Zeitschrift: Zeitschrift des Vereins Schweizerischer Konkordatsgeometer [ev. =

Journal de la Société suisse des géomètres concordataires]

Herausgeber: Verein Schweizerischer Konkordatsgeometer = Association suisse des

géomètres concordataires

Band: 3 (1905)

Heft: 10

Artikel: Praktische Anwendung der Rechenmaschine "Brunsviga" und der

natürlichen trig. Zahlen zur Berechnung der Polygon- und Kleinpunkte,

Azimuthe, Flächen und Höhen [Fortsetzung]

Autor: Reich, E.

DOI: https://doi.org/10.5169/seals-178687

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 11.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Zeitschrift

des

Vereins Schweizer. Konkordatsgeometer

Organ zur Hebung und Förderung des Vermessungs- und Katasterwesens

Jährlich 12 Nummern. Jahresabonnement Fr. 4. -

Unentgeltlich für die Mitglieder.

Redaktion:
J. Stambach, Winterthur.

Expedition:
Geschwister Ziegler, Winterthur

Praktische Anwendung

der Rechenmaschine "Brunsviga" und der natürlichen trig. Zahlen zur Berechnung der Polygon- und Kleinpunkte, Azimuthe, Flächen und Höhen.

Von E. Reich, Konkordatsgeometer am Katasterbureau Basel.

(Fortsetzung.)

1. Berechnung der Koordinaten der Polygonpunkte.

Der Gang der Rechnung mit der Maschine, auf Beispiel Fig. 2 angewendet, ist folgender: Die gegebene Ordinate y=-11935,072 wird bei h von links nach rechts mit Hülfe der Einstellhebel eingestellt und nachdem der Schlitten entsprechend nach rechts verschoben ist, durch eine Kurbeldrehung im Sinne des Uhrzeigers (vorwärts) auf die rechte Seite des Schlittens gebracht. Die erschienene Zahl 1 auf der linken Seite des Schlittens wird ausgelöscht und bei h von rechts nach links Sinus z=-0,40061 eingestellt und zwar so, daß die Komma übereinander stehen. Die übrig bleibenden Zahlen, noch von y herrührend (11935), werden auf Null zurückgedrängt. Man kann diese Manipulation Vorbereitung nennen, denn für die Höhen- und Kleinpunktberechnungen bleibt sie gleich. Hierauf multipliziert man Sinus z=-0,40061 mit der Distanz 17,245 m (Produkt entspricht

Berechnung der Coordinaten der Polygonpunkte.

	Winkelheft	Benennung der Punkte		ygo inke		Azi	mut z	he	Si	eiter	n					ahlen tionen		(rdir		n		Ab	scis *	sen		Coordinaten- berechuung
	pag.	٠.	g.	c.	сс	g.	c.	c.c	M	leter		8	in.	Z.,	cc	os. Z.	±					E					pag.
144. 30%		16 T	100	2	00	7.3	7.5	92								+++	-		19	36	0.7.2	_	68	,,,	6	504	4.3
			200		00	373				,						162	-	1			987		68		П	03	
	64		298		12			04	1							200	-	. /			0 Z S			09		3	
		44.	200		00			04								200	-	1	19	20	919			08		8 2 2 9 6	
	-	445	299	55		72					1					045	-		19	az.	63 458			07			
		723			00	71	95	78	/_	70	00	09	o e	54	04	263	8 -	4			234			08		39	
		79!	300	oo		3 7 <i>1</i>				34						245	-	1	18	90	7 0 5 6 9 9	_	68	oz	08	83	
-	18		100 371	95	00 18	П			-	7,4	-	29	1				_	1		82	110	_	68		68	34	19
.		30								$\frac{1}{1}$	\prod	Fi,	 - g.	2.	+	+++	_					_					

 $-\Delta y$ im vierten Quadrant liegt. Auf dem Schlitten rechts erscheint die Ordinate für 44'=-11941,981... und auf der linken Seite des Schlittens die weiße Zahl der Seite 17,245. Der berechnete Punkt 44' liegt in der Geraden 16^{14} — 44^2 , die Funktion bleibt, weil fortlaufend gemessen wurde, unverändert und wir haben nur die Zahl links im Schlitten durch vor- und rückwärtsdrehen auf 34,965 zu ergänzen und erhalten die Ordinate von $43^2y=-11949,079$. Hier bricht der Zug, dreht seinen Strahl vom 4. in den 1. Quadrant (++). Die Zahl der Seite 34,965 wird links auf dem Schlitten gelöscht, bei h stellt man Sinus z=+0,90748 ein und multipliziert rückwärtsdrehend, also in

subtrahierendem Sinne, mit der Seite 13,400. Das Produkt $(+0,90748 \times 13,400)$ wird ohne weitere Vorkehrung von der auf dem Schlitten rechts stehen gebliebenen Ordinate (-11949,079) subtrahiert, es kommt die Ordinate y für $44^3 = -11936,919$ rechts zum Vorschein. Hierauf wird durch rückwärts- und vorwärtsdrehen auf 27,560 ergänzt und wir erhalten wiederum eine Ordinate, $44^4 y = -11924,069$ usf. Endlich bei Punkt 30^5 angelangt, erhalten wir die Ordinate y = -11882,110 statt -11882,117, somit eine Differenz von 7 mm, welche den Seiten proportional verteilt wird. Die Berechnung der Abszissen x erfolgt in ganz derselben Weise.

So kompliziert der beschriebene Rechnungsgang erscheinen mag, umso leichter und bequemer ist er bei einiger Übung auszuführen und es würde gewiß keinem gewandten Maschinenrechner mehr einfallen die Polygon-Koordinaten nach irgend einer andern Methode zu berechnen.

Die natürlichen trig. Funktionen Sinus und Cosinus entnehmen wir dem Opus palatinum von Dr. W. Jordan. Die sehr gute Tafel gibt leider nur die natürlichen Zahlen von Sinus und Cosinus in neuer und alter Teilung nebeneinanderstehend an, erstere von 30" zu 30", letztere von 10" zu 10". Hätte Dr. Jordan die natürlichen Zahlen von tang. und cotg. beigefügt, statt der sin. u. cos. der alten Teilung, so wäre seine Tafel für alle möglichen Zwecke brauchbar geworden.

2. Höhenberechnung.

Das Formular für Höhenberechnung wird um zwei Kolonnenvereinfacht, da auch hier die Differenzen $\pm d. tg \, a$ nicht mehr herausgeschrieben werden. Die Produkte $d. tg \, a$ müssen von der jeweils gerechneten Ausgangshöhe, je nach dem $a \pm ist$, aufeinanderfolgend addiert oder subtrahiert werden. Der Gang der Rechnung ist der gleiche wie beim vorigen Beispiel. Für Sig. 27 erhalten wir am Schluß h = 568,82 statt 568,89, also eine Differenz von 0,07 m, welche wieder um proportional den fortlaufend addierten Differenzen verteilt wird.

3. Flächenberechnung aus Koordinaten.

Die Vereinfachung, die die Flächenberechnung aus Koordinaten mittels der Rechenmaschine erfährt, ist auf den ersten Blick

Höhenberechnung.

Benennung der Punkte	- Vorzeichen		Verrikai-Winke		ontal anz.		rig Tạ	j.Z		len	ā	n
10,2 NO 10.07	+11	Gra	Min	11.00		L	_	_	_	_		_
	1			1.7								
Δ 29	+	Ш	20	19	72	4	4	z	1/2	6	563	5.
655	+	4	Z 6	53	43	a	a	z	9	1	577	7/
656		3. .3	2 5	113	52	0	a	55	2	#	581	zi
657		0	±8.	7.3	29	Q.	a	2	5	#	575	55
65A	+	1	5Z	102	78.	a	0	2 4	6	6	575	oá
659	•	_	88	97	68	a	as	29	5	¥	577	54
660		0	66	102	8#	Q.			3	6	580	42
661	1	,	30	92	19	q.	4	5	,	z	58/	52 49
662	1	2	20	165	37	a	23	#	5	z	570	9, 87
663	4	4	35	201	12	0,4	20	1	9	0	565	9 14
664	+	5	23	2/2	66	00	28	2	3	3	560	94 88
665	+	6	15	98 13 9 1	<u>79</u>	9	29	6	9	9	578	39
À 27											568	89
						T					568 Diff. 0	82

ersichtlich. Das Herausschreiben der einzelnen Multiplikationen ist absolut überflüssig und das geisttötende Addieren der mehrstelligen Zahlen fällt ganz außer Betracht. Ferner ließ ich aus Erfahrung die Differenzen der x weg, da eine aufmerksame Berechnung genügt, vorausgesetzt, daß die Differenzen der y richtig gebildet und in bekannter Weise, Summe gleich Null, kontrolliert wurden.

Die Vorteile der Flächenberechnung aus Koordinaten wenden wir sehr nutzbringend bei der Parzellarberechnung an. Die Koordinaten der Grenzpunkte greifen wir zweimal unabhängig von einander mit Hülfe eines extra hiezu konstruierten Winkels (längere Kathete mit Teilung versehen) und einem Lineal vom Plane ab. Die Erfahrungen, die wir mit dieser Berechnungsmethode machten, sind geradezu überraschend. und es mag interessant sein zu erfahren, daß wir die Unsicherheit von 1-2 m² pro Hektare nie überschreiten und demgemäß

den weitgehendsten ökonomischen Anforderungen genügen können.

Es sei noch beigefügt, daß die neuen Basler Stadtpläne auf 2 mm dicken Aluminiumplatten aufgeleimt sind und zwar beidseitig mit Schöllerhammerpapier. Das lästige Ziehen ist dadurch vollständig ausgeschlossen. Die Anwendung dieser Platten steht einzig da und wir können konstatieren, daß dieselben absolut zuverlässig sind und ein Abspringen des Papiers nach unseren mehrjährigen Erfahrungen nicht zu befürchten ist. Die treffliche Eigenschaft, daß das Planpapier unveränderlich bleibt, hat uns dann zu einem vollkommeneren Ausbau der Plankonstruktion geführt. Früher verwendeten wir durchwegs den kleinen Koor-

dinatographen zum Auftragen des Details, aber die Erfahrung hat gelehrt, daß diese Maschinen bei Linien, die länger als sie selber sind, ganz unbefriedigende Resultate liefern, trotz aller Justierung der selben auf die Anlagepunkte. (Planmaßstab 1: 200.)

Diesem Nachteil sind wir mit Erfolg begegnet, indem wir die Koordinaten der nötigen Kleinpunkte rechnen und diese samt den Koordinaten der Polygonpunkte mit dem großen Koordinatographen auftragen mit einem mittleren Fehler von nur 1,5 cm Naturgröße. Die Berechnung dieser Kleinpunkte beschränkt sich auf die angewinkelten Fassadenpunkte, deren wir öfters 60-80 und noch mehr auf einer Aufnahmslinie haben. Es hat sich nun in sehr unliebsamer Weise gezeigt, daß die Berechnungsart anch dem angewendeten Formular

Berechnung des Flächeninhaltes

No.	Ordin	aten.	Absci	
der	(J)	Differenz	(x)	Differenz
Punkte.	±	t	+	±
	-1100000	1111	- 6700000	
P184	_ 24006		69413	- - - -
150	_ 16958	86 17	60273	
., 200	15389	_ 1884	_ 63626	
. 199	_ 15074	4538	66862	
. 195	_ 10851	_/22/8	70064	
. 189	_ 2856	5747	76520	
. 188	5104			
		+ 6850	80789	
	_ 9706	+ 52 33	87772	
187	_ 10337	+ 4775	88728	11:-1:
186		+ 7970	827 98	
. 185	_ 18301	+ 44 32	185 92	
. 1852	_ 189/4	36 66	776/6	
185.	_ 2/973	5092	72687	
. 184	2#006	5015		
		- 30/3	- 69613	
. I.S.Q	_ 16958		- 60273	11:11:
		000		
	1	+309936	2168	
	2 F	5/273	,0850	
	F	= 2 56	39.5	
			7	

Fig. 4.

Fig. 5 für unsere Verhältnisse unempfindlich und sehr umständlich wurde, so daß wir bald wieder zu unseren kleinen Koordinatographen zurückgegriffen hätten, wenn ich nicht den in Fig. 6 und 7 dargestellten Rechnungsgang entdeckt hätte.

4. Berechnung der Koordinaten und Kleinpunkte,

Das in das Formular Fig. 5 eingesetzte Rechnungsbeispiel kann mit dem Rechenschieber wie mit der Maschine durchgeführt werden, nur ist diese Rechnungsart für letzteres Instrument unpraktisch.

Berechnung der Coordinaten der Kleinpunkte.

×		4×	y		43	y	Ļ	⊿y	٤	ΔX		Δy		Ý	,	. 43	•	t	49	۵	x		x		Bemerkungen.
Mater	ŧ	Meter	± M.	ter	± M	eter	±	Meter	Ŧ	Meter	±	Meter	±	Meter	±	Mel	er	ŧ	Meter	± '	Meter	F	Me	1.0	
0 00 21 95 29 06 29 83 31 +: 37 5: 37 5:	+ + + + + + + + + + + + + + + + + + + +	2) 59	- 6 - 5 - 5 - 5 - 5	00 66 65 66 92 93 93		026		Πi		Ш		227		19263 19263 1925 19263 19264 19264 19264 1927	- + + + + + + + + + + + + + + + + + + +	2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		- a +	64	- + + + + + + + + + + + + + + + + + + +	321 1811 032 024 947 19.3		807 807 807 807 807 807	4 8 6 6 7 (5 6 5 3 2 5 6 5 3 2 5 5 2 7 3 6 6 5 3 2 2 3 6 6 5 3 3 2 3 6 6 5 3 3 2 3 6 6 6 5 3 3 2 3 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	Stoin (34-48'
[85B	-	(asa)		00	1	5 9 6 5 9 6		000		1/8	3 .	42	5 12 +	19079	7-		2 6 7	-	00	H	2 ° 3 5 6 7 9 2	*	1.	222	

Fig. 5.

5. Berechnung der Koordinaten der Kleinpunkte. (Mittels der Maschine.)

Berechnung der Coordinaten der Kleinpunkte.

x	ΔΧ	ŋ		Υ Δ y ψδη+φδε		Bemerkungen.		ΔΞ	ŋ	Δŋ	Υ Δ y= \$Δη+φΔ3	Ψ.	- 4a9	Bemerkungen
Meter	+ Meter	+ Meter	± Meter	± Meter	± Meter	i	Meter	+ Meter	+ Meter	+ Meter	± Meter	<u>+</u>	Meter	
+++	1114	442-	P445	+0.42008	H + H + H		} ++++	-			H_{HHH}	Н	HHH	
	9.7	0.90/4	2 21	+0,42000						711				
	ШШ							4444		444	ППП			
000		000		194908	309446	1.44	++++				H_{HHH}	H	HH	
2199	+ 2//9	1 444	+ 666	192633	809197	St. v. 30 "- 44"					•			191
	+ 701	+ 666	1231							Ш	ПШП	П		
2900	1 1 1 1 1 1 1 1			192514	807715		Ш				$H \cap H$	H		
2989	+ 089	566	1001	192433	807677			++++		++++		Ш		
7000	. 000		026									П		
2989	'	592			807653		Ш		4111			Н	Ш	
	+ /55		1001						Hill			П		9
3/44	265	593	337	792304	807587		+++		7111			Ħ		
3409		930		192205	807/70		ШШ					Ц		
	345		360						HIII					3
375#	1 001	_ 570	424	191741	807352	Reizen	HHH		7111		 	H	HH	
3755		146		191562	807736	Stein		71111			ШШ	Ш		
	832		1 146					44444		Ш				
14 587	4587	_\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	++++	190746	8075/9	P44" M.St.	HHH		- - - - - - - - - - - - - -			H	++++	
	- X 1 3 8 7		+1596 -1596	4/62	1927			11111		1111				Į.
	$\sqcup \sqcup \sqcup \sqcup$		0000					41111						
HHHd		-+++		++++++	 		HHH				┡┼┼┼┼	H	++++	
	- 		++++					1 11111						

Fig. 6.

Graphische Darstellung des Rechnungsganges für Formular Fig. 6.

Im Prinzip ist die Rechnung eigentlich nichts anderes, als die Berechnung eines mit rechten Winkeln gebrochenen Polygonzuges. Um den Beweis für die Richtigkeit des Berechnungsprinzipes allgemein verständlich zu erbringen, werde ich das Verfahren, auf unser Beispiel Fig. 6 angewendet, beschreiben.

Gegeben seien die Koordinaten der Punkte

$$P44^{2}$$
 $y = -11949,08; x = -68094,46,$ $P44^{5}$ $y = -11907,46, x = -68075,19.$

Auf der Aufnahmslinie $P44^2$, $P44^5$, sind fortlaufend gemessen die Abszissen x und die zugehörigen Ordinaten $\pm y$. Gesucht die Koordinaten der angewinkelten Punkte, in der Regel Kleinpunkte genannt. Die Abszissenlinie x ist immer positiv, die Ordinaten rechts der Linie ebenfalls positiv und die links der Linie negativ. Hierauf wäre die aus den Koordinaten resultierende Distanz P, $P_2 = S$ zu bestimmen. Eine einfache Lösung ist folgende: Angenommen, es sei die Polygonseite aus den Koordinaten gerechnet gleich S und die direkt gemessene gleich S, die Differenzen beider gleich S, so folgt:

$$d = S - [x]$$
$$S = [x] + d$$

und da das zweite Glied des Binoms gegenüber dem ersten sehr klein

$$S^2 = [x]^2 + 2d[x]$$

woraus folgt:

$$d = \frac{1}{2} \left(\frac{S^2}{[x]} - [x] \right)$$

Wir haben diese Formel deshalb abgeleitet, weil die Bildung von

$$S = \sqrt{\Delta y^2 + \Delta x^2}$$

der Rechenmaschine nicht so leicht zugänglich ist.

 $\frac{S^2}{[x]}$ kann mit der Rechenmaschine rasch gerechnet werden und mit wenig Kopfarbeit ist die Differenz $\pm d$ gerechnet. Die stets kleine Differenz wird proportional auf die Zwischenablesungen der Polygonseite verteilt. Die korrigierte Länge [x] entspricht der Distanz, wie aus den Koordinaten gerechnet.

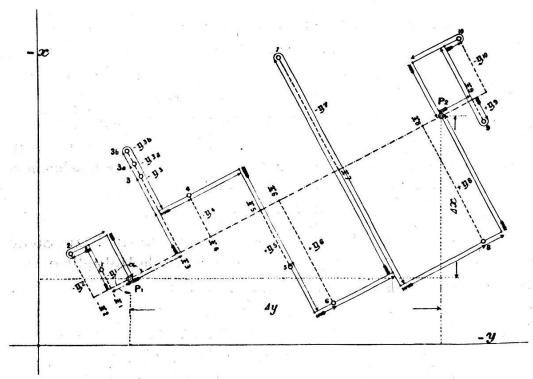


Fig. 7.

Die trigonometrischen Funktionen Sinus φ und Cosinus ψ des Azimuthes der Aufnahmslinie erhalten wir, wenn wir $\frac{\Delta y}{d} = \sin \varphi$ und $\frac{\Delta x}{d} = \cos \psi$ bilden. Der Quotient kann mit der Maschine auf genügend viele Stellen gerechnet werden. Sind noch die Differenzen der gemessenen Abszissen und Ordinaten ausgeführt, so kann mit der eigentlichen Koordinatenrechnung der Kleinpunkte begonnen werden. Bis hieher sind die Vorarbeiten für Formular Fig. 5 wie für Formular Fig. 6 ganz dieselben. Während nun nach Formular Fig. 5 alle Multiplikationen und Additionen $\psi \cdot \Delta y + \varphi \Delta x = \Delta y, \ \psi \cdot \Delta x - \varphi \cdot \Delta y = \Delta x$ herausgeschrieben, nachher zur Probe addiert bezw. subtrahiert und eventuelle Auf- oder Abrundungsfehler verteilt werden müssen, so fällt nach Formular Fig. 6 alle diese unnütze Arbeit fort. Der Rechnungsgang nimmt einen ganz ähnlichen Verlauf wie bei der Polygonzugrechnung.

Die Pfeile in Fig. 7 zeigen deutlich an, wo die Funktionen Sinus φ und Cosinus ψ für ein allgemeines Beispiel gewechselt werden müssen. Nach acht Zick-Zacksprüngen gelangen wir auf die Endordinate $P44^5$ y=-11907.46. Diese letztere Zahl muss ganz genau stimmen, ist es nicht der Fall, so ist ein Fehler passiert.

Wie die y so werden auch die x gerechnet, einzig mit dem Unterschied, dass die Funktionen wechseln und in der Formel x = x, $+ (\phi \cdot \Delta x - \varphi \cdot \Delta y)$ letzteres Produkt stets mit umgekehrtem Vorzeichen in die Rechnung einzuführen ist. Sollte eine falsche Operation vorgekommen sein, so tut man gut alle Zahlen zu löschen. Es wäre nun, um den Fehler zu entdecken, unpraktisch, den Rechnungsgang so zu verfolgen, wie er beschrieben wurde. Zur Kontrolle rechnen wir direkt den vorhergehenden Punkt, von wo an der Fehler vermutlich beginnt, als Schnitt. Die erhaltene Ordinate bezw. Abzisse muss bis auf die letzte Stelle genau stimmen, weil die Rechenmaschine immer alle Multiplikationswerte pflichtgetreu nachschleppt, ohne dem Rechner irgend welche besondere Mühe zu bereiten.

Nach dieser Berechnungsmethode sind ungerechte Differenzenverteilungen ausgeschlossen, ebenso gibt es keine direkten Additionen oder Subtraktionen mehr. Das aufgestellte Formular Fig. 6 nimmt nur die Hälfte Platz des früheren Formulars Fig. 5 ein und erhebt daher Anspruch auf $100\,^{\circ}/_{\circ}$ Papierersparnis, welch letzterer Vorteil ebenso viel $^{\circ}/_{\circ}$ dickleibige Berechnungsbücher entbehrlich macht. Was die Leistungen anbetrifft, so haben sich dieselben gegenüber dem früheren Verfahren Fig. 5 vervielfacht und es kann ein geübter Maschinenrechner in 8 stündigem Arbeitstag die Koordinaten von 250-300 Kleinpunkten rechnen.

Diese bis jetzt vereinzelt dastehende praktische Bestimmung der Koordinaten der Kleinpunkte hat gewiß eine Zukunft, da der Rechnungsgang und die aufzuwendende Arbeit zu einem Minimum gemacht und die Resultate zuverlässig sind. Die Vermarkung der Eigentumsgrenzen und eine entsprechende Aufnahmsmethode könnten noch viel dazu beitragen helfen, die ganze Operation noch einfacher zu gestalten.

6. Berechnung der Azimuthe und Distanzen aus rechtwinkligen Koordinaten.

Dankbare Anwendung findet die Rechenmaschine auch auf dem Gebiete der Azimuth und Distanzberechnungen, vorausgesetzt, daß dem Rechner eine trig. Tafel mit den natürlichen Funktionen von Tangente und Cotangente zur Verfügung steht. Obiges Formular -lehnt sich dem preußischen Formular an und ist ohne das Zahlenbeispiel aus der Anleitung von Herrn Prof. Dr. Koll für

Berechnung Azimuthe & Distanzen aus den rechtwinkligen Koordinater

P_b P_a	Die Koordinaten sind entnommen	s	2.	a	4	,	* 4	ıa	r²	2				la Ca					Δ	3	g .	y x vo	8	-3	Ca	e		s.	x x	-	100	3	y la	ь		50	า ว °	/a '+	6 Ve	2
i		±	T	Т	_	Т	T	Т	Т	1	<u>+</u>	Т	_		-	Т	Т	1	‡	Т	7	Т	T	Т	Г		<u>+</u>	7	Т	1	_	_	T	1	F	0		-	1	,
Δ_//	41		43	3 5	9	2	5	6	1	1	_	6	Z	6	8	5	5	2	+	1		4	5 3	3	2	9	+].	4	52	2 4	34	2 6	1	3	0	2	5	6
ΔΙ	40	Ц	14	2	0	0	0	2	28	3		6	8	2	3	8	8	/	+			10	7 7	5	1	Z	+				5 2	2/	1	8,8	1	8	0	2	5	6
Nº1		/	4	5 2	/	12	20	1	3 5	2	+	-	1	2	0	9	1	8		0	5	14	46	0	6	9		3	/	2	03	3 7	2	2.5		L				
	43		14	2	29	15	1	1	36	2		6	7	8	6	2	8	5	-			3	2	5	9	5	+				3 2	3 2	2	5 2	Ţ	9	8	8	7	1
ΔI	40		14	2	0	20	7.0	25	28	3		6	8	2	3	8	3	4	-		1	1	1	6	6	2	_		1		3	55	7	3.3	1	4	8	8	Z	1
N°2			14	2	3	6	32	2	2	2	-	+	-	3	Z	6	0	4	5	6	7	90	20	3	0	2	_	4	0	3	52	34	26	36	+	L	H		1	-
60									I			1					1														1				-					1

Fig. 8.

Maschinenrechnen entnommen. Der Kontrollrechnung des Azimuthes ist im Formular auch ein berechtigter Platz eingeräumt. Der Kopf des Formulars ist übersichtlich gehalten und gibt genügenden Aufschluß über das sukzessive Vorgehen beim Rechnen.

Die Division $\frac{\Delta y}{\Delta x}$ bezw. $\frac{\Delta x}{\Delta y}$ kann man auf sieben oder noch mehr Stellen, wenn es nötig ist, ausführen. Das Dividieren mit der Rechenmaschine gestaltet sich nur um weniges komplizierter als das Multiplizieren und wird jedermann ohne weitere Anleitung zugänglich sein. Der Quotient $\frac{\Delta y}{\Delta x}$ der stets auf der linken Seite

des Schlittens in roten Zahlen erscheint, entspricht dem natürlichen Wert der Tangente, zu welchem man in der trig. Tafel den zugehörigen Winkel aufschlagen kann. Die Berechnung der SeiteS mit der Rechenmaschine wird im kommenden Kapitel allgemein beschrieben und begründet.

Radizierung.

Um die Quadratwurzel mit der Rechenmaschine vorteilhaft ausziehen zu können, bedienen wir uns eines besonderen, von Prof. Dr. Töpler ersonnenen Verfahrens. Es ist auf bekannte Eigenschaften der arithmetischen Reihe begründet, indem es von der Tatsache ausgeht, daß die Quadrate der Zahlen, von 0 beginnend, eine Zunahme gleich den ungeraden Zahlen 1, 3, 5, 7, 9, 11 u. s. w. zeigen $\left(S = \left(\frac{a+z}{2}\right)^2\right)$. Subtrahiert man also diese ungeraden Zahlen nach einander von der zu reduzierenden Zahl (dem Radikanden), so ergibt die Anzahl der Subtraktionen die

Die für die nachstehenden Beispiele gewählten abkürzenden Bezeichnungen bedeuten:

E = Einstellung der Zahlen bei H mittels der Hebel.

1 K + = Einmalige Kurbelumdrehung in der Additionsrichtung.

1 K - = Einmalige Kurbelumdrehung in der Subtraktionsrichtung.

 $1V \Longrightarrow \text{resp. } 1V \longleftarrow \Longrightarrow \text{Verschiebung des Schlittens um eine}$ Stelle in der Pfeilrichtung.

$$\sqrt{1156} = ?$$

Lösung: E 1156 Da die Stellenzahl der Wurzel nicht feststeht, verschiebe man den Schlitten ganz nach rechts.

$$1K + = 1156$$

gesuchte Wurzel.

Bei allen diesen Aufgaben teile man nach dieser ersten Kurbelumdrehung den im Schlitten erschienenen Radikanden von der Einerstelle aus nach links zu 2 und 2 Stellen ab. Besteht der letzte Zahlenabschnitt aus einer Zahl, so erfolgt die hierunter verdeutlichte Einstellung der Minuenden stets über dieser Zahl, besteht er aus zwei Zahlen, so bestimmt die zweite den Ort der Einstellung, wie bei der vorstehenden Aufgabe. Links die erschienene Zahl 1 löschen.

Zahl der Kurbelumdrehungen = 3
$$\begin{cases} E & \dots & 1 \\ & 1 \, K - = & 10 | 56 \\ E & \dots & 3 \\ & 1 \, K_2 - = & 7 | 56 \\ E & \dots & 5 \\ & 1 \, K_3 - = & 2 | 56 \end{cases}$$

Es hätte jetzt die Einstellung einer 7 zu erfolgen, da 7 aber nicht von 2 subtrahierbar ist, ist der erste Teil der Rechnung beendet. Die Anzahl der bisher ausgeführten Kurbelumdrehungen gibt die erste Ziffer der gesuchten Wurzel an. Das Resultat erscheint im linken Teile des Schlittens. Die erste Stelle der Wurzel

(in diesem Falle 3) wird nun verdoppelt und die so ermittelte Zahl 6 wird an Stelle der zuletzt eingestellten Zahl 5 eingestellt; außerdem wird rechts neben der 6 eine 1 eingestellt. Nach Verschiebung des Schlittens um eine Stelle (* sind jetzt in ähnlicher Weise wie vorher die Zahlen 61, 63, 65 und so weiter so lange zu subtrahieren, bis eine weitere Subtraktion nicht mehr ausführbar ist. Dies tritt nach der vierten Kurbelumdrehung ein. Die Rechnung geht ohne Rest auf; die gesuchte Wurzel ist demnach = 34. Aus der Fortsetzung des oben begonnenen Schemas ist deutlich zu erkennen, wie dieser Vorgang sich auf der Maschine vollzieht.

Erste Stelle der Wurzel = 3. Verdoppelt und 1 angehängt = 61

Resultat: 34.

Das Verfahren ist ausserordentlich einfach und führt sehr schnell zum Ziele. Es ist sowohl der Radizierung mittels Logarithmen, als namentlich dem gewöhnlichen Verfahren der Wurzelausziehung weit überlegen.

Eine Kontrolle der Resultate inbezug auf ihre Richtigkeit läßt sich leicht und schnell bewerkstelligen, indem sie mit sich selbst multipliziert werden. Man muß dann natürlich den Radikanden als Multiplikationsergebnis erhalten.

Berechnung der Dreieckseiten.

Der Rechnungsgang ist identisch mit dem der log. Rechnung, einzig mit dem Unterschied, daß man statt der Log. der Seiten, die Seiten direkt erhält, die man bei der Berechnung der Koordinaten benutzen kann. Es ist einerlei, ob man die Koordinaten nach der Schnitt- oder Polygonmethode rechnet, wenn die Maschine verwendet wird. Die mit der Maschine direkt gerechneten Seiten bieten uns eine gewisse Ruhe und Kontrolle bezüglich der Ubereinstimmung der mehrfach bestimmten Seiten. Die Differenzen der Seiten werden nach bekanntem Verfahren der eidgenössischen Forstinstruktion ausgeglichen.

N° des Dreiecks	Name.		۰	3eo	D.	Wi	ake	L.		1	Cor	r.		, A. I	Si	nu	s.				-	Beit	en	ta	Mai	ter.	. *
	Rosenberg Egg		4	8	6	2	8	9	6	8	4	1	0	6	9	1	Z	0	9	9	1	9	8	9	0	9	2
217	Burgfelden		8	4	3	Z	9	Z	5	9	9	0	0	9	Z	0	0	4	9	9	2	Z	.8	9	4	9	2
	Schulzenmatte		6	6	9	9	1	5	4	1	6	9	Q,	8	6	8	5	6	Z	0	2	4	9	7	6	6	6
					52 01 12		9	5	5	0	0,	0	2	8	7	5	6	/	6	9			10				
7	Burgfelden	/	0	6	8	8	7	3	3	7	9	4	0	9	9	4	1	5	2	5	7	5	1	6	6	6	4
218	Tillingen II	3	1960	6		Lanco O		- 25		1000				******	D		(Samuels	1350	8	6	1	9	8	9	1	0	4
	Schützenmatte		Z	6	1	6	3	9	5	4	5	Z	0	9	3	0	7	2	5	1	7	0	3	7	0	9	8
	0				88910				6			0	7	5	6	0	8	7	6							180	

Fig. 9.

Das Vorgehen ergibt sich nach unserer Figur und dem bisherigen leicht, wenn wir noch beifügen, daß in der Sinuskolonne die natürlichen Werte, unterhalb dem Strich der Quotient aus Ausgangsseite und Sinus des Gegenwinkels stehen.

Das Rückwärtseinschneiden.

Das Rückwärtseinschneiden nach Potenoth erfordert nach der log. Rechnung sehr viel Tafelaufschlagungen und aus dem Grunde habe ich versucht, die Rechenmaschine zu Hilfe zu ziehen. Der Erfolg war überraschend, man erspart ein Drittel bis zur Hälfte Zeit gegenüber der log. Rechnung und zudem ist die Maschinenrechnung sicherer. Um die Lösung der Aufgabe der Rechenmaschine anzupassen, gehen wir aus von der nicht log. Formel:

$$\operatorname{tg} \frac{\varphi - \psi}{2} = \left(\frac{b \sin a - a \sin \beta}{b \sin a + a \sin \beta}\right) \cdot \operatorname{tg} \frac{\varphi + \psi}{2}$$

Der Ausdruck in der Klammer ist sehr geeignet für das Maschinenrechnen und gestattet uns in kurzer Zeit den Quotienten zu erhalten. tg $\frac{\varphi+\psi}{2}$ entnehmen wir einer Tafel der natür-

lichen Tangentenwerte, ebenso den tg
$$\frac{\varphi-\psi}{2}$$
entsprechenden Winkel
$$\frac{\varphi-\psi}{2}.$$

Das übrige ergibt sich nach der Dreieck- und Koordinatenrechnung.

Schlussbetrachtung.

In engen Umrissen habe ich hier den mittels der Rechenmaschine "Brunsviga" einzuschlagenden Weg für die meist in Anwendung kommenden Rechnungen des Geometers angegeben und komme zu folgender, auf Erfahrung gestützter Schlußbetrachtung:

Die Rechenmaschine würde nur von ideeller Bedeutung sein, wenn ihre Leistungen qualitativ und quantitativ denen eines geübten und befähigten Rechners nicht überlegen wären. Sie vollbringt jedoch ein Vielfaches der Arbeit, die ein noch so geübter Rechner in der gleichen Zeit ohne ihre Hilfe zu leisten vermag, und ist wegen der Anpassung an die in unserem Berufe vor kommenden Rechnungsarten von universeller Bedeutung.

Obige Aufgaben erbringen den deutlichen Nachweis, daß die Rechenmaschine in Bezug auf die Genauigkeit ihrer Zahlenangaben allen Anforderungen gewachsen ist und daß sie im Verein mit den vorhandenen Hilfstafeln zu einer schnellen und sicheren Lösung aller rechnerischen Aufgaben des Geometers berufen ist.

Basel, im April 1905.

† Oberstleutnant Otto Ernst Arni.

Mit schmerzlichem Bedauern werden wohl alle unsere Leser vernehmen, daß eines unserer treuesten Mitglieder, das sich um die bernische Sektion wie um den Gesamtverein mancherlei Verdienste erworben, am 19. September in Lyß gestorben ist und dort am 22. September unter allgemeiner Teilnahme begraben wurde. Ein Freund widmet ihm im "Bund" folgenden Nachruf:

"Wohl noch nie hat Lyß ein so imposantes Begräbnis gesehen, wie am Freitag. Nicht nur die ganze Ortschaft trauerte um einen ihrer besten Bürger, sondern aus allen Teilen der Kantone Bern und Solothurn waren die zahlreichen Freunde von Konkordatsgeometer und Art.-Oberstleutnant Otto Arni herbeigeeilt, um dem Manne die letzte Ehre zu erweisen, der ein Selfmademan im wahren Sinne des Wortes war. Der Verstorbene war Bucheggberger, besuchte die Schulen der Stadt Solothurn, das Technikum Winterthur und arbeitete schon als ganz junger Geometer mit großem Erfolge an der Monte Cenerebahn. Nach mehrjähriger