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La photographie aura, sur le croquis, le grand avantage
d'indiquer suffisamment bien le relief du terrain et les détails

marquants, pour que les propriétaires puissent aisément reconnaître

leurs propriétés et en fixer les limites.

Un agrandissement approprié peut être facilement obtenu
de manière à ce qu'on puisse faire figurer sur la photographie
une numérotation parcellaire analogue à la numérotation cadastrale

ou la désignation succincte des propriétaires.

Il nous paraît donc que, sans calculs compliqués et sans
conditions spéciales, la photographie par avions peut remplacer,
avantageusement et à bon compte, la confection des croquis,
et que son utilisation dans le domaine du Registre foncier peut
certainement rendre de grands services. Ch. Rœsgen.

Eine Ausgleichungsaufgabe.
Unter dem Titel „Bestimmung einer Geraden aus den

gemessenen Koordinaten ihrer Punkte" behandelt Professor Eggert
in Heft 1 des Jahrganges 1918 der deutschen „Zeitschrift für
Vermessungswesen" eine Ausgleichungsaufgabe, die deswegen
ein gewisses theoretisches Interesse bietet, weil sie Anlaß gibt,
auf einen wichtigen Grundsatz bei der Behandlung von
Ausgleichungsaufgaben hinzuweisen.

Wir werden auch Gelegenheit haben, die Eggert'schen
Ergebnisse noch etwas weiter zu führen, und eine, wie es uns
scheint, nicht ganz unwesentliche Interpretation jener Ergebnisse
zu leisten.

Wir stellen uns folgende Aufgabe:
In der Ebene sind n Punkte gegeben, welche auf einer

analytischen Kurve von bekanntem Charakter liegen sollen. In

Bezug auf ein beliebig gewähltes rechtwinkliges Koordinatensystem

werden die Koordinaten x und y jener n Punkte
gemessen. Die Gewichte dieser Koordinatenmessungen für den
Punkt Xj, yi seien p( und p'i. Durch eine Ausgleichung nach
der Methode der kleinsten Quadrate sollen die wahrscheinlichsten

Werte der Konstanten in der Gleichung der vorliegenden
Kurve bestimmt werden.

Für einen Punkt x, y. der auf unserer Kurve liegt, gelte
die Gleichung
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F (A, B, C x, y) 0, (1)
wobei A, B, C Konstante sind.

Für einen Kreis z. B. würde die Gleichung (1) lauten:
(x—A)2-t-(y—B)2-C2 0,

wobei A und B die Koordinaten des Mittelpunktes, C der
Radius des Kreises sind.

Für einen allgemeinen Kegelschnitt aber könnte die
Gleichung z. B. in folgender Form geschrieben werden :

x2-t-By2-t-2Cxy + 2Dx + 2Ey + F 0,
oder auch

A'x2 + B'y2 + 2C'xy + 2D'x + 2E'y +1=0.
Bezeichnen wir die wahrscheinlichsten Verbesserungen der

gemessenen Koordinaten des Punktes Pi mit vi und v'i, so werden

die wahrscheinlichsten Koordinaten dieses Punktes bezeichnet

mit:
Xi Xi + Vi; Yi yi + v,. (2)

Wir erhalten nun folgende n Bedingungsgleichungen:
F (A, B, C Xl + vlf y, + v',) 0,
F' (A, Bi C x, + v„ y2 + V.) 0, (3)

F (A, B, C x„ + vn, y„ + v'„) 0.

Schon verschiedentlich sind das vorliegende und ähnliche
Probleme in der Weise zu lösen versucht worden, daß man den
Ansatz für den Punkt Pj folgendermaßen machte:

F (A, B, C....X,, y0 v,

und daß man dann [Vj Vi]~" zu einem Minimum machte.

So geht z. B. Professor R. Schumann in „Bestimmung einer
Geraden aus den gemessenen Koordinaten ihrer Punkte" vor,
veröffentlicht in den Sitzungsberichten der Kaiserlichen Akademie
der Wissenschaften in Wien, Mathematisch-naturwissenschaftliche
Kl. Abt. IIa, 125. Band, 10. Heft, 1916, Seiten 1429-1466.

Dieser Ansatz widerspricht dem Grundsatze der Methode
der kleinsten Quadrate, daß die Verbesserungen v der gemessenen

Größen, deren Gewichte mit p bezeichnet werden mögen,
der Bedingung [pvvj Minimum unterworfen werden sollen;
es geht also nicht an, irgend welche Funktionen der gemessenen
Größen mit v zu bezeichnen, und dann diese v der bekannten

Minimumsbedingung zu unterziehen. Gewiß läßt sich unter Um-
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ständen beweisen, daß ein solcher Ansatz in Uebereinstimmung
mit der korrekten Anwendung der Methode der kleinsten
Quadrate zu bringen ist (wir werden Gelegenheit haben, so etwas
für unsere Aufgabe zu beweisen), aber a priori ist ein solcher
Ansatz zu verwerfen.

Um unsere Bedingungsgleichungen (3) linear zu machen,
wählen wir für die Koeffizienten A, B, C Näherungswerte
A0, B0, C0 von denen wir voraussetzen wollen, daß sie

nur um Größen von der Ordnung der Messungsfehler von den
wahrscheinlichsten Werten abweichen.

A A0-f-JA; B B„ + JB; C C0 + JC (4)

Entwickeln wir jetzt die Funktionen (3) nach dem Taylor'-
schen Satze, wobei wir voraussetzen, daß wir die höhern Glieder

dieser Entwicklung vernachlässigen dürfen, so erhalten wir
zunächst für die erste Gleichung:

F (A0 + JA, B„ + J B, C0 + JC, x, + ylf y, + v'J

iÄrA+'*BJB (61)

Ao, Bo, Co, xi, yi
3 F »? F 3 F

+ — JC + + — Vj+.r- v'1 0.
3C 3 x 1 3 y

1

Wir setzen zur Abkürzung:
F (Au, B0, C„, x„ y,) w,

'" (^n> Bu, L„,
3F\
3A/Ao,Bo,Co,

• Xn y„ VVn

/dF

3F

3C

Ao, Bo, Co,

• xi. yi

xi, yi

Ao, Bo, Co,

Ao, Bo, C",... Xi, yi
Ci

3F\
3 B/ A,o Bo, Co,

3 F

3C Ao, Bo, Co,.

a„
Xn yn

b„
•Xn, yn

C„
¦ Xn, yn

Ao, Bo, Co,

\3 X/ Ao, Bo, Co,,

xi, yi

• Xn, yn

f.
xi,yi

f'„
Bo, Co,. Xn, >'n

(5)
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und erhalten damit aus (3) folgende n linearen Bedingungs
gleichungen :

wt + a]JA + b1JB + qJC + +ilv1 + f'1v'1=0
ws + a2 JA + b2 JB -t- c, JC ¦+- + f.2 v, + f, v', 0

w„ + anJA + b„JB + c„JC + T invn + f'„ v'„ 0

(6)

Unter Beachtung dieser Bedingungsgleichungen (6) haben
wir nach der Methode der kleinsten Quadrate [p v v] + [p' v, v]
zu einem Minimum zu machen. Damit ist unser Problem zurückgeführt

auf die allgemeinste Aufgabe der Methode der kleinsten
Quadrate, wie sie z. B. Helmert in seiner „Ausgleichungsrechnung

nach der Methode der kleinsten Quadrate", Leipzig 1907,
2. Auflage, Seite 285 u. ff., ausführlich behandelt.

Die in unserm Problem auftretenden Bedingungsgleichungen

(6) stellen aber einen relativ einfachen Spezialfall des

allgemeinen Problèmes dar, indem jede Bedingungsgleichung nur
zwei Verbesserungen enthält, und jede Verbesserung nur in einer
Bedingungsgleichung auftritt. Dieser Umstand erlaubt uns, eine
einfache Lösung zu erhalten.

Da es sich um eine Minimumsaufgabe ([pvv] + [p'v'v'j
Minimum) mit den Nebenbedingungen (6) handelt, so bilden
wir, unter Zuhilfenahme von unbestimmten Koeffizienten Kt,
K2 Kn (Korrelaten) die zusammengesetzte Funktion :

$ [p v v] +[p'V'V]
— 2 K, (w, + a, J A + b, J B + c, J C + + f, v, + f, v',)
— 2 K., (w. + a, J A + b, J B + c, J C + + f., v2 + f'a v's)

'

(7)

— 2 K„ (w„ + a„ J A + b„ J B + c„ J C + + f„ v„ + f'„ y'„
und setzen:

3 d> 3 d> 3 4>

0; rr^ 0; 777^ 0;
3 (JA) ' 3(JB) ' 3(JC)

3 d> 3 <1> 3 d>

0; 0; 0;3 V, 3 V2 3 Vn

3 d>
0.

3(6 3d?

,- 0; ,- 0;..,3v 3v 3v'„
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Dies liefert folgende Gleichungen:

a, K, + a, K. + + a„ K„ 0

b, K, + b2 K2 + + b„ Kn 0 (8)

c, K, + c2 K2 + + c„ Kn 0

Pl Vl fl K. J P-2 V-2 — k K, ; • • • • pn Vn f„ Kn

p', v', i\ K, ; p', V2 f'„ K, ; p'„ v'„ f'„ K„ (9)

Setzen wir die aus den Gleichungen (9) folgenden Werte
für die v und v' in die Gleichungen (6) ein, so erhalten wir:

A f, P, f'i \
w, + al JA + bt JB + c, JC + + -1— + -^-J K, 0

/ff f P \
w2 + a2 JA + bä JB + c., JC -t- + -- + ^t^ K2 0

V P2 P 2 /
¦ (10)

/ fn f„ Pn Pn \
wn + an JA + b„ JB + Cn JC + ....+ - -H —- K„ 0

V P.n Pn /
Wir setzen zur Vereinfachung:

1 1

[lA + Iili ~~gi' Lk. + Mi
~~ g"

P, P'l P» P'2
1 (11)

ff f f S"
'n 'n |

1 n ' n

Pn P'n
und erhalten damit aus (10):

K, =— a,g, JA -b1g1 JB — c,g, JC — w, gt
K, -a2g2JA-b2g, JB-c2g2 JC-w.g, (12)

Kn — an gn J A — b„ gn J B — C„ gn J C — Wn gn

Setzen wir die Werte von (12) in die Gleichungen (8) ein,
so erhalten wir nach Multiplikation mit — 1 :

[a a g] J A + [a b g] JB + [a c g] J C + + [a w g] 0

[a b g] J A + [b b g] J B 4- [b c g] J C + + [b w g] 0 (13)
[a c g] J A + [b c g] J B + [c c g] J C + + [c w g] 0

Damit ist die Aufgabe gelöst. Da die Gleichungen (13)
Normalgleichungscharakter haben, nennen wir sie die
Normalgleichungen der JA, JB, JC,
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Wir setzen

f,v, -T-P, V', — -*l Gewicht g.
f2v2 + P» V's — -** Gewicht g2 (14)

fn V„ + f'n V'n — Xn Gewicht gn
Da die x und y beobachtungstechnisch voneinander

unabhängig sind, können wir aus diesen Gleichungen die mittleren
Fehler und damit die Gewichte der X nach dem Gauß'schen

Fehlerfortpflanzungsgesetz berechnen. Da das Gewicht von vx pv
von v'j p', ist, so erhalten wir:

m? f,2 m.2 -f- f,2 m'.2
1

wo m,2 — ; m',2 ~~, wenn u. der mittlere Fehler der Ge-
P, P,

wichtseinheit ist; also folgt:
A f, PiP, \m? u.2 1 woraus weiter folgt:x' V P, p, J

\r2 1

Gewicht von X, yy — — —y- g,
Inx, itii 4_ Llìj

Pi P'i
gemäß Gleichung (11).

Analog wird das Gewicht von X2 gleich g2 etc. Dies haben
wir bei den Gleichungen (14) schon angedeutet.

Unter Beachtung der Gleichungen (14) ergeben die
Gleichungen folgendes:

Xt Wj + a, J A + b, J B +• c, J C, Gewicht g,
X2 w2 + a2 J A + b2 J B + c3 J C, Gewicht g2'

(15)
Xn — wn + an JA + b„ JB + Cn JC, Gewicht gn

Fassen wir diese Gleichungen (15) als Fehlergleichungen
einer vermittelnden Ausgleichung mit den Unbekannten JA,
JB, JC auf und geben ihnen die respektiven Gewichte g,,
go. • • • gn, wie wir das schon bei den Gleichungen (15)
angedeutet haben, so erkennen wir, daß wir nach diesem Vorgang
dieselben Normalgleichungen (13) erhalten wie früher.

Das Gleichungssystem (15), das mit n fingierten
Beobachtungen operiert, deren Verbesserungen X,, X2 Xn, deren
Gewichte die Größen g,, g2 g„ gemäß den Gleichungen (11)
sind, ist total äquivalent den ursprünglichen 2 n Beobachtungen
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x. Yi. x> Y«. • • • xn yn mit den Gewichten p,, p',, p.,, p'2,

pn, p n, indem es den Unbekannten JA, J B, JC, dieselben
Werte und Gewichte gibt, wie die ursprünglichen Beobachtungen,
was aus der Identität der Normalgleichungen folgt.

Nachdem dieser Beweis geleistet ist, können wir jetzt unsere
Aufgabe viel einfacher lösen, indem wir von den Gleichungen (15)
unter Beachtung der Gleichungen (11) für die Gewichte
ausgehen. Aber erst jetzt sind wir dazu berechtigt, nachdem die
korrekte Anwendung der Methode der kleinsten Quadrate uns
diesen Weg weist. In diesem Sinne sind unsere früheren
Bemerkungen aufzufassen.

Gehen wir von den Gleichungen (15) aus, so können wir
nach der Auflösung der Normalgleichungen (13) die numerischen
Werte der X,, X2, X„ durch Einsetzen der JA, JB, JC
berechnen. Es stellt sich uns dann noch die Aufgabe, mit Hilfe
dieser Größen auch die Verbesserungen v und v' der ursprünglichen

Beobachtungen x und y zu berechnen. Aus den
Gleichungen (14) und (9) erhalten wir:

1. fi Pi Pr
-lLK1 + ^-LKI -X,

P, Pi

f fn P P
~ Kn H ~ K n= — Xn

Pn P n

woraus unter Beachtung von (11) folgt:
K, - \ g, ; K2 -X., g,; K„ - X„ g„ (16)
Damit erhalten wir aus (9) :

f, P,
v, — - g, K ; v, - — g, Xj

Fl V 1

U Po

vs — - g, X, ; V2 - —- g2 Xä (17)
Vi V o

fn
^

P„
Vn — ~ gn X„ ; V'„ — — gn X„

Pn P n
Es ist also:

/f.2 p,2\

/f 2 f 2\

Pn V„2 + p'n V'„2 g„2 Xn2 — + — gn X„2
\Pn P n/
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Daraus erkennt man :

[pw] + [p'vV] [gXX] (18)

Der mittlere Fehler der Gewichtseinheit wird daher:

^ ]/Tp __± [yVvi i AiTxj
(19)

V n — u »v n — u

wo u die Anzahl der Unbekannten JA, JB, JC, ist.
Bis hieher sind wir im wesentlichen dem eingangs zitierten

Artikel von Professor Eggert in der deutschen „Zeitschrift für

Vermessungswesen" gefolgt.
Für die fingierten Verbesserungen X vermögen wir nun eine

einfache geometrische Bedeutung nachzuweisen, womit das

Ergebnis erst ins rechte Licht gesetzt wird.
Bezeichnen wir den Abstand des Punktes Pi mit den

Koordinaten Xi, yi von der durch die Ausgleichung gelieferten
Kurve F (A, B, C, x, y) 0 mit pi, so können wir leicht
zeigen, daß

Xi pi vV + Pi2 ist. (20)

Der Abstand d des Punktes x(, y( von einem beliebigen
Punkte x, y der Kurve F (A, B, C, x, y) 0 ist

d2 (Xi-x)2 + (yi-y)2.
Soll dies in den Abstand des Punktes x,, yf von der Kurve

übergehen, so muß x, y so gewählt werden, daß d2 ein Minimum

wird.
Wir bilden daher die zusammengesetzte Funktion

W (xj -x)2 + (y, -yf-2KF (A, B, C, x, y)
und setzen

dW 3«F
— 0 — 0.
3x 3y

Bezeichnen wir den auf der Kurve laufenden Punkt x, y,
der das Minimum von d2, d. i. p2 erzeugt, mit Xj, yi, so
haben wir:

x,-x, + K(r-)_ _ 0. yi-y + K —)_ _ =0. (21)

V3x/xi,yi ^y'xi.yi
Dazu kommt noch die Gleichung

F(A, B, C, ...7,,7,) 0

da der Punkt Xi, y; auf der Kurve liegt.
(Schluß folgt.)


	Eine Ausgleichungsaufgabe

