Zeitschrift: Schweizerische Geometer-Zeitung = Revue suisse des géomètres

Herausgeber: Schweizerischer Geometerverein = Association suisse des géomètres

Band: 12 (1914)

Heft: 9

Artikel: Präzisions-Polygonzüge zur Ergänzung der Triangulation IV. Ordnung

Autor: Frey, M.

DOI: https://doi.org/10.5169/seals-183109

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

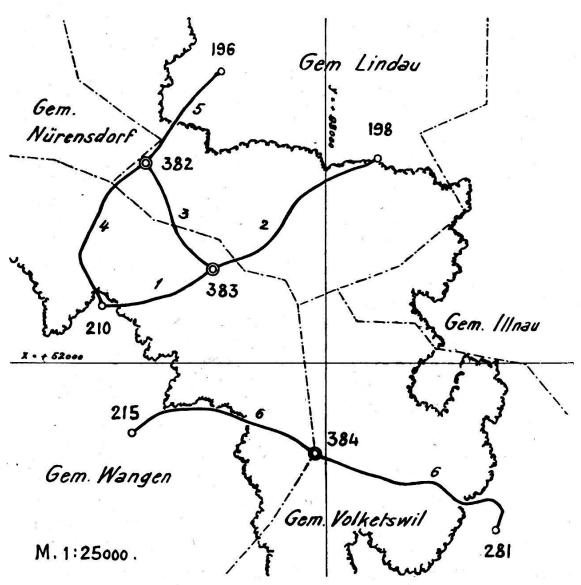
Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 17.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

rigsten Ordnung mit den kleinsten Distanzen zu bestimmen. Praktisch ist es jedoch durch präzises Arbeiten möglich, eine Genauigkeit zu erreichen, die den Anforderungen der Toleranzen der IV. Ordnung völlig genügt. Im Gebiete des Kantons Zürich ergab sich bei 30 Neupunkten ein mittlerer Punktfehler von \pm 2,0 cm bei im Mittel 3 bestimmenden Distanzen von durchschnittlich je 3,6 km.


Die erreichte Genauigkeit, die gute Versicherung uud die Aufstellung von Dienstbarkeitsverträgen und Eintragung derselben in die Grundbücher allein genügen nicht, den Zweck der Triangulationen vollkommen zu erfüllen. Das erstehende Werk wird vielmehr nur dann von bleibendem Werte sein, wenn zugleich auch der Erhaltung der Versicherung der trig. Punkte durch die zuständigen Organe der Kantone die volle Aufmerksamkeit geschenkt wird.

In der nächsten Nummer soll über die bisherigen Ertahrungen mit den nach eidg. Vorschriften ausgeführten Grundbuchtriangulationen IV. Ordnung referiert werden.

Präzisions-Polygonzüge zur Ergänzung der Triangulation IV. Ordnung.

Im Gebiet der Sektion "Katzensee-Greifensee" der Triangulation IV. Ordnung des Kantons Zürich, welche bekanntlich durch dem kantonalen Katasterbureau zugeteilte Trigonometer in Regie ausgeführt wird, liegen zwei je zirka 500 ha grosse, getrennte Waldkomplexe. In dem ersten, südlich Kloten liegenden Wald stossen 6 Gemeinden zusammen, von denen Dietlikon und Wallisellen in Vermessung begriffen sind. In der zweiten, östlich Wangen liegenden, in unserer Figur dargestellten Waldung treffen sich die Grenzen von 5 Gemeinden, von denen nur Wangen in Arbeit ist, während der Zeitpunkt des Beginns der Vermessung in den andern Gemeinden noch nicht festgelegt ist.

Um nun den Geometern, welche die Vermessungen der vorerwähnten Gemeinden im Akkord übernommen haben, das Messen von langen Anschlusszügen zu ersparen und ausserdem eine möglichst einwandfreie Bestimmung der Polygonpunkte im Innern des Waldes zu ermöglichen, wurden durch das kantonale Katasterbureau in der Nähe der Gemeindegrenzen Knotenpunkte bestimmt. Im Klotener Wald kreuzen sich 6 von Signalen an der Waldperipherie ausgehende Züge an 2 unter sich verbundenen Knotenpunkten. Im Wangener Wald wurden ebenfalls 2 unter sich verbundene Knotenpunkte festgelegt, ein weiterer Punkt wurde in der Mitte eines 2 km langen Polygonzuges bestimmt, da eine seitliche Verknotung durch günstige Züge nicht möglich war. (Siehe Figur.)

Anmerkung: In der Figur bedeuten:

O Triangulations-Punkte;

Motenpunkte;

P In der Rechnung den Knotenpunkten benachbarte Polygonpunkte. Sämtliche Züge wurden auf Waldwege gelegt, was ein sorgfältiges Messen der Seiten gestattete. Letztere wurden möglichst lang gewählt (Maximum 311 m, Minimum 60 m), um die Winkelgenauigkeit zu steigern.

Die Seiten wurden mit 5 m-Latten doppelt gemessen, welche am Anfang und am Schluss der Seitenmessung abgeglichen wurden. Neben der Lattenkorrektion wurden noch berücksichtigt

die Projektionsverzerrung für
$$x = +50 \text{ km}$$
; $\left(v = \frac{x^2}{2 \text{ R}^2}\right)^*$, die

Reduktion auf den Meereshorizont für
$$H = 460 \text{ m}$$
; $\left(r = \frac{\text{H.D}}{\text{R}}\right)$

und die regelmässigen Messungsfehler mit -1 cm pro 100 m. Die letztere Konstante stützt sich auf früher gemachte Erfahrungen. Die angestellten Untersuchungen haben dann ergeben, dass im vorliegenden Falle der regelmässige Fehler um 1,7 mm zu gross gewählt worden ist, d. h. nur 10-1,7=8,3 mm beträgt.

Die Winkel wurden mit einem 4 Zöller Repetitionstheodoliten 4 mal gemessen mit Ablesen an beiden Nonien und Messen des Ergänzungswinkels. (Art. 29, Pag. 42 der eidg. Instruktion.) Auf die Verwendung eines Zentrierapparates konnte mit Rücksicht auf die Länge der Seiten verzichtet werden.

Obschon also weder bei der Seiten- noch bei der Winkelmessung ausserordentliche Massnahmen angewendet wurden, sind die erreichten Resultate gut und bleiben weit innerhalb der Toleranzen für die Instruktion I, wie sich aus untenstehender Tabelle ergibt.

Die Berechnung der Knotenpunkte erfolgte nach dem von Gauss angegebenen Verfahren: "Die Berechnung mehrerer Knotenpunkte nach dem Verfahren für einzelne Punkte" (Gauss, II. Teil, 3. Auflage, § 117). Die Ausgleichung des einfachen Zuges 6 (Wangen), der den grössten linearen Schlussfehler zeigt, erfolgte nach dem gewöhnlichen Verfahren und nach Gauss (§ 114). Die auf diese zwei Arten erhaltenen Koordinaten von △ 384 weichen 13 mm von einander ab.

^{*} Siehe Projektionssystem der schweiz. Landesvermessung, S. 35.

Zusammenstellung der Abschlussfehler in Prozenten der Toleranzen nach Instruktion I z=1 ' \sqrt{n} ; is. =0.005 $\sqrt{s}+5$ cm.

	Verhältnis in Prozenten	\$ # \$	29	27	∞	∞	10	23	24	11 22 21	= 18 %	. 6	18	=	6	9	61	= 19 %
	Toleranz	шш	216	208	232	214	251	174	209	37	8	127	152	127	148	115	272	- I
5. 2.	Länge des Zuges	Ш	1095	626	1331	1071	1613	612	1017	i.e.		647	926	650	875	533	1972	я
	Linearer Schlussfehler	шш	63	55	18	18	. 26	40	20		35	Ė	27	14	13	7	167	_
+ s Λ coo.o = .sı , u /	Verhältnis in Prozenten		4	19	2	91	16	21	27		. = 15%	5	10	9	30	26	39	. = 19%
V 1 = 7	Toleranz		2.65	2.83	3.46	3.00	3.32	2.24	2.83		Kloten	2.65	3.00	3.16	3.16	2.45	4.00	Vangen
e a	Anzahl Winkel		7	8	12	6	11	ည	∞		ben Züge bei Klot	7	6	10	10	9	16	chs Züge bei V
	Gesamt- Winkelfehler	•	0.11	0.55	0.16	0.48	0.53	0.47	0.77		Durchschnitt der sieben Züge	0.13	0.29	0.19	0.94	0.63	1.55	Durchschnitt der sechs Züge bei Wangen
100	Zug Nr.	2 0	-	2	က	4	ည	9	7		Durch		2	က	4	2	9	Durct

	Endgültige Werte	2	500		a s	, s		*		8	84 P				83.88.21				37.73.16	
	i c	; ;	+ 2.52	-2.64	0.12	2	- 9.3	+ 10.8	- 1.6	-0.1						1		V.		8
$- P_2$	Λ	>	+ 18	-24			— 93	+ 64	- 23				٠		u r			8		55
d © 382	L & C	7 o d	1.12	5.50	6.62	e e	0.410	0.430	0.242	1.082	0.1	1.12	5.50	0.23	6.85	0.410	0.430	0.258	1.098	
$33 - P_1$ und	Vorläufige Werte	Z	83.88.08	20	83.88.26		37.74.10	72.53	73.40	37.73.17	e.	58 69		88.03	83.88.21			73.35	37.73.16	.48
der Azimute: @ 383	[6]	A	×						2153.85.14	(3)	5		27	-3.85.14		3 (96)	82	+ 3.85.14		a -
der Azi	.d	ı u	0.14	0.11	0.25		0.10	0.17	0.07	0.34	0 140	0.140	0.110	0.077	0.327	0.100	0.170	0.077	4.105	
	nzüge	n			4	141			14	3	82	10		13	3	2	10 #	13	*	2
Berechnung	Rechenzüge	Nr.			1.2			28 3	1.2.3	8			8	3.4.5		96 (0	10 10	1.2.3		ă.
Be	züge	п	7	6		10	10	9		21		,	10 (2	10		D	,*	10	-	N - Jug
#_	Einzelzüge	Nr.	-	2	,	က	4	ಬ	74 - 24 - 34 - 34 - 34 - 34 - 34 - 34 - 3			- (7	က		4	ı rc	က	15	
	Nr. der	Punkte	383—P ₁		*	382—P ₂					- COC	383-F1				382—P ₃			B ₁	

3	Endgültige Wer	y x	8		ï	an an		*		Mar.				2	1		+ 92 535.70				+ 92 167.72	
8					i.	υ	_ 24.7	+ 23.7	- 1.0	+ 14.5	-16.0	0	- 1.5	_ 20.1	+ 29.1	- 11.1	- 2.1	+ 12.0	- 14.9	+ 1.9	0.1 –	
383.		÷				12	91 —	+ 22		+ 15	14	8		- 13	+ 27	-10		=+	— 13	+		
382 und	рбу	poy				61	1.058	0.780	1.838	30.95	3.42	31.82	66.19	1.058	0.780	0.762	2.600	29.40	3.42	31.82	64.64	60
•	Vorläufige Werte	Χ×	+	91 948.28	93 267.77	92 477.73	92 535.686	5.724	92 535.702	92 167.732	7.703	7.717	92 167.717	92 535,686	724	289	92 535.697	92 167.727	703	717	92 167.716	
ung der Koordinaten von	[A V]	[x □]	8	69			+ 587.406	-732.046	0	- 367.970	+ 219.423	-310.013				+ 367.970	10	367.970				
	0001		8				1.543	1.077	2.620	0.968	1.142	1.873	3.983	1.543	1.077	1.110	3.730	1.090	1.142	1.873	4.105	
Berechn	Rechenzüge	Länge		No.	ă				382	1032	100		251			901	268	918		ű	SX.	
щ	Reche	Ŋ.		15		20			1.2	1.2.3	10					3.4.5		1.2.3				100
12 To	Einzelzüge	Länge					647	929		650	875	533				650	NE AN	650				
	Einze	Nr.		1.4	2	5	. 1	2		က	4	5		_	2	က		က	4	2		
	Nr.	aer Punkte		210	198	196	383		ĮĮ.	382	92	*	ÿ	383				382				

Berechnung der Koordinaten von ⊚ 382 und ⊚ 383.

Nt.	Einze	lzüge	Reche	nzüge	р		VorläufigeWerte				Endgültige W erte
der Punkte	Nr.	Länge		Länge	$\frac{1000}{d}$	[△ y] [△ x]	y x	рбурбу	v.	p. v.	y x
210 198 196	1.4 2 5				3		+ 52 294.42 52 981.10 53 403.84	# # # # # # # # # # # # # # # # # # #	2		
383	1 2	647 929	1.2	382	1.543 1.077 2.620	+ 178.853 - 507.828	52 473.273 3.272 52 473.273				8 8
382	3 4 5	650 875 533	1.2.3	1032	0.968 1.142 1.873 3.983	+ 503.194 + 682.056 427.355	52 976.467 6.476 6.485 52 976.478	64.8 86.8 159.2 310.8	$ \begin{array}{r} -11 \\ -2 \\ +7 \end{array} $	$-10.66 \\ -2.28 \\ +13.11 \\ +0.17$	
383	3 1 2	650	3.4.5	901	1.110 1.543 1.077 3.730	— 503.194	52 473.284 273 272 52 473.276	93.2 112.6 77.5 283.3	+ 8 - 3 - 4	+ 8.88 - 4.63 - 4.31 - 0.06	* s
382	3 4 5	650	1.2.3	918	1.090 1.142 1.873 4.105	+ 503.194	52 976 470 476 485 52 976.478	76.3 86 8 159.2 322.3	— 8 — 2 + 7	$ \begin{array}{rrr} & - & 8.72 \\ & - & 2.28 \\ & + & 13.11 \\ & + & 2.11 \end{array} $	+ 52 976.48

__ 282 -

Die sämtlichen Berechnungen für die Bestimmung der Knotenpunkte 380 und 381 bei Kloten sind aufgelegt in Gruppe 44 der Landesausstellung. Wir lassen hier als Zahlenbeispiel die Berechnung der Punkte 382 und 383 bei Wangen folgen.

Die Versicherung der Knotenpunkte erfolgte in gleicher Weise wie die der Signale IV. Ordnung. Jeder Knotenpunkt ist ferner durch die benachbarten, ebenfalls mittelst Steinen versicherten 4 Polygonpunkte rückversichert. Diese Versicherung ermöglicht auch die Azimutalkontrolle. Die übrigen Bruchpunkte der Polygone sind nur durch Pfähle bezeichnet, da sie speziell dem vorliegenden Zwecke und nicht der Detailaufnahme angepasst wurden.

M. Frey.

Die Berücksichtigung einseitig wirkender Einflüsse bei Lattenmessungen.

Als Korrekturen, welche bei der Messung von Polygonseiten im Instruktionsgebiete I anzubringen sind, werden verlangt:

- 1. die Reduktion der gemessenen Längen auf dem Meereshorizont.
 - 2. Die Projektionsverzerrung.

Erstere bestimmt sich nach der Formel: 1. d = D $\frac{H}{R}$

Letztere ergibt sich als: 2. $k = \frac{X^2}{2R^2}$

Die eine dieser Korrekturen ist in erster Linie abhängig von der Meereshöhe des *Vermessungsgebietes*, letztere von dem Werte der Abscisse derselben. Dieselben lassen sich also von vornherein vermittelst der angenäherten, abgerundeten Werte von H und X für eine ziemliche ausgedehnte Vermessung als für das ganze Gebiet bestimmen, da sie bei ihrer Kleinheit von den für die gewählten Mittelwerte bestimmten Zahlen nur ausserordentlich wenig abweichen. Wir dürfen also für diese beiden Korrekturen zusammen unbedenklich einen konstanten Wert für eine Länge von 100 oder von 10 m einführen und bei der Längenmessung, ohne die Formularspalte auszufüllen, durch eine kleine Kopfrechnung berücksichtigen.