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1. DEFINITION DER BEGRIFFE

Festigkeit ist ein Begriff, unter welchem eine Vielzahl von physikalischen
GroBen verstanden werden konnen. Fiir die vorliegende Arbeit sind zwei da-
von von Interesse, namlich die Bruchfestigkeit (= Festigkeit im engeren
Sinne) und die Steifigkeit. Wie der Name des ersten Ausdrucks sagt, gibt
dieser an, bei welcher Belastung das Objekt (der Halm) bricht. Der zweite
Ausdruck dagegen sagt, eine wie groe Belastung notwendig ist, um eine be-
stimmte Verformung (z.B. Verbiegung) des Objektes zu erzwingen. In den
folgenden Kapiteln werden die hier soeben allgemein definierten Begriffe im
Hinblick auf die vorliegende Arbeit weiter eingeschrinkt, da nur bestimmte
Belastungen und Verformungen (ndmlich solche, die bei einem natiirlichen
Schilfhalm vorwiegend auftreten) interessieren.

1.1. DEFINITION DER STEIFIGKEIT

Ein Schilfhalm wird unter dem Einflu von Wellen, Wind und Treibzeug
praktisch ausschlieBlich auf Biegung belastet.

Zwischen den dufleren Belastungen, den daraus folgenden Beanspruchungen
(Biegemoment, Querkraft usw.), den inneren Spannungen (wirkende Kraft
pro Flicheneinheit des Querschnitts) und den Verformungen bestehen ge-
setzmiBige Zusammenhiénge, die unter den Annahmen der klassischen Statik
(s. z.B. StUss1 1962) in einfacher Weise mathematisch formuliert werden
konnen. Soweit es fiir das Verstindnis der vorliegenden Arbeit notwendig ist,
werden diese Beziehungen im folgenden kurz hergeleitet.

Als einfaches Beispiel diene ein Schilfhalm, der in einer bestimmten Hohe hf
iiber Grund von einer duBeren Kraft F belastet wird (Fig. 1.1.). Uns interes-
sieren die Beanspruchungen, Spannungen und Verformungen in einem belie-
big gewihlten Halmquerschnitt in der Hohe 4 iiber Grund. Dazu denken wir
uns ein kurzes Stiick des Halmes mit der (sehr kleinen) Lénge d! herausge-
schnitten. Auf beide Schnittflichen wirken Krifte, welche die abgeschnittenen
Teile auf das betrachtete Halmelement ausiiben. Nach dem dritten New-
ton'schen Prinzip "actio=reactio” iibt das betrachtete Halmelement seinerseits
die selben Krifte in umgekehrter Richtung auf die abgeschnittenen Teile aus.
Auf den jeweils zusammengehorenden Schnittflichen wirken also die entge-
gengesetzt gleichen Krifte und Momente.
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Wenn wir der Einfachheit halber das Eigengewicht des oberen abgeschnitte-
nen Halmstiickes vernachléssigen, so ist an der oberen Schnittstelle nur der
EinfluB der duBeren Kraft F zu beriicksichtigen. Dieser duBlert sich als "ab-
scherende" Kraft (Querkraft) und (wenn F nicht gerade im betrachteten
Querschnitt angreift) als "biegende" Kraft (Biegemoment). Wiirde die
Kraft F nicht (wie in diesem Beispiel angenommen) senkrecht zur Halmachse
wirken, so entstiinde auch noch eine "driickende" oder "ziehende" Kraft
(Normalkraft), deren EinfluB im Rahmen der vorliegenden Untersuchun-
gen vernachlissigt werden darf.

Der Betrag der Querkraft Q ist gleich der senkrecht zur Halmachse wirken-
den Komponente von F. Unter der zunichst anzunehmenden Voraussetzung,
daB die Verdrehung o des untersuchten Halmstiickes klein sei (und wenn F
horizontal wirkt), kann die Querkraft gleich F gesetzt werden:

oberer Halmteil

‘Halmele—

menf ngin dl

unterer Halmteil

Fig. 1.1, Belastung und Beanspruchung eines Schilfhalmes.

Links: Schematische Darstellung und wichtigste Abmessungen eines Schilfhalmes, der
durch eine waagrechte Kraft F beansprucht wird.

Rechts: Herausgeschnitten gedachtes Element des Halmes mit den wirkenden Beanspru-
chungen an den beiden Querschnitten.
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Q =Fcosa [N] (1.1)
bzw.
Q = F (wenn axklein und F horizontal) N] (1.2)
Q ... Querkraft [N]
F ... AuBere Kraft [N]
a ... Winkel zwischen der Querschnittsebene und der Wirkungslinie
von F [rad]

Das Biegemoment M bewirkt die Verkriimmung des Halmes. Sein Betrag ist
gleich dem Produkt aus dem Betrag der duBeren Kraft und dem senkrecht zur
Wirkunglsinie dieser Kraft gemessenen Abstand vom betrachteten Punkt, im
Beispiel der Fig. 1.1. also

M = F(h-h [N-m] (1.3)

M ... Biegemoment [N-m]
F ... AuBere Kraft (Betrag) [N]
h. ... Hohe iiber Grund der Wirkungslinie von F
}{ ... Hohe iiber Grund des betrachteten Querschnittes

Das Biegemoment kann man sich auch als ein Paar gleich groBer, genau entge-
gengesetzt wirkender Krifte (Kriftepaar) veranschaulichen, deren Betrag
und Abstand voneinander so groB sind, daB das Produkt gleich dem vorhande-
nen Biegemoment ist:

Pa =M [Nm] (1.4)

P ... Betrag der Kriifte des gedachten Kriiftepaares [N]
a ... Abstand der beiden Krifte [m]
M ... Aquivalentes Biegemoment [N-m]

Bis jetzt haben wir stillschweigend vorausgesetzt, daB die Wirkungslinie der
Kraft F irgendwo durch die Halmachse geht. Angesichts der geringen Dicke
eines Schilfhalmes ist diese Voraussetzung in unserem Fall stets mit geniigen-
der Genauigkeit erfiillt. Andernfalls miiBte noch das Torsionsmoment (Ver-
drehung) beriicksichtigt werden. Im Rahmen dieser Arbeit wird also nur die
Biegung behandelt, unter der abgekiirzten Bezeichnung "Moment" ist darum
im folgenden immer das Biegemoment zu verstehen.

Im Vergleich der beiden Schnittflichen des gedachten Halmelementes stellen
wir fest, daB3 die Querkraft an beiden Stellen gleich groB ist (auBer wenn eine
dullere Kraft am Element selbst angreift), denn die Querkraft ist ja gleich ei-
ner Komponente der oberhalb der Schnittstelle wirkenden, duBeren Kraft.
Das Biegemoment wird dagegen um den Betrag

dM =Qdl [N-m] (1.5)



- 334 -

vergroflert, da der Abstand zur duBleren Kraft um d/ zunimmt. An der unte-
ren Schnittstelle wirkt somit ein Biegemoment vom Betrag

M, = M+dM = F (k- h)+F dl =F [h;- (h-dD)]

u

= F(h-h) (1.6)

Die Analogie der Gleichung (1.6) mit (1.3) ist offensichtlich, wodurch die
Richtigkeit von (1.5) indirekt bestitigt wird. Gleichung (1.5) ist allgemein
giiltig und besagt nichts anderes, als daB die Querkraft in jedem Punkt eines
Stabes gleich der ersten Ableitung des Biegemomentes in Richtung der Stab-
achse ist:

dM

Q = 1 (1.7)
Was bewirken Querkraft und Biegemoment im betrachteten Halmstiickchen
selbst? Die Querkraft unterwirft das Halmelement einer Schub- oder Scher-
spannung; unter ihrem Einflufl erhilt das im unbelasteten Zustand von der
Seite gesehen rechteckige Halmstiick die Form eines Rhomboids (Parallelo-
gramm; vgl. Fig. 1.2.): die Schnittflichen bleiben parallel, werden aber ge-
geniiber der Halmachse verschoben. Es kann gezeigt werden (z. B. StUssI
1962 oder ZIEGLER 1968), daB bei schlanken Stiiben der EinfluB dieser Schub-
verformung gegeniiber der gleich zu besprechenden Verkriimmung durch das
Biegemoment vernachlissigbar ist. Diese Verkriimmung entsteht durch eine
Verldngerung des Halmstiicks auf der AuBenseite der Kriimmung (in den Fi-
guren 1.1. und 1.2. auf der linken Seite des Elementes) und eine entsprechen-
de Verkiirzung auf der Innenseite (in den beiden Figuren: rechts). Diesen
Verformungen entspricht eine Zug- (auen) bzw. Druckspannung (innen).
Aus Gleichgewichtsgriinden mufl (wenn keine Normalkraft wirkt) die Summe
der Zugspannungen gleich der Summe der Druckspannungen sein. Ferner
miissen die Resultierenden von Zug und Druckspannung ein Kriftepaar bil-
den, welches dem vorhandenen Biegemoment M #quivalent ist. Diese Gleich-
gewichtsbedingungen reichen aber noch nicht aus, um die Spannungen und
Verformungen als Folge duBerer Krafteinwirkungen zu berechnen. Dazu sind
noch zwei Annahmen iiber das Verformungsverhalten notwendig, die in der
klassischen Statik wie folgt formuliert werden:
1. Ein im unbelasteten Zustand ebener Querschnitt soll auch unter Belastung

und Verformung eben bleiben (Hypothese von Bernoulli-Navier)
2. Die Verformungen sind direkt proportional zu den Spannungen (Hoo-
ke'sches Gesetz).
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Zur mathematischen Formulierung des Hooke'schen Gesetztes miissen die Be-
griffe Spannung und Verformung noch genauer definiert werden: Unter
(Normal-)Spannung (Zug oder Druck) wird die in irgendeinem Punkt senk-
recht zur Querschnittsebene wirkende Kraft pro Flicheneinheit verstan-
den (die Schubspannung ist anaolog die parallel zur Querschnittsebene wir-
kende Kraft pro Fldacheneinheit). Die hier zu beriicksichtigenden Verfor-
mungen sind die Dehnungen, welche als relative Langenanderungen, d.h.
als Verlingerung oder Verkiirzung pro Lingeneinheit des Halmelementes,
definiert werden:

AdD)
£ = - 1.8
T ] (1.8)
¢ ... Dehnung
A(dl) ... Verlingerung des Halmelementes [m]
d! ... Linge des Halmelementes [m]

Das Hooke'sche Gesetz kann nun dahingehend prizisiert werden, daB die
Spannungen direkt proportional zu den Dehnungen angenommen werden:

a) ) /
dl

unbelastet belastet

Fig. 1.2. Verformungen eines Stabelementes unter
a) Querkrafteinflul
b) Biegemoment
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= E¢ [N/m?]  (1.9)
... Spannung in einem Punkt des Querschnittes

. Proportionalitiitsfaktor [N/m?]

. Dehnung [-]

m mq Q

Zur Veranschaulichung diene Figur 1.3., wo eine gedachte "Faser" des un-
tersuchten Halmelementes im belasteten und unbelasteten Zustand gezeichnet
1st.

Der Proportionalititsfaktor £ der Gleichung (1.9) ist eine Materialkonstante
und heiBt Elastizitditsmodul, abgekiirzt E-Modul.

Bevor wir die Hypothese von Bernoulli-Navier fiir den Schilfhalm formulie-
ren und mit dem Hooke'schen Gesetz verkniipfen, sei noch die Frage beriihrt,
ob die erwidhnten Annahmen der klassischen Statik iiberhaupt "richtig" sind,
d.h. brauchbare Ergebnisse erwarten lassen.

Das Ebenbleiben der Querschnitte setzt voraus, daB keine Schubverzerrungen
auftreten, was bedeutet, daB rechte Winkel des Halmstiicks auch bei Verfor-
mung rechte Winkel bleiben, daB also auch der verformte Querschnitt in allen
Punkten auf der (ebenfalls verformten) Halmachse senkrecht steht. Diese An-
nahme trifft fiir schlanke Stdbe in geniigendem MaBe zu (s. oben bei den
Bemerkungen zur Schubspannung). Die Giiltigkeit des Hooke'schen Gesetzes
kann nur mit Messungen am Halmmaterial nachgepriift werden. Dabei sind
aber verschiedene Schwierigkeiten zu beriicksichtigen: Ein Schilfhalm ist ja
kein homogener Stab (vgl. Teil I, Kap. 1.1.). Es ist zu erwarten, daB die ver-

To‘
adl |

dl

ls

unbe-|belastet
lastet

Fig. 1.3. Gedachte, einzelne "Faser" aus dem Halmelement in belastetem und unbelaste-
tem Zustand. (Diese fiktiven "Fasern" diirfen nicht mit den Cellulosefasern, die den wirkli-
chen Stengel aufbauen, verwechselt werden.)
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schiedenen Gewebearten je einen eigenen E-Modul haben (sofern das
Hooke'sche Gesetz iiberhaupt gilt). Ebenso ist bei natiirlichen Materialien der
E-Modul fiir Zug nicht unbedingt gleich jenem fiir Druck. Da wir uns im
Rahmen dieser Arbeit nicht fiir das Verhalten im Mikrobereich (einzelne Fa-
sern) interessieren, sondemn fiir den Halm als ganzes, ist die Lésung von einer
andern Seite her moglich: Wir nehmen zunéchst an, das Hooke'sche Gesetz sei
ebenso wie die Hypothesen von Bemoulli-Navier in unserem Fall giiltig und
liberpriifen dann, inwiefern die damit gezogenen SchluBfolgerungen mit dem
bei den Festigkeitsmessungen beobachteten Verhalten der Schilfhalme iiber-
einstimmen. Dies ist tatsdchlich in geniigendem MaBe der Fall. Deshalb sei im
folgenden der Zusammenhang zwischen duflerer Belastung und Verformung
eines Halmes mit den Annahmen der klassischen Statik hergeleitet.

Mit den Bezeichnungen der Figur 1.4. kann das Ebenbleiben der Querschnitte
mit der Gleichung

£ = D& (1.10)
¢ ... Dehnung

@ ... Proportionalitiitsfaktor

¢ ... Abstand von der Halmachse

formuliert werden. Das Gleichgewicht zwischen den (Normal-)Spannungen
und dem Biegemoment driickt sich in folgender Gleichung aus:

lu Ca :
. Spannungsverteilung
g;-—-———-——o Sd Druck

Dehnungen (1/2€4dl)

T
Eam

Fig. 1.4. Belastetes Halmelement mit eingezeichenten Spannungen und Dehnungen.
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M= [otar (1.11)
os

o ... Spannung
dF ... Flichenelement des Querschnitts
0S ... Querschnitt

Die Kombination der Gleichungen (1.9), (1.10) und (1.11) fiihrt zu

M=E® [E4F = EdJ (1.12)
0s
mit
J = [eur m* (1.13)
Qs

Der Ausdruck J heiBt Flichentrigheitsmoment des Querschnitts beziig-
lich der zur Bildebene (x-z-Ebene, vgl. Fig. 1.1., 1.4.) senkrechten, durch
den Schwerpunkt des Querschnitts gehenden 7-Achse. Da die Schwerpunkte
aller Querschnitte die Halmachse definieren, schneidet diese 7-Achse auch
die Halmachse.

Der Proportionalititsfaktor @ aus Gleichung (1.10) wird uns weiter unten
noch beschiftigen. Er wird durch Auflosen der Gleichung (1.12) erhalten:

M
EJ

Die Gleichungen (1.9), (1.10) und (1.14) liefern die Formel zur Berechnung
der Spannungen:

D = [m1] (1.14)

= JM [Nm?]  (1.15)

Die Maximalspannungen treten an den Réindern auf, ndmlich dort wo & maxi-
mal ist, d.h. fiir einen runden Schilfhalm bei &=+D/2.

o - MD [N/m?] (1.16)

Die Bedeutung des Faktors @ wird aus der geometrischen Interpretation des
Verhiltnisses &/€ ersichtlich (Gl. 1.10). Aus der Figur 1.4. geht hervor, da

led _  da _do (weil daklein) (1.17)

Da ¢/& nichts anderes ist als @, kann Gleichung (1.17) mit Beriicksichti-
gung von (1.14) auch so angeschrieben werden:
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1 _ 1 M . do
2(de = BT dl = > (1.18)

Auflésung nach @ ergibt

- o M ¥
- == [m™] (1.19)

In der Figur 1.4. sehen wir sofort, dall doy/dl nichts anderes als die Kriim-
mung der Halmachse ist und damit auch gleich dem Kehrwert des Kriim-
mungsradius'. Zusammen mit der Figur 1.1. ist auch der Zusammenhang zwi-
schen der Kriimmung, dem Drehwinkel & und der Durchbiegung & ersicht-
lich: Die Kriimmung des Halmelementes iiber die Linge dl ist gleich der An-
derung des Drehwinkels o lings dieses Halmelementes. Der Tangens des
Drehwinkels ist gleich der ersten Ableitung der Durchbiegung in Richtung
der z-Achse:

' = tana [[] (1.20)

Fiir die meisten Berechnungen der klassischen Statik wird noch als zusétzliche
Voraussetzung angenommen, daB die Durchbiegungen & (und damit auch die
Drehwinkel o) klein seien. Dann gilt

dé dbé
. _ds _ - q (1.21
o) ke tana = o 1 ( )
und damit nach (1.19)
doa da d%6
P = —=— = = 9" ml] (1.22
dl dz dz? o] ¢ )

Bei kleinen Durchbiegungen kann damit die Kriimmung @ gleich der zwei-
ten Ableitung é” der Durchbiegung in Richtung der unverformten Stabachse
(in unserem Beispiel ist es die z-Achse ) gesetzt werden. Die Grenze fiir die
Giiltigkeit dieser Ndherung folgt aus (1.21), der Drehwinkel muB innerhalb
der geforderten Genauigkeit mit seinem Tangens iibereinstimmen. Sonst muf3
fiir den Zusammenhang zwischen Kriimmung und Druchbiegung die exakte
Gleichung (41.1) aus Teil II benutzt werden, als deren Grenzfall (1.22) fiir
Werte von ¢’ << 1 betrachtet werden kann.

Gleichung (1.19) ist die gesuchte Verkniipfung zwischen dem Biegemoment
M und der Halmkrimmung @: Diese ist gleich dem Biegemoment geteilt
durch den Ausdruck E-J (E-Modul mal Flichentrigheitsmoment des Quer-
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schnitts). Daher ist es naheliegend, den Wert E-J als Biegesteifigkeit des
Halmelementes (= Widerstand gegen Verkriimmung) zu bezeichnen:

EJ = —g— [Nm2] (1.23)

E-J ... (lokale) Biegesteifigkeit des Halmes [N-m?]

E ... (lokaler) Elastizitismodul des Halmes [N/m?]
J ... Flichentrigheitsmoment des Querschnitts [m®*]

@ ... (lokale) Kriimmung des Halmes [rad/m] bzw. [m™1]

Da wir uns in dieser Arbeit nur mit der Biegebeanspruchung des Schilfhalmes
befassen, ist mit der Biegesteifigkeit sein Verformungsverhalten vollstéindig
beschrieben. Der Wert ist einerseits von den Materialeigenschaften (E-Mo-
dul), andererseits von der Geometrie (Flichentrigheitsmoment des Quer-
schnitts) abhidngig. Wihrend sowohl der E-Modul, wie auch das Flachentrég-
heitsmoment von Schilfhalmen nur mit groBem Aufwand gemessen werden
konnen, ist das Produkt der beiden GroBBen, eben die Biegesteifigkeit, zumin-
dest als Mittelwert iiber einen bestimmten Halmabschnitt, experimentell ein-
fach zu bestimmen. Die Schwierigkeiten bei der Bestimmung des E-Moduls
riihren vor allem von der Inhomogenitit des Halmes her, die Messung des
Trigheitsmomentes erfordert bei der Bestimmung des AuBen- und Innen-
durchmessers (je nach UnregelmiBigkeit des Querschnitts in mehreren Rich-
tungen) eine Genauigkeit im Bereich 1/100mm, denn das Trigheitsmoment
eines ringformigen Querschnittes ist eine Funktion von der Differenz der
vierten Potenz dieser Durchmeser. Die geforderte Prézision fiihrt besonders
bei weichen Halmen zu Problemen (Zusammendriicken beim Messen).

Als Charakteristikum des Halmes ist die Biegesteifigkeit £-J unabhingig von
der Art der Belastung, sie kann daher als VergleichsgroBe fiir Schilfpflanzen
verschiedener Bestinde dienen. Allerdings ist sie keine Materialkonstante,
sondern abhingig von der Geometrie. Es mag fiir Vergleichszwecke wiin-
schenswert sein, diesen Einflu der Halmgeometrie zumindest teilweise zu eli-
minieren, was mit gewissen vereinfachenden Annahmen iiber die Halmgeo-
metrie ohne weiteres moglich ist. Die einfachste Méglichkeit besteht darin,
den Schilfhalm, bzw. den untersuchten Abschnitt daraus, als homogenen, pris-
matischen Stab mit (vollem) Kreisquerschnitt zu idealisieren. Auf diese Weise
wird der EinfluB der Halmdicke eliminiert, wihrend der EinfluB des Halm-
aufbaus, insbesondere des Verhiltnisses von Wandstirke zu Durchmesser,
nach wie vor in der gesuchten Grofe enthalten sind. Das Trigheitsmoment,
das wir als ideelles Triagheitsmoment J;, bezeichnen wollen, ist dann nur noch
vom AuBlendurchmesser D abhingig:
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LY

J, = —D* m*] (1.24
id & [m®] (1.24)
Jy; ... Idealisierte Trégheitsmoment des Halmquerschnitts [m®]

D ... Halmdurchmesser (auen) [m]

Bei der Messung des Aulendurchmessers ist keine so hohe Prézision nétig,
wie bei der exakten Berechnung des Trigheitsmomentes, denn der MeBfehler
steht hier im Verhdltnis zum ganzen Durchmesser und nicht nur zur Wand-
dicke. Eine MeBgenauigkeit von 1/20 bis 1/10 mm (Schublehre) ist daher aus-
reichend. Dagegen ist zu beachten, dal die Halme meistens nicht kreisrund
sind. Der Durchmesser muf} deshalb in einer genau definierten Weise festge-
legt werden. In der vorliegenden Arbeit wird immer der in der Richtung der
Belastung liegende Durchmesser des Halmes als reprisentativ genommen,
weil diese Dimension den stidrksten EinfluB hat. Moglich wire aber auch die
Berechnung eines mittleren Durchmessers aus Messungen in verschiedenen
Richtungen.

Mit dem ideellen Trigheitsmoment kann man aus der gemessenen Biegestei-
figkeit einen ideellen E-Modul ableiten:

E, = La [N/m?] (1.25)
Ju

Dieser idealisierte E-Modul ist natiirlich keine Materialkonstante, denn er ist,
wie bereits gesagt, noch abhiingig von der Wandstiirke sowie von der Anord-
nung und Verteilung des Festigungsgewebes. Da der Zweck dieser Arbeit
nicht im Vergleich der mechanischen Eigenschaften verschiedener Schilfbe-
stinde liegt, machen wir hier Gebrauch von dieser vereinfachten Moglichkeit
zur Darstellung der Ergebnisse von Steifigkeitsmessungen.
OsTENDORP (1982, 1983) geht dagegen noch einen Schritt weiter, indem er den
Halmquerschnitt als Kreisring annimmt, das Tridgheitsmoment mithin zu

1
J = a(D;‘-D;‘) [m*] (1.26)
J. ... Trigheitsmoment des Kreisringquerschnitts [m*]

D, ... AuBendurchmesser des Halmes [m]
D; ... Innendurchmesser des Halmes [m] (= AuBendurchmesser abziiglich
Wandstirke)

festlegt.
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1.2. DEFINITION DER FESTIGKEIT

Bezeichnet die Steifigkeit den Widerstand des Schilfhalmes gegen Verfor-
mung, so steht der Begriff Festigkeit fiir den Widerstand gegen Bruch. Da in
dieser Arbeit nur die Biegebeanspruchung interessiert, verstehen wir unter
Festigkeit hier die Biegebruchfestigkeit oder kiirzer: Biegefestigkeit
(analog zur Biegesteifigkeit). Der Biegebruch wird durch das Biegemoment
und die dadurch bewirkten Spannungen im Halm verursacht. Unter Festigkeit
kann man daher sowohl das Bruchmoment, wie auch die Bruchspannung
verstehen. Ein Blick auf Gleichung (1.16) zeigt, daB fiir Bruchmoment und
Bruchspannung hinsichtlich MeB- und Interpretierbarkeit analog dasselbe
gilt, wie fiir Biegesteifigkeit und E-Modul: Das Bruchmoment ist unabhin-
gig von der duleren Belastung und charakterisiert das Halmstiick als ganzes,
die Bruchspannung ist eine Materialeigenschaft des Halmgewebes. Ana-
log zum Vorgehen im vorigen Kapitel kénnen wir unter Verwendung des
idealisierten Trigheitsmomentes eine ideelle Bruchspannung definieren (vgl.
Gl. 1.16): '

M, D
Opria = Fo [Nm?] (1.27)
id
g, ;a4 --- Idelle Bruchspannung [N/m?]
J,; ... dealisierte Trigheitsmoment des Halmquerschnitts [m*]
Mp, ... Bruchmoment [N-m]
.. Halmdurchmesser (auBen) [m]

Damit Bruchmoment und Bruchspannung wohldefinierte Groen sind, muf3
noch festgelegt werden, was genau unter "Bruch" verstanden werden soll. Da
bei einem Biegebruch ("Knicken") die beiden Teilstiicke in der Regel nicht
voneinander abgetrennt werden, ist diese Frage nicht so einfach zu beantwor-
ten, wie es auf den ersten Blick scheint. Es wire an sich naheliegend, den Ein-
tritt des Bruchs als jenen Punkt zu definieren, wo durch die Beanspruchung
des Halmes eine zumindest kurz- und mittelfristig irreversible Schi-
digung entsteht. Die zeitliche Einschriankung muf} deshalb gemacht werden,
weil die Pflanzen eine gewisse Fihigkeit zur Selbstheilung besitzen. Dieser
Punkt ist jedoch mit einfachen Mitteln nicht feststellbar, und es muB} ein ande-
rer Weg gesucht werden. Dazu ist es zweckmiBig, den Verlauf eines Biege-
bruches einmal qualitativ zu verfolgen.

Im einfachsten Fall unterstiitzt man dazu ein Halmstiick an seinen beiden En-
den und bringt in der Mitte eine Belastung auf (Fig. 1.5.) Mit zunehmender
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Fig. 1.5. Einfache Versuchsanordnung fiir einen Biegeversuch
F = Belastung (z.B. Gewicht oder Federwaage)

EMLE

Bruchlast

Grenzlast

S, €

e EGr Eor
Bleibende
Verformung

Fig. 1.6. Kraft-Durchbiegungsdiagramm eines Biegeversuchs mit einem Schilfhalm.

Das Bild bleibt qualitativ gleich, wenn anstelle der Kraft F das Biegemoment M oder die
(Maximal-)Spannung o eines Querschnitts auf der Ordinate aufgetragen wird, ebenso wenn
auf der Abszisse anstelle der Durchbiegung & die (Faser-)Dehnung ¢ dargestellt wird.

Im linear-elastischen Bereich (Punkt 0 bis 1) sind Belastung und Verformung zueinander di-
rekt proportional, die Entlastung folgt derselben Linie (keine bleibenden Verformungen).
Wird der Halm iiber diesen Bereich hinaus belastet, so kehrt er auch bei vollstindiger Entla-
stung nicht mehr in seinen urspriinglichen Zustand zuriick, es bleibt eine plastische Verfor-
mung (Entlastung folgt bei einer Belastung bis zum Punkt 2 der gestrichelten Linie). Wird
der Halm iiber seine Bruchfestigkeit (Punkt 3) belastet, so ist der weitere Verlauf der Kurve
davon abhéngig, ob die Last von der Verformung unabhingig ist (z.B. Belastung durch auf-
gezwungene Durchbiegung, strichpunktierte Linie) oder nicht (z.B. Federwaage, ausgezo-
gene Linie).
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Belastung biegt sich der Halm immer mehr durch, bis zu dem Punkt, wo die
Belastung nicht mehr gesteigert werden kann, da der Halm "verreist". Zeich-
net man Kraft und Druchbiegung gegeneinander auf, so erhilt man normaler-
weise ein Diagramm in der Art der Figur 1.6. Aus den Gleichungen (1.3) und
(1.16) geht hervor, daB zumindest bei kleinen Verformungen Belastung, Bie-
gemoment und maximale Spannung zueinander direkt proportional sind. Aus
den Gleichungen (1.17), (1.19) und (1.22) folgt, daB die Dehnungen und die
Durchbiegungen solange zueinander direkt proportional sind, als die Kriim-
mung mit geniigender Niherung gleich der zweiten Ableitung der Biegelinie
in Richtung der Halmachse gesetzt werden darf. Deshalb kann die Darstellung
der Figur 1.6. mit entsprechender Anpassung der Skalen ebenso als Biegemo-
ment-Durchbiegungs- oder als Spannungs-Dehnungskurve interpretiert wer-
den.

Auf dieser Kurve sind drei Bereiche zu unterscheiden: Zuerst (zwischen
Punkt O und 1) verliduft die Kurve linear, was bedeutet, daB in diesem Bereich
die Annahmen der klassischen Statik giiltig sind (die oben erwihnten Propor-
tionalitdten nach der Hypothese von Bernoulli-Navier und dem Hooke'schen
Gesetz begriinden einen linearen Zusammenhang zwischen den aufgetragenen
GroBen). Solange der Halm nicht iiber diesen Bereich hinaus belastet wird,
kehrt er nach Wegnehmen der Kraft wieder in seine Ausgangslage zuriick.
Wir sprechen deshalb vom (linear-)elastischen Bereich. Belasten wir den
Halm stirker, so wandert die Kurve allmihlich von der urspriinglichen Gera-
den weg, die Verformungen nehmen iiberproportional zu. Wird der Halm in
diesem zweiten Bereich (z.B. bei Punkt 2 in Fig. 1.6.) entlastet, so kehrt er
nicht mehr in die Ausgangslage zuriick (gestrichelte Linie): Es entsteht eine
bleibende Verformung. Tritt dies (in der Natur) nur einmal auf, so wird sich
der Halm durch entsprechende Zellstreckung an die neuen Verhiltnisse anpas-
sen. Wird dagegen die Belastung bis jenseits der Elastizititsgrenze oft wieder-
holt, so weicht der Halm (im Experiment) immer mehr aus; bei der Art der in
der Natur vorkommenden Beanspruchung (Wellenschlag) bedeutet dies meist,
daB er "abliegt".

Bei stindiger Zunahme der Belastung steigt die Kurve bis zu einem bestimm-
ten Maximum (Punkt 3 in Fig. 1.6.), wo der Halm im eigentlichen Sinne des
Worte bricht. Es entsteht ein deutlich sichtbarer Knick, hervorgerufen durch
das Einbeulen der Halmwand auf der Druckseite (in der Anordnung der Figur
1.5. 1st dies die Halmoberseite). In einigen Fillen wird der Bruch auch durch
das Zerreiflen der Fasern auf der Zugseite verursacht, besonders dann, wenn
die Anordnung so gewihlt wird, daBl die Maximalbeanspruchung auf einen
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Knoten fillt. Im ersten Fall kann in der Bruchstelle immer noch ein bestimm-
tes Biegemoment iibertragen werden; wird die Belastung durch eine aufge-
zwungene Verformung gesteuert, so nimmt die Kurve den Verlauf der strich-
punktierten Linie in der Figur 1.6., wird die Last mit einer Feder aufge-
bracht, so fillt die Kraft nach dem Bruch zusammen und sinkt auf Null (aus-
gezogene Linie in Figur 1.6.).

Als Eintritt des Bruches kann man sinnvollerweise die Punkte 1 oder 3 defi-
nieren. Die Wahl wird durch Uberlegungen zur ZweckmiBigkeit bestimmt,
die hier kurz skizziert seien. Der Punkt 1 in der Figur 1.6. (Elastitzit4tsgren-
ze) entspricht sicher mit guter Niherung dem oben definierten Punkt, wo
(kurzfristig) irreversible Schdden entstehen. Um ihn zu bestimmen, mufl man
die Belastungs-Verformungskurve in ihrem ganzen Verlauf kennen, der kriti-
sche Punkt kann dann einfach und recht genau aus der Darstellung herausge-
messen werden (vgl. Fig. 1.9.). Dazu sind jedoch umfangreiche Priifeinrich-
tungen erforderlich, die fiir Versuche im Feld nicht in Frage kommen. Bei
Feldversuchen hat man keine andere Wahl als den sichtbaren Bruch, d.h. die
maximal aufbringbare Last, zu messen. Auch dieser Wert ist eine interessante
VergleichsgroBe und ist mit dem entsprechenden Wert der Elastizitéitsgrenze
stark korreliert. Besteht die Moglichkeit fiir Labormessungen, so wird man in
erster Linie die Elastizitdtsgrenze selbst als Bruchkriterium wéhlen, daneben
aber auch den Maximalwert - Punkt 3 - protokollieren und das Verhiltnis der
beiden ausrechnen.

Da wir sowohl Feld-, als auch Laborversuche durchfiihrten, werden wir im
folgenden zur genauen Unterscheidung jene Werte, die der Elastizitéitsgrenze
entsprechen, mit der Vorsilbe Grenz- kennzeichnen (Grenzmoment,
Grenzspannung usw.), die zum Maximalwert gehorigen Gré8en dagegen
mit Bruch- (Bruchmoment, Bruchspannung usw.).
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1.3. DIE BERECHNUNG DER STEIFIGKEIT UND FESTIGKEIT
BEI BIEGEVERSUCHEN

Der Zweck von Biegeversuchen ist die Bestimmung einzelner oder aller der
in den vorigen Kapiteln definierten GroBen. Wihrend zur Berechnung der
Bruch-(Grenz-)Festigkeit die Messung der Bruch-(Grenz-)Kraft und die
Kenntnis der Geometrie der Versuchsanlage geniigen, muf3 zur Bestimmung
der Biegesteifigkeit auBerdem die der aufgebrachten Last entsprechende
Durchbiegung gemessen werden.

Anordnung Biegemoment Durchbiegung

1 F'la'lb
Filo lF Fla L
l L |,=l— F-l _ F|3
2 4 48EJ
'»i,r_l.'i_,i.i.‘
FI 13 12
3. S . s . = . o F ____(a + a b)
g g LT T EJ 6 4
t )t Fla Fla
F E F F e 2
2 2 2 2

Fig. 1.7. Drei mogliche Priifanordnungen fiir Schilfbiegeversuche, mit zugehorigen Auf-
lagerkriften, Biegemomentverteilungen und Durchbiegungen.

1. Halm einseitig fest eingespannt, am anderen Ende belastet

2. Halm beidseitig aufgelegt, dazwischen (bzw. in der Mitte) belastet

3. Halm beidseitig aufgelegt, in zwei symmetrisch gelegenen Punkten belastet
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1.3.1. Berechnung der Biegesteifigkeit

Die Figur 1.7. zeigt links drei mogliche Anordnungen fiir Biegeversuche:
1. Halm auf einer Seite fest eingespannt, am anderen Ende belastet.
2. Halm an beiden Enden aufgelegt, ungefihr in der Mitte belastet ("Drei-
punktlagerung").
3. Halm an beiden Enden aufgelegt, in zwei symmetrisch gelegenen Punkten
belastet ("Vierpunktlagerung").
In der gleichen Figur sind auch die lings der Halmachse wirkenden Biegemo-
mente und die Auflagerkrifte eingetragen. Diese Gro8en folgen aus den in je-
dem Punkt zu erfiillenden Gleichgewichtsbedingungen (Aquivalenz der 4uBe-
ren - Belastung und Lagerkrifte - und der inneren Kriifte - Querkraft und
Biegemoment). Sind die Durchbiegungen & klein, so ist die Halmkriim-
mung @ nach Gleichung (1.22) gleich der zweiten Ableitung " der Biege-
linie in Richtung der (unverformten) Stabachse, so dafl die zweimalige Inte-
gration der rechten Seite von (1.19) iiber die Stabachse die Gleichung der
Biegelinie liefert. Dabei miissen natiirlich die fiir die einzelnen Versuchsan-
ordnungen unterschiedlichen Randbedingungen beriicksichtigt werden. Setzt
man lidngs des ganzen Stabes konstante Querschnittswerte (E-J) voraus, so ist
die Integration von (1.19) fiir die in Fig. 1.7. gezeigten Verlidufe des Biege-
momentes in geschlossener Form moglich. Fiir die Durchbiegung unter den
Lasteinleitungspunkten sind die entsprechenden Ausdriicke in der Figur 1.7.
eingetragen. Da bei den Biegeversuchen sowohl die Belastung (Kraft F), als
auch die Durchbiegung & unter den Lasteinleitungspunkten bekannt sind,
kann aus den Formeln der Figur 1.7. die Biegesteifigkeit berechnet werden:

Anordnung 1 (Einseitig eingespannter Stab):
13 dF

EJ = —— N-m?] (1.2
J 3 46 [N-m7 (1.28)
Anordnung 2 (Dreipunktlagerung):
12,2 dF
EJ = 25 — N'-m? (1.29
3] 45 [N'm? (1.29)
-falls | =1,=1/2:
I* dF
EJ = —— N-m?] (1.
I 48 dé (Nm - (1.30)

Anordnung 3 (Vierpunktlagerung):
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Fig. 1.8. Beispiel eines Biegeversuchs mit stufenférmiger Laststeigerung. Das zur Be-
rechnung der Biegesteifigkeit erforderliche Verhiltnis von Lastzunahme: Durchbiegungszu-
nahme (dF/d5) entspricht der Steigung der Regressionsgeraden durch die Punkte 2 bis 6.
Wegen des Schlupfes zu Beginn des Versuchs (Punkte 1 und 2) darf der Punkt 1 fiir die Re-
gressionsrechnung nicht verwendet werden, ebenso alle Punkte, welche bei hoherer Bela-
stung auBerhalb des linear-elastischen Bereichs liegen.

FN]
!

.&rctan(i

dé)

0 - v e v - . T i - é
9/ 5 10 [mm]

Fig. 1.9. Beispiel eines Biegeversuchs mit stetiger Laststeigerung und automatischer Auf-
zeichnung von Kraft und Durchbiegung. Die dem linear-elastischen Bereich entsprechende
Gerade wird graphisch gefunden, ebenso der Punkt der Grenzbelastung F,.
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BT = (2 g%
"4 (6 + 2

dF 9

)d5 [N-m“ (1.31)
Die so erhaltene Biegesteifigkeit E-J ist ein Mittelwert fiir das untersuchte
Halmstiick, da ja von konstanten Querschnittswerten ausgegangen wurde. In
den obigen Formeln ist der Quotient F/J, welcher eigentlich nach den Glei-
chungen der Figur 1.7. einzusetzen wire, durch den Differentialquotienten
dF/dé ersetzt worden. Da wir fiir die Bestimmung der Biegesteifigkeit mit
der Belastung innerhalb des linear-elastischen Bereichs bleiben miissen, stim-
men die beiden Ausdriicke in ihrem Wert iiberein. Der Differentialquotient
kann mefBtechnisch leichter bestimmt werden, da der Nullpunkt bei den Biege-
versuchen nie genau bekannt ist, denn zu Beginn der Belastung entstehen we-
gen des unvermeidlichen Schlupfes zusitzliche Verschiebungen, deren GroBe
unbekannt ist (vgl. Fig. 1.8. und 1.9.). Wegen der immer vorhandenen klei-
nen MeBfehler ist es auBerdem unerlidBlich, mehrere Laststufen zu messen.
Die "wirkliche" Kraft-Verformungslinie erhélt man dann durch lineare Reg-
ression. Der Regressionskoeffizient (Steigung der Geraden) ist dann gerade
gleich dem gesuchten dF/dé. Selbstverstindlich miissen fiir die Regressions-
rechnung alle Punkte, die sich mit einiger Wahrscheinlichkeit auBerhalb des
linear-elastischen Bereichs befinden, weggelassen werden. Bei Laborversu-
chen mit stetiger Aufzeichnung von Last und Durchbiegung findet man die
gesuchte Gerade am besten graphisch (Fig. 1.9.) und kann deren Steigung her-
ausmessen.

1.3.2. Berechnung der Biegefestigkeit

Je nach Priifmethode und Anforderungen kann man aus dem Biegeversuch die
Bruch- und/oder die Grenzlast bestimmen. Die folgenden Darlegungen be-
handeln den Fall der Bruchlast. Da die Zusammenhinge fiir die Grenzlast die
selben sind, kann man fiir diesen Fall in diesem Kapitel iiberall den Begriff
"Bruch-" durch "Grenz-", bzw. "Br" durch "Gr", ersetzen.

Unter der Voraussetzung, da der Bruch am Ort des maximalen Biegemo-
mentes eintritt, ergeben sich fiir die drei Anordnungen der Figur 1.7. die fol-
genden Bruchmomente:

Anordnung 1 (einseitig eingespannter Stab):
Mg, =Fpy -1 [N-m] (1.32)
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Anordnung 2 (Dreipunktlagerung):

My, = Fp ;’ [N-m] (1.33)
-falls [, =1,=1/2:
Fg 1
My, = 4 [N-m] (1.34)
Anordnung 3 (Vierpunktlagerung):
Fgl
M, = _%53_ [N'm] (1.35)

Der Bruch tritt nicht unbedingt am Ort des maximalen Biegemomentes auf,
weil die Bruchfestigkeit lings des Halmes variiert: Nimmt die Bruchfestigkeit
vom Ort des maximalen Biegemomentes verhiltnismiBig rascher ab als das
vorhandene Biegemoment, so wird der Bruch an einem anderen Ort eintreten
(vgl. Fig. 1.10.). Wie dieser fiir die Priifung ungiinstige Fall vermieden wer-
den kann, wird bei der Beschreibung der Priifeinrichtungen gezeigt.

1/2 1/2

Q i v ==

.
vorhandenes Biegemo- |ment (Belastung)\
P, 7 Y, Y,
%% AV AN
444/; 4%2%% 2%%%7%
M %% 2%%%% 229%4
max f‘éﬁf% %%
i 2%%%%
4 44/ Bruchstelle
t"“‘---
lokales Bruchmoment
L] (Festigkeit)

Fig. 1.10. Da die Festigkeit (Bruchmoment) lings des Halmstiickes variiert, tritt der
Bruch nicht unbedingt am Ort des maximalen vorhandenen Biegemomentes (unter der Kraf-
teinleitung) auf, sondern dort, wo das lokale Biegemoment bei wachsender Belastung zuerst
die GroBe des (lokalen) Bruchmomentes erreicht.



	Teil III. Untersuchungen zur Halmfestigkeit : Definition der Begriffe

