Zeitschrift: Geschäftsbericht / Schweizerische Bundesbahnen

Herausgeber: Schweizerische Bundesbahnen

Band: - (1971)

Rubrik: Anlagen und Fahrzeuge

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 16.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

I. Feste Anlagen

Allgemeines

Zur Vorbereitung der Eisenbahn der Zukunft sind neben den grossen Planungen und Studien grundsätzlicher Art auch ständige Fortschritte und neue Entwicklungen in den einzelnen technischen Fachbereichen erforderlich. Sie erst ermöglichen es auch, aus den vorhandenen Anlagen ein Maximum an Leistung und Wirtschaftlichkeit herauszuholen. Dieser Sachverhalt veranlasst die SBB, die Entwicklung von Wissenschaft und Technik auf den einzelnen Fachgebieten ständig zu verfolgen, enge Fühlung mit Forschung und Entwicklung in der Industrie sowie mit Hochschul-Forschungsinstituten zu halten und in gewissen Fällen selber durch Studien und Versuche – teilweise auch im Rahmen des Internationalen Eisenbahnverbandes (UIC) – aktive Entwicklungsarbeit zu leisten. Auf solche Arbeiten sei im folgenden kurz hingewiesen.

An die Fahrbahn werden mit zunehmender Belastung bei höheren Geschwindigkeiten ständig wachsende Anforderungen gestellt. Dazu kommt, dass die Rekrutierung von Personal für den Geleisebau auf immer grössere Schwierigkeiten stösst. Neben der weiteren Mechanisierung der Arbeiten sind deshalb auch neue Oberbauformen nötig, die einerseits den höheren Belastungen und den Komfortansprüchen der schnellen Reisezüge gewachsen und anderseits hinsichtlich Unterhalt und Erneuerungskadenz günstiger sind als die heutigen. Dazu gehören Schienen von 60 kg Gewicht pro Meter – die bisherigen Schienengewichte liegen bei 46 und zum Teil 54 kg/m –, deren Entwicklung im Rahmen der UIC kurz vor dem Abschluss steht. In Verbindung mit den Herstellerwerken wird die Qualität des für die Schienen verwendeten Stahls laufend verbessert. Zusammen mit den schweren Schienenprofilen sollen künftig auch vermehrt Betonschwellen zum Einbau kommen, die im Vergleich zu Stahlund Holzschwellen bei geringeren Unterhaltsaufwendungen eine bessere Lagebeständigkeit und eine erhöhte Lagesicherheit aufweisen. Diesen Anforderungen wird eine neue, verbesserte Zweiblockschwelle gerecht, die für Schienenprofile UIC 54 und UIC 60 geeignet ist und eine mit bescheidenem Aufwand verbundene Feinregulierung der Spurweiten zulässt.

Durch Versuche im Bözbergtunnel ist ein schotterloser Oberbau entwickelt worden, der insbesondere für lange Tunnel vorgesehen ist. Es handelt sich um Zweiblock-Betonschwellen, welche elastisch in einer Betonplatte gelagert sind. Eingehende Messungen haben gezeigt, dass die mit dieser neuen Methode erreichte Geleise-Elastizität mit derjenigen eines in Schotter verlegten Geleises weitgehend übereinstimmt. Auf Grund dieser Ergebnisse werden die Geleise des im Bau befindlichen Heitersbergtunnels schotterlos verlegt. Zur Zeit wird durch Versuche abgeklärt, wieweit sich dieses Prinzip auf Weichen anwenden lässt. Zusätzliche Abklärungen und Versuche gelten der schotterlosen Geleiseverlegung auf langen Brücken.

Auf Schnellfahrlinien muss, um Zeitverluste zu vermeiden, die Möglichkeit bestehen, Spurwechsel auch bei hohen Geschwindigkeiten durchzuführen. Zu diesem Zweck wurde eine neue Weiche mit Klothoidenbogen entwickelt, welche Fahrten auf Ablenkung ohne Geleiseüberhöhung mit einer Geschwindigkeit von 125 km/h gestattet.

Auch auf dem Gebiet des Brückenbaus sind zahlreiche neue Gesichtspunkte zu berücksichtigen. So erheischen Planung und Bau von Strecken für hohe Geschwindigkeiten wesentlich erweiterte Kenntnisse über die dynamischen Wirkungen der vertikalen Zugslasten, der Fliehkräfte und der Bremskräfte auf Brücken. Erst die umfangreichen, seit mehr als zehn Jahren unter aktiver Beteiligung der SBB unternommenen Forschungen im Rahmen der UIC ermöglichen in naher Zukunft die Bereitstellung realistischer Berechnungsgrundlagen.

Als Folge der industriellen Entwicklung, besonders beim exportorientierten Grossmaschinenbau, ist eine starke Zunahme von aussergewöhnlichen Schwertransporten festzustellen. In Extremfällen wurden schon Gesamtgewichte bis zu 720 Tonnen mit Transportfahrzeugen zu 32 Achsen befördert. Die wachsende Zahl solcher Transporte gab Anlass zur Untersuchung zahlreicher bestehender Brücken im Hinblick auf ihre Tragfähigkeitsreserven. Für die richtige Bemessung geschweisster Brücken sind genauere Kenntnisse über die Ermüdungsfestigkeit ganzer Konstruktionselemente unter den statistisch zu erfassenden Betriebslasten von zunehmender Bedeutung. Zur bessern Erforschung dieser sogenannten Betriebsfestigkeit werden im Rahmen der UIC zur Zeit umfangreiche statistische Erhebungen

und Messungen an Bauwerken durchgeführt. Ferner laufen auf Grund neuer Erfahrungen Ermüdungsversuche an geschweissten Blechträgern.

In den vergangenen Jahren wurden, ebenfalls im internationalen Rahmen, unter Mitwirkung der SBB und der Eidgenössischen Materialprüfungs- und Versuchsanstalt (EMPA) im Interesse des Umweltschutzes die Möglichkeiten zur Eindämmung des Brückenlärms untersucht. Die Resultate dieser Forschungsarbeit fanden beim Bau der neuen Chärstelenbachbrücke in Amsteg Berücksichtigung und haben sich als zutreffend erwiesen. Die dortige neue Stahlverbundbrücke stellt somit auch in dieser Hinsicht gegenüber der alten Fachwerkbrücke mit offener Fahrbahn einen grossen Fortschritt dar.

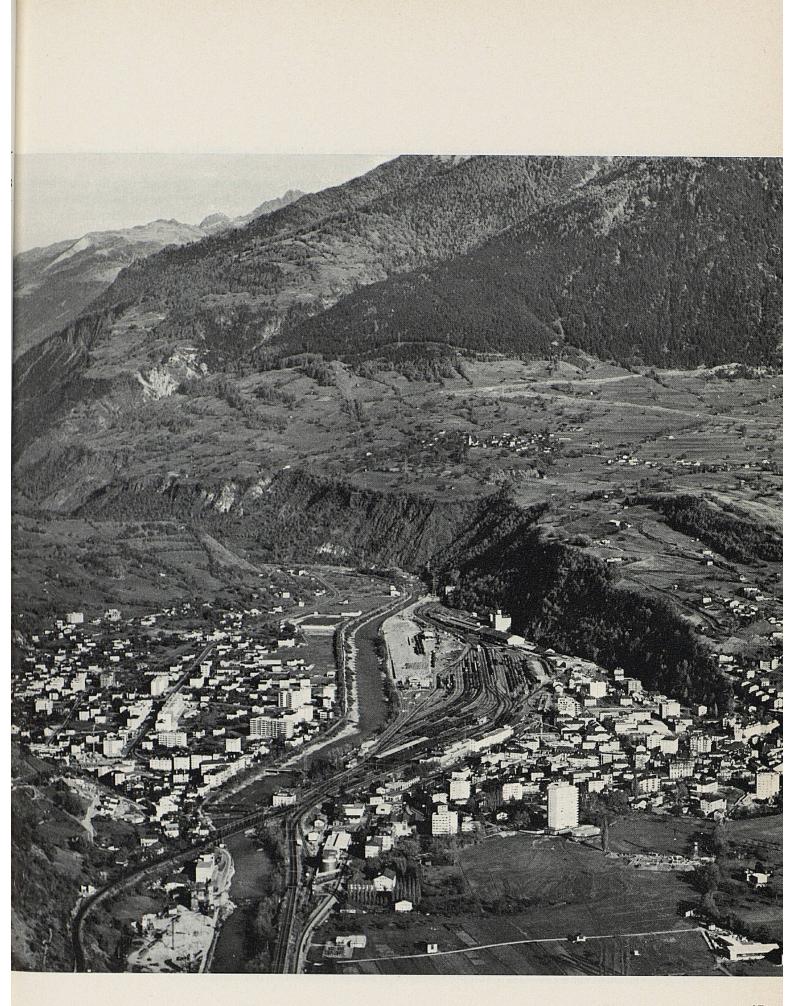
Ein Problem, an dem weltweit gearbeitet wird, ist die Automatisierung des Wagenablaufs und der Wagenverteilung in grossen Rangierbahnhöfen. Die SBB haben sich seit Jahren an der Forschung und Entwicklung auf diesem Gebiet beteiligt. Im Berichtsjahr sind nun in einer Geleisegruppe des Rangierbahnhofes Basel-Muttenz I verschiedene Bauarten von elektrodynamischen Richtungsgeleisebremsen, Geleisebremsenketten mit hydraulischen Spiralbremsen und Beidrückeinrichtungen mit Seilförderwagen samt den zugehörigen elektronischen Steuer- und Überwachungseinrichtungen in Betrieb genommen worden. Sie dienen der Abklärung des Betriebsverhaltens und der konstruktiven Zweckmässigkeit. Auf Grund der Erfahrungen auf dieser Versuchsanlage werden die Pflichtenhefte für die Ausrüstung der im Bau befindlichen Rangierbahnhöfe Basel-Muttenz II und Zürich-Limmattal aufgestellt werden.

Im Berichtsjahr ist auch auf dem Gebiet der Fahrleitungen ein bemerkenswerter Fortschritt erzielt worden. Die anlässlich der Elektrifikation des Netzes gebauten Fahrleitungen sind zur Hauptsache 40 und mehr Jahre alt und bedürfen der Erneuerung. Die herkömmliche Fahrleitung ist aber den Anforderungen der künftigen hohen Geschwindigkeiten und den immer leistungsstärker werdenden Triebfahrzeugen nicht mehr gewachsen. Umfangreiche Studien und Versuche in den letzten Jahren haben nun zur Konstruktion einer Schnellfahrleitung mit nachgespanntem Tragseil geführt, die sich für Geschwindigkeiten bis 200 km/h eignet. Sie wird auf neu zu bauenden Linien und – im Rahmen des Erneuerungsprogrammes – auf den für hohe Geschwindigkeiten vorgesehenen Strecken zur Ausführung kommen.

Ausbau von Bahnhöfen

Im Rahmen der Bestrebungen zur Erhöhung der Leistungsfähigkeit der Transitlinie Lötschberg-Simplon wurde in Brig mit dem Bau einer zusätzlichen Geleisegruppe begonnen. Noch im Berichtsjahr wurden die durch die Erweiterung bedingte Rhonekorrektion vollendet und der Unterbau ausgeführt; drei Geleise sind bereits verlegt, und das Dienstgebäude ist im Rohbau errichtet (Bild nebenan).

Der Rangierbahnhof Lausanne-Denges und die neue Verbindungslinie mit Bussigny an der Linie nach Vallorbe und Yverdon konnten am 23. Mai in Betrieb genommen werden. Die Wagenreparaturwerkstätte und die zugehörigen Geleise sind noch im Bau. Der Stationsumbau in Bussigny ist nahezu vollendet. In Reuchenette steht der neue Geleisekopf Seite Sonceboz seit September in Betrieb.


Die Bauarbeiten für die neuen Hochbauten im Bahnhof Bern schritten programmgemäss voran. Zwei Flügel des Aufnahmegebäudes konnten bezogen werden, und die Roharbeiten für die weitern Baulose sowie für die Schalterhalle gehen der Vollendung entgegen. Mitte August konnten Teile des neuen Bahnhofbuffets und im Herbst auch die Wartesäle dem Betrieb übergeben werden.

In Bettlach wurde das neue Aufnahmegebäude erstellt. Es wird bereits im Frühjahr 1972 nach Inbetriebnahme der neuen Stellwerkanlage bezugsbereit sein.

Der Ausbau des Bahnhofs Langenthal ist bis auf kleinere Fertigstellungsarbeiten beendet. Im Herbst des Berichtsjahres konnte das neue Aufnahmegebäude bezogen werden. Der im Zusammenhang mit dem Bau des neuen Schnellgutstammbahnhofs stehende Ausbau des Bahnhofs Däniken wurde mit

Eisenbahnknotenpunkt Brig

Die Flugaufnahme zeigt in der Bildmitte den Bahnhof Brig mit der im Bau befindlichen neuen Geleisegruppe. In diesem Knotenpunkt vereinigen sich die internationalen Linien von Milano-Domodossola (Portal des Simplontunnels in der Bildmitte ersichtlich), die Zufahrt von Genf/Paris-Lausanne-Sion (Bildmitte unten) und die Lötschbergbahn (links unten). Brig ist gleichzeitig Ausgangspunkt der alpinen Schmalspurlinien der Brig-Visp-Zermatt-Bahn (unten neben der Doppelspur SBB) und der Furka-Oberalp-Bahn (Bildmitte links, mit Rhonebrücke und Ortsdurchfahrt in Naters).

dem Bau der neuen Unterführung eingeleitet. Im Bahnhof Aarau steht der zusätzliche neue Perron 3 dem Reisepublikum nun zur Verfügung.

Der Ausbau des Bahnhofs Lenzburg ist im Berichtsjahr angelaufen. Als Voraussetzung für einen möglichst ungehinderten Baufortschritt wurden die Betriebsdienste in Baracken verlegt sowie die mechanische Stellwerkanlage durch ein provisorisches Gleisbildstellwerk und zwei Niveauübergänge durch Unterführungen ersetzt.

Das 1970 im Rohbau vollendete Wohnhaus für lediges Personal in Basel mit 104 Betten konnte im Juli 1971 bezogen werden und war innert kürzester Zeit belegt. Während des Spätsommers wurde im Bereiche der Geleiseanlagen des Personenbahnhofs Basel mit den umfangreichen Vor- und Fundationsarbeiten für ein die Geleise überdeckendes Postbetriebsgebäude begonnen.

Station Twann

Zur Schliessung der letzten Doppelspurlücke am Bielersee sind gegenwärtig zwischen Ligerz und Tüscherz – einem topographisch schwierigen Abschnitt – ausgedehnte Arbeiten für die Neugestaltung der Bahnanlagen im Gang. Links im Bild ist das seewärts verschobene, bereits im Rohbau fertigerstellte neue Aufnahmegebäude von Twann erkennbar. Auf dem Gebiet des bisherigen Bahntrasses und des alten Stationsgebäudes (rechts) wird anschliessend die Nationalstrasse N 5 erstellt.

Im Rangierbahnhof Basel-Muttenz II wurden der Innenausbau des Ende 1970 im Rohbau vollendeten Stellwerkes West und die Gestaltung der nähern Umgebung so vorangetrieben, dass mit den Montagearbeiten im Dezember 1971 begonnen werden konnte. Auf den gleichen Zeitpunkt war auch der 3 km lange, zwischen den beiden Rangierbahnhöfen verlaufende Energieleitungskanal fertiggestellt. Der Schwerpunkt der weitern Detailprojektierungen lag bei den Stellwerkanlagen der Ablaufzone. Während das durch einen Prozessrechner gesteuerte Ablaufstellwerk im Sommer bei der Industrie in Auftrag gegeben werden konnte, wurden auf Jahresende die Submission für das Stellwerkgebäude Ost abgeschlossen und das Projekt für das Hauptdienstgebäude West bereinigt. Im Bereich der Basler Verbindungsbahn galt es, die im Jahre 1969 provisorisch verlegten Geleise in die für den Endausbau vorgesehene Lage zu verschieben, damit die Bauarbeiten an der Autobahn vor Jahresende abgeschlossen und die Strasse dem Verkehr übergeben werden konnten.

Im Knotenpunkt Rotkreuz ist der Ausbau der Geleise- und Sicherungsanlagen sowie der Geleiseüberwerfung Unterrüti so weit fortgeschritten, dass im Frühjahr 1972 der neue Doppelspuranschluss Seite Immensee und Teile der neuen Rangiergruppe in Betrieb genommen werden können.

Am 5. Februar fielen der Buffet- und der Kuppeltrakt des Bahnhofs Luzern einem Grossbrand zum Opfer. Dank tatkräftigem Einsatz der Stadt- und Betriebsfeuerwehren und des gesamten Personals wurden mit Ausnahme der Billetschalter und der Handgepäckaufbewahrung keine betriebswichtigen Anlagen in Mitleidenschaft gezogen. Unverzüglich wurde mit der Sicherung der Brandruinen sowie mit dem Bau von Provisorien für die Billetschalter und einen reduzierten Buffetbetrieb begonnen. Auf Ostern standen dem Publikum bereits neue Billetschalter und Gepäckschliessfächer in der behelfsmässig überdeckten Kuppelhalle zur Verfügung. Die Vorarbeiten für einen Projektwettbewerb wurden ungesäumt in Angriff genommen.

Der Neubau der Lokomotivdepotanlagen in Bellinzona schritt planmässig voran. Das neue Depotdienstgebäude sowie die Pendelzugremise sind im Rohbau weitgehend fertiggestellt.

Der Ausbau des Bahnhofs Killwangen-Spreitenbach zu einem wichtigen Eisenbahnknotenpunkt im Limmattal ist in vollem Gange. Bei den Unterbauarbeiten lag das Hauptgewicht auf den an beiden Bahnhofenden gelegenen Überwerfungsbauwerken für den Anschluss der Heitersberglinie und für die Zufahrt zum Rangierbahnhof Zürich-Limmattal. Dank raschem Fortschritt des Geleisebaues und der Montagearbeiten an den Fahrleitungs- und Sicherungsanlagen konnte der Perron 3 samt Überdachung und Wartehalle fertiggestellt und in Betrieb genommen werden.

Im Rangierbahnhof Zürich-Limmattal sind die umfangreichen Erdarbeiten für die Herstellung des Geleiseplanums sowie der Bau des Wasserleitungsnetzes und der Kanalisation dank den guten Witterungsverhältnissen sehr zügig und mit Vorsprung auf das Bauprogramm vorangeschritten. Grosse Teile des Areals stehen nun für den Bau der Geleiseanlagen bereit. Die 330 m lange Unterführung der Zufahrtsstrasse von Dietikon zur N 1 konnte im Bereich des Rangierbahnhofes fertiggestellt und gegen Ende des Berichtsjahres in Betrieb genommen werden. Auch das Überführungsbauwerk für die Oetwilerstrasse als Ersatz für den letzten noch bestehenden Niveauübergang wurde im Rohbau beendet. Bei der Projektbearbeitung lag das Schwergewicht auf der Vorbereitung der Kreditvorlage für die dritte Bauetappe, welche die gesamten bahntechnischen Einrichtungen für den vollausgebauten Rangierbahnhof mit Einschluss der Hochbauten umfasst.

Im Bahnhof Schlieren wurden im Rahmen des Ausbauprojekts eine neue Personenunterführung dem Verkehr übergeben und eine neue Strassenunterführung im Rohbau fertiggestellt. Im bestehenden Aufnahmegebäude sind die Umbauten zur Schaffung der erforderlichen Räume für die neue elektrische Stellwerkanlage programmgemäss vorangekommen. Schliesslich wurden auf dem gesamten Bahnhofareal die mit grossem Aufwand verbundenen Entwässerungsarbeiten sowie die Erdarbeiten für die Erweiterung des Geleiseplanums in Angriff genommen.

Im neuen Schnellgutstammbahnhof Zürich Altstetten sind im Berichtsjahr die Bauarbeiten für die Personenunterführung Werdhölzlistrasse aufgenommen und nahezu abgeschlossen worden. Gleichzeitig begannen der Ausbau der Hermetschloostrasse sowie die Unterbauarbeiten für das Geleiseplanum. Die Projektierungsarbeiten für die Schnellguthalle sind so weit fortgeschritten, dass bereits im Frühjahr 1972 die Fundationsarbeiten einsetzen können.

Im Bahnhof Kloten konnten nach einer Bauzeit von zweieinhalb Jahren Ende Oktober die erweiterten Geleiseanlagen, der neue Zwischenperron mit zwei schienenfreien Zugängen sowie die neue elektrische Stellwerkanlage in Betrieb genommen werden, womit sämtliche Bauarbeiten abgeschlossen sind. Im Rahmen der Stationserweiterung Mumpf konnte im neuen Aufnahmegebäude mit den Installationsarbeiten für die Stellwerkanlage begonnen werden. Die Geleise- und Fahrleitungsanlagen sowie die neue Personenüberführung sind bereits fertiggestellt. Zum vorläufigen Abschluss gelangte auch der Ausbau des Bahnhofes Stein-Säckingen; im Laufe des Jahres 1972 werden im Zusammenhang mit den Bauten für die N 3 noch die Zufahrtsstrasse und der Bahnhofplatz zu erstellen sein. In Koblenz wurde eine neue elektrische Sicherungsanlage in Spurplantechnik in Betrieb genommen, welche die Aufhebung des bisherigen Wärterstellwerks ermöglichte. In Schaffhausen steht die Fertigstellung der Einfahrgruppe als letzte Arbeit im Rangierbahnhof bevor, während die verschiedenen Etappen der neuen Güterhallen und die damit zusammenhängenden Platz- und Geleisebauten planmässig voranschreiten.

Bau neuer Linien und zweiter Geleise

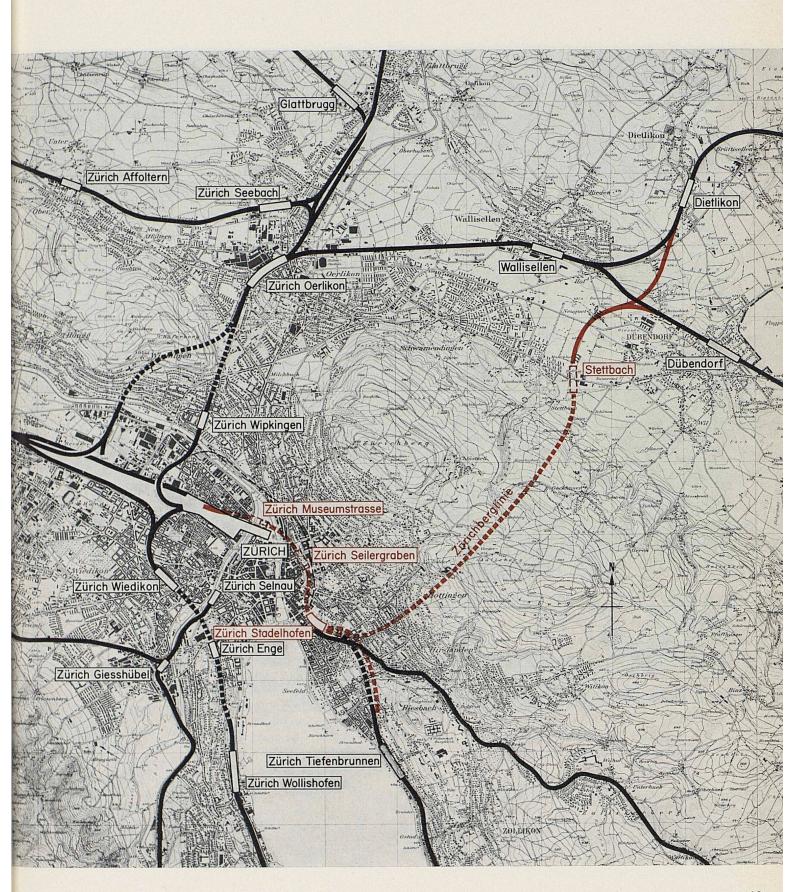
Im Rahmen des Ausbaues der zur Simplonlinie gehörenden Strecke Leuk-Visp auf Doppelspur wurde zwischen den Stationen Gampel-Steg und Raron mit den Unterbauarbeiten für das zweite Geleise begonnen.

Auf der Strecke Biel-Tüscherz sind bis auf einen kurzen Abschnitt des Strandweges sämtliche Arbeiten beendet. Im Bereich der neuen Station Twann wurden die Brücke über den Twannbach, vier Unterführungen, Stützmauern sowie ein Teil des Unterbaues ausgeführt; ferner sind die verschiedenen Hochbauten im Rohbau fertiggestellt.

Umfangreiche Arbeiten stehen in Zusammenhang mit dem Bau der Heitersberglinie. Für den Bau der neuen Reussbrücke bei Mellingen musste die bestehende Brücke seitlich verschoben werden. Auf der Teilstrecke Reussbrücke—Othmarsingen sind bereits vier Unterführungen erstellt und die Dammschüttung bis Mägenwil ausgeführt. Bei der Abzweigung der Heitersberglinie aus dem Bahnhof Killwangen-Spreitenbach wurden das Überwerfungsbauwerk über die Doppelspur Zürich—Baden weitgehend fertiggestellt und das Planum des hangseitigen Geleises bis zum Portal des im Bau befindlichen Heitersbergtunnels ausgeführt.

Auf der aargauischen Südbahn erfolgte Ende November die Inbetriebnahme der neuen Doppelspur zwischen Boswil-Bünzen und Muri. Das Berichtsjahr sah auch die Fertigstellung der neuen Reussbrücke bei Oberrüti. Zwischen Oberrüti und Rotkreuz sind die Oberbauarbeiten so weit gediehen, dass der Doppelspurbetrieb auf diesem Abschnitt Ende Mai 1972 aufgenommen werden kann.

Auf den Fahrplanwechsel im Mai 1971 wurde die Station Zizers SBB für den Personen- und Güterverkehr aufgehoben. Gleichzeitig wurden die automatischen Blockstellen Trimmis und Masans in Betrieb gesetzt. Die Blockstelle Trimmis ist mit vier von Chur aus fernsteuerbaren Spurwechselweichen ausgerüstet. Die Unterbauarbeiten für das zweite Geleise auf der Strecke Landquart–Zizers sind beendet. In Landquart konnte Mitte Dezember die neue Personenunterführung von der Bahnhofstrasse zu den neuen Perronanlagen der Rhätischen Bahn und dem Zwischenperron der SBB eröffnet werden.


Nachdem der Verwaltungsrat am 11. September 1970 dem generellen Projekt für den Einbezug des Flughafens Kloten in das Netz der SBB zugestimmt hatte, bewilligte er am 6. Juli 1971 einen Teilkredit von 26,2 Mio Franken für den Rohbau jenes Teils des Flughafenbahnhofes, welcher unter den geplanten Flughof 2 und unter das Parkhaus 2 zu liegen kommt. Um diese beiden dringenden Bauvorhaben der vierten Flughafen-Ausbauetappe nicht zu verzögern, wurde mit den Arbeiten für das erste Baulos unverzüglich begonnen. Die Bauarbeiten schreiten programmgemäss voran, wobei für die 14–18 m tiefe Baugrube eine umfangreiche Grundwasserabsenkung erforderlich ist. Die Aushubarbeiten sollen bis Ende 1972 abgeschlossen werden.

Niveauübergänge

Die Bundesbahnen sind in Zusammenarbeit mit den Strasseneigentümern bestrebt, die Zahl der Niveauübergänge weiter zu verringern. Die Trennung von Schiene und Strasse leistet einen wesentlichen Beitrag zur Herabsetzung des Unfallrisikos und gestattet gleichzeitig, die Betriebsverhältnisse zu verbessern. So konnten im Berichtsjahr insgesamt 98 Niveauübergänge, nämlich 39 bewachte und 59 unbewachte, aufgehoben werden, wofür 35 Kreuzungsbauwerke und acht Parallelwege zu erstellen waren. Am Jahresende befanden sich 30 Ersatzobjekte im Bau und 117 weitere in Projektierung. Den Strasseneigentümern wurden an die Aufhebung oder Sicherung von Niveauübergängen Beiträge in der Höhe von insgesamt 15 Mio Franken zugesichert. Der tatsächliche Aufwand der SBB betrug im Berichtsjahr 16,4 Mio Franken. Von den wichtigsten in Betrieb genommenen Ersatzobjekten seien die Unterführungen der Staatsstrasse in Bützberg und des Autobahnzubringers N 1 unter dem Rangier-

Projekt Zürichberglinie

Im Rahmen der gesamten Transportplanung der Region Zürich, in der die SBB eng mit Kanton und Stadt Zürich zusammenarbeiten, steht der Bau der neuen doppelspurigen Verbindung zwischen dem Stadtzentrum Zürich und dem Glattal durch den Zürichberg im Vordergrund. Diese neue, unterirdisch in den Hauptbahnhof Zürich einmündende Linie wird die Einführung eines leistungsfähigen S-Bahn-Betriebes auf den Linien nach Uster-Rapperswil, Effretikon-Winterthur und Effretikon-Pfäffikon-Wetzikon ermöglichen. In Zürich Seilergraben und Stettbach sind zwei neue Stationen vorgesehen. Dank der Entlastung des Hauptbahnhofes durch den unterirdischen Bahnhof Zürich Museumstrasse wird auch auf allen übrigen in Zürich HB einmündenden Linien der Fahrplan verdichtet werden können. (Karte reproduziert mit Bewilligung der Eidg. Landestopographie vom 24. 4. 72.)

bahnhof Zürich-Limmattal, die Überführung der Oberdorfstrasse in Lachen sowie die Unterführung des Autobahnzubringers N 6 in Muri (BE) erwähnt.

Zur Erhöhung der Sicherheit an Niveauübergängen wurden dreizehn automatische Vollbarrieren, fünf mit dem Streckenblock in Verbindung stehende Zugmelde-Einrichtungen an Barrierenposten sowie eine automatische Blinklichtsignalanlage in Betrieb genommen.

Die Aufhebung oder Sicherung von Niveauübergängen wird bekanntlich auch durch den Bund gefördert. Das neue Dringlichkeitsprogramm 1971–1973 des Amtes für Strassen- und Flussbau umfasst die Sanierung von rund 130 SBB-Niveauübergängen, wofür Bundesbeiträge – allerdings nur an die von den Strasseneigentümern zu tragenden Kosten – von 33,8 Mio Franken zur Verfügung stehen.

Tunnel- und Brückenbau

Im Baulos Ost des Heitersbergtunnels wurden die Eindeckung der Tagbaustrecke weitergeführt und mit der Tunnelfräse eine Strecke von 1340 m ausgebrochen. In der Süsswassermolasse haben sich auf einer unerwartet langen Strecke Ablösungen des Gesteins im First ereignet, welche durch das erforderliche Einziehen von Einbaubogen oder Versetzen von Felsankern eine Verlangsamung des Baufortschrittes bewirkten. Mitte Oktober konnte der Vortrieb nach Erreichen der Meeresmolasse wieder beschleunigt werden. Im Los West wurde dank den günstigen geologischen Verhältnissen im Lockergestein mit dem Eintritt des Schildes in die Meeresmolasse die Losgrenze bereits in der ersten Hälfte August mit einem Vorsprung von sieben Monaten erreicht. Im Schildvortrieb wurden 760 m ausgebrochen und die Abdichtung und der Innenbeton entsprechend nachgezogen. Ende des Jahres verblieb von der 4,9 km langen Tunnelstrecke ein noch auszubrechender Abschnitt von 1,2 km.

Die Sanierungsarbeiten im Wipkinger Tunnel wurden Mitte Mai vergeben, worauf die beauftragte Unternehmung am 1. Juni mit den umfangreichen Installationen beim Portal Wipkingen begann. Die eigentlichen Bauarbeiten an der Erneuerung des Tunnelkanals sind anfangs September in Angriff genommen worden. Im Herbst begannen auch Rekonstruktionsarbeiten im Burgdorfer Tunnel, während eine lokale Gewölberekonstruktion im Daziotunnel zwischen Rodi-Fiesso und Faido im Berichtsjahr beendet werden konnte.

Mitte Dezember wurde nach anderthalbjähriger Bauzeit der doppelspurige Betrieb über die neue Chärstelenbachbrücke zwischen Amsteg und Gurtnellen aufgenommen. Der Bau der Schutzgalerie beim Kohlplatzlawinenzug zwischen Gurtnellen und Wassen konnte im Berichtsjahr so weit vorangetrieben werden, dass die Strecke in diesem Gebiet nicht mehr gefährdet ist. Die Arbeiten werden im Frühjahr 1972 beendet sein.

Sicherungs- und Fernmeldeanlagen

Die Modernisierung der Sicherungsanlagen bildet ein wichtiges Mittel zur Leistungssteigerung sowie zur Rationalisierung des Betriebs- und Unterhaltsdienstes. Im Berichtsjahr wurden 14 neue elektrische Sicherungsanlagen mit 16 Stellwerkapparaten in Betrieb genommen. Als bedeutendste Anlage ist das Fernsteuerzentrum in Lausanne zu erwähnen, von welchem aus verschiedene Stationen an den von Lausanne ausgehenden Linien überwacht und gesteuert werden. Die Anzahl der ersetzten mechanischen Stellwerkapparate beträgt 14, womit den 557 elektrischen Stellwerkapparaten noch 388 mechanische Einrichtungen gegenüberstehen. Im Berichtsjahr wurden zudem 642 Lichtsignale (Vor-, Haupt- und Nebensignale) in Betrieb genommen, so dass heute neben 13 209 Lichtsignalen (92%) noch 1123 Formsignale (8%) vorhanden sind.

Mit der Ausrüstung von weiteren drei Abschnitten waren Ende 1971 von den Einspurlinien 1355,7 km (86%) und von den doppelspurigen Linien 1258,2 km (94%) mit Streckenblock ausgerüstet. Der automatische Streckenblock mit Achszählung oder Geleise-Isolierung wurde im Jahre 1971 durch Neu-

Bahnhof Zürich Museumstrasse

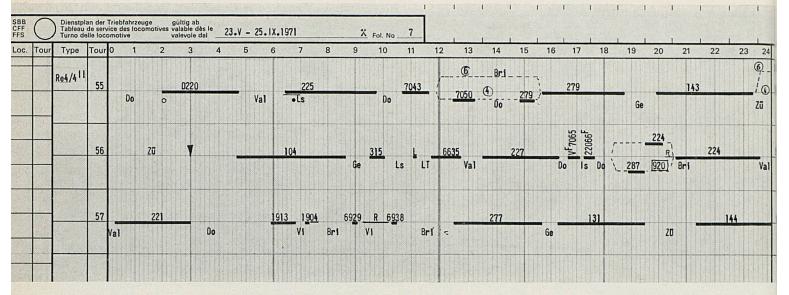
Der Schnitt durch das Modell des unterirdischen Bahnhofes Zürich Museumstrasse vermittelt einen Überblick über die zwischen dem heutigen Aufnahmegebäude des Zürcher Hauptbahnhofes und dem Landesmuseum projektierte Neuanlage, die mit den vorgesehenen vier Geleisen an zwei Zwischenperrons Ausgangs- und Endpunkt der Züge des Zürichberglinien-Systems und der rechtsufrigen Seestrecke wird. Der Bahnhof Zürich Museumstrasse ist als Durchgangsbahnhof konzipiert, wobei der Anschluss an die bestehenden Anlagen und damit an das übrige Streckennetz durch eine Rampe nordöstlich des Hauptbahnhofes hergestellt wird.

oder Umbau auf 22 Abschnitten von zusammen 44,7 km Länge eingeführt. Damit sind von 2614 km mit Streckenblock ausgerüsteten Hauptlinien 840 km (32%) mit automatischem Streckenblock versehen.

Der Ausbau des neuen Streckenkabelnetzes schreitet kräftig voran. Zur Zeit stehen bereits rund 160 km in Betrieb, und weitere 200 km werden in Kürze fertiggestellt sein.

Das automatische Telephonnetz wurde durch neue Zentralen in Weinfelden und Koblenz ergänzt. Infolge der Zunahme des Verkehrs im Bahnfernschreibnetz mussten einige Zentren erweitert und die Verbindungsleitungen zwischen den Zentralen vermehrt werden. Das markanteste Ereignis bildet jedoch der Zusammenschluss des öffentlichen Telexnetzes mit dem Bahnfernschreibnetz, welcher gegen Ende des Berichtsjahres erfolgte. Der auf der Gotthardstrecke Erstfeld–Chiasso bestehende Zugfunk ist auf die Strecken Bellinzona–Landesgrenze (Bellinzona–Luino) und Erstfeld–Basel ausgedehnt worden. Allein für diesen Zugfunk stehen 300 Geräte im Einsatz, während die Gesamtzahl der bei verschiedenen Diensten eingesetzten Funkgeräte auf dem ganzen Netz rund 3000 beträgt. Die SBB sind damit das am dichtesten mit Funkgeräten ausgerüstete Eisenbahnnetz Europas.

Erneuerung und Unterhalt der Fahrbahn Die Ausführung der Geleisearbeiten wurde im Berichtsjahr durch Personalknappheit, immer kürzer werdende Zugpausen und die vermehrte Notwendigkeit der Ausführung von Arbeiten in der Nacht erheblich erschwert. Mit einer weitgehenden Mechanisierung der Arbeiten konnten der Unterhalt und die Erneuerung der Geleiseanlagen dennoch im erforderlichen Umfang ausgeführt werden. Der Aufwand hiefür beträgt gesamthaft 131,2 Mio Franken, wovon 54,9 Mio Franken auf den Unterhalt und 76,3 Mio Franken auf die Erneuerung von 197,8 km Geleise und 764 Weicheneinheiten entfallen. Es muss damit gerechnet werden, dass sich die äussern Bedingungen für die Ausführung der Arbeiten an der Fahrbahn in Zukunft weiter verschlechtern werden. Deshalb sind gegenwärtig Studien im Gang mit dem Ziel, die notwendigen Arbeiten in kürzerer Zeit und mit geringerem Personalaufwand durchführen zu können. Zudem soll – wie bereits erwähnt – auf lange Sicht durch Verwendung von konstruktiv verbessertem Oberbaumaterial in den Hauptgeleisen eine relative Verminderung an Unterhalts- und Erneuerungsarbeiten erreicht werden.


II. Fahrzeugpark, Zugförderung und Hauptwerkstätten

Allgemeines

Die Fahrzeugtechnik steht vor einem bedeutenden Entwicklungssprung, der sich durch die Anwendung von Halbleitern im Hauptstromkreis der Triebfahrzeuge, den vermehrten Leichtmetallbau und die Vorbereitung zur Einführung der automatischen Zug- und Druckkupplung kennzeichnet. Im Hinblick auf die Einführung der Leistungselektronik wurden im Einvernehmen mit der Industrie verschiedene Messungen und Versuche durchgeführt sowie neue Entwicklungen eingeleitet. Für den späteren Einbau der automatischen Kupplung sind an den Stirnpartien der neu gebauten Triebfahrzeuge und Wagen bereits die wichtigsten Vorkehren getroffen, während in den Hauptwerkstätten rund ein Drittel der «umbauwürdigen» Güterwagen vorbereitet und Einbaumuster für die noch längere Zeit im Betrieb stehenden Triebfahrzeuge hergestellt wurden. Die Verwendung von Leichtmetall wirkt sich vor allem beim Bau von Güterwagen vorteilhaft aus. Sie ist einmal geeignet, die Betätigung von beweglichen Wagenteilen wie Schiebedächer und -wände oder Schiebetüren zu erleichtern. Ausserdem können die Wagen dank Verminderung des Leergewichts besser ausgelastet werden. Beispielsweise

Umbau der Chärstelenbachbrücke

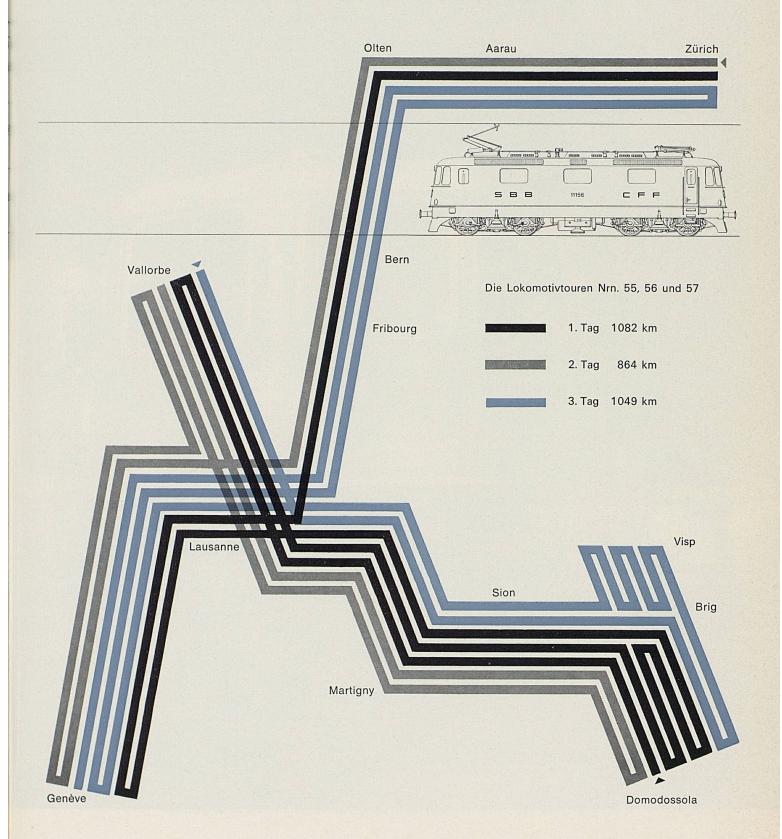
Im Rahmen des Brückenerneuerungsprogramms auf der Gotthardstrecke konnte nach anderthalbjähriger Bauzeit der doppelspurige Betrieb über die umgebaute Chärstelenbachbrücke bei Amsteg wieder aufgenommen werden. Erschwerend wirkte, dass alle Umbauarbeiten bei einspurig aufrechtzuerhaltendem Betrieb durchzuführen waren. Auf dem Bild ist erkennbar, wie der talseitige, 400 Tonnen schwere neue Stahlträger in Hochlage montiert worden ist, um nach stückweisem Abbruch der alten Eisenbrücke in seine endgültige Lage gesenkt zu werden. Dank der verwendeten Stahlverbundkonstruktion mit darüber liegendem Betontrog und durchgehendem Schotterbett konnte der Brückenlärm wesentlich eingedämmt werden.

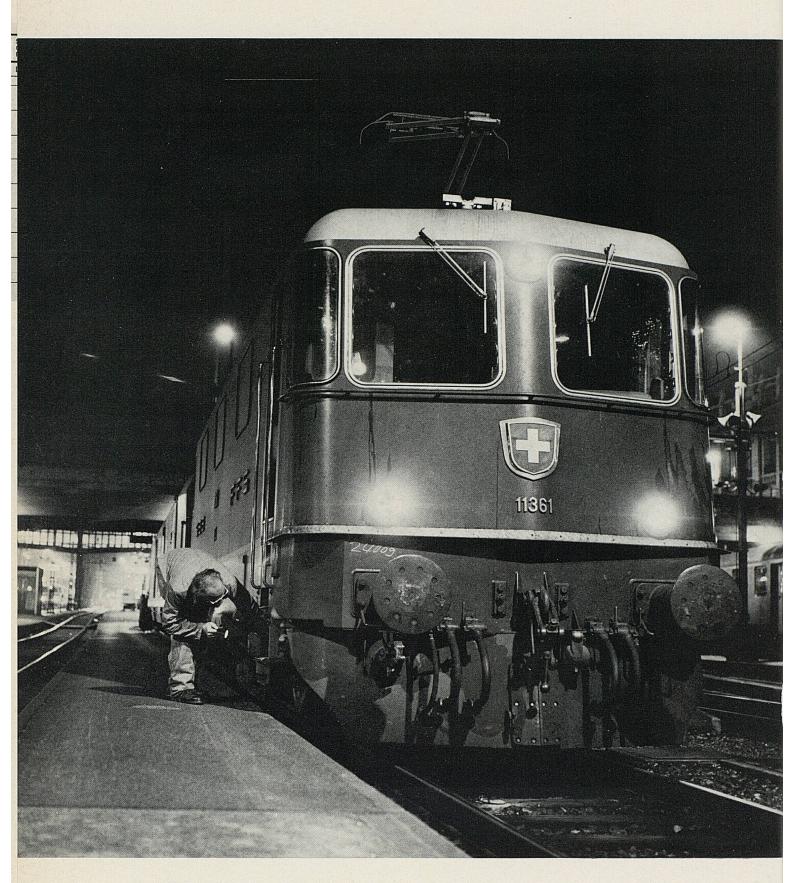
Dienstplan mit Lokomotiv-Turnus einer Re 4/4 II

Aus dem vorstehenden Dienstplan-Auszug und der Darstellung nebenan geht hervor, welch hohe Tagesleistungen eine Lokomotive Re 4/4 II auf ihrer Fahrt kreuz und quer durch die Schweiz erbringt.

wurde beim Bau von vierachsigen Schüttgutwagen ein Verhältnis zwischen Nutzlast und Tara von 4 zu 1 erzielt.

In Anbetracht des raschen technischen Fortschritts sowie der wechselnden Bedürfnisse des Betriebs und der Kundschaft ist es unumgänglich, die Planung für die künftige Beschaffung von Rollmaterial elastisch zu gestalten.


Triebfahrzeuge


Die ständigen Bemühungen zur Beschleunigung des Reiseverkehrs führten auf den Fahrplanwechsel 1971 im Schnellzugsverkehr am Gotthard zur Ablösung der Lokomotiven Ae 6/6 durch die für höhere Kurvengeschwindigkeiten zugelassenen Typen Re 4/4 II und Re 4/4 III. Die im Berichtsjahr abgelieferten 20 Lokomotiven Re 4/4 III sind grundsätzlich gleich gebaut wie die Re 4/4 II. Sie unterscheiden sich von diesen zur Hauptsache durch das für den Einsatz im Bergdienst geänderte Übersetzungsverhältnis. Daraus ergibt sich eine erhöhte Zugkraft, allerdings verbunden mit einer Herabsetzung der Höchstgeschwindigkeit von 140 auf 125 km/h. Die Re 4/4 III vermag 580 Tonnen schwere Züge einspännig über die Steilrampen am Gotthard zu befördern, während für die Re 4/4 II nur 460 Tonnen zugelassen sind. Ein im Hinblick auf die Personalknappheit willkommener Vorteil der neuen Traktionsmittel liegt in der Möglichkeit, bei Doppeltraktion das zweite Triebfahrzeug mit Hilfe der Vielfachsteuerung vom Spitzenführerstand aus fernzubedienen und somit ohne Lokomotivführer einzusetzen. Dieser Vorteil besteht auch im Mittelland beim Einsatz für schwere Güterzüge.

Neben den erwähnten 20 neuen Re 4/4 III wurden im Berichtsjahr 11 weitere Re 4/4 II abgeliefert, womit sich die Gesamtzahl der Lokomotiven dieser Typen am Jahresende auf 144 Einheiten erhöht hat. Um die schweren Schnellzüge am Gotthard künftig noch wirtschaftlicher – statt mit den Lokomotiven Re 4/4 II und Re 4/4 III in Doppeltraktion mit einem einzigen, stärkeren Triebfahrzeug – führen zu können, stehen gegenwärtig vier sechsachsige Hochleistungslokomotiven mit der Bezeichnung Re 6/6 im Bau. Diese Musterausführungen werden im Frühjahr 1972 zur Ablieferung gelangen. Eine Reihe von Versuchen soll in der Folge die nötigen Erfahrungen für den Bau einer grösseren Serie liefern.

Die Ausrangierungen erreichten – einschliesslich der durch Unglücksfälle ausgeschiedenen zwei Vororttriebzüge des Typs RABDe 12/12 und eines TEE-Dieseltriebzugs – die Zahl von 17 Einheiten. Neben der letzten von sechs im Jahr 1965 bestellten Zweikraft-Rangierlokomotiven Eem 6/6 konnten zur Bewältigung der ständig wachsenden Rangieraufgaben neun elektrische Zweifrequenz-Rangierlokomotiven des Typs Ee 3/3 II neu in den Park der SBB eingestellt werden. Diese Fahrzeuge waren in

Lokomotive Re 4/4 II – Langstrecken- und Schnelläufer der SBB

den Jahren 1960–1962 mit schweizerischer Finanzhilfe durch die Französischen Staatsbahnen (SNCF) für den Überfuhrverkehr zwischen dem Rangier- und Güterbahnhof Basel SBB und dem im angrenzenden Elsass gelegenen St-Louis beschafft worden. In jüngster Zeit hat die SNCF vermehrt elektrische Zweifrequenz-Streckenlokomotiven in Dienst gestellt und daher die entbehrlich gewordenen, nicht in ihren Park passenden Ee 3/3 II schweizerischer Bauart den SBB zum Kauf angeboten. Sie sind mit der Vielfachsteuerung ausgerüstet und können daher in Doppeltraktion von nur einem Lokomotivführer bedient werden. Da die letzten, mit einfachen Mitteln für den schweren Rangierdienst eingerichteten Lokomotiven des Typs Ce 6/8 II in absehbarer Zeit mit Rücksicht auf ihr hohes Alter ersetzt werden müssen, kam das Angebot der SNCF als Zwischenlösung bis zum Bau neuer schwerer Rangierlokomotiven gelegen. Nach Durchführung der notwendigen Anpassungsarbeiten werden die übernommenen Ee 3/3 II u.a. zu zweit, anstelle der bisherigen Ce 6/8 II, im neuen Rangierbahnhof Lausanne-Denges eingesetzt.

Steuerwagen

Die im Jahre 1971 abgelieferten 20 neuen Steuerwagen mit Gepäck- und Postabteil der bewährten Bauart DZt erlaubten auf den Fahrplanwechsel im Frühjahr 1971 eine willkommene Ausdehnung des Pendelzugbetriebes auf weitere Personenzüge. Der Anteil der als Pendelzüge geführten Personenzüge ist damit auf rund 66% angestiegen.

Personen- und Gepäckwagen Die Wagenbaufirmen lieferten im Berichtsjahr insgesamt 132 neue Reisezugwagen ab, nämlich 30 Wagen 1./2. Klasse und 10 Liegewagen 2. Klasse für den internationalen Verkehr, 5 Einheitswagen 1. Klasse, 43 Einheitswagen 1./2. Klasse, 12 Einheitswagen 2. Klasse und 12 Gepäckwagen sowie die bereits erwähnten 20 Steuerwagen. Die für den internationalen Verkehr bestimmten Wagen 1./2. Klasse weisen gemäss den Empfehlungen des Internationalen Eisenbahnverbandes statt der bisher üblichen elf Abteile nur noch zehn auf, die entsprechend geräumiger sind.

Der Inbetriebnahme von 132 neuen Wagen steht die Ausrangierung von insgesamt 114 alten Wagen gegenüber. Im Berichtsjahr wurden bei der Industrie 170 Wagen in Auftrag gegeben, nämlich 50 Wagen 2. Klasse für den internationalen Verkehr, je 45 Einheitswagen 1./2. Klasse und 2. Klasse sowie 30 Gepäckwagen. Ferner wurden drei Schlafwagen für den von neun europäischen Eisenbahnverwaltungen geschaffenen Schlafwagenpool bestellt. Im Laufe des Jahres 1972 werden vier völlig neuartige Wagentypen – zwei Wagen 1. Klasse, ein Wagen 2. Klasse und ein Speisewagen – zur Ablieferung gelangen, welche u.a. mit ausschwenkbaren Wagenkasten, Klimaanlage sowie verbesserten Übergängen ausgerüstet sind. Von diesen Wagen werden eine namhafte Verbesserung im Reisekomfort und eine Verkürzung der Reisezeiten auf der Schiene erwartet. Im Hinblick auf die Bestellung einer grösseren Serie sollen diese neuen Wagen eingehenden Versuchen unterzogen werden.

Güterwagen

Im Rahmen der Erneuerung des Güterwagenparkes konnten insgesamt 591 neue Güterwagen dem Betrieb übergeben werden, nämlich 320 zweiachsige Schiebewandwagen, 8 vierachsige Schiebewandwagen, 200 zweiachsige Wagen mit Schiebedach und Schiebewänden, 31 vierachsige Panzertransportwagen, 30 zweiachsige Zementsilowagen und 2 vierachsige Getreidesilowagen in Leichtmetallbauart. Demgegenüber sind 673 alte Güterwagen ausrangiert worden. Neu wurden im Berichtsjahr 700 Güterwagen in Auftrag gegeben. Es handelt sich um 400 zweiachsige Schiebewandwagen, 100 vierachsige Zementsilowagen, 100 vierachsige Getreidesilowagen in Leichtmetallbauart und 100 vierachsige Flachwagen. Der Anteil der vierachsigen Wagen an der Gesamtbestellung beträgt 43%. Der Bestand der bei den SBB eingestellten Privatgüterwagen betrug am Ende des Betriebsjahres 7254 Einheiten. Von den neu in Betrieb gesetzten Wagen weisen 85% Drehgestelle auf, womit der Anteil der vierachsigen Wagen am gesamten Privatgüterwagenpark auf über 26% angestiegen ist (1969: 18%). Besonders erwähnt sei die Ablieferung von Privatgüterwagen grosser Ladekapazität wie Kesselwagen für Mineralölprodukte mit 95 m³ Kesselinhalt, 6-Silo-Staubgutwagen mit 93 m³ Inhalt und pneumatischer Entleerung, Behälterwagen für den Transport von Tonerde sowie 26 m lange dreiachsige Dop-

pelstockwagen für den Autotransport. Parallel zur Vergrösserung des Ladevolumens werden auch bei den Privatgüterwagen grosse Anstrengungen für eine vermehrte Anwendung der Leichtbauweise unternommen.

Kleinmotor- und Strassenfahrzeuge

Von den im Jahre 1968 bestellten 16 dieselhydraulischen Traktoren Tm IV wurden die letzten 10 abgeliefert. Weitere 23 Fahrzeuge dieses Typs wurden neu in Auftrag gegeben. Neben dem Einsatz für den Rangierdienst auf den Stationen sollen durch die laufende Bestellung auch besondere Bedürfnisse der Baudienste gedeckt werden, für welche der bisher verwendete Typ Tm II leistungsmässig oft nicht mehr genügt. Für die Schneeräumung der Geleise und den Schneeverlad in Bahnhöfen gelangte im Berichtsjahr die erste von acht im Jahre 1970 bestellten kleinen Schienenschneeschleudern zur Ablieferung; die restlichen kamen ebenfalls noch im Winter 1971/72 zum Einsatz. Im Zuge der Mechanisierung personalintensiver Arbeiten beim Güterumschlag, bei den Baudiensten und in den Hauptwerkstätten gelangten insgesamt 195 Strassenfahrzeuge zur Ablieferung, davon 82 als Ersatz für alte, störungsanfällige Fahrzeuge.

Hauptwerkstätten

Den Hauptwerkstätten obliegt die wichtige Aufgabe, für einen zeitsparenden und wirtschaftlichen Unterhalt der Fahrzeuge zu sorgen, womit sie massgebend zur Betriebssicherheit und Zuverlässigkeit der Eisenbahn beitragen. Die Anlagen werden laufend den Gegebenheiten der neuen Fahrzeuge, der Fortschritten der Fabrikationstechniken sowie der Entwicklung der Werkzeugmaschinen und der industriellen Organisation angepasst.

Grosse Bedeutung kommt auch der Förderung moderner, attraktiver Arbeitsbedingungen zu. Im einzelnen sei auf folgende, im Berichtsjahr getroffene Massnahmen hingewiesen:

- Inbetriebnahme der neuen Halle für den Unterhalt von Dieseltriebfahrzeugen in der Hauptwerkstätte Biel. Die Umgestaltung der ehemaligen Kesselschmiede für Dampflokomotiven ist damit abgeschlossen.
- Inbetriebnahme der neuen Halle für den Fliessband-Unterhalt von Flachwagen und offenen Güterwagen in der Hauptwerkstätte Bellinzona.
- Umgestaltung des Holzlagerplatzes der Hauptwerkstätte Yverdon, mit dem Ziel, den Umschlag wirtschaftlicher zu gestalten und zu beschleunigen.
- Anschaffung verschiedener automatischer Wasch- und Reinigungsanlagen, um die Arbeit schnelle und unter angenehmeren Bedingungen ausführen zu können.
- Vermehrte Zentralisierung des Unterhalts ähnlicher Bestandteile verschiedener Fahrzeugserien ir einer einzigen Hauptwerkstätte.
- Beteiligung an Schweisskursen sowie an verschiedenen anderen Kursen für die Ausbildung vor Spezialisten.
- Teilnahme des Aufsichtspersonals an Vorgesetztenkursen.
- Überarbeitung der Vorschriften betreffend die Personalausschüsse der Hauptwerkstätten, mit den Ziel, den Personalvertretern ein grösseres Mitspracherecht einzuräumen.
- Versuchsweise Einführung der «Gleitenden Arbeitszeit» in der Hauptwerkstätte Olten.

Im übrigen sind wichtige Arbeiten auf dem Gebiet des Umweltschutzes – im besonderen des Gewässerschutzes – in Angriff genommen oder weitergeführt worden.

Angesichts ihrer besonderen Natur ist die Tätigkeit der Hauptwerkstätten für den Bahnbenützer kaum sichtbar; sie ist daher in der Öffentlichkeit wenig bekannt. Die Hauptwerkstätten Biel und Zürich haben im Berichtsjahr mit grossem Erfolg «Tage der offenen Tür» veranstaltet, die Tausenden von Besuchern erlaubten, einen ihnen unbekannten Bereich der SBB kennenzulernen.

III. Schiffsbetrieb auf dem Bodensee

Mit den modernen Schiffen der Bodenseeflotte SBB wurden im Jahre 1971 250 806 (1970: 231 048) Personen und 30 857 (1970: 35 949) Güterwagen befördert. Der Ausflugverkehr nahm mit 117 003 Reisenden gegenüber dem Vorjahr um 15,5% zu und erreichte einen neuen Höchststand.

Die im Jahre 1869 in Betrieb genommene Eisenbahn-Trajektbrücke in Romanshorn wurde durch eine Neukonstruktion ersetzt. Der Einbau der neuen Brücke erforderte eine sechswöchige Einstellung des Trajektverkehrs, was seinen Niederschlag im Rückgang der Gesamtzahl der im Berichtsjahr transportierten Güterwagen fand.

IV. Kraftwerkanlagen und Energiewirtschaft

Ausblick

Die Erzeugung von Einphasenenergie für die elektrische Zugförderung und die Abgabe dieser Energie an das Fahrleitungsnetz mit der vom Betrieb geforderten Leistung muss im kommenden Jahrzehnt grundlegend neuen Bedingungen angepasst werden. Anlass hiefür bilden Strukturänderungen in der Bahnstromversorgung auf der Ebene der Energieerzeugung sowie auf der Ebene des Energieverbrauches.

Die Strukturänderung im Produktionssystem der schweizerischen Elektrizitätswirtschaft umfasst den Bau leistungsfähiger Kernkraftwerke, durch welche in Zukunft der weitere Energiebedarf gedeckt werden soll. Derartige Anlagen arbeiten um so wirtschaftlicher, je grösser die Maschinensätze und ihre Betriebsdauer sind und je weniger diese hinsichtlich Belastungsänderungen trägen Aggregate für Regulieraufgaben eingesetzt werden. Die Werke der allgemeinen Landesversorgung rechnen derzeit mit Maschineneinheiten von 350 bis 850 MW und einer jährlichen Betriebsdauer von rund 7000 Stunden.

Im autonomen Versorgungsnetz der SBB können aus betrieblichen und wirtschaftlichen Gründen keine derart grossen Maschineneinheiten eingesetzt werden. Die bisherige Praxis der unmittelbaren Erzeugung von Einphasenenergie in bahneigenen Zentralen kann deshalb nicht mehr fortgesetzt werden. In Zukunft müssen sich die SBB mit bestimmten Leistungs- und Energiequoten an Kernkraftwerken der allgemeinen Landesversorgung beteiligen, sei es durch Umwandlung der ihnen zustehenden Dreiphasenenergiemenge 50 Hz mit leistungsfähigen Frequenz-Umformergruppen in Traktionsenergie von 16²/₃ Hz, oder sei es durch Einbau besonderer Einphasen-Maschinengruppen.

Die Strukturänderung auf der Ebene des Energieverbrauches hat ihre Ursache im planmässigen Einsatz der neuen Hochleistungstriebfahrzeuge seit dem Frühjahr 1967. Erstmals seit Abschluss der Elektrifikation weist die Entwicklung des Energiebedarfes einerseits und des Leistungsbedarfes anderseits eine ungewöhnlich starke Diskrepanz auf. Auf Grund der Prognosen über die Verkehrsentwicklung und die Triebfahrzeugbeschaffung in der Zeitspanne 1971–1980 werden der Energiebedarf um 21% auf rund 2270 Mio kWh und der Bedarf an Maschinenleistung in den Kraft- und Umformerwerken um 90% auf rund 920 MW im Jahre 1980 ansteigen. In diesen Angaben ist ein angemessener Zuschlag für die partielle Speisung der BLS enthalten.


Die erwähnten Strukturwandlungen bestimmen den weiteren Ausbau der Anlagen zur Bahnstromversorgung. Die rationelle Deckung der künftigen Belastungsspitzen erfordert die schrittweise Umgestaltung der bestehenden hydraulischen Speicherwerke zu leistungsfähigen Pumpspeicherwerken, in denen die in den Kernkraftwerken anfallende Überschussenergie vorübergehend gehortet und bei Eintritt hoher Belastungen wieder ins Bahnnetz abgegeben werden kann. Derartige Anlagen zur Energieveredlung von insgesamt 70 MW Pumpenleistung sind im Etzelwerk im Bau und in der Zentrale Châtelard II vorgesehen.

Bis 1980 ist mit einer Zunahme des Energiebedarfs um etwa 390 Mio kWh zu rechnen. Diese zusätzliche Energiequote soll durch Beteiligung der SBB an den geplanten Kernkraftwerken Leibstadt und Gösgen gesichert werden.

Wesentlich grössere Aufwendungen erfordert die Erhöhung der installierten Maschinenleistung in den Kraftwerken und Umformerwerken zur Deckung der künftigen Belastungen des Fahrleitungsnetzes. Die zusätzliche Maschinenleistung von rund 430 MW soll durch den Neu- und Ausbau der nachstehenden Energieerzeugungsanlagen aufgebracht werden:

Etzelwerk
 Einbau der 4. Einphasen-Maschinengruppe mit Förderpumpe

40,0 MW

- Kraftwerk Vernayaz	
Einbau der 5. Einphasen-Maschinengruppe	20,0 MW
- Umformerwerk Kerzers	
mit 2 Frequenz-Umformergruppen	67,5 MW
- Kraftwerk Barberine	
Erstellung der Zentrale Châtelard II mit 2 Einphasen-Maschinengruppen,	
wovon eine Gruppe mit Förderpumpe	60,0 MW
- Umformerwerk Seebach	
mit 2 Frequenz-Umformergruppen	110,0 MW
- Umformerwerk Gossau SG	
mit 2 Frequenz-Umformergruppen	110,0 MW
- Umformerwerk Giubiasco	
Einbau der 2. Umformergruppe	25,0 MW

Kraftwerke und Umformeranlagen

Zur Zeit befinden sich mehrere Projekte, durch die bis zum Jahre 1976 eine Erhöhung der gegenwärtig im Bahnstromnetz installierten Generatorleistung von 482 MW auf rund 670 MW erreicht werden soll, in unterschiedlich fortgeschrittenen Entwicklungsphasen. Im Bau ist die Erweiterung des Etzelwerkes, wo die Turbine der neuen Einphasengruppe 40 MW noch vor Ende 1971 eingebaut wurde und die Generatorteile zur Montage bereitstehen. Nach Bereinigung des Erweiterungsprojektes für das Kraftwerk Vernayaz konnten im Berichtsjahr die Turbine und der Generator für die zusätzliche Bahnstromgruppe 20 MW in Auftrag gegeben werden. Ausserdem erfolgte die Vergebung der beiden Maschinengruppen von je 33,75 MW für das neue Frequenzumformerwerk in Kerzers, wo mit der Baugrubenerschliessung bereits begonnen wurde. Im Zusammenhang mit dem im Bau befindlichen neuen Druckschacht des Kraftwerkes Barberine, welcher die Verbindung der SBB-Anlagen mit dem neuen Stausee Emosson herstellt, wird das Projekt einer SBB-Pumpspeicherzentrale Châtelard II mit zwei Einphasengruppen von je 30 MW und einem Ausgleichbecken von rund 200 000 m³ Inhalt bereinigt und demnächst dem Verwaltungsrat unterbreitet.

Übertragungsleitungen

Die Schwierigkeiten beim Erwerb der Durchleitungsrechte für Übertragungsleitungen sind im Berichtsjahr nicht geringer geworden. Vor dieses Problem sehen sich jedoch heute alle Produzenten elektrischer
Energie gestellt, weshalb immer häufiger ein Ausweg durch den Bau von Gemeinschaftsleitungen
gesucht wird. Die SBB haben in den vergangenen Jahren mit verschiedenen Werken der allgemeinen
Landesversorgung Partnerleitungen erstellt, und weitere ähnliche Lösungen werden vorbereitet.
Für den Neubau der Übertragungsleitung Granges-Massaboden konnte der Rechtserwerb immer
noch nicht abgeschlossen werden. Dagegen steht die Linie Brugg-Seebach kurz vor der Vollendung.
Die Leitung Grüze-Etzwilen ist auf dem Abschnitt Grüze-Thalheim fertiggestellt und seit Dezember
1971 im Betrieb. Für das Teilstück zwischen Thalheim und Stammheim konnten die Widerstände gegen das Projekt noch nicht behoben werden, und die Verhandlungen dürften noch einige Zeit beanspruchen. Mit dem Neubau der Übertragungsleitung Steinen-Immensee wurde im Herbst 1971 begonnen, und die Arbeiten auf der Strecke Romanel-Bussigny schreiten programmgemäss voran.

Unterwerke

Im Bereich der Unterwerke konnten im Jahre 1971 die grosszügig konzipierte neue Anlage in Bussigny sowie die neue Freiluftschaltanlage in Brugg samt Kommandogebäude fertiggestellt und dem Betrieb übergeben werden. Daneben sind in Kerzers und Gossau die installierten Transformatorenleistungen durch Einbau leistungsfähigerer Reguliereinheiten erhöht worden. In Burgdorf ist im Herbst der integrale Umbau der Transformatoren- und Schaltanlagen angelaufen, nachdem die Versorgung

Unterwerk Bussigny

Das neue Unterwerk Bussigny wird zu einem Fernsteuerzentrum ausgebaut, von dem aus unter anderem die Schaltposten der Bahnhöfe und des Fahrleitungsnetzes der Strecken Lausanne—Genf, Lausanne—Vallorbe und Lausanne—Onnens-Bonvillars überwacht und ferngesteuert werden können. Das Bild vermittelt einen Ausschnitt der Fahrleitungs-Fernsteuer-Tafel im Kommandoraum.

des Speisebezirkes durch den Einsatz eines fahrbaren Unterwerkes sichergestellt war. Mit den ebenfalls im Gange befindlichen Erweiterungsbauten in Rotkreuz und Steinen erhalten diese Unterwerke – neben ihrer Funktion als leistungsfähige 15-kV-Fahrleitungsspeisepunkte der nördlichen Gotthardzufahrten – eine wesentliche überregionale Bedeutung als Kupplungsstationen des im Aufbau begriffenen 132-kV-Übertragungsleitungsnetzes der Zentral- und Ostschweiz. Die Unterwerke Rotkreuz, Brugg, Seebach und Zürich sind für die Speisung mit 132 kV – anstelle von 66 kV – bereits vorbereitet und können nach Fertigstellung der 132-kV-Übertragungsleitung Brugg–Seebach unverzüglich auf die höhere Übertragungsspannung umgeschaltet werden, wodurch der zur Zeit wohl empfindlichste Leistungsengpass im Verteilnetz beseitigt wird.

Energiewirtschaft

Im Jahre 1971 waren die energiewirtschaftlichen Bedingungen in der Schweiz, wo der Anteil der Hydroelektrizität an der gesamten Produktion rund 90% beträgt und bei der Versorgung mit elektrischer Energie auch heute noch ausschlaggebend ist, bedeutend ungünstiger als im Vorjahr. Schon während des ersten Quartals setzte eine anhaltende Trockenheit ein, die bis zum Jahresende anhielt. Infolge der geringen in den Bergen vorhandenen Schneemengen füllten sich auch die Stauseen – trotz der heissen Sommerwitterung – nur zögernd. Die Produktion der Laufwerke war ausgesprochen schlecht und lag deutlich unter dem langjährigen Mittel. Gegenüber dem Vorjahr ergab sich für die SBB eine Minderproduktion von 108 Mio kWh oder 13% in den eigenen Werken und von 140 Mio kWh oder 25% bei den vier hydraulischen Partnerwerken. Den ungünstigen Wasserverhältnissen entsprechend stieg der Bezug von thermisch erzeugter Drehstromenergie aus dem Partnerwerk Vouvry um 81 Mio kWh oder 42%. Auch der Bezug von Fremdenergie erfuhr eine starke Erhöhung. Zusätzlich zu der aus vertraglich festgelegten Bezugsrechten zur Verfügung stehenden Energiemengen wurde auf dem freien Markt Sonderenergie angekauft, um die eigenen Stauseen nicht vorzeitig absenken zu müssen. Insgesamt hat der Bezug an Fremdenergie um 91 Mio kWh oder 22% zugenommen, während die Abgabe von Überschussenergie um 104 Mio kWh oder 66% zurückging.

Der Bedarf für die eigene Zugförderung lag mit 1534 Mio kWh nur wenig über dem letztjährigen Wert. Am 1. Januar 1971 betrug der Energievorrat aller Stauseen 271 Mio kWh oder 69% des nutzbaren Stauvolumens. Er sank bis Anfang Mai auf 65 Mio kWh und stieg dann bis Mitte September auf den Jahreshöchststand von 352 Mio kWh oder 89% (Vorjahr 390 Mio kWh oder 99%). Bis zum 1. Oktober–Beginn der Winterperiode – blieb die aufgespeicherte Wassermenge praktisch unverändert. Am 31. Dezember betrug der verfügbare Vorrat 257 Mio kWh oder 65% des nutzbaren Stauvolumens. Der Energieumsatz erreichte folgende Werte:

Beschaffung der Energie	1970 Mio kWh	1971 Mio kWh
Energieproduktion der eigenen Werke (Amsteg, Ritom, Vernayaz, Barberine, Massaboden und Nebenkraftwerk Trient) Energiebezüge von den Gemeinschaftswerken (Etzel, Rupperswil-	833,092	724,737
Auenstein, Göschenen, Electra-Massa und Vouvry)	761,294	702,480
Energiebezüge von fremden Kraftwerken	417,550	509,021
Total der von den SBB erzeugten und der bezogenen fremden Energie	2 011,936	1 936,238
Verwendung der Energie Energieverbrauch für die eigene Zugförderung ab Unterwerk	1 529,164	1 534,221
Energieverbrauch für andere eigene Zwecke	22,203	22,47
Energieabgabe an Privatbahnen und andere Dritte (Servitute)	95,871	99,313
Drehstrompumpe im Etzelwerk		23,218
Abgabe von Überschussenergie	156,484	52,847
Energieverbrauch der Kraftwerke/Unterwerke und Übertragungsverluste	208,214	204,164
Gesamter Energieverbrauch	2 011,936	1 936,238

Flussdiagramm des Energi	ieumsatzes 1971	
Erzeugung	1936,238 Mio kWh	Bezug
Eigene Laufwerke		Überschuss
sensian inortani kalin		Privatbahnen und Servitute
Eigene Speicherwerke		Verbrauch andere eigene Zwec
Partner-Laufwerke		
Partner-Speicherwerke		
Thermisches Partnerwerk		Eigene Zugförderung
Fremdenergie	■ Eigenverb	orauch der Kraftwerke und Verluste

Der gesamte Energieverbrauch hat gegenüber dem Vorjahr um 76 Mio kWh oder um 4% abgenommen. Der höchste tägliche Energiebedarf wurde am 17. Dezember mit etwa 6,3 Mio kWh festgestellt. Er war wegen der höheren Aussentemperaturen und des infolgedessen geringeren Bedarfs für die elektrische Zugheizung etwas kleiner als im Vorjahre.

V. Zentraler Materialeinkauf

Die sich im Jahre 1970 abzeichnende konjunkturelle Entspannung hielt im Berichtsjahr weiter an. Damit verbesserten sich in allerdings bescheidenem Masse auch die Versorgungsmöglichkeiten, insbesondere was die Bezüge aus dem Ausland betrifft. Obwohl in der Schweiz eine Neigung zur Normalisierung der Lage unverkennbar war, blieb der Nachfrageüberhang bestehen. Der Druck auf dem inländischen Arbeitsmarkt hielt infolge der restriktiven Fremdarbeiterpolitik an, die Teuerung der Lebenshaltungskosten erreichte mit rund 7% einen neuen Rekord, und die Löhne stiegen um 12–13% an. Damit wurden auch die bearbeiteten Fertigfabrikate durchwegs teurer, obschon Rohstoffe und Halbfabrikate eher eine sinkende Preisentwicklung aufwiesen.

Die während des ganzen Jahres nicht abreissenden Währungsprobleme und Schwierigkeiten am Geldmarkt beunruhigten auch die Warenmärkte. Die Aufwertung des Schweizer Frankens übte auf die Importpreise einen dämpfenden Einfluss aus.

Der für die SBB wichtige Kupferkurs an der Londoner Börse sank im November auf einen Preis unter 4 Franken je kg und erreichte damit einen seit vielen Jahren nicht mehr verzeichneten Tiefstand. Die Preise für Walzprodukte aus Eisen und Stahl lagen allgemein um rund 15% tiefer als 1970, weil die Überkapazitäten sowie vermehrte japanische Exporte die europäischen Preise drückten. Der Schrottpreis sank in diesem Zusammenhang ebenfalls sehr beträchtlich.

Die Preise für flüssige Treib- und Brennstoffe, die das ganze Jahr 1970 hindurch gestiegen waren, setzten die Aufwärtsbewegung bis ins Frühjahr fort und ermässigten sich dann bis zum Herbst um rund 35%. Nach wie vor ist das Preisniveau relativ hoch, und die zukünftige Preisentwicklung wie auch die Versorgung bleiben von undurchsichtigen politischen Einflüssen abhängig.

Holz wurde allgemein um etwa 5 % teurer. Die Chemikalien stiegen im Preise leicht an, während Textilien ziemlich stabil blieben. Den grössten Preisanstieg wiesen die Baustoffe mit zirka 10 % auf.

Im Berichtsjahr beliefen sich die Einkäufe der Materialverwaltung auf 213 Mio Franken, während für 2 Mio Franken Altmaterial verkauft wurde. Die Steigerung der Einkaufssumme um 33 Mio Franken im Vergleich zum Vorjahr ist nur zu einem geringern Teil durch die Teuerung bedingt. Sie ergab sich im wesentlichen aus einem Nachholbedarf für die Ergänzung der Lager, welche im vorangehenden Jahr durch Beschaffungsschwierigkeiten nicht im vorgesehenen Ausmass hatten geäufnet werden können. Bei verschiedenen Gelegenheiten wurden Bestandteile für die Vorbereitung des Rollmaterials zur späteren Aufnahme der automatischen Kupplung beschafft und teilweise vorsorglich eingelagert. In Zusammenarbeit mit der EUROFIMA (Europäische Gesellschaft für die Finanzierung von Eisenbahnmaterial) sind die Unterlagen für die im Frühjahr 1972 als Vorstufe der späteren Ausschreibung der automatischen Kupplung in Aussicht genommene Vorkonsultation des internationalen Marktes erarbeitet worden.

In der zu Lagerhaltungszwecken erworbenen Liegenschaft in Dulliken wurde mit den Instandstellungsarbeiten sowie mit der Einrichtung der ersten Etappe des Magazinbetriebes begonnen. In Altdorf konnte eine neue Stehtankanlage für flüssige Treib- und Brennstoffe in Betrieb genommen werden, welche wesentlich zur Verbesserung der Vorratshaltung beiträgt. Sie soll im laufenden Jahr noch weiter ausgebaut werden. Nach einer gründlichen stilgerechten Fassadenrenovation präsentiert sich neuerdings auch der alte und ehrwürdige «Spiesshof», Sitz der Materialverwaltung SBB in Basel, in einem neuen Kleid.