}{4}$$
 und

* Speziell für Q = \mathfrak{P}' $\mathfrak{P}'' = 0$ folgt: $p' = p'' = p^*$ $p_A + p' = p_A + p^* = 2 p_1$ und $p_B + p'' = p_B + p^* = 2 p_2$ $2 (p_2 - p_1) = p_B - p_A$ $H_0 = \frac{G}{p_B - p_A} = \frac{G}{2 (p_2 - p_1)}$

Geht die Parabel oder die Kettenlinie K_0 für die Belastung G, sowie die Seilkurve K für die Belastung mit G und Q durch den gleichen Punkt P (= Angriffspunkt von Q), dann gilt für die Poldistanzen H_0 und H:

$$H_0: H = G: (G + 2 Q).$$

$$\begin{aligned} z_2 &= (p_B - p'') \cdot \frac{l - x}{8} = \frac{G_2}{2H} \cdot \frac{l - x}{4}. \\ f_1 &= \frac{x}{d_1} \cdot z_1 \quad \text{und} \quad f_2 = \frac{l - x}{d_2} \cdot z_2 \\ s_1 &= d_1 + \frac{8}{3} \cdot \frac{f_1^2}{d_1} \quad \text{und} \quad s_2 = d_2 + \frac{8}{3} \cdot \frac{f_2^2}{d_2} \\ s &= s_1 + s_2 \end{aligned}$$

Ferner ergeben sich als Zugkräfte in den Punkten A, P, B, M, und M,:

$$zu \ \widehat{AP} \colon \begin{cases} S_A = H \,.\, \sqrt{1 + p_A{}^2} \\ S' = H \,.\, \sqrt{1 + p'^2} \\ S_1 = {}^1/_2 \,(S_A + S') \end{cases} \quad zu \ \widehat{PB} \colon \begin{cases} S'' = H \,.\, \sqrt{1 + p''^2} \\ S_B = H \,.\, \sqrt{1 + p_B{}^2} \\ S_2 = {}^1/_2 \,(S'' + S_B) \end{cases}$$

Hieraus erhält man mit den Abkürzungen

$$v = \frac{S_2}{S_1}$$
 und $\Delta S = S_2 - S_1$

für die mittlere Zugkraft S vom ganzen Seil:

$$S = \frac{s_1 \cdot S_1 + s_2 \cdot S_2}{s_1 + s_2} = \frac{S_1 + v \cdot (S_1 + \Delta S)}{1 + v}, \text{ also}$$
$$S = S_1 + \frac{v}{1 + v} \cdot \Delta S,$$

woraus für die mittlere Zugspannung o folgt:

$$\sigma = \frac{S}{F}$$
.

Dieser Seilkurve K für die Belastung mit G und Q stellen wir endlich noch gegenüber die kettenlinienförmige Seilkurve K' mit der Belastung G, der Seilneigung p_A ', der Seillänge s' und der mittleren Spannung σ .

Alsdann gilt für die Seillängen s_0 und s_0 im spannungslosen Zustande der beiden Seile:

$$s = s_0 + \frac{\sigma}{E} \cdot s_0, \text{ also } s_0 = s \cdot \frac{E}{\sigma + E} = s - s \cdot \frac{\sigma}{E + \sigma}$$

$$s' = s_0' + \frac{\sigma'}{E} \cdot s_0', \text{ also } s_0' = s' \cdot \frac{E}{\sigma' + E} = s' - s' \cdot \frac{\sigma'}{E + \sigma'}$$

Unter Benützung der Haupttabelle B zeichnen wir nun Kurven $\eta=f(\xi)$, wobei als Abszissen ξ die in jener Tabelle zu grunde gelegten Neigungen p_A' und als Ordinaten η die zugehörigen Funktionen z', s', $S_{A'}$ und $S_{B'}$ gewählt werden, zu

denen dann noch die aus s' und σ' berechneten Längen s_{σ}' treten. Die Kurve $s_{\sigma}' = f(p_A')$ liefert als Abszisse zu dem Kurvenpunkt mit der Ordinate s_{σ} die Neigung p_A' derjenigen Seilkurve für die Belastung mit G allein, welche infolge des Hinzutretens der in P (x, y) angreifenden Verkehrslast Q in die Seilkurve K übergeht.

b) *Anwendung*. Bei der Luftseilbahn in Starkenbach besteht die Verkehrslast Q aus:

dem Gewicht des leeren Wagens: $Q_1 = 70 \text{ kg}$ und einer maximalen Nutzlast: $Q_2 = 200 \text{ kg}$, womit wird: $Q_1 + Q_2 = Q_1 = 270 \text{ kg}$. Dabei ist das Seilgewicht: $Q_1 = 270 \text{ kg}$. $Q_2 = 270 \text{ kg}$. $Q_3 = 270 \text{ kg}$. $Q_4 = 270 \text{ kg}$. $Q_5 = 270 \text{ k$

Um für unser Rechnungsbeispiel mit $g = 1,00 \text{ kg/m}^1$ und l = 800 m das gleiche Größenverhältnis zwischen Eigengewicht und Verkehrslast zu erhalten, wählen wir für letztere:

$$Q = \frac{1,00}{1,03} \cdot \frac{800}{935}$$
. $270 = \frac{270}{1,20} = 225$ oder rund **230** kg.

Da für die Praxis nur die Bestimmung der maximalen Beanspruchung ein direktes Interesse hat, ziehen wir im folgenden nur die ungünstigste Belastung in Betracht. Aus den Untersuchungen unter II, 1, b, ergibt sich, daß dieselbe für $x=\frac{l}{2}$ eintreten wird.

Nun ist bei dem nur mit seinem eigenen Gewichte belasteten Seile unter Zugrundelegung der Kettenlinie als Seilkurve: für $t=-4\,^{\circ}$ C:

$$p_A = 27.5^{0}/_{0}$$
 mit $z = 25.340$ m.

Tritt zum Eigengewicht G=865 kg noch eine in P=M angreifende Verkehrslast Q=230 kg, dann wird der Seildurchhang z jedenfalls erheblich größer werden. Wir machen deshalb für letztern die drei Annahmen:

$$z = 32,00;$$
 40,00; 48,00 m.

In der nachfolgenden Tabelle: Seilkurven-Berechnung ist für $x=\frac{l}{2}=400$ m und z=32,00 m die Berechnung der Kurve und der Zugkräfte vollständig durchgeführt, während in der "Zusammenstellung" die Ergebnisse für alle drei Annahmen für z aufgeführt sind.

Tabelle "Seilkurven-Berechnung" siehe Seite 16.

Seilkurven-Berechnung.

stand	Seildurchhang z			m	8 1 58 88	32.00	32.00		
Gegenstand	1 = A P	2 = PB	3 = APB	No.	1	2	3		
Längen	$x_1 = x = \frac{l}{2}$		$x_1 + x_2 = l$	m	400	400	800		
	$y_1 = y = \frac{h}{l}x_1 - z$	$\boldsymbol{y}_{2}=\boldsymbol{h}\!-\!\boldsymbol{y}_{1}$	$y_1 + y_2 = h$	m	128	192	320		
	$d_1 = \sqrt{x_1^2 + y_1^2}$	$d_{2} = \sqrt{x_{2}^{2} + y_{2}^{2}}$	$d_1 + d_2 = [d]$	m	419.98	443.69	863.67		
Neigungen	$p_1 = \frac{y_1}{x_1}$	$p_2 = \frac{y_2}{x_2}$	$\Delta p = p_2 - p_1$	_	0.32	0.48	0.16		
	$G_1 = \frac{d_1}{[d]} \cdot G$	$G_2 = G - G_1$	G	kg	420.6	444.4	865		
	$\Delta p_1 = \frac{G_1}{2 \text{ H}}$	$\Delta p_2 = \frac{G_2}{2H}$	$2 H = \frac{G + 2 Q}{\Delta p}$		0.0509	0.0536	8280		
	$p_A = p_1 - \Delta p_1$	$\mathbf{p''}\!=\!\mathbf{p_2}\!-\!\Delta\mathbf{p_2}$	Н	-	0.2691	0.4264	4140		
	$\mathbf{p'} = \mathbf{p_1} + \Delta \mathbf{p_1}$	$\mathbf{p_B} {=} \mathbf{p_2} {+} \Delta \mathbf{p_2}$	Q		0.3709	0.5336	230		
Seillänge	1	$z_2 = \Delta p_2 \cdot \frac{x_2}{4}$,	m	5.09	5.36			
	$f_1 = \frac{x_1}{d_1} \cdot z_1$	$f_2 = \frac{x_2}{d_2} \cdot z_2$		m	4.84	4.84			
	$f_{1} = \frac{x_{1}}{d_{1}} \cdot z_{1}$ $s_{1} = d_{1} + \frac{8}{3} \cdot \frac{f_{1}^{2}}{d_{1}^{2}}$	$s_2 = d_2 + \frac{8}{3} \cdot \frac{f_2^2}{d_2}$	$s_1 + s_2 = s$	m	420.13	443.83	863.96		
Zugkräfte	$S_{A} = H \cdot \sqrt{1 + p_{A}^{2}}$ $S' = H \cdot \sqrt{1 + p'^{2}}$ $S_{1} = \frac{1}{2} (S_{A} + S')$	$S''=H.\sqrt{1+p''^2}$	$v = \frac{s_2}{s_1}$	kg	4284	4508	1.056		
	$S' = H \cdot \sqrt{1 + p'^2}$	$S_B = H \cdot \sqrt{1 + p_B^2}$	$\Delta S = S_2 - S_1$	"	4408	4684	250		
	$S_1 = \frac{1}{2}(S_A + S')$	$S_2 = \frac{1}{2}(S'' + S_B)$	$S = S_1 + \frac{v}{1+v} \cdot \Delta S$	"	4346	4596	4474		

Zusa	mmenste	ellung.

Seildurchhang z	No. m	a 32	b 40	c 48
$y = \frac{h}{2} - z$	m	128	120	112
H	kg	4140	3312	2760
$S_{\mathbf{A}}$	77	4284	3405	2818
S_{B}	"	4684	3812	3222
S	n	4474	3590	3000
$\sigma = \frac{S}{F}$	kg/cm²	4181	3355	2804
s s	m	863.96	865.27	866.88
$\Delta s = \frac{\sigma}{E + \sigma} \cdot s$ $s_0 = s - \Delta s$	3 9	4.78	3.86	3.22
$s_0 = s - \Delta s$	n	859.18	861.41	863.66

Anderseits erhält man aus den Angaben für die Kettenlinien-Seilkurve in der Haupttabelle B für die Seillänge s'_0 :

p' _A	0/0	20	221/2	25	26	28	30
g'	kg cm ²	2137	2446	2860	3066	3584	4308
s'	m	866.06	865.01	864.10	863.78	863.20	862.72
$\Delta s' = \frac{\sigma'}{E + \sigma'} \cdot s'$ $s'_0 = s' - \Delta s'$	m	2.45	2.80	3.28	3 52	4.11	4.93
$s_0' = s_0' - \Delta s_0'$	m	863.61	862.21	860.82	860.26	859.09	857.79

(Fortsetzung folgt.)

Standesfragen.

Der Vorstand des Verbandes angestellter Grundbuchgeometer unterbreitet seinen Mitgliedern das gedruckte Protokoll der Konferenz vom 12. September a. p. zwischen dem Schweizerischen Grundbuchamte, dem Zentralvorstande des Schweizerischen Geometervereins und den Vorständen seiner beiden Gruppen betr. Arbeits- und Lohnfrage im Geometerberufe.

Trotzdem nach diesem Protokoll die Forderungen der An-