Zeitschrift: Schweizerische Zeitschrift für Vermessungswesen und Kulturtechnik =

Revue technique suisse des mensurations et améliorations foncières

Herausgeber: Schweizerischer Geometerverein = Association suisse des géomètres

Band: 17 (1919)

Heft: 4

Artikel: Distanzreduktion für die trigonometrische Höhenmessung gegen

Kirchtürme etc.

Autor: Ganz, J.

DOI: https://doi.org/10.5169/seals-185576

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 11.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Distanzreduktion für die trigonometrische Höhenmessung gegen Kirchtürme etc.

Bekanntlich werden die direkten Zielungen gegen die Zentren der bisweilen umfangreichen Kugeln und Knöpfe auf Türmen um so unsicherer, je näher der Beobachtungsstandpunkt beim Zielpunkt liegt. Darum wählen unsere Trigonometer oft den dem Beobachter zugekehrten, nächsten Randpunkt des Kugelwulstes oder die deutlich sichtbare Lötstelle zwischen den beiden Kugelhälften, als Zielpunkt und haben damit eine genau definierte Höhenmarke, die in den meisten Fällen zugleich der Höhenlage von Kugelmitte entspricht und sowohl von tiefern wie auch von höhern Beobachtungstandpunkten aus immer gesehen werden kann. Die Wahl dieser exzentrischen Zielmarke bedingt aber für die Berechnung des Höhenunterschiedes eine Verkürzung der aus den Koordinatenwerten von Standpunkt und Kugelmitte gerechneten Distanz D um die Größe des Radius r der Kugel. Die Berechnung dieser Verkürzung, beziehungsweise der Länge der zur Höhenrechnung nötigen Distanz d kann am einfachsten geschehen, wenn der horizontale Parallaxwinkel a der Kugel vom betreffenden Standpunkte aus bekannt ist.

Es ist dann:
$$r = D \sin \frac{\epsilon}{2}$$

 $d = D-r$
oder $d = D \left(1 - \sin \frac{\epsilon}{2}\right)$

In den nachstehenden Tabellen sind für neue (zentesimale) und alte (sexagesimale) Kreisteilung die logarithmischen Werte des Faktors $\left(1-\sin\frac{\epsilon}{2}\right)$ für Parallaxwinkel ϵ von 0-1 Grad sechsstellig berechnet. Die Werte können in Formular Nr. 13 für die Berechnung der Höhenunterschiede direkt als Additionslogarithmen dem log D beigeschrieben und zu diesem und dem log tang α und den übrigen logarithmischen Korrektionsgliedern addiert werden. Diese Summe ist dann der Logarithmus der Höhendifferenz von der Horizontaldrehachse des Theodoliten bis zum Zielpunkt.

Es wäre wünschenswert, wenn die Reduktionstafeln nicht nur für kürzeste Distanzen, sondern überhaupt für alle jene Beobachtungen von Höhenunterschieden gegen Kugelzielpunkte zur Anwendung kämen, bei denen der Kugelwulst, beziehungsweise die Lötstelle der Kugel noch deutlich gesehen werden kann. Ihre Einfachheit rechtfertigt eine weitgehende Anwendung. Einzige Voraussetzung für den Gebrauch ist nur die Beobachtung des horizontalen Parallaxwinkels der Kugel vom betreffenden Standpunkt aus.

Additionslogarithmen für Parallaxwinkel in zentesimaler Teilung.

εc	0 c	1 c	2c	3c	4c	5c	6c	7c	8c	9c	P. P.		
()c	0.00 0000	9965	9932	9 898	9864	9 830	9795	9761	9727	9693		34	35
10c	9.99 9659	9625	9591	9556	9522	9488	9454	9420	9385	9351	10cc	3.4	3.5
20c	9317	9283	9249	9214	9180	9146	9112	9078	9043	9009	20	6.8	7.0
30c	8975	8941	8907	8872	8838	8804	8770	8736	8701	8667	30	10.2	10.5
40c	8633	8599	8565	8530	8496	8462	8428	8394	8359	8325	40 50	13.6	14.0 17.5
50c	8291	8257	8223	8188	8154	8119	8085	8051	8017	7982	60	20.4	21.0
60c	7948	7914	7880	7845	7811	7776	7742	7708	7674	7640	70	23.8	24.5
70c	7605	7571	7537	7503	7468	7434	7400	7365	7331	7296	80	27.2	28.0
80c	7262	7228	7194	7159	7125	7090	7056	7022	6988	6953	90	30.6	31.5
90c	6919	6885	6850	6816	6781	6747	6713	6678	6644	6609			

Additionslogarithmen für Parallaxwinkel in sexagesimaler Teilung.

ε'	0,	1'	2'	3'	4'	5'	6'	7'	8'	9'		P. P.	
515			-		0 -				2	10 T C	2	63	64
						-				-5.	10"	10.5	10.7
0'	0.00 0000	9937	9874	9810	9747	9684	9621	9558	9494	9431	20"	21.0	
10'	9.99 9368										30"	31.5	
204		8672									40" 50"	42.0 52.5	550
30'	8101	8038	7974	7910	7847	7784	7720	7656	7593	7530	1"	1.0	1.1
40'	7466	7402	7339	7275	7212	7148	7084	7021	6957	6894	2"	2.1	2.1
50'	6830	6766	6703	6639	6575	6511	6448	6384	6320	6257	3"	3.2	3.2
							= 1				4"	4.2	4.3
					71						5"	5.2	5.3
										tan	6"	6.3	6.4
											7"	7.4	7.5
						9 8					8"	8.4	8.5
	7			-			- 2				9"	9.5	9.6