Zeitschrift: Schweizerische Zeitschrift für Vermessungswesen und Kulturtechnik =

Revue technique suisse des mensurations et améliorations foncières

Herausgeber: Schweizerischer Geometerverein = Association suisse des géomètres

Band: 17 (1919)

Heft: 7

Artikel: Statik der Luft-Seilbahnen

Autor: [s.n.]

DOI: https://doi.org/10.5169/seals-185585

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 17.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

nung der Teilungen ist es hier möglich, den aus der trigonometrischen Berechnung zu entnehmenden Wert log D direkt verwenden zu können.

Beispiel:

Proberechnung:

$\triangle 173 \alpha_1 = -1^{\circ} 31' 49''$	$I_1 = + 1,24$	$I_2 = + 1,33$	$I_1 + I_2 = +2,57$
	ER = + 1,11	ER = + 1,11	$ \begin{array}{c c} 11 + 12 - +2,37 \\ 2 \text{ ER} = +2,22 \end{array} $
$\log D = 3,605,031$	+ 2,35	+ 2,44	+4,79
3	$-S_2 = -$ 2,00	$-S_1 = -2,00$	$-(S_1 + S_2) = -4,00$
. 174	+ 0,35	+ 0,44	+0,79
$\triangle 174 \alpha_2 = +1^{\circ} 31' 13''$		D. $tg \alpha_2 = +106,90$	$\frac{D \cdot (\alpha_1 + \alpha_2)}{\alpha_1 + \alpha_2} = -0.70$
$\alpha_1 + \alpha_2 = - \qquad 36''$	$h_1 = -107,25$	$h_2 = +107,34$	$\varphi \cdot \cos^2 \alpha$
8	$h_1 + h_2 =$	= +0.09	$h_1 + h_2 = +0.09$

Zürich, im Juni 1919.

W. Leemann.

Statik der Luft-Seilbahnen.

Von C. Zwicky, Professor an der Eidgen. Technischen Hochschule Zürich.

(Fortsetzung.)

Damit folgt dann ferner für einen beliebigen Zwischenpunkt P, sowie speziell für die Bogenmitte M:

Punkt	P	M (11)
Abszisse	$x = x_A + \Delta x$	$x = x_A + \frac{l}{2}$
Argument	$\varphi = \varphi_{A} + \frac{\Delta x}{a}$	$\varphi = \frac{1}{2} (\varphi_A + \varphi_B)$
Neigung	$p_P=\operatorname{Sin} \varphi$	$p_M = \operatorname{\mathfrak{Sin}} \varphi$
Bogenstück	$\Delta s = a (p_P - p_A)$	$\Delta s = a \cdot (p_M - p_A)$
Steigung	$\Delta y = a \left(\operatorname{\mathfrak{Cos}} \phi - \operatorname{\mathfrak{Cos}} \phi_A \right)$	$\Delta y = a (\mathfrak{Cos} \varphi - \mathfrak{Cos} \varphi_{A})$
Seildurchhang	$z_{\rm P} = \frac{h}{l} \cdot \Delta x - \Delta y$	$z = \frac{h}{2} - \Delta y$
	66 A	

b) Indirekte Bestimmung der Kettenlinie aus l, h und p_A . Durch die Neigung $p_A = \sin \varphi_A$ sind zunächst auch $\varphi_A = \mathfrak{Ar}$ Sin p_A und \mathfrak{Cos} φ_A gegeben. Sodann ergibt sich für das unbekannte Argument φ_B mittelst der Neigung p der Sehne AB:

$$p = \frac{h}{l} = \frac{a \cdot (\cos \varphi_B - \cos \varphi_A)}{a \cdot (\varphi_B - \varphi_A)} = \frac{\cos \varphi_B - \cos \varphi_A}{\varphi_B - \varphi_A} = p^{(12)}$$

Hieraus folgt dann:

$$\mathfrak{Cos} \ \varphi_{B} - p \cdot \varphi_{B} = \mathfrak{Cos} \ \varphi_{A} - p \cdot \varphi_{A} \tag{13}$$

d. h. das Argument φ_B ist so zu bestimmen, daß der Funktionswert $F_B = \text{Cos} \ \varphi_B - p \cdot \varphi_B$ mit dem durch p_A festgelegten Wert F_A übereinstimmt.

Zur Orientierung über die ungefähre Größe von φ_B können nun folgende zwei Ueberlegungen benutzt werden:

Bei relativ kleinem Seildurchhang z weicht die Form der Kettenlinie nur wenig ab von derjenigen der Parabel für die gleichen Daten *l*, h und p_A; daher liefert die Endneigung p'_B der letztern Kurve einen guten Näherungswert für die Neigung p_B der Kettenlinie. Man erhält daher:

$$p'_B = 2p - p_A$$
 und $\varphi'_B = \mathfrak{Ar} \mathfrak{Sin} p'_B$.

Da ferner das Seilstück \widehat{MB} steiler und folglich länger und schwerer ist als das Seilstück \widehat{AM} , so schneiden sich bei der Kettenlinie die Endtangenten t_A und t_B in einem Punkte U mit

$$x_U > x_A + \frac{l}{2}$$
, so daß man setzen kann: $x_U = x_A + \frac{l}{2} + u$.

Damit ergibt sich aus dem Linienzug AUB für die Steigung h

$$h = \left(\frac{l}{2} + u\right) \cdot p_A + \left(\frac{l}{2} - u\right) \cdot p_B$$

Anderseits gilt bei der Parabel aus ATB in Fig. 2ª:

$$h = \frac{l}{2} \cdot p_A + \frac{l}{2} \cdot p'_B$$

Hieraus folgt dann:

h - h = o = u.p_A +
$$\frac{l}{2}$$
 (p_B - p'_B) - u.p_B', also
p_B = p'_B + 2. $\frac{u}{l}$. (p_B - p_A) und $u = \frac{l}{2} \cdot \frac{p_B - p'_B}{p_B - p_A}$ (14)

Die Endneigung p_B der Kettenlinie ist somit etwas größer als diejenige bei der Parabel; demgemäß muß dann auch sein:

$$\varphi_B > \varphi'_B$$
.

Wir wählen nun für das Argument φ einige rundzahlige Werte, deren Minimalwert ungefähr mit φ'_B übereinstimmt. Die

zugehörigen Funktionswerte \mathfrak{Cos} φ können dann direkt aus der Tafel der Hyperbelfunktionen abgelesen werden. Damit berechnen wir die Ausdrücke: $F = \mathfrak{Cos} \varphi - p \cdot \varphi$, woraus dann φ_B als dasjenige Argument gefunden wird, für welches $F_B = F_A$ wird. Hiemit ist nun die Aufgabe auf das unter a) beschriebene Problem zurückgeführt.

Nach dem gleichen Verfahren könnte natürlich auch φ_A gefunden werden, wenn p_B statt p_A gegeben wäre.

Wenn endlich statt h oder l die Bogenlänge s gegeben wäre, so daß dann $\frac{s}{l} = q$ oder $\frac{s}{h} = r$ bekannt wäre, so würde man analog erhalten:

$$\begin{split} q &= \frac{\text{Sin } \phi_B - \text{Sin } \phi_A}{\phi_B - \phi_A}, \text{ also Sin } \phi_B - q \cdot \phi_B = \text{Sin } \phi_A - q \cdot \phi_A \\ r &= \frac{\text{Sin } \phi_B - \text{Sin } \phi_A}{\text{Cos} \phi_B - \text{Cos} \phi_A}, \quad \text{"Sin } \phi_B - r \cdot \text{Cos} \phi_B = \text{Sin } \phi_A - r \cdot \text{Cos} \phi_A \end{split}$$

V

Anwendungen der Kettenlinien-Seilkurven.

1. Ueber Interpolationsrechnungen.

Beim numerischen Rechnen mit den Hyperbelfunktionen sind je nach den dabei benützten Tabellen (Hütte oder Ligowski) für die Interpolationen verschiedene Methoden anzuwenden. Hier- über soll im nachfolgenden ein kurzer Ueberblick geboten werden:

a) Allgemeines. Bei einer stetigen, im übrigen aber ganz beliebigen Funktion y = f(x) seien für die n + 1, der Größe nach geordneten Argumentswerte x_0 , x_1 , ... x_n die Funktionswerte y_0 , y_1 ... y_n gegeben. Alsdann gibt es eine ganze Funktion n^{ten} Grades z = g(x), bei welcher für die obigen n + 1 Argumentswerte x_i die Werte z_i mit den entsprechenden Werten y_i vollständig übereinstimmen; daher werden im ganzen Bereich $x_0 < x < x_n$ die Unterschiede y - z um so kleiner ausfallen, je größer einerseits die Zahl n und je kleiner anderseits das Intervall $x_n - x_0$ ist, so daß dann z an Stelle von y gesetzt werden kann.

Schreibt man nun zur Abkürzung

$$\varphi(x) = (x - x_0) \cdot (x - x_1) \cdot (x - x_2) \cdot \dots \cdot (x - x_n)$$
o gilt nach der Interpolationsformel von Lagrange:

so gilt nach der Interpolationsformel von Lagrange:

$$y = \sum_{i=0}^{i=n} \left\{ \frac{y_i}{\left(x_i - x_0\right).\left(x_i - x_1\right)...\left(x_i - x_{i-1}\right).\left(x_i - x_{i+1}\right)...\left(x_i - x_n\right)} \cdot \frac{\phi\left(x\right)}{x - x_i} \right\}$$

b) Parabolische Interpolation. Speziell für n=2 wird z=g(x) eine ganze Funktion 2. Grades von x und ihr graphischer Ausdruck ist eine Parabel mit vertikaler Achse. Deren Gleichung hat die Form:

$$g(x) = \alpha' + \beta'. x + \gamma'. x^2,$$

welche mit $x = x_0 + \Delta x$ übergeführt werden kann in

$$g(x) = \alpha + \beta . \Delta x + \gamma . \Delta x^{2}$$
 (15)

Es sei nun noch speziell: $x_1 - x_0 = x_2 - x_1 = a$. Alsdann bilden wir aus den drei Funktionswerten z_0 , z_1 und z_2 , welche mit den gegebenen Werten y_0 , y_1 und y_2 von f(x) identisch sind, die Differenzen

$$y_1 - y_0 = D_0$$
, $y_2 - y_1 = D_1$ and $D_1 - D_0 = d_0 = 2 \delta$.

Damit erhält man bezüglich der ganzen Funktion z=g(x) für alle möglichen Werte von $x=x_0+\Delta x$:

$$g(x) = y_0 + (D_0 - \delta) \cdot \frac{\Delta x}{a} + \delta \cdot \left(\frac{\Delta x}{a}\right)^2$$

Bei der tatsächlich vorliegenden Funktion y = f(x) sei allgemein $x_{i+1} - x_i = a = \text{konstant}$, während die Differenzen $D_{i+1} - D_i = d_i$ unter sich nur kleine Unterschiede aufweisen, was in der Regel bei relativ kleinen Beträgen von a der Fall sein wird. Unter diesen Voraussetzungen wird dann für $x_0 < x < x_2$, d. h. für $0 < \Delta x < 2a$, die Funktion y = f(x) hinreichend mit z = g(x) übereinstimmen, so daß man nun auch setzen kann:

$$y = y_0 + (D_0 - \delta) \cdot \frac{\Delta x}{a} + \delta \cdot \left(\frac{\Delta x}{a}\right)^2.$$
 (16)

Ist statt des Argumentes $x = x_0 + \Delta x$ der Funktionswert $y = y_0 + \Delta y$ gegeben, so erhält man für das erstere aus (16) — falls δ eine relativ kleine Größe darstellt:

$$\frac{\Delta x}{a} = \frac{\Delta y}{D_0 - \delta} - \frac{\delta}{D_0 - \delta} \cdot \left(\frac{\Delta y}{D_0 - \delta}\right)^2 \tag{17}$$

Setzt man nun ferner: $x' - x_0 = x'' - x' = x''' - x'' = \dots = \frac{a}{n}$ und außerdem: $y' - y_0 = \Delta y_0$, $y'' - y' = \Delta y'$, $y''' - y'' = \Delta y''$, ..., dann erhält man für die Bestimmung von y', y'', y'''...:

$$y'-y_{0} = \Delta y_{0} = (D_{0}-\delta) \cdot \frac{1}{n} + \frac{\delta}{n^{2}}$$

$$\Delta y'-\Delta y_{0} = \Delta y''-\Delta y' = \dots = \Delta^{2} y = 2 \cdot \frac{\delta}{n^{2}}$$
(18)

c) Lineare Interpolation. Wenn sich unter b) speziell ergibt: $D_0 = D_1 = D$, was bei hinreichend kleinem Argumentsintervall a in der Regel der Fall sein wird, dann wird $d_0 = 0$ und damit auch $\delta = 0$ und $\gamma = 0$.

Damit gehen die Gleichungen 15) bis 18) über in:

$$\frac{g(x) = \alpha + \beta \cdot \Delta x; \quad y = y_0 + D \cdot \frac{\Delta x}{a}; \frac{\Delta x}{a} = \frac{\Delta y}{D}}{\Delta y_0 = \Delta y' = \Delta y'' = \dots = \Delta y = \frac{D}{n}}$$
(19)

d) Beispiel. Aus den sechsstelligen Logarithmen der Zahlen $x_0=500, x_1=510, x_2=520 \text{ und } x_3=530, \text{ wobei } d_0=-167 \text{ und } d_1=-160 \text{ wird, erhält man für } y=\log 505, \text{ also zu}$ $\frac{\Delta x}{a}=\frac{5}{10}=\sqrt[1]{2}$

direkt aus der Logarithmentafel: y=2.703291 durch parabolische Interpolation (nach 16): $y^*=2.703291$ " lineare " " 19): $y^{**}=2.703273$ y^* ist somit genau richtig, während y^{**} um 18.10^{-6} zu klein ist.

2. Berechnung von φA und φB nach der "Hütte".

Für die Kettenlinie No. 1 ist gegeben: $p_A=0.20=\sin\phi_A$; hiezu gehört bei der Parabel die Endneigung: $p'_B=0.60=\sin\phi'_B$.

Nun ist nach den Tabellen der Hütte (I. Abteilung, Seite 30 bis 31):

No.	Argument		$y = \operatorname{Sin} \varphi = p_P$		y = C 0	β φ	$y = F = \mathfrak{Cos} \varphi - p.\varphi$	
	φ	p. φ	у	D	у	D		
A	0.19 0.20 0.21		0.1911 0.2013 0.2115	102	1.0181 1.0201 1.0221	20 20		
В	0 56 0.57 0.58	0.224 0.228 0.232	0.5897 0.6014 0.6131	117	1.1609 1.1669 1.1730	60	0.9369 0.9389 0.9410	20 21

Aus
$$p_A = 0.20$$
 und $p'_B = 0.60$ folgt nach obiger Tabelle: $0.19 < \varphi_A < 0.20$ und $0.56 < \varphi'_B < 0.57$.

Bei allen drei Funktionen y sind die Differenzen D jeweils ganz oder nahezu gleich groß; somit kann überall linear interpoliert werden. Hiemit erhält man nun:

$$\begin{split} \phi_{A} &= \phi_{0} + \frac{\Delta y}{D} \text{. a} = 0,19 + \frac{89}{102} \text{. 0},01 = \underline{0.1987} = \phi_{A} \\ \text{Cos } \phi_{A} &= y_{0} + D \text{. } \frac{\Delta \phi}{a} = 1,0181 + 0,0020 \text{. 0},87 = \underline{1.0198} = \underline{\text{Cos}} \phi_{A} \\ F_{A} &= \text{Cos } \phi_{A} - p \text{. } \phi_{A} = 1,0198 - 0,0795 = \underline{0.9403} = F_{A} = F_{B} \\ \phi_{B} &= \phi_{0} + \frac{\Delta F}{D} \text{. a} = 0,57 + \frac{9403 - 9389}{21} \text{. 0},01 = \underline{0.5767} = \phi_{B} \\ \underline{p_{B}} &= \text{Sin } \phi_{B} = 0.6092 \quad \text{und} \quad \text{Cos } \phi_{B} = 1.1710. \end{split}$$

3. Berechnung von φ_A und φ_B nach Ligowski.

Diese Tafeln geben die Funktionswerte $\sin \varphi$ und $\cos \varphi$ mit dem gleichen Arguments-Intervall a=0,01 auf sechs Dezimalstellen genau an.

No.		$y=\operatorname{\mathfrak{Sin}} \varphi=p_{\mathbf{p}}$			$y=\mathfrak{Cos}\ \phi$			$y = F = \mathfrak{Cos} \varphi - p \cdot \varphi$		
	φ	у	D	d	у	D	d	у	D	d
A	0.20	0.191 145 0.201 336 0.211 547 0.221 779	10 191 10 211 10 232	20 21	1.018 104 1.020 067 1.022 131 1.024 298	1963 2064 2167	101			
В		0.601 371 0.613 070 0.624 831 0.636 654	11 699 11 761 11 823	62 62	1.166 896 1.172 968 1.179 158 1.185 465	6072 6190 6307	118 117	0.938 896 0.940 968 0.943 158 0.945 465	2072 2190 2307	118 117

Hier sind nun die Differenzen D ziemlich verschieden, dagegen deren Unterschiede d nahezu gleich groß; daher muß parabolisch interpoliert werden:

$$\begin{array}{c} A: \\ \Delta y = y - y_0 = 0,20 - 0,191\ 145 = 8855; \\ D_0 - \delta = 10\ 191 - \frac{1}{2}\ .\ 20 = 10\ 181\ ; \\ \frac{\Delta y}{D_0 - \delta} = 0.86\ 976; \ \frac{\delta}{D_0 - \delta} = 0.000\ 982; \ \frac{\delta}{D_0 - \delta}\ .\left(\frac{\Delta y}{D_0 - \delta}\right)^2 = \\ = 0.00\ 074. \\ \underline{\varphi_A = 0.198\ 690}. \\ \\ \mathfrak{Cos}\ \varphi_A = 1.018\ 104 + (1963 - \frac{1}{2}\ .\ 101)\ .\ 0.8690 + \frac{101}{2}\ .\ 0,8690^2 \\ = \frac{1.019\ 804}{0.940\ 328} \\ B: \\ \varphi_0 = 0.57; \ \Delta y = F_A - F_{0.57} = 0,001\ 432; \\ D_0 - \delta = 10^{-6}\ .(2072 - \frac{1}{2}\ .\ 118) = 0.002\ 013; \\ \varphi_B = 0.57 + \frac{1432}{2013}\ .\ 0,01 - \frac{59}{2013}\ .\left(\frac{1432}{2013}\right)^2 \cdot 0,01 = 0.576\ 965 = \varphi_B \\ \mathcal{P}_B = \mathfrak{Sin}\ \varphi_B = 0.609\ 513 \quad \text{und} \quad \mathfrak{Sos}\ \varphi_B = 1.171\ 113. \\ \text{Rechenprobe:}\ F_B = \mathfrak{Sos}\ \varphi_B - p\ .\ \varphi_B = 0.940\ 327 = F_A\ . \\ \mathcal{M}: \\ \varphi_M = \frac{1}{2}\ (\varphi_A + \varphi_B) = 0.387\ 828; \ p_M = 0.397\ 594; \\ \mathfrak{Sos}\ \varphi_M = 1.076\ 143. \\ \end{array}$$

4. Vollständige Berechnung der Kettenlinie No. 1.

Nach Ermittlung der Argumente φ und der Funktionen $\mathfrak{Sin}\ \varphi$, $\mathfrak{Sos}\ \varphi$ für die Punkte A, B und M handelt es sich nun noch darum, die Konstante a, die Bogenlänge s und den Seildurchhang z für M zu berechnen, wobei die Mitbestimmung der Steigung h eine Rechenprobe liefert.

In der nachfolgenden Tabelle sind die diesbezüglichen Berechnungen einerseits mit den Ergebnissen unter 2. und anderseits mit denjenigen unter 3. durchgeführt. Daraus ergibt sich dann noch bezüglich der Bogenlängen \widehat{AM} und \widehat{MB} , sowie hinsichtlich der Lage des Schnittpunktes U der Endtangenten t_A und t_B :

$$\widehat{AM} : \widehat{MB} = (p_M - p_A) : (p_B - p_M) = 1 : 1,0725$$

$$u = \frac{l}{2} \cdot \frac{p_B - p'_B}{p_B - p_A} = 400 \cdot \frac{9513}{409513} \text{ also } u = \underline{9,29} \text{ m.}$$

Bezüglich der Genauigkeit der Resultate erkennt man: ein Fehler von \pm 1.10⁻⁴ in $\frac{s}{a}$, $\frac{h}{a}$ und $\frac{\Delta y}{a}$ hat einen Fehler von 0,212 m bei s, h und z zur Folge, wenn die Tabellen der Hütte benützt werden. Nach Ligowski sind dagegen s, h und z nur mit einem Fehler von 0.002 m behaftet.

	mit einem Fenier von 0.002 in benaitet.									
Н	yperbelfunktionen au	s:	Н	ütte	Ligowski					
	Zahlengattung	Num.	Log.	Num.	Log.					
	$\varphi_{\mathbf{A}}$		0.1987		0.198 690					
te a	$\varphi_{\mathbf{B}}$	_	0 5767		0.576 965	30				
Konstante	$\frac{l}{a} = \varphi_{\rm B} - \varphi_{\rm A}$		0.3780	9.57 749	0.378 275	9.577 808				
Kon	l	m	800.00	2.90 309		2.903 090				
	$a = l : \frac{l}{a}$	m	2116.4	3.32 560	2116.864	3.325 282				
S	$p_{A}=\operatorname{\mathfrak{Sin}} \phi_{B}$	-	0.20 00		0.200 000					
änge	$p_B = \mathfrak{Sin} \; \phi_B$	-	0.60 92		0.609 513					
Bogenlänge	$\frac{s}{a} = p_B - p_A$		0.40 92	9.61 194	0.409 513	9.612 268				
Bo	$h = a \cdot \frac{h}{a}$	m	866.04	2.93 754	866.064	2.937 550				
h	Cos φ _A	_	1.0198		1.019 804					
ıng 1	Co3 φ _B	-	1.1710		1.171 113					
Steigung	$\frac{h}{a} = \cos \varphi_{B} - \cos \varphi_{A}$		0.1512	9.17 955	0.151 309	9.179 865				
S	$s = a \cdot \frac{s}{a}$	m	320.00	2.50 515	319.998	2.505 147				
	$\varphi = \frac{1}{2} \left(\varphi_{A} + \varphi_{B} \right)$		0.3877		0.387 828					
	$p_M=\operatorname{Sin} \varphi$	_	0.3975		0.397 594					
e M	Cos φ	-	1.0761		1.076 143					
ımitt	$\frac{\Delta y}{a} = \cos \varphi - \cos \varphi_A$	-	0.0563	8.75 051	0.056 339	8.750 809				
Bogenmitte M	$\Delta y = a \cdot \frac{\Delta y}{a}$	m	119.15	2.07 611	119.149	2.076 091				
е е	$\frac{h}{2}$	m	160.00		159.999	-				
a	$z = \frac{h}{2} = \Delta y$	m	40.85		40.850					

5. Rechnungsergebnisse für die Kettenlinien No. 1, 2 und 3.

	Neigungen			Längen				
No.	P _A °/o	20 4 MANO 1		s m	h m	z m	u m	
1	20	39.7594	60.9513	866,064	319.998	40.850	9.29	
2	25	39.8662	55.5311	864.102	320.001	30.485	6.96	
3	30	39.9415	50.2350	862.720	320.001	20.221	4.64	

Gegenüber den Parabeln mit den gleichen Beträgen der Neigung p_A sind somit bei den Kettenlinien die Funktionen p_B , s und z etwas größer, dagegen p_M etwas kleiner.

(Fortsetzung folgt.)