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1. DEFINITION DER BEGRIFFE

Festigkeit ist ein Begriff, unter welchem eine Vielzahl von physikalischen
Größen verstanden werden können. Für die vorliegende Arbeit sind zwei
davon von Interesse, nämlich die Bruchfestigkeit Festigkeit im engeren
Sinne) und die Steifigkeit. Wie der Name des ersten Ausdrucks sagt, gibt
dieser an, bei welcher Belastung das Objekt (der Halm) bricht. Der zweite
Ausdruck dagegen sagt, eine wie große Belastung notwendig ist, um eine
bestimmte Verformung (z.B. Verbiegung) des Objektes zu erzwingen. In den

folgenden Kapiteln werden die hier soeben allgemein definierten Begriffe im
Hinblick auf die vorliegende Arbeit weiter eingeschränkt, da nur bestimmte

Belastungen und Verformungen (nämlich solche, die bei einem natürlichen
Schilfhalm vorwiegend auftreten) interessieren.

1.1. DEFINITION DER STEIFIGKEIT

Ein Schilfhalm wird unter dem Einfluß von Wellen, Wind und Treibzeug
praktisch ausschließlich auf Biegung belastet.

Zwischen den äußeren Belastungen, den daraus folgenden Beanspruchungen
(Biegemoment, Querkraft usw.), den inneren Spannungen (wirkende Kraft
pro Flächeneinheit des Querschnitts) und den Verformungen bestehen

gesetzmäßige Zusammenhänge, die unter den Annahmen der klassischen Statik
(s. z.B. Stüssi 1962) in einfacher Weise mathematisch formuliert werden
können. Soweit es für das Verständnis der vorliegenden Arbeit notwendig ist,
werden diese Beziehungen im folgenden kurz hergeleitet.
Als einfaches Beispiel diene ein Schilfhalm, der in einer bestimmten Höhe h*

über Grund von einer äußeren Kraft F belastet wird (Fig. 1.1.). Uns interessieren

die Beanspruchungen, Spannungen und Verformungen in einem beliebig

gewählten Halmquerschnitt in der Höhe h über Grund. Dazu denken wir
uns ein kurzes Stück des Halmes mit der (sehr kleinen) Länge dl herausgeschnitten.

Auf beide Schnittflächen wirken Kräfte, welche die abgeschnittenen
Teile auf das betrachtete Halmelement ausüben. Nach dem dritten New-
ton'schen Prinzip "actio=reactio" übt das betrachtete Halmelement seinerseits

die selben Kräfte in umgekehrter Richtung auf die abgeschnittenen Teile aus.

Auf den jeweils zusammengehörenden Schnittflächen wirken also die

entgegengesetzt gleichen Kräfte und Momente.
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Wenn wir der Einfachheit halber das Eigengewicht des oberen abgeschnittenen

Halmstückes vernachlässigen, so ist an der oberen Schnittstelle nur der
Einfluß der äußeren Kraft F zu berücksichtigen. Dieser äußert sich als
"abscherende" Kraft (Querkraft) und (wenn F nicht gerade im betrachteten

Querschnitt angreift) als "biegende" Kraft (Biegemoment). Würde die
Kraft F nicht (wie in diesem Beispiel angenommen) senkrecht zur Halmachse

wirken, so entstünde auch noch eine "drückende" oder "ziehende" Kraft
(Normalkraft), deren Einfluß im Rahmen der vorliegenden Untersuchungen

vernachlässigt werden darf.
Der Betrag der Querkraft Q ist gleich der senkrecht zur Halmachse wirkenden

Komponente von F. Unter der zunächst anzunehmenden Voraussetzung,
daß die Verdrehung a des untersuchten Halmstückes klein sei (und wenn F
horizontal wirkt), kann die Querkraft gleich F gesetzt werden:

A F /-j »A», i m

Od

M + 0

7777777777777

oberer Halmteil

unterer Halmteil

Kam/

Fig. 1.1. Belastung und Beanspruchung eines Schilfhalmes.
Links: Schematische Darstellung und wichtigste Abmessungen eines Schilfhalmes, der

durch eine waagrechte Kraft F beansprucht wird.
Rechts: Herausgeschnitten gedachtes Element des Halmes mit den wirkenden Beanspru¬

chungen an den beiden Querschnitten.
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Q =Fcosa [N] (1.1)
bzw.

Q « F (wenn a klein und F horizontal) [N] (1.2)
Q Querkraft [N]
F Äußere Kraft [N]
a Winkel zwischen der Querschnittsebene und der Wirkungslinie

von F [rad]

Das Biegemoment M bewirkt die Verkrümmung des Halmes. Sein Betrag ist

gleich dem Produkt aus dem Betrag der äußeren Kraft und dem senkrecht zur
Wirkunglsinie dieser Kraft gemessenen Abstand vom betrachteten Punkt, im

Beispiel der Fig. 1.1. also

M F (hf- h) [N-m] (1.3)

M Biegemoment [N-m]
F ...Äußere Kraft (Betrag) [N]
hf Höhe über Grund der Wirkungslinie von F

Höhe über Grund des betrachteten QuerschnittesÌ
Das Biegemoment kann man sich auch als ein Paar gleich großer, genau
entgegengesetzt wirkender Kräfte (Kräftepaar) veranschaulichen, deren Betrag
und Abstand voneinander so groß sind, daß das Produkt gleich dem vorhandenen

Biegemoment ist:

Pa =M [N-m] (1.4)
P Betrag der Kräfte des gedachten Kräftepaares [N]
a Abstand der beiden Kräfte [m]

M Äquivalentes Biegemoment [N-m]

Bis jetzt haben wir stillschweigend vorausgesetzt, daß die Wirkungslinie der

Kraft F irgendwo durch die Halmachse geht. Angesichts der geringen Dicke
eines Schilfhalmes ist diese Voraussetzung in unserem Fall stets mit genügender

Genauigkeit erfüllt. Andernfalls müßte noch das Torsionsmoment
(Verdrehung) berücksichtigt werden. Im Rahmen dieser Arbeit wird also nur die

Biegung behandelt, unter der abgekürzten Bezeichnung "Moment" ist darum
im folgenden immer das Biegemoment zu verstehen.

Im Vergleich der beiden Schnittflächen des gedachten Halmelementes stellen

wir fest, daß die Querkraft an beiden Stellen gleich groß ist (außer wenn eine
äußere Kraft am Element selbst angreift), denn die Querkraft ist ja gleich
einer Komponente der oberhalb der Schnittstelle wirkenden, äußeren Kraft.
Das Biegemoment wird dagegen um den Betrag

dM =Qdl [N-m] (1.5)
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vergrößert, da der Abstand zur äußeren Kraft um dl zunimmt. An der unteren

Schnittstelle wirkt somit ein Biegemoment vom Betrag

Mu M + dM F(hf-h) + Fdl F[hf-(h-dl)]
F(hf-hu) (1.6)

Die Analogie der Gleichung (1.6) mit (1.3) ist offensichtlich, wodurch die

Richtigkeit von (1.5) indirekt bestätigt wird. Gleichung (1.5) ist allgemein
gültig und besagt nichts anderes, als daß die Querkraft in jedem Punkt eines
Stabes gleich der ersten Ableitung des Biegemomentes in Richtung der
Stabachse ist:

Q 2L (1.7)
dl

Was bewirken Querkraft und Biegemoment im betrachteten Halmstückchen
selbst? Die Querkraft unterwirft das Halmelement einer Schub- oder

Scherspannung; unter ihrem Einfluß erhält das im unbelasteten Zustand von der
Seite gesehen rechteckige Halmstück die Form eines Rhomboids (Parallelogramm;

vgl. Fig. 1.2.): die Schnittflächen bleiben parallel, werden aber

gegenüber der Halmachse verschoben. Es kann gezeigt werden (z. B. Stüssi
1962 oder Ziegler 1968), daß bei schlanken Stäben der Einfluß dieser

Schubverformung gegenüber der gleich zu besprechenden Verkrümmung durch das

Biegemoment vernachlässigbar ist. Diese Verkrümmung entsteht durch eine

Verlängerung des Halmstücks auf der Außenseite der Krümmung (in den

Figuren 1.1. und 1.2. auf der linken Seite des Elementes) und eine entsprechende

Verkürzung auf der Innenseite (in den beiden Figuren: rechts). Diesen

Verformungen entspricht eine Zug- (außen) bzw. Druckspannung (innen).
Aus Gleichgewichtsgründen muß (wenn keine Normalkraft wirkt) die Summe

der Zugspannungen gleich der Summe der Druckspannungen sein. Ferner
müssen die Resultierenden von Zug und Druckspannung ein Kräftepaar
bilden, welches dem vorhandenen Biegemoment M äquivalent ist. Diese

Gleichgewichtsbedingungen reichen aber noch nicht aus, um die Spannungen und

Verformungen als Folge äußerer Krafteinwirkungen zu berechnen. Dazu sind

noch zwei Annahmen über das Verformungsverhalten notwendig, die in der
klassischen Statik wie folgt formuliert werden:
1. Ein im unbelasteten Zustand ebener Querschnitt soll auch unter Belastung

und Verformung eben bleiben (Hypothese von Bernoulli-Navier)
2. Die Verformungen sind direkt proportional zu den Spannungen (Hoo-

ke'sches Gesetz).
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Zur mathematischen Formulierung des Hooke'schen Gesetztes müssen die
Begriffe Spannung und Verformung noch genauer definiert werden: Unter
(Normal-)Spannung (Zug oder Druck) wird die in irgendeinem Punkt senkrecht

zur Querschnittsebene wirkende Kraft pro Flächeneinheit verstanden

(die Schubspannung ist anaolog die parallel zur Querschnittsebene
wirkende Kraft pro Flächeneinheit). Die hier zu berücksichtigenden
Verformungen sind die Dehnungen, welche als relative Längenänderungen, d.h.
als Verlängerung oder Verkürzung pro Längeneinheit des Halmelementes,
definiert werden:

e

à(dl)
dl

A(dl)
dl

Dehnung
Verlängerung des Halmelementes [m]
Länge des Halmelementes [m]

H (1.8)

Das Hooke'sche Gesetz kann nun dahingehend präzisiert werden, daß die

Spannungen direkt proportional zu den Dehnungen angenommen werden:

-#- Q

dl

b) dl

o
v_>-

unbelastet

Fig. 1.2. Verformungen eines Stabelementes unter
a) Querkrafteinfluß
b) Biegemoment
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a Ee [N/m2] (1.9)

E
E

Spannung in einem Punkt des Querschnittes
Proportionalitätsfaktor [N/m2]
Dehnung [-]

Zur Veranschaulichung diene Figur 1.3., wo eine gedachte "Faser" des

untersuchten Halmelementes im belasteten und unbelasteten Zustand gezeichnet
ist.

Der Proportionalitätsfaktor E der Gleichung (1.9) ist eine Materialkonstante
und heißt Elastizitätsmodul, abgekürzt E-Modul.
Bevor wir die Hypothese von Bernoulli-Navier für den Schilfhalm formulieren

und mit dem Hooke'schen Gesetz verknüpfen, sei noch die Frage berührt,
ob die erwähnten Annahmen der klassischen Statik überhaupt "richtig" sind,
d.h. brauchbare Ergebnisse erwarten lassen.

Das Ebenbleiben der Querschnitte setzt voraus, daß keine Schubverzerrungen
auftreten, was bedeutet, daß rechte Winkel des Halmstücks auch bei Verformung

rechte Winkel bleiben, daß also auch der verformte Querschnitt in allen
Punkten auf der (ebenfalls verformten) Halmachse senkrecht steht. Diese
Annahme trifft für schlanke Stäbe in genügendem Maße zu (s. oben bei den

Bemerkungen zur Schubspannung). Die Gültigkeit des Hooke'schen Gesetzes

kann nur mit Messungen am Halmmaterial nachgeprüft werden. Dabei sind
aber verschiedene Schwierigkeiten zu berücksichtigen: Ein Schilfhalm ist ja
kein homogener Stab (vgl. Teil I, Kap. 1.1.). Es ist zu erwarten, daß die ver-

CuA\

dl

unbe-I belastet
lastet i

Fig. 1.3. Gedachte, einzelne "Faser" aus dem Halmelement in belastetem und unbelastetem

Zustand. (Diese fiktiven "Fasern" dürfen nicht mit den Cellulosefasern, die den wirklichen

Stengel aufbauen, verwechselt werden.)
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schiedenen Gewebearten je einen eigenen E-Modul haben (sofern das

Hooke'sche Gesetz überhaupt gilt). Ebenso ist bei natürlichen Materialien der

E-Modul für Zug nicht unbedingt gleich jenem für Druck. Da wir uns im
Rahmen dieser Arbeit nicht für das Verhalten im Mikrobereich (einzelne
Fasern) interessieren, sondern für den Halm als ganzes, ist die Lösung von einer
andern Seite her möglich: Wir nehmen zunächst an, das Hooke'sche Gesetz sei

ebenso wie die Hypothesen von Bernoulli-Navier in unserem Fall gültig und

überprüfen dann, inwiefern die damit gezogenen Schlußfolgerungen mit dem

bei den Festigkeitsmessungen beobachteten Verhalten der Schilfhalme
übereinstimmen. Dies ist tatsächlich in genügendem Maße der Fall. Deshalb sei im

folgenden der Zusammenhang zwischen äußerer Belastung und Verformung
eines Halmes mit den Annahmen der klassischen Statik hergeleitet.
Mit den Bezeichnungen der Figur 1.4. kann das Ebenbleiben der Querschnitte
mit der Gleichung

£ 0|
e Dehnung
* Proportionalitätsfaktor
£ Abstand von der Halmachse

(1.10)

formuliert werden. Das Gleichgewicht zwischen den (Normal-)Spannungen
und dem Biegemoment drückt sich in folgender Gleichung aus:

Spannung svertei1ung
6d Druck

Zug

Ja

Dehnungen (1/2 fi dl J

da

dot

da

Gd

Fig. 1.4. Belastetes Halmelement mit eingezeichenten Spannungen und Dehnungen.
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M jo$dF (1.11)
Qs

a Spannung
dF Flächenelement des Querschnitts
QS Querschnitt

Die Kombination der Gleichungen (1.9), (1.10) und (1.11) führt zu

M E&fç2dF E0J (1.12)
Qs

mit

/ J<%2dF [m4] (1.13)
QS

Der Ausdruck J heißt Flächenträgheitsmoment des Querschnitts bezüglich

der zur Bildebene (x-z-Ebene, vgl. Fig. 1.1., 1.4.) senkrechten, durch
den Schwerpunkt des Querschnitts gehenden n-Achse. Da die Schwerpunkte
aller Querschnitte die Halmachse definieren, schneidet diese Tj-Achse auch

die Halmachse.

Der Proportionalitätsfaktor <2> aus Gleichung (1.10) wird uns weiter unten
noch beschäftigen. Er wird durch Auflösen der Gleichung (1.12) erhalten:

<*> -^Ç [m"1] (1.14)
E-J

Die Gleichungen (1.9), (1.10) und (1.14) liefern die Formel zur Berechnung
der Spannungen:

CT y-l [N/m2] (1.15)

Die Maximalspannungen treten an den Rändern auf, nämlich dort wo | maximal

ist, d.h. für einen runden Schilfhalm bei Ç ±D/2.

°max J"Y [N/m2] (1.16)

Die Bedeutung des Faktors <P wird aus der geometrischen Interpretation des

Verhältnisses e]t% ersichtlich (Gl. 1.10). Aus der Figur 1.4. geht hervor, daß

1 edl da da ,_,,j- tan-— =—- (weil eia klein) (1-17)

Da £/<f nichts anderes ist als 0, kann Gleichung (1.17) mit Berücksichtigung

von (1.14) auch so angeschrieben werden:
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Im ±-¥rdl=^ (1.18)
2 2 E/ 2

Auflösung nach <P ergibt

* - -f -^- [m"'] (1.19)
a/ E-J

In der Figur 1.4. sehen wir sofort, daß da/dl nichts anderes als die Krümmung

der Halmachse ist und damit auch gleich dem Kehrwert des

Krümmungsradius'. Zusammen mit der Figur 1.1. ist auch der Zusammenhang
zwischen der Krümmung, dem Drehwinkel a und der Durchbiegung «5 ersichtlich:

Die Krümmung des Halmelementes über die Länge dl ist gleich der
Änderung des Drehwinkels a längs dieses Halmelementes. Der Tangens des

Drehwinkels ist gleich der ersten Ableitung der Durchbiegung in Richtung
der z-Achse:

5' tana [-] (1.20)

Für die meisten Berechnungen der klassischen Statik wird noch als zusätzliche

Voraussetzung angenommen, daß die Durchbiegungen «5 (und damit auch die

Drehwinkel a) klein seien. Dann gilt

r, d5 dò
._ r, „,.,5 — =- =- tana « a [-] (1.21)

dz dl

und damit nach (1.19)

0=da=da ^d^S 8,
dl dz dz2

Bei kleinen Durchbiegungen kann damit die Krümmung «2> gleich der zweiten

Ableitung 8" der Durchbiegung in Richtung der unverformten Stabachse

(in unserem Beispiel ist es die z-Achse gesetzt werden. Die Grenze für die

Gültigkeit dieser Näherung folgt aus (1.21), der Drehwinkel muß innerhalb
der geforderten Genauigkeit mit seinem Tangens übereinstimmen. Sonst muß

für den Zusammenhang zwischen Krümmung und Druchbiegung die exakte

Gleichung (41.1) aus Teil D. benutzt werden, als deren Grenzfall (1.22) für
Werte von <5' « 1 betrachtet werden kann.

Gleichung (1.19) ist die gesuchte Verknüpfung zwischen dem Biegemoment
M und der Halmkrümmung 0: Diese ist gleich dem Biegemoment geteilt
durch den Ausdruck E-J (E-Modul mal Flächenträgheitsmoment des Quer-
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Schnitts). Daher ist es naheliegend, den Wert E-J als Biegesteifigkeit des
Halmelementes Widerstand gegen Verkrümmung) zu bezeichnen:

M
E-J -£- [N-m2] (1.23)

0
E-J (lokale) Biegesteifigkeit des Halmes [N-m2]

E (lokaler) Elastizitäsmodul des Halmes [N/m2]
J Flächenträgheitsmoment des Querschnitts [m4]

0 (lokale) Krümmung des Halmes [rad/m] bzw. [nr1]

Da wir uns in dieser Arbeit nur mit der Biegebeanspruchung des Schilfhalmes

befassen, ist mit der Biegesteifigkeit sein Verformungsverhalten vollständig
beschrieben. Der Wert ist einerseits von den Materialeigenschaften (E-Modul),

andererseits von der Geometrie (Flächenträgheitsmoment des

Querschnitts) abhängig. Während sowohl der E-Modul, wie auch das

Flächenträgheitsmoment von Schilfhalmen nur mit großem Aufwand gemessen werden

können, ist das Produkt der beiden Größen, eben die Biegesteifigkeit, zumindest

als Mittelwert über einen bestimmten Halmabschnitt, experimentell
einfach zu bestimmen. Die Schwierigkeiten bei der Bestimmung des E-Moduls
rühren vor allem von der Inhomogenität des Halmes her, die Messung des

Trägheitsmomentes erfordert bei der Bestimmung des Außen- und
Innendurchmessers (je nach Unregelmäßigkeit des Querschnitts in mehreren

Richtungen) eine Genauigkeit im Bereich 1/100 mm, denn das Trägheitsmoment
eines ringförmigen Querschnittes ist eine Funktion von der Differenz der

vierten Potenz dieser Durchmeser. Die geforderte Präzision führt besonders

bei weichen Halmen zu Problemen (Zusammendrücken beim Messen).

Als Charakteristikum des Halmes ist die Biegesteifigkeit E-J unabhängig von
der Art der Belastung, sie kann daher als Vergleichsgröße für Schilfpflanzen
verschiedener Bestände dienen. Allerdings ist sie keine Materialkonstante,
sondern abhängig von der Geometrie. Es mag für Vergleichszwecke
wünschenswert sein, diesen Einfluß der Halmgeometrie zumindest teilweise zu

eliminieren, was mit gewissen vereinfachenden Annahmen über die Halmgeometrie

ohne weiteres möglich ist. Die einfachste Möglichkeit besteht darin,
den Schilfhalm, bzw. den untersuchten Abschnitt daraus, als homogenen,
prismatischen Stab mit (vollem) Kreisquerschnitt zu idealisieren. Auf diese Weise

wird der Einfluß der Halmdicke eliminiert, während der Einfluß des Halm-
aufbaus, insbesondere des Verhältnisses von Wandstärke zu Durchmesser,
nach wie vor in der gesuchten Größe enthalten sind. Das Trägheitsmoment,
das wir als ideelles Trägheitsmoment /w bezeichnen wollen, ist dann nur noch

vom Außendurchmesser D abhängig:
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Ju -^D4 [m4] (1.24)

Jtf Idealisierte Trägheitsmoment des Halmquerschnitts [m4]
D Halmdurchmesser (außen) [m]

Bei der Messung des Außendurchmessers ist keine so hohe Präzision nötig,
wie bei der exakten Berechnung des Trägheitsmomentes, denn der Meßfehler
steht hier im Verhältnis zum ganzen Durchmesser und nicht nur zur Wanddicke.

Eine Meßgenauigkeit von 1/20 bis 1/10 mm (Schublehre) ist daher
ausreichend. Dagegen ist zu beachten, daß die Halme meistens nicht kreisrund
sind. Der Durchmesser muß deshalb in einer genau definierten Weise festgelegt

werden. In der vorliegenden Arbeit wird immer der in der Richtung der

Belastung liegende Durchmesser des Halmes als repräsentativ genommen,
weil diese Dimension den stärksten Einfluß hat. Möglich wäre aber auch die

Berechnung eines mittleren Durchmessers aus Messungen in verschiedenen

Richtungen.
Mit dem ideellen Trägheitsmoment kann man aus der gemessenen Biegesteifigkeit

einen ideellen E-Modul ableiten:

Eu ^- [N/m2] (1.25)
Jid

Dieser idealisierte E-Modul ist natürlich keine Materialkonstante, denn er ist,
wie bereits gesagt, noch abhängig von der Wandstärke sowie von der Anordnung

und Verteilung des Festigungsgewebes. Da der Zweck dieser Arbeit
nicht im Vergleich der mechanischen Eigenschaften verschiedener Schilfbestände

liegt, machen wir hier Gebrauch von dieser vereinfachten Möglichkeit
zur Darstellung der Ergebnisse von Steifigkeitsmessungen.
Ostendorp (1982,1983) geht dagegen noch einen Schritt weiter, indem er den

Halmquerschnitt als Kreisring annimmt, das Trägheitsmoment mithin zu

Jr ^Da-Dh [m4] (1.26)
04

Jr Trägheitsmoment des Kreisringquerschnitts [m4]
Da Außendurchmesser des Halmes [m]
£>,- Innendurchmesser des Halmes [m] Außendurchmesser abzüglich

Wandstärke)

festlegt.
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1.2. DEFINITION DER FESTIGKEIT

Bezeichnet die Steifigkeit den Widerstand des Schilfhalmes gegen Verformung,

so steht der Begriff Festigkeit für den Widerstand gegen Bruch. Da in
dieser Arbeit nur die Biegebeanspruchung interessiert, verstehen wir unter
Festigkeit hier die Biegebruchfestigkeit oder kürzer: Biegefestigkeit
(analog zur Biegesteifigkeit). Der Biegebruch wird durch das Biegemoment
und die dadurch bewirkten Spannungen im Halm verursacht. Unter Festigkeit
kann man daher sowohl das Bruchmoment, wie auch die Bruchspannung
verstehen. Ein Blick auf Gleichung (1.16) zeigt, daß für Bruchmoment und

Bruchspannung hinsichtlich Meß- und Interpretierbarkeit analog dasselbe

gilt, wie für Biegesteifigkeit und E-Modul: Das Bruchmoment ist unabhängig

von der äußeren Belastung und charakterisiert das Halmstück als ganzes,
die Bruchspannung ist eine Materialeigenschaft des Halmgewebes. Analog

zum Vorgehen im vorigen Kapitel können wir unter Verwendung des

idealisierten Trägheitsmomentes eine ideelle Bruchspannung definieren (vgl.
Gl. 1.16):

MRr D
GBrid -T^r [N/m2] (1.27)

dgr u Ideile Bruchspannung [N/m2]

Jx Idealisierte Trägheitsmoment des Halmquerschnitts [m4]
MBr Bruchmoment [N-m]

D Halmdurchmesser (außen) [m]

Damit Bruchmoment und Bruchspannung wohldefinierte Größen sind, muß
noch festgelegt werden, was genau unter "Bruch" verstanden werden soll. Da
bei einem Biegebruch ("Knicken") die beiden Teilstücke in der Regel nicht
voneinander abgetrennt werden, ist diese Frage nicht so einfach zu beantworten,

wie es auf den ersten Blick scheint. Es wäre an sich naheliegend, den Eintritt

des Bruchs als jenen Punkt zu definieren, wo durch die Beanspruchung
des Halmes eine zumindest kurz- und mittelfristig irreversible
Schädigung entsteht. Die zeitliche Einschränkung muß deshalb gemacht werden,
weil die Pflanzen eine gewisse Fähigkeit zur Selbstheilung besitzen. Dieser
Punkt ist jedoch mit einfachen Mitteln nicht feststellbar, und es muß ein anderer

Weg gesucht werden. Dazu ist es zweckmäßig, den Verlauf eines
Biegebruches einmal qualitativ zu verfolgen.
Im einfachsten Fall unterstützt man dazu ein Halmstück an seinen beiden
Enden und bringt in der Mitte eine Belastung auf (Fig. 1.5.) Mit zunehmender
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Halmstück
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'rrfn Auflager

Biegelinie

Fig. 1.5. Einfache Versuchsanordnung für einen Biegeversuch
F Belastung (z.B. Gewicht oder Federwaage)

ru ch last

Grenzlast

1 .M.er

5Ü.-^

Xe n tl astu

///// 6, e
^Gr

Bleibende
Verformung

Fig. 1.6. Kraft-Durchbiegungsdiagramm eines Biegeversuchs mit einem Schilfhalm.
Das Bild bleibt qualitativ gleich, wenn anstelle der Kraft F das Biegemoment M oder die
(Maximal-)Spannung «reines Querschnitts auf der Ordinate aufgetragen wird, ebenso wenn
auf der Abszisse anstelle der Durchbiegung 6 die (Faser-)Dehnung e dargestellt wird.
Im linear-elastischen Bereich (Punkt 0 bis 1) sind Belastung und Verformung zueinander
direkt proportional, die Entlastung folgt derselben Linie (keine bleibenden Verformungen).
Wird der Halm über diesen Bereich hinaus belastet, so kehrt er auch bei vollständiger Entlastung

nicht mehr in seinen ursprünglichen Zustand zurück, es bleibt eine plastische Verformung

(Entlastung folgt bei einer Belastung bis zum Punkt 2 der gestrichelten Linie). Wird
der Halm über seine Bruchfestigkeit (Punkt 3) belastet, so ist der weitere Verlauf der Kurve
davon abhängig, ob die Last von der Verformung unabhängig ist (z.B. Belastung durch
aufgezwungene Durchbiegung, strichpunktierte Linie) oder nicht (z.B. Federwaage, ausgezogene

Linie).
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Belastung biegt sich der Halm immer mehr durch, bis zu dem Punkt, wo die

Belastung nicht mehr gesteigert werden kann, da der Halm "verreist". Zeichnet

man Kraft und Druchbiegung gegeneinander auf, so erhält man normalerweise

ein Diagramm in der Art der Figur 1.6. Aus den Gleichungen (1.3) und

(1.16) geht hervor, daß zumindest bei kleinen Verformungen Belastung,
Biegemoment und maximale Spannung zueinander direkt proportional sind. Aus
den Gleichungen (1.17), (1.19) und (1.22) folgt, daß die Dehnungen und die

Durchbiegungen solange zueinander direkt proportional sind, als die Krümmung

mit genügender Näherung gleich der zweiten Ableitung der Biegelinie
in Richtung der Halmachse gesetzt werden darf. Deshalb kann die Darstellung
der Figur 1.6. mit entsprechender Anpassung der Skalen ebenso als Biegemo-
ment-Durchbiegungs- oder als Spannungs-Dehnungskurve interpretiert werden.

Auf dieser Kurve sind drei Bereiche zu unterscheiden: Zuerst (zwischen
Punkt 0 und 1) verläuft die Kurve linear, was bedeutet, daß in diesem Bereich
die Annahmen der klassischen Statik gültig sind (die oben erwähnten
Proportionalitäten nach der Hypothese von Bernoulli-Navier und dem Hooke'schen
Gesetz begründen einen linearen Zusammenhang zwischen den aufgetragenen

Größen). Solange der Halm nicht über diesen Bereich hinaus belastet wird,
kehrt er nach Wegnehmen der Kraft wieder in seine Ausgangslage zurück.
Wir sprechen deshalb vom (linear-)elastischen Bereich. Belasten wir den

Halm stärker, so wandert die Kurve allmählich von der ursprünglichen Geraden

weg, die Verformungen nehmen überproportional zu. Wird der Halm in
diesem zweiten Bereich (z.B. bei Punkt 2 in Fig. 1.6.) entlastet, so kehrt er
nicht mehr in die Ausgangslage zurück (gestrichelte Linie): Es entsteht eine
bleibende Verformung. Tritt dies (in der Natur) nur einmal auf, so wird sich
der Halm durch entsprechende Zellstreckung an die neuen Verhältnisse anpassen.

Wird dagegen die Belastung bis jenseits der Elastizitätsgrenze oft wiederholt,

so weicht der Halm (im Experiment) immer mehr aus; bei der Art der in
der Natur vorkommenden Beanspruchung (Wellenschlag) bedeutet dies meist,
daß er "abliegt".
Bei ständiger Zunahme der Belastung steigt die Kurve bis zu einem bestimmten

Maximum (Punkt 3 in Fig. 1.6.), wo der Halm im eigentlichen Sinne des

Worte bricht. Es entsteht ein deutlich sichtbarer Knick, hervorgerufen durch
das Einbeulen der Halmwand auf der Druckseite (in der Anordnung der Figur
1.5. ist dies die Halmoberseite). In einigen Fällen wird der Bruch auch durch
das Zerreißen der Fasern auf der Zugseite verursacht, besonders dann, wenn
die Anordnung so gewählt wird, daß die Maximalbeanspruchung auf einen
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Knoten fällt. Im ersten Fall kann in der Bruchstelle immer noch ein bestimmtes

Biegemoment übertragen werden; wird die Belastung durch eine

aufgezwungene Verformung gesteuert, so nimmt die Kurve den Verlauf der

strichpunktierten Linie in der Figur 1.6., wird die Last mit einer Feder
aufgebracht, so fällt die Kraft nach dem Bruch zusammen und sinkt auf Null
(ausgezogene Linie in Figur 1.6.).
Als Eintritt des Bruches kann man sinnvollerweise die Punkte 1 oder 3

definieren. Die Wahl wird durch Überlegungen zur Zweckmäßigkeit bestimmt,
die hier kurz skizziert seien. Der Punkt 1 in der Figur 1.6. (Elastizitätsgrenze)

entspricht sicher mit guter Näherung dem oben definierten Punkt, wo
(kurzfristig) irreversible Schäden entstehen. Um ihn zu bestimmen, muß man
die Belastungs-Verformungskurve in ihrem ganzen Verlauf kennen, der kritische

Punkt kann dann einfach und recht genau aus der Darstellung herausgemessen

werden (vgl. Fig. 1.9.). Dazu sind jedoch umfangreiche Prüfeinrichtungen

erforderlich, die für Versuche im Feld nicht in Frage kommen. Bei
Feldversuchen hat man keine andere Wahl als den sichtbaren Bruch, d.h. die

maximal aufbringbare Last, zu messen. Auch dieser Wert ist eine interessante

Vergleichsgröße und ist mit dem entsprechenden Wert der Elastizitätsgrenze
stark korreliert. Besteht die Möglichkeit für Labormessungen, so wird man in
erster Linie die Elastizitätsgrenze selbst als Bruchkriterium wählen, daneben

aber auch den Maximalwert - Punkt 3 - protokollieren und das Verhältnis der

beiden ausrechnen.

Da wir sowohl Feld-, als auch Laborversuche durchführten, werden wir im
folgenden zur genauen Unterscheidung jene Werte, die der Elastizitätsgrenze

entsprechen, mit der Vorsilbe Grenz- kennzeichnen (Grenzmoment,
Grenzspannung usw.), die zum Maximalwert gehörigen Größen dagegen
mit Bruch- (Bruchmoment, Bruchspannung usw.).
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1.3. DIE BERECHNUNG DER STEIFIGKEIT UND FESTIGKEIT
BEI BIEGEVERSUCHEN

Der Zweck von Biegeversuchen ist die Bestimmung einzelner oder aller der

in den vorigen Kapiteln definierten Größen. Während zur Berechnung der

Bruch-(Grenz-)Festigkeit die Messung der Bruch-(Grenz-)Kraft und die

Kenntnis der Geometrie der Versuchsanlage genügen, muß zur Bestimmung
der Biegesteifigkeit außerdem die der aufgebrachten Last entsprechende

Durchbiegung gemessen werden.

Anordnung Biegemoment Durchbiegung

f

F
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Fig. 1.7. Drei mögliche Prüfanordnungen für Schilfbiegeversuche, mit zugehörigen
Auflagerkräften, Biegemomentverteilungen und Durchbiegungen.
1. Halm einseitig fest eingespannt, am anderen Ende belastet
2. Halm beidseitig aufgelegt, dazwischen (bzw. in der Mitte) belastet
3. Halm beidseitig aufgelegt, in zwei symmetrisch gelegenen Punkten belastet
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1.3.1. Berechnung der Biegesteifigkeit

Die Figur 1.7. zeigt links drei mögliche Anordnungen für Biegeversuche:
1. Halm auf einer Seite fest eingespannt, am anderen Ende belastet.

2. Halm an beiden Enden aufgelegt, ungefähr in der Mitte belastet ("Drei-
punktlagerung").

3. Halm an beiden Enden aufgelegt, in zwei symmetrisch gelegenen Punkten

belastet ("Vierpunktlagerung").
In der gleichen Figur sind auch die längs der Halmachse wirkenden Biegemomente

und die Auflagerkräfte eingetragen. Diese Größen folgen aus den in
jedem Punkt zu erfüllenden Gleichgewichtsbedingungen (Äquivalenz der äußeren

- Belastung und Lagerkräfte - und der inneren Kräfte - Querkraft und

Biegemoment). Sind die Durchbiegungen 6 klein, so ist die Halmkrümmung

0 nach Gleichung (1.22) gleich der zweiten Ableitung «5" der Biegelinie

in Richtung der (unverformten) Stabachse, so daß die zweimalige
Integration der rechten Seite von (1.19) über die Stabachse die Gleichung der

Biegelinie liefert. Dabei müssen natürlich die für die einzelnen Versuchsanordnungen

unterschiedlichen Randbedingungen berücksichtigt werden. Setzt

man längs des ganzen Stabes konstante Querschnittswerte (E-J) voraus, so ist
die Integration von (1.19) für die in Fig. 1.7. gezeigten Verläufe des

Biegemomentes in geschlossener Form möglich. Für die Durchbiegung unter den

Lasteinleitungspunkten sind die entsprechenden Ausdrücke in der Figur 1.7.

eingetragen. Da bei den Biegeversuchen sowohl die Belastung (Kraft F), als

auch die Durchbiegung 5 unter den Lasteinleitungspunkten bekannt sind,
kann aus den Formeln der Figur 1.7. die Biegesteifigkeit berechnet werden:

Anordnung 1 (Einseitig eingespannter Stab):

E-J Ü^tJ 3 dò
[N-m2] (1.28)

Anordnung 2 (Dreipunktlagerung):

r j W dF
" 3/ dò

[N-m2] (1.29)

-falls la=lb=l/2:

E-J -Ü4
48 dò

[N-m2] (1.30)

Anordnung 3 (Vierpunktlagerung):
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•Qegressionsgerade durch die Punkte

^ArctanC^)

Fig. 1.8. Beispiel eines Biegeversuchs mit stufenförmiger Laststeigerung. Das zur
Berechnung der Biegesteifigkeit erforderliche Verhältnis von Lastzunahme: Durchbiegungszunahme

(dF/dS) entspricht der Steigung der Regressionsgeraden durch die Punkte 2 bis 6.

Wegen des Schlupfes zu Beginn des Versuchs (Punkte 1 und 2) darf der Punkt 1 für die
Regressionsrechnung nicht verwendet werden, ebenso alle Punkte, welche bei höherer
Belastung außerhalb des linear-elastischen Bereichs liegen.

F M
Arctan(—-r-)

~é
10 [mm]

Fig. 1.9. Beispiel eines Biegeversuchs mit stetiger Laststeigerung und automatischer
Aufzeichnung von Kraft und Durchbiegung. Die dem linear-elastischen Bereich entsprechende
Gerade wird graphisch gefunden, ebenso der Punkt der Grenzbelastung FGr.
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/3 / 2 i je-
E.j (_s_+.jlJl.) [N.m2] (L31)

6 4 do

Die so erhaltene Biegesteifigkeit E-J ist ein Mittelwert für das untersuchte

Halmstück, da ja von konstanten Querschnittswerten ausgegangen wurde. In
den obigen Formeln ist der Quotient F/Ò, welcher eigentlich nach den

Gleichungen der Figur 1.7. einzusetzen wäre, durch den Differentialquotienten
dF/dò ersetzt worden. Da wir für die Bestimmung der Biegesteifigkeit mit
der Belastung innerhalb des linear-elastischen Bereichs bleiben müssen, stimmen

die beiden Ausdrücke in ihrem Wert überein. Der Differentialquotient
kann meßtechnisch leichter bestimmt werden, da der Nullpunkt bei den

Biegeversuchen nie genau bekannt ist, denn zu Beginn der Belastung entstehen wegen

des unvermeidlichen Schlupfes zusätzliche Verschiebungen, deren Größe

unbekannt ist (vgl. Fig. 1.8. und 1.9.). Wegen der immer vorhandenen kleinen

Meßfehler ist es außerdem unerläßlich, mehrere Laststufen zu messen.
Die "wirkliche" Kraft-Verformungslinie erhält man dann durch lineare
Regression. Der Regressionskoeffizient (Steigung der Geraden) ist dann gerade

gleich dem gesuchten dF/dò. Selbstverständlich müssen für die Regressionsrechnung

alle Punkte, die sich mit einiger Wahrscheinlichkeit außerhalb des

linear-elastischen Bereichs befinden, weggelassen werden. Bei Laborversuchen

mit stetiger Aufzeichnung von Last und Durchbiegung findet man die

gesuchte Gerade am besten graphisch (Fig. 1.9.) und kann deren Steigung
herausmessen.

1.3.2. Berechnung der Biegefestigkeit

Je nach Prüfmethode und Anforderungen kann man aus dem Biegeversuch die

Bruch- und/oder die Grenzlast bestimmen. Die folgenden Darlegungen
behandeln den Fall der Bruchlast. Da die Zusammenhänge für die Grenzlast die

selben sind, kann man für diesen Fall in diesem Kapitel überall den Begriff
"Bruch-" durch "Grenz-", bzw. "Br" durch "Gr", ersetzen.

Unter der Voraussetzung, daß der Bruch am Ort des maximalen Biegemomentes

eintritt, ergeben sich für die drei Anordnungen der Figur 1.7. die

folgenden Bruchmomente:

Anordnung 1 (einseitig eingespannter Stab):

MBr =FBr-l [N-m] (1.32)
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Anordnung 2 (Dreipunktlagerung):

MBr FBr^
- falls la=lb=l/2:

MBr
FBri

[N-m] (1.33)

[N-m] (1.34)

Anordnung 3 (Vierpunktlagerung):

MBr
*Brh [N-m] (1.35)

Der Bruch tritt nicht unbedingt am Ort des maximalen Biegemomentes auf,

weil die Bruchfestigkeit längs des Halmes variiert: Nimmt die Bruchfestigkeit

vom Ort des maximalen Biegemomentes verhältnismäßig rascher ab als das

vorhandene Biegemoment, so wird der Bruch an einem anderen Ort eintreten

(vgl. Fig. 1.10.). Wie dieser für die Prüfung ungünstige Fall vermieden werden

kann, wird bei der Beschreibung der Prüfeinrichtungen gezeigt.

121/2

13=3 w,Wr
(Belastung)vorhandenes Biegemo ment

3555 77, 77.y<t% ^ /.'u'//, /y,VAKmax '/y
F-l /.

lokales Bruchmoment
(Festigkeit)

Fig. 1.10. Da die Festigkeit (Bruchmoment) längs des Halmstückes variiert, tritt der
Bruch nicht unbedingt am Ort des maximalen vorhandenen Biegemomentes (unter der
Krafteinleitung) auf, sondern dort, wo das lokale Biegemoment bei wachsender Belastung zuerst
die Größe des (lokalen) Bruchmomentes erreicht.
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