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3. BELASTUNGEN

3.1. DIE BELASTUNG DURCH DEN WIND

3.1.1. Die Wirkung des Windes

Der Schilfhalm mit seinen Blättern und ggf. seiner Blüte stellt dem wehenden

Windeine beträchtliche Angriffsfläche entgegen. Wohl sind die Blätterdank den

langen Blattscheiden sehr beweglich und legen sich "in den Wind" (vgl. Fig.
3.5.), trotzdem besteht eine sehr starke Wechselwirkung zwischen Schilf und
Wind. Einerseits übt der Wind auf den Halm eine verhältnismäßig starke Kraft
aus (welche nach Klötzli [mdl. Mitt.] bei geschwächten Bestanden bereits zum
Bruch führen kann). Andererseits wird derWind durch das Schilfgebremst, denn

gemäß dem dritten Newton'schen Prinzip (actio=reactio) wirkt die obgenannte
Kraft mit gleichem Betrag und umgekehrter Richtung auf die strömende Luft.
Rudescu(1965; zit. in Rodewald-Rudescu 1974) hat die Veränderung der

Windgeschwindigkeiten innerhalb von Schilfbeständen gemessen (Fig. 3.1.). In
(verglichen mit Schweizerseen) relativ lockeren Beständen mit 25 bzw. 50
Halmen/m2 und einer Höhe von 3 - 4 m stellte er totale Windstille in Abstanden von
10 - 60 m vom Rand fest. Die entsprechenden Windstärken betrugen 5 Beaufort
("frische Brise", 8-11 m/s; bewegt unbelaubte Äste, kleinere Bäume schwanken)

bis 8 ("stürmischer Wind", 17-21 m/s; bricht Zweige und Äste ab, starker
Widerstand beim Gehen).
Eine exakte Berechnung der zwischen Wind und Schilfhalm wirkenden Kräfte
ist wegen der komplizierten, unregelmäßigen Form der Pflanze unmöglich. Da
die Luftsrömung um den Halm bei den interessierenden Windgeschwindigkeiten

stets turbulent ist, kann die Windkraft als Funktion des Staudrucks beschrieben

werden, wie dies auch bei der statischen Berechnung von Hochbauten getan
wird. Der Staudruckpa ist der, der kinetischen Energie der Luftmassen entsprechende,

Druck und damit proportional zum Quadrat der Windgeschwindigkeit

uv In der einfachsten Form kann die Windkraft direkt proportional zum Staudruck

angenommen werden. Der Proportionalitätsfaktor ist der (Luft-)
Widerstandsbeiwert C,(vgl. Z.B. SCHLICHTING 1968).

Mit diesem Ansatz kann die pro Längeneinheit auf den Schilfhalm wirkende
Kraft folgendermaßen formuliert werden (vgl. Fig. 3.2.):
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Staudruck des Windes [N/m2]
Windbelastung des Halmes pro Längeneinheit [N/m]
Länge des betrachteten Halmelementes [m]
Widerstandsbeiwert für den Luftdruck auf den Halm [-]
Dichte der Luft =-1,2 kg/m3
Windgeschwindigkeit [m/s]
Durchmesser des Halmes [m]
Waagrechte Lagekoordinate des Halmes [m]
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Fig. 3.1. AbnahmederWindgeschwindigkeitin einem Schilfbestand nach Werten vonRuDES-
CU (1965). Dargestellt ist die relative lokale Windgeschwindigkeit bezogen auf die
Windgeschwindigkeit u0 außerhalb des Bestandes, x ist die Entfernung [m] vom Bestandesrand, h
die Höhe über dem Wasserspiegel.
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Der Halm wird also einer verteilten Belastung von

qt C[ Pi/2(U[-x')\ut-x'\Dcos(p [N/m] (31.2)

unterworfen. Zu den Ausdrücken auf der rechten Seite dieser Gleichung ist
folgendes zu bemerken:

- Die Windgeschwindigkeit muß als unabhängige Variable frei gewählt werden.

- Die waagrechte Geschwindigkeit x' des Halmelementes sowie dessen

Neigungswinkel <p werden von dem in Kapitel 4 näher beschriebenen mathematischen

Modell laufend berechnet.

- Die Dichte p, der Luft ist zwar temperatur- und druckabhängig, wird aber

durch den oben angegebenen Wert von 1,2 kg/m3 für unsere Zwecke genügend

genau angenähert.

- DerLuftwiderstandsbeiwert ct kann nur experimentell bestimmt werden und

ist im allgemeinen nicht konstant, sondern abhängig von der Reynolds'schen
Zahl Re Verhältnis zwischen Trägheits- und Zähigkeitskräften, vgl. Fig.
3.3.):

Re u,X/v [-] (31.3)
Re Reynoldssche Zahl [-]

X charakteristische Länge (z.B. Halmdurchmesser) [m]
v kinematische Zähigkeit der Luft [m2/s]

Fig. 3.2. Definitionsskizze für die Größen der Gleichung (31.1).
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Fig. 3.3. Widerstandsbeiwert c, (Luft) cw(Wasser) eines stationär umströmten Kreiszylinders

in Abhängigkeit von der Reynolds'schen Zahl (aus Burkhardt 1967).

Wie aus der obigen Formel ersichtlich, ist die Reynolds'sche Zahlkeine fest
definierte Größe, sondern abhängig von der Wahl der "charakteristischen Län-

ge"(und natürlich von derWindgeschwindigkeit und der Zähigkeit derLuft). Die

Zähigkeit der Luft ist temperaturabhängig und schwankt bei den hier in Betracht
kommenden Lufttemperaturen zwischen etwa 0,15 und 0,20 cm2/s (Dracos
1973). In Fig. 3.3. ist der Widerstandskoeffizient c{ als Funktion der
Reynolds'schen Zahl für einen umströmten Zylinder dargestellt, dernäherungsweise
mit einem Schilfhalm verglichen werden kann. Danach variiert der Wert c; für
einen Bereich von Re =5-102 bis 2-105 nur ganz allmählich (zwischen 0,9 und

1,2). Welchen Windgeschwindigkeiten entspricht dieser Bereich etwa? Um diese

Frage zu beantworten lösen wir (31.3) nach ut auf und erhalten

u, Re v/A (31.4)

In den der Fig. 3.1.1.3. zugrunde liegenden Experimenten wurde als charakteristische

Länge X der Durchmesser des Zylinders eingesetzt. Für einen angenommenen

Halmdurchmesser von 0,5 bis 1 cm wird somit (alle Längen aufm
umgerechnet):

u, (5-102 + 2-105)-0,15-10-4/0,005

1,5+ 600 m/s
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bzw. u, =(5-102 + 2-105)-0,15-10-4/0,01

0,75 + 300 m/s

Wenn auch der stationär umströmte Zylinder und der dem Wind ausgesetzte
Schilfhalm nur sehr bedingt vergleichbar sind, so kann aus den obigen Werten
doch der Schluß gezogen werden, daß die Reynolds'sehe Zahl bei den in der Natur

vorkommenden Windgeschwindigkeiten näherungsweise als konstant

angenommen werden könnte. In der Natur kommen zwar auch niedrigere
Windgeschwindigkeiten bis zurvölligen Windstille vor: Die Belastung des Halmes ist
dann aber so klein, daß sie für die Halmschädigung keine Rolle spielt. Trotzdem
müssen bei der experimentellen Bestimmung des Cj-Wertes von Schilfhalmen
mehrere Windgeschwindigkeiten berücksichtigt werden, weil der Halm bei
zunehmender Belastung seine Form ändert (Biegung des Stengels, Drehen der

Blätter in die Windrichtung). Durch die Biegung wird die Windkraft in zwei

Komponenten aufgeteilt, nämlich in eine senkrecht zur Halmachse und eine
parallel zur Halmachse. Die Komponente senkrecht zum Halm gehorcht ungefähr
der in (31.1 formulierten Beziehung. Dagegen gilt dies nicht für die Komponente

längs des Halmes, denn diese äußert sich einerseits als Reibung, andererseits

als Widerstand der Blätter gegen die dem Halm entlang streichenden Luftteilchen

(Wirbelbildung). Da der zweitgenannte Anteil überwiegt, ist auchhier eine

Abhängigkeit vom Quadrat der Windgeschwindigkeit anzunehmen, jedoch mit
einem anderen und kaum bestimmbaren Widerstandsbeiwert. Daher erschien es

ratsam, für die Berechnungen auf eine Unterteilung der Windkraft in die zwei

Komponenten zu verzichten. All die obgenannten Einflüsse faßten wir zusammen

in einem globalen, für mehrere Windgeschwindigkeiten experimentell
bestimmten Luftwiderstandsbeiwert ct, der das Verhältnis zwischen dem Staudruck

des Windes und der gemessenen (lokalen) Gesamtkraft auf den Halm
bezeichnet.

3.1.2. Die Versuche im Windkanal

In der Gleichung (31.2) sind alle vorkommenden Größen außer cl entweder

vorgegeben (Windgeschwindigkeit ut, Halmdurchmesser D), bekannt (Dichte der

Luft Pf) oder aus den Lagekoordinaten ableitbar (lokale Geschwindigkeit x' und

lokale Neigung <pdes Halmes). Im Luftwiderstandsbeiwert ct sind gleichsam alle

Unsicherheiten und mangelnden Kenntnisse bezüglich des Wechselspiels
zwischen Halm und Wind enthalten. Um auf experimentellem Weg Anhalts-
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punkte über die Größenordnung zu bekommen, wurden im Windkanal des Instituts

für Aerodynamik an der ETH einige Messungen durchgeführt.

3.1.2.1. Material und Methoden

Versuchsanordnung. Es wurden zwei Versuchsreihen durchgeführt, eine am
11.10.1979 mit Halmen aus dem Versuchsfeld Altenrhein, Fläche G (vgl. Kap.

in 3.4), und die zweite am 17.10.1979 mit Halmen aus dem KlotenerRied (Rand
der Verpflanzungsfläche, s. Klötzli 1975,1976).
Aus der Fläche G entnahmen wir je drei "große" und drei "kleine" Halme. Die

"großen" waren rund 170 cm lang (inklusive Rispe), die "kleinen" (welche keine

Rispe trugen) dagegen nur rund 110 cm. Aus dem Klotener Ried wurden nur
blühende Individuen von 160 -180 cm Länge entnommen.
Die Versuchsanordnung ist in Fig. 3.4. dargestellt. Die zu untersuchenden Halme

wurden aufeiner in den Boden des Windkanals eingelassenen Platte aufrecht
stehend fixiert. Diese Platte überträgt die auf sie einwirkenden Kräfte auf ein

Kraftmeßgerät, welches seinerseits an einen Plotter angeschlossen ist. Dieser

stellt die Kraft wahlweise in Funktion der Zeit oder der Windgeschwindigkeit
dar. Diese ist stufenlos regulierbar. In unseren Versuchen wurde sie jeweils um

Antrieb

AWind
Halm

Halteru
Messplatte

=*?• F Windkraft
Messdose

Plotter

Fig. 3.4. Messung der Windkraft auf das Schilf im Windkanal. Schematische Darstellung der
Versuchsanordnung (Windkanal am Aerodynamischen Institut der ETH).
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Fig. 3.5. Windkanalversuche mit Schilf.
A. 10 Halme im Verband, Windgeschwindigkeit zunehmend
B. 3 Halme hintereinander, Windgeschwindigkeit zunehmend
C. 3 Halme nebeneinander, Windgeschwindigkeit abnehmend. Man beachte, wie die

Blätter auch bei Windstille (»,= 0) immer noch in die Windrichtung gedreht sind.
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5 m/s allmählich verändert und dann eine gewisse Zeit stationär gelassen, während

welcher die Situation fotografiert wurde (Fig- 3.5.). Aus diesen Bildern ließ
sich der Neigungswinkel (pan jeder Stelle des Halmes herausmessen.

Auf diese Weise sind in der über die ganze Halmlänge integrierten Gleichung
(31.1) alle Größen außer c{ bekannt, somit läßt sich der Widerstandkoeffizient
ausrechnen.

In der ersten Versuchsserie war ursprünglich vorgesehen, je einen Verband von
drei "großen" und drei "kleinen" Halmen zu testen. Dazu verfertigte die Werkstätte

der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie an der

ETH (VAW) die in Fig. 3.6. skizzierte Halterung. Darin konnten im Abstand von
je 25 cm drei Schilfhalme fixiert werden. Die Differenz zwischen Halmdurchmesser

und Innendurchmesser der PVC-Röhrchen wurde durch Umwickeln der
Halme mit Isolierband ausgeglichen. Dies hat den Nachteil, daß die Einspann-

PVC-Brett©

•170-

I

-»h-»k-h—1
I Schrauben mit Flügelmutter

sie. ae äz.

•125

-r=285 108,25^125 162,5

PVC-Brett Löcher 0 6,5 für ^

Längshalbierte
PVC-Röhrchen

Befestigung auf dem
Messbrett Draufsicht 1:5

I

Î A

längshalbierte PVC-Röhrchen, Innen 0 12

- UM-2ot[ZZE Schnitt A-A 1:5

62,5

Fig. 3.6. Halterung für drei Schilfhalme im Windkanal.



71

Verhältnisse nicht mehr eindeutig sind (elastische Einspannung). Dafür
vermindert die Polsterung den Querdruck auf den Halm an der Einspannstelle,
was die Gefahr eines frühzeitigen Halmbruches reduziert. (Ähnliche Probleme

stellten die Steifigkeitsmessungen, die andere Zielsetzung führte dort jedoch zu
anderen Lösungen [s. Kap. ILT 3.1 und III 4.3].) Die Halterung konnte auf die

Meßplatte im Windkanal geschraubt werden. Weil sie in den Luftstrom hineinragte

(die Oberfläche der Meßplatte verläuft bodeneben), mußte der so
verursachte Luftwiderstand in Funktion der Windgeschwindigkeit mit einem Vorversuch

ohne Halme gemessen werden. Von den Meßwerten der eigentlichen
Versuche konnte dann der auf die Halterung fallende Anteil an der Gesamtkraft
subtrahiert werden.

Da die Meßplatte drehbar ist, war es möglich, die drei Halme sowohl neben-, als

auchhintereinander dem Luftsrom auszusetzenund den entsprechenden
Luftwiderstand zu messen.

Zuerstprüften wirdie drei "großen" Halme. Diesestelltenwirerstnebeneinander
und unterwarfen sie in der weiter oben erwähnten Weise Windgeschwindigkeiten

von 0-15 m/s (der letzte Wert entsprechend Windstärke 7, "steifer Wind",
wobei stärkere Bäume schwanken, Hemmung beim Gehen). Dann stellten wir
sie hintereinander und belasteten sie in derselben Weise. Anschließend setzten

wir sie während gut zwei Minuten einer Windgeschwindigkeit von 10 m/s

(Windstärke 5, "frische Brise", bewegt unbelaubte, größere Äste, kleinere Bäume

schwanken). Dabei nahm die Kraft in den ersten 50 s um etwa 2% ab undblieb
danach konstant; das bedeutet, daß die Belastungsdauer in unserem Fall keine

Rolle spielt. In der Natur treten ja die hohen Windgeschwindigkeiten (Böen)
auch nicht minutenlang ununterbrochen auf. Nach dieser Messung steigerten wir
die Geschwindigkeit so weit, bis alle drei Halme gebrochen waren: Dies war der

Fall bei 17,2 m/s, 22,7 m/s bzw. 27,3 m/s, was einem Windstärkenbereich von
etwa 7/8 ("steiferWind" bis "stürmischerWind",brichtZweige und Äste ab) bis 10

("schwerer Sturm", Bäume werden umgebrochen, bedeutende Gebäudeschäden).

Die drei "kleinen" Halme brachen schon in einem ersten Vorlauf, so daß sie nicht
mehr untersucht werden konnten. Da kleine Halme so rasch brechen, ist es

schwierig, gute Meßresultate zu kriegen, und wirbeschlossen deshalb, aufweitere

Versuche mit solchen Halmen zu verzichten, umso eher, als man annehmen

darf, daß sich die kleinen Halme ähnlich wie die oberen Partien der großen
verhalten.

Mit der zweiten Serie (Halme aus dem Klotener Ried) wollten wir einerseits

einen etwas größeren Verband von 10 Halmen und ergänzende Versuche mit Ein-
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zelhalmen durchführen. Die Anordnung des Zehnerverbandes zeigt die Skizze
der entsprechenden Halterung, ebenfalls von der Werkstätte der VAW hergestellt

(Fig. 3.7.). Aus den Erfahrungen mit der ersten Halterung gelangten wir
zum Schluß, daß auf die Röhrchen verzichtet werden kann, wenn man das

Grundbrett etwas dicker (ungefähr 4,5 cm) nimmt und die Löcher bis auf 5 mm
durch bohrt. Diese Vereinfachung hat sich sehr gut bewährt.
Den Zehnerverband unterwarfen wir über Stufen von jeweils 5 m/s einer
Windgeschwindigkeit bis 30 m/s (Stärke 11, "orkanartiger Sturm", schwere Schäden

verbreitet). Rund die Hälfte der Halme wurde dabei geknickt, was sich in einem

ruckartigen, leichten Abnehmen der Totalkraft äußerte.

Die Versuche mit den Einzelhalmen dienten mehr zu qualitativen Beobachtungen.

Ein Halm wurde zweimal, zuerst mit, dann ohne Blätter untersucht.

Auf weitere Versuche mußten wir leider verzichten, denn kleine, von den Pflanzen

losgerissene Teilchen führten allmählich zu einer untragbaren
Luftverschmutzung im Windkanal, was insbesondere für die in jener Zeit ebenfalls im
Windkanal untersuchten Skifahrer äußerst unangenehm geworden wäre.

Auswertung. Die über die ganze Halmlänge integrierte Gleichung (31.1) ergibt
auf der linken Seite die totale Windkraft

FWind jqldl C[Pi/2 J(ul-x')\ul-x'\Dcos(pdl (31.5)
Halm Halm

Wie bereits oben erwähnt, wurde die Windgeschwindigkeit um jeweils 5 m/s
verändert und dann eine gewisse Zeit konstant gelassen, bis sich ein stationärer
Zustand einstellte. Der Halm bewegte sich dann nicht mehr, was bedeutet, daß in

(31.5) der Ausdruck x lokale Geschwindigkeit des betrachteten Halmstücks)
verschwindet, d.h. es wird

(U[-X)\U[-x\ uf (31.6)

(ut ist konstant und somit immer positiv). Gleichung (31.5) kann damit in

folgender einfacherer Form angeschrieben und nach ct aufgelöst werden:

Fwind qP^IufDcostpdl (31.7)
Halm

Fwind
(3L8)

uf P1I2ÎD cos<p dl
Halm
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Fig. 3.7. Halterung für einen Zehnerverband von Schilfhalmen im Windkanal.
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Mit dieser Gleichung wurden die c, -Werte für die verschiedenen Fälle gerechnet.

FWind und ut waren unmittelbar dem vom Meßgerät erzeugten Plot zu
entnehmen (wobei, wie gesagt, von der gemessenen Gesamtkraft noch der auf die

Halterung entfallende Anteil zu subtrahieren war). Die Dichte pl der Luft ist eine
Funktion der herrschenden Temperatur und des Luftdruckes und betrug am 11.

10. (Versuche mit den Altenrheiner Halmen) l,115kg/m3,am 17.10. (Versuche
mit den Klotener Halmen) 1,144 kg/m3. Das Integral von (D coscpdl mußte
numerisch bestimmt werden. Dazu bestimmten wir bei den Halmen im Abstand

von je 10 cm den Durchmesser. Die Neigungswinkel <p entnahmen wir den

Fotografien (Fig. 3.5.), dies in Abständen von 20 cm (auf dem Halm). Unter Beachtung

derTatsache, daß auf den Bildern die untersten 40 cm der Halme nicht sichtbar

sind, ließen sich so jedem Halmabschnitt Neigungswinkel und Durchmesser

zuordnen, die Summe der entsprechenden Produkte für den ganzen Halm lieferte
das gesuchte Integral. Ein genaueres Integrationsverfahren war in diesem Falle

angesichts der verschiedenen Meßungenauigkeiten nicht angebracht (z.B.
nimmt der Halmdrurchmesserja nicht einfach stetig von unten nach oben ab; bei
den Verbänden war nicht jedes Individuum genau gleich gekrümmt).
Im Kapitel 3.1.1. wurde darauf hingewiesen, daß sich die resultierende Gesamtkraft

des Windes aus einer Komponente senkrecht und einer Komponente parallel

zur (lokalen) Halmachse zusammensetzt. Man kann sich fragen, ob nicht
eventuell die parallele Komponente (Reibung) vernachlässigbar wäre. In diesem
Fall müßte im Ansatz (31.2) nur die Geschwindigkeitskomponente senkrecht

zum Halm berücksichtigt werden, also (urx) cos 9, die auf den Halm wirkende,
verteilte Belastung wird dann

qt cJPi/2(U[-x')cos(p\urx'\cos(p D (31.9)

Es ist zu beachten, daß die Meßeinrichtung des Windkanals nurhorizontale Kräfte

mißt. Für die Berechnung von cl darf deshalb nur die horizontale Komponente
qp der verteilten Kraft von (31.9) berücksichtigt werden:

qp g/cos<p c/ Pi/2(ul-x')\ul-x'\Dcos3(p. (31.10)

Mit denselben Umformungen wie für die Berechnung von ^erhalten wir

„f _ FWM
(3111)

ufPfojD cos3 cp dl
Halm

Die Windkanalversuche wurden sowohl nach (31.8), als auch nach (31.11)
ausgewertet.
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3.1.2.2. Resultate und Diskussion

Die aus den Windkanalversuchen ermittelten Luftwiderstandsbeiwerte sind in
der Tabelle 3.1. zusammengestellt und in den Fig. 3.8. (Einzelhalme) und 3.10.

(3 bzw. 10 Halme) als Funktion derWindgeschwindigkeit graphisch dargestellt.
Die ausgezogenen Linien beziehen sich jeweils auf die nach (31.8) berechneten

ct -Werte, die gestrichelten auf die nach der Gleichung (31.11) bestimmten ct-
Werte. Fig. 3.10. zeigt in der gleichen Figur die Werte für den Verband von zehn

Halmen, die drei Halme hintereinander und den Mittelwert von den fünf
Einzelhalmen, wobei für diesen letzten Wert Einzelhalm Nr. 4 nurbis zu einer
Windgeschwindigkeit von ut 5 m/s, Einzelhalm Nr. 1 nur bis ux 15 m/s berücksichtigt

werden konnten, da sie bei den höheren Windgeschwindigkeiten geknickt
waren. Man sieht in Fig. 3.10., daß die nach (31.8) berechneten cl-Werte bei
allen Windgeschwindigkeiten recht nahe beieinander liegen und die Kurven einen
sehr ähnlichen Verlauf zeigen. Da dies für die et-Werte nach (31.11) nicht der

Fall ist, nehmen wir an, daß die Berechnung mit (31.8) den Sachverhalt besser

wiedergibt. Allen folgenden Überlegungen und Berechnungen werden deshalb

die Widerstandsbeiwerte cl nach (31.8) zu Grunde gelegt. Die vom Wind aufdas

Schilf ausgeübte Belastung wird entsprechend mit (31.2) berechnet.

Beim Betrachten derKurven fällt die starke Abnahme des Widerstandsbeiwertes

cl zwischen den Windgeschwindigkeiten ul 5 und 10 m/s auf. Dies ist lediglich

beim Einzelhalm Nr. 4 auf das Knicken zurückzuführen. Obwohl die Werte
fürut=5 m/s verhältnismäßig ungenau sind (die Windkraft wird ermittelt als die

vergleichsweise kleine Differenz zwischen der Totalkraft und der Kraft auf das

Gesteh), kann diese Abnahme nicht zufällig sein, da sie bei allen Versuchen
auftritt. Es handelt sich hierbei um eine Reaktion des Halmes, der die Belastung
minimiert, indem er bei zunehmender Windstärke sozusagen seinen ct -Wert
verringert. Wie dies geschieht, zeigt Fig. 3.5., besonders gut der Fall mit den lOHal-
men im Verband: Einerseits drehen sich die Blätter in die Windrichtung,
andererseits verringert sich die Angriffsfläche auf den Stengel infolge der Biegung.
Daß der Einfluß der Blattstellung der maßgebende ist, folgt aus den c, -Werten
für den Einzelhalm Nr. 5 (Fig. 3.8.): Dieser wurde sowohl mit, als auch ohne

Blätter untersucht. Bei ut 5 m/s ist der cl -Wert für den Halm mitBlättern rund

doppelt so groß, wie für den blattlosen Halm, bei ut 15 m/s beträgt der Unterschied

bloß noch rund ein Drittel. Bei den drei Halmen nebeneinander ist der Abfall

des q-Wertes bei den niedrigeren Windgeschwindigkeiten bedeutend weniger

ausgeprägt (Fig. 3.9.), weil diese Reihe mit abnehmender Windgeschwindigkeit

gemessen wurde: Die Blätter, die sich bei der höheren Geschwindigkeit
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in die Windrichtung gedreht hatten, verharrten in dieser Stellung auch noch einige

Zeit nach dem Aufhören des Windes (Fig. 3.5. C). Die Ursache dafür ist die im

Vergleich mit der Rückstellkraft große Reibung der Blattscheiden am Stengel.
Nicht ganz sicher erklären läßt sich der hohe ct -Wert von 1,44 bei ut 15 m/s

bei der gleichen Anordnung, dieser wird in keinem der anderen Fälle erreicht.
Immerhin ist zu bedenken, daß die Aufstellung von drei Halmen nebeneinander

die größte Krafteinwirkung erwarten läßt, da die drei Halme voll dem Wind
ausgesetzt sind. Dagegen stehen beim Verband von 10 Halmen und bei drei Halmen
hintereinander einzelne Individuen im Windschatten der anderen. Zwar sind die

drei Halme mit 25 cm Abstand ziemlich weitvoneinanderentfernt, so daß bei der

Betrachtung der Stengel allein keine gegenseitige Beeinflussung und mithin
etwa gleichgroße Widerstandsbeiwerte wie bei den Einzelhalmen zu erwarten
wären; offensichtlich erstreckt sich aber der Einfluß der Blätter über einen

bedeutend größeren Bereich als jener der Stengel.

Es ist klar, daß mit den vorliegenden Untersuchungen der unmittelbare Einfluß
des Windes aufdas Schilfnoch lange nichtvollständig erfaßt ist. Dazu wäre eine-

reseits eine viel größere Anzahl von Messungen notwendig (Statistik), andererseits

istes unbekannt, ob das Schilfderzwei Wuchsorte KlotenerRied und Altenrhein

auch für die übrigen schweizerischen Schilfbestände repräsentativ ist. Der
Platz im Rahmen der vorliegenden Arbeit ließ jedoch eine weitergehende
Behandlung dieses Problems nicht zu.
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Tab. 3.1. Luftwiderstandsbeiwerte cl der untersuchten Schilfhalme bzw. Verbände von
Halmen. Bei allen Anordnungen, außer bei den drei Halmen nebeneinander, erfolgtedie Messung

bei zunehmender Windgeschwindigkeit.
Die eingeklammerten Zahlen sind die mit Gl. (31.11) berechneten cf-Werte.
Die mit * gekennzeichneten Werte wurden bei der Berechnung der Mittelwerte nicht
berücksichtigt.

«, [m/s] 5 10 15 20 25 30

Einzelhalm Nr. 1 2,63
(3,86)

1,42
(3,02)

0,90
(2,32)

0,60
(1,60)

*

Einzelhalm Nr. 2 1,89
(2,40)

1,28
(2,39)

0,94
(2,39)

0,79
(2,27)

Einzelhalm Nr. 3 1,32
(1,67)

0,91
(1,79)

0,77
(2,32)

0,63
(1,67)

Einzelhalm Nr. 4 2,67
(4,86)

0,88
(1,81)

*

0,39
(0,85)

*

0,41
(1,13)

*

Einzelhalm Nr. 5 1,86
(2,15)

1,27
(2,08)

0,92
(2,02)

0,77
(1,83)

Einzelhalm Nr. 5
ohne Blätter

0,84
(0,89)

0,82
(1,15)

*

0.64
(1,18)

*

0,53
(1,11)

*

Mittelwert der
5 Einzelhalme

2,07
(2,99)

1,22
(2,32)

0,88
(2,26)

0,73
(1,92)

10 Halme 2,45
(3,06)

1,43
(2,09)

1,08
(1,83)

0,92
(1,66)

0,90
(1,84)

0,83
(1,86)

3 Halme
hintereinander

2,17
(2,35)

1,36
(1,52)

1,07
(1,26)

3 Halme
nebeneinander

1,82
(2,00)

1,47
(1,75)

1,44
(1,80)
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0,0
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Einzelhalm Nr. 1
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2,0-
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u 0,0 1 I 1 1 1 8^
0 5 10 15 20 25 m/s

Einzelhalm Nr. 2
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3,0-1

2,0

1,0

0,0 1 1 1 1 1—^
0 5 10 15 20 25 m/s

Einzelhalm Nr. 3

3,0-

2,0

1,0 -I

u 0,0
0 5 10 15 20 25 m/s

Einzelhalm Nr. 4

3,0-

2,0

1,0

0,0

ohne Blätter

ohne Blätter
" * u—i 1 1 1 1—¦>¦¦

0 5 10 15 20 25 m/s

Einzelhalm Nr. 5

c. -Werte berechnet mit
Gl. (31.8)

c -Werte berechnet mit
Gl. (31.11)

Fig. 3.8. Luftwiderstandsbeiwerte c, in Funktion der Windgeschwindigkeit, bestimmt aus
den Windkanalversuchen vom 17. 10. 79.
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2,0- \-
1,0- ^~""--—-—

0.0-

10 Halme im Verband

5 10 15 20 25 30 m/s

4,0

3,0

2,0

1,0

0,0

3 Halme hintereinander

1 1 1 1 1 1 1.888 V.

0 5 10 15 20 25 30 m/s

4,0-

3,0

2,0 -[

1,0

0,0
0

3 Halme nebeneinander

C| -Werte berechnet mit
Gl. (31.8)

->> u
5 10 15 20 25 30 m/s

c -Werte berechnet mit
Gl. (31.11)

Fig. 3.9. Luftwiderstandsbeiwerte c, in Funktion der Windgeschwindigkeit für einen
Verband von 10 bzw. 3 Schilfhalmen (vgl. Fig. 3.5), bestimmt aus den Windkanalversuchen vom
17.10. bzw. 11.10.79.
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1

4,0

3,0-

2,0-

1,0.

0,0

H\
S _

10 H. i.V.

x5 Einzelh.

Gleichung (31.8)

Streubereich (a) der 5
Einzelhalme

10 15 20 25 30 m/s

4,0-

3,0

2,0

1,0

0,0

5 Einzelh.

10 H. i.V.
3h:

-*» u—I 1 1 1

5 10 15 20 25 30 m/s

Gleichung (31.11)

Streubereich (a) der 5 Ein

zelhalme

Fig. 3.10. Vergleich der Luftwiderstandsbeiwerte ct in Funktion der Windgeschwindigkeit
für den Verband von 10 Halmen, 3 Halme hintereinander und den Mittelwert der 5 Einzelhalme

(bei den höheren Geschwindigkeiten nur 4 bzw. 3 Halme berücksichtigt; vgl. Text).
Oben: crWerte berechnet mit Gl. (31.8).
Unten: cf-Werte berechnet mit Gl. (31.11).
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3.2. DIE BELASTUNG DURCH DIE WELLEN

Die in diesem Kapitel dargestellten Verfahren und Theorien zur Berechnung
bzw. Abschätzung der Wellenwirkung sind zum Teil schon lange bekannt und

zum Allgemeingut der Küstenschutz- und Meeresbaupraxis geworden. Das

Zitieren der Erstautoren erscheint daher in den wenigsten Fällen zweckmäßig.

Nützlicher dürfte der Hinweis auf einige Lehr- und Standardwerke des

Meerwasserbaus sein. Dort wird das ganze Gebiet systematisch behandelt und

dargestellt, während hier nur die im Rahmen dieser Arbeit notwendigen
Methoden und Theorien vorgestellt werden. Herleitungen werden auf das zum
Verständnis notwendige Maß beschränkt. In allen der unten angegebenen
Werke finden sich auch Angaben zu weiterführender Literatur und zum Teil
auf entsprechende Erstpublikationen.
Die umfassendsten Standardwerke sind in englischer Sprache erschienen: Wiegel

(1964), "Oceanographical Engineering" und Silvester (1974), "Coastal

Engineering". An deutschsprachiger Literatur ist Press (1962), "Seewasserstraßen

und Seehäfen" anzuführen. Mehr Gewicht auf die theoretischen

Zusammenhänge und Ableitungen legen Press und Schröder (1966), "Hydrodynamik

im Wasserbau". Auch auf das "Handbuch der Wellen, Meere und Ozeane"

(Bruns 1955) sei hingewiesen.
Übersichten der gebräuchlichen Wellentheorien finden sich außerdem in Spe-

zialpublikationen von Dietze (1964), H/iRTMANN (1969), Schüttrumpf (1973)

u.a.m.

3.2.1. Definition und Wirkung der Wellen

3.2.1.1. Definition der Wellen, Wellenkenngrößen, Energie

Eine Flüssigkeit befindet sich nur dann in Ruhe, wenn ihre Oberfläche mit
einer (stationären) Potentialfläche des sie beeinflussenden Kraftfeldes
zusammenfällt. Ein natürliches Gewässer wird in nennenswertem Maße nur von der
Schwerkraft beeinflußt, seine Oberfläche ist deshalb im Zustand der Ruhe
genau waagrecht. Die darin enthaltene Energie ist minimal (potentielle oder
Lageenergie; wegen des Ruhezustandes ist die kinetische oder Bewegungsenergie
gleich Null). Wird die waagrechte Oberfläche durch einen äußeren Einfluß
(z.B. einen hineinfallenden Stein) gestört, so bringt die eingetragene Energie
die Wasserteilchen in Bewegung, und zwar entsteht der gleiche Effekt wie bei
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dem aus seiner Gleichgewichtslage gebrachten Pendel: Die Wasserteilchen
geraten in eine um die Ruhelage schwingende Bewegung. Damit bleibt aber die
Wasseroberfläche nicht mehr waagrecht, was zu einem Druckgefälle führt.
Dadurch wiederum werden auch die benachbarten Wasserteilchen beeinflußt:
sie werden in Richtung des Druckgefälles beschleunigt, die ursprünglich
punktförmige Störung der Wasseroberfläche breitet sich nach allen Seiten

aus. Diese sich fortpflanzende Störung der ursprünglich ruhenden Wassermasse

ist es, was wir als Welle beobachten. Wichtig ist dabei, die zwei
verschiedenen Bewegungen zu unterscheiden: einerseits die Bewegung der Form
der Waserfläche (d.h. der eigentlichen Welle), andererseits die (meist schwingende)

Bewegung der Wasserteilchen selbst. Anschaulicher ist der ganz
analoge Vorgang bei dem an einem Ende auf- und abbewegten Seil: man sieht
die gegen das freie Ende laufenden Wellen, während jeder Teil des Seiles
selbst nur in einem auf die Bewegung der Nachbarteile abgestimmten Rhythmus

auf- und abschwingt.
Da beim Ausbreiten der Störung immer neue, vorher ruhende Wasserteilchen

in Bewegung gesetzt werden, wird sichtbar, daß die Wehe die durch die

Störung in die Flüssigkeit eingetragene Energie mit sich transportiert und
ausbreitet.
Eine punktförmige Störung, wie sie eben beschrieben wurde, ist als

Elementarstörung, und die daraus resultierende, kreisförmige Welle, als
Elementarwelle aufzufassen. Wirkt die Störung über eine größere Fläche (z.B.
Wind), so kann man die daraus entstehenden Wellen als Überlagerung unendlich

vieler Elementarwellen auffassen (vgl. Fig. 3.11.), wobei durch die Art
der Störung und der Überlagerung zumeist eine oder zwei Richtungen
ausgezeichnet sind (z.B. bei Windwellen die Windrichtung). Auf diese Weise
entstehen auf größeren Wasserflächen durch Wind oder Schiffe Züge von paral-
lelkämmigen Wellenbergen und -tälern, deren Fortpflanzung den gleichen
Gesetzen gehorcht wie ein Lichtstrahl (Brechung [Refraktion] und Beugung
[Reflexion]). Da auf den Seen der Wind ständig wechselt und weil die Wehen

am Ufer reflektiert werden und sich mit den Windwellen überlagern, entsteht

schließlich das bekannte, mehr oder weniger zufällig wirkende Bild einer

bewegten Seeoberfläche.

Die Bewegung des Wassers in den uns interessierenden größeren Wasserwellen

auf den Seen wird außer durch äußere Einflüsse (Störungen) praktisch
ausschließlich durch die Schwerkraft (Druckunterschiede) bestimmt. Solche
Wehen werden deshalb Schwerewellen genannt. Im Gegensatz dazu wird
bei den kleinen und kleinsten Wellen der Einfluß der Oberflächenspannung
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des Wassers maßgebend, dann handelt es sich um Kapillarwellen.
Die hier betrachteten Wasserwellen äußern sich stets in einer Bewegung der

Wasseroberfläche und werden daher auch Oberflächenwellen genannt, im
Gegensatz zu internen Wellen, die sich längs innerer Grenzflächen (z.B.
zwischen einer warmen und einer kalten Wasserschicht) fortpflanzen.
Form und Größe der Wellen werden durch bestimmte Parameter, die
sogenannten Wellenkenngrößen, charakterisiert. Die wichtigsten sind (Fig.
3.12.):
- Wellenperiode T: Zeitdauer [s] zwischen dem Durchgang zweier

aufeinanderfolgender Wellenscheitel durch einen festen Punkt. Die Periode

einer Welle ist unveränderlich.

m
ffi.v-;v&.--*--;wrar~-

Fig. 3.11. Überlagerungsbild von je sieben Elementarwellen aus 15 punktförmigen (Stö-
rungs-)Quellen. Die Kreise stellen die Kämme der Elementarwellen dar. Durch die Überlagerung

bilden sich parallele Fronten, welche sich nach links und rechts fortpflanzen.
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- Wellenhöhe H: Senkrechter Abstand [m oder cm] zwischen einem
Wellental und dem darauffolgenden Wellenscheitel. Die in der (älteren)
Literatur gelegentlich anzutreffende Definition der Wellenhöhe als Abstand

zwischen dem Ruhewasserspiegel und dem Wehenscheitel und daraus

folgend die Bezeichnung des Abstandes zwischen Wehenscheitel und Wehental

als 2H ist unzweckmäßig, weil sie nur bei den auf Seen kaum anzutreffenden,

rein sinusförmigen (symmetrischen) Wehen einen Sinn hat.

- Wellenlänge L: Waagrechter Abstand [m] zwischen zwei aufeinanderfolgenden

Wellenscheiteln. Die Länge einer Wehe ist im tiefen Wasser eine

Funktion der Periode, im flacheren Wassser ist sie außerdem noch abhängig

von der Wassertiefe und ggf. der Wellenhöhe.

Ebenfalls eine sehr wichtige Größe ist die aus den obigen Parametern ableitbare

Fortpflanzungsgeschwindigkeit C [m/s] der Wehe, sie ist gleich
dem Quotienten aus Wehenlänge und -période.
Von sehr großer Bedeutung für die Charakterisierung der Wellen ist die

(lokale) Wassertiefe d [m]. Maßgebend ist nicht der Absolutwert, sondern das

Verhältnis der Wassertiefe zur Wehenlänge (relative Wassertiefe d/L). Dieser

Wert bestimmt die Unterteilung in Tief- oder Flachwasserverhältnisse. Es

ist nämlich die Bewegung der Wasserteilchen infolge des Wellenganges nur
bis etwa eine halbe Wehenlänge unterhalb des Wasserspiegels merklich (vgl.
Kap. 3.2.3.). Ist die Wassertiefe größer als die halbe Wellenlänge (d/L > 0,5),
so hat der Seegrund keinen Einfluß auf die Wasserbewegung, und wir spre-

C(x.t)

Zs x,t

rT77777777777777777rrrrrrm +¦ X

Fig. 3.12. Die wichtigsten Abmessungen einer Welle.
L Wellenlänge zs(x,t)

H Wellenhöhe CM
d Wassertiefe

x,z Koordinaten
t Zeit

Abstand der Wasseroberfläche vom Seegrund
Abstand der Wasseroberfläche vom
Ruhewasserspiegel
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chen von Tiefwasserwellen. Die effektive Wassertiefe spielt in diesem Fall
keine Rolle, die Wellenlänge flacher Wellen ist proportional zum Quadrat der

Periode. Beträgt andererseits die Wassertiefe weniger als etwa 1/25 der

Wellenlänge (d/L < 0,04), so bringt die Welle die ganze Wassermasse bis
auf den Grund in eine fast gleichmäßige Bewegung. In diesem Fall haben wir
Seicht- oder Flachwasserwellen, deren Länge proportional zur Periode
und zur Quadratwurzel aus der absoluten Wassertiefe ist. Zwischen den beiden

angegebenen Grenzen liegt der Übergangsbereich, hier ist die
Wasserbewegung bis hinunter auf den Seegrund noch merklich, nimmt jedoch von
oben nach unten stark ab. Die Beziehung zwischen Wehenperiode und -länge
läßt sich nicht als einfache, explizite Funktion anschreiben.

Es sei nochmals darauf hingewiesen, daß die Begriffe Tief- und Flachwasser
in bezug auf Wehen relativ aufzufassen sind: Da z.B. bei Felsstürzen oder
Seebeben Wehen von mehreren hundert bis tausend Metern Länge entstehen können,

ist es durchaus möglich, auch in (limnologisch gesehen) tiefem Wasser

Seichtwasserwehen anzutreffen; andererseits sind kurze Wellen von vieheicht
einem Meter Länge für die Wellenmechanik auch noch im knietiefen Wasser

"Tiefwasserwellen".
Die in einer Welle enthaltene Energie setzt sich zusammen aus der potentiellen

und der kinetischen Energie der Wasserteilchen. Die potentielle Energie

E eines solchen ist gleich dem (skalaren) Produkt aus dessen Gewicht
und der Verschiebung bezüglich eines angenommenen Ausganszustandes. Für
das Koordinatensystem der Fig. 3.12. fromuliert heißt das:

dE,pot

dEpol

g

dV
r

x, y, z

x0' yo' zo

PwJrdV
Schwerkraftsvektor

[Nm]bzw.[J] (32.1)

Potentielle Energie [N m]
Dichte des Wassers [kg/m3]
Erdbeschleunigungsvektor (0,0,-g); g 9,806 m/s2

(pwg spezifisches Gewicht des Wassers [N/ m3]
Volumen des Wasserteilchens [m3] dxdydz
Verschiebungsvektor des Wasserteilchens [m,m,m]

(x-x0,y- y0, z - z0)
Koordinaten des Wasserteilchens nach der Verschiebung
Koordinaten des Bezugs- oder Ausgangspunktes

In Komponenten geschrieben, lautet Gl. (32.1):

dE
pol pw (0, 0, -g)-(x -x0, y- y0, z - z0) -dx dy dz

-Pw8(z- zo) 'd* dy dz (32.2)
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Wählen wir den Seegrund als Bezugslinie so wird z0 0 und

dEpot -pwgz-dxdydz (32.3)

Um die in einer Welle enthaltene Energie zu berechnen, muß die Energie aller
Wasserteilchen des entsprechenden Wasservolumens aufsummiert (integriert)
werden. Davon muß die potentielle Energie desselben Wasservolumens im
Ruhezustand subtrahiert werden. Bei langkämmigen Wellen spielen sich alle

Bewegungen in einerVertikalebene ab, die bei richtiger Wahl des

Koordinatensystems mit der ^-z-Ebene oder einer zu ihr parallelen zusammenfällt. In
diesem Fall kann also die y-Koordinate vernachlässigt werden. Das zu
betrachtende Wasservolumen besteht dann aus einem Streifen der Länge L in

x-Richtung, einer willkürlich wählbaren Breite b in y-Richtung und der

durch den Seegrund und die Wasseroberfläche definierten (variablen) Höhe.

Die potentielle Energie der Wehe kann dann wie folgt angeschrieben werden:

L b zs L b d

Epot =-PwsII fzdxdydz-(-Pwg f f Jzdxdydz) (32.4)
y 0 0 0 0 0 0

Die Integrale über x und y können ohne weiteres aufgelöst werden, und es

ergibt sich:

L

E Pw/2 g b fz2dx - cf-L) (32.5)poi _ 0

Wird die Auslenkung des Wasserspiegels zs gegenüber dem Ruhewasserspiegel

mit C,=zs- dbezeichnet, so kann, unter Berücksichtigung der Tatsache,
daß der Ruhewasserspiegel gleich dem mittleren Wasserspiegel angenommen
werden kann, die obige Gleichung noch weiter vereinfacht werden:

L L L L

jz}dx =f(C+d)2dx= fc2dx+2d- Jrdx+d2-L (32.6)

und

Epo, -p»/2gbfÇ2dx (32.7)

Die Energie pro Flächeneinheit des Seespiegels ergibt sich aus der Division
des obigen Ausdrucks durch die Fläche b-L:
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Pwg
Epot » '-^—Sfdx [Nm/m2] (32.8)

ZuLt 0

Der Term

\/Ljç2dx

ist nichts anderes als die Varianz a2der senkrechten Abweichungen der

Wasseroberfläche von der Ruhelage. Die potentielle Energie ist also abgesehen

vom Faktor pw-g gleich der halben Varianz der ^-Koordinate oder (was
auf dasselbe herauskommt) der zs-Koordinate des Wasserspiegels und damit
der lokalen Wassertiefe. Das Minuszeichen bedeutet, daß diese Energie

aufgewendet werden muß, um das prismatische Wasservolumen in die Form
der Welle zu bringen, das gewehte Wasser enthält also um so viel mehr potentielle

Energie als das ruhende. Da es im folgenden stets um den Energieinhalt
der Wehe geht, wird nur noch mit dem Betrag (also ohne das Minuszeichen)

gerechnet.

Die kinetische Energie Ekin eines Wasserteilchens ist gleich

dEkin Pw/2w2dV Pw/2w2dxdydz [Nm] (32.9)

dEkin Kinetische Energie eines Wasserteilchens [N m]
w Betrag der Geschwindigkeit des Wasserteilchens [m/s]

dV Volumen des Wasserteilchens [ m3]
dx dy dz

pw Dichte des Wassers [kg/m3]

Die Berechnung der kinetischen Energie der ganzen Welle ist nicht so einfach

wie für die potentiehe Energie, da sie abhängig ist vom Zusammenhang der

Oberflächenform und der Wasserteilchengeschwindigkeit mit den

Wellenkenngrößen (Wellentheorie, vgl. Kapitel 3.2.3.) und damit von den je nach

Verhältnissen zu treffenden, vereinfachenden Annahmen. Für den Fall
flacher Wellen (d.h. die Wehenhöhe ist klein verglichen mit der Wellenlänge
und der Wassertiefe), deren Oberflächenform angenähert einer Sinuslinie
entspricht, kann gezeigt werden (s. z.B. Press und Schröder 1966), daß die
kinetische Energie einer solchen Wehe gleich der potentiellen ist. Die
Gesamtenergie ist deshalb gleich der totalen Varianz der Wasserspiegelhöhe. Für
eine Sinuslinie ist die Varianz er2 gleich dem halben Amplitudenquadrat
A2/2 und mithin gleich /72/8, da die Wellenhöhe bei einer sinusförmigen
Welle gleich der doppelten Amplitude (2A) ist.



Die Gesamtenergie einer derartigen Welle wird somit

Etot Epot + EHn Wpot PWg°2

Etot lßpwgH2 [Nm/m2] (32.10)

Obschon dieser Ausdruck streng nur für flache, sinusförmige Wellen gilt, ist

er doch eine sehr brauchbare Näherung zur Abschätzung des Energieinhaltes
von Wellen. Es ist femer zu beachten, daß grundsätzlich jede Wehenform als

Überlagerung entsprechender Sinuswellen dargestellt werden kann (s.u.). Für

unsere weiteren Betrachtungen ist vor allem wichtig, daß die Energie einer
Welle proportional zum Quadrat ihrer Höhe ist.

3.2.1.2. Beschreibung des Seeganges

Die bisherigen Überlegungen bezogen sich auf eine einzelne Welle oder einen

Wellenzug aus lauter gleichartigen Wehen. Die Beobachtung eines Sees zeigt
aber ein unregelmäßiges Bild langer und kurzer, hoher und niedriger Wellen.
Um rechnen zu können, ist eine vereinfachende Beschreibung der Wellenganges

notwendig, wofür gegenwärtig zwei Methoden im Vordergrund stehen,

nämlich die Bestimmung von kennzeichnenden Größen des Seeganges
(nach bestimmten Kriterien festgelegte Wehenkenngrößen) und die Erfassung
des Wehenganges mit dem Energiespektrum.

1. Kennzeichnende Größen. Sie können durch die Auswertung von
Pegelbeobachtungen (Fig. 3.13.) bestimmt oder durch mehr oder weniger empirische

Formeln aus anderen Größen (Windgeschwindigkeit, Größe der Wasserfläche

u.a.m.) abgeleitet werden (vgl. Kap. 3.2.2.). Im ersten Fall beziehen sie

sich auf beobachtete Wellen, im zweiten auf den unter den angenommenen
Verhältnissen zu erwartenden Seegang.

Da die Wasserspiegelbewegungen sehr unregelmäßig sind, entstehen bei der

Auswertung von Pegelbeobachtungen Schwierigkeiten bei der Abgrenzung
der einzelnen Wellen. Zwei Möglichkeiten, dieses Problem zu lösen, zeigt
Figur 3.13.: Beim Wellenkammverfahren (crest to crest) wird jede Welle durch
zwei aufeinanderfolgende Wellenkämme begrenzt, beim Nulldurchgangsverfahren

(zero-crossing) wird eine Welle durch zwei aufeinanderfolgende,
gleichsinnige Überquerungen des Pegelnullpunktes Ruhewasserspiegel)
definiert. Beim Wellenkammverfahren kann die Wehenhöhe auch (abweichend
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von Fig. 3.13.) als arithmetisches Mittel der senkrechten Abstände eines

Wellentales zu den beiden benachbarten Wehenkämmen bestimmt werden.

Wird nach irgend einemVerfahren eine Pegelbeobachtung in n einzelne Wellen

unterteilt und je deren Höhe Ht bestimmt, so können folgende Höhenparameter

definiert werden:

- Mittlere Wehenhöhe /7m(arithmetisches Mittel aller Wehenhöhen):

"m ~m n

- Äquivalente Wellenhöhe Häqu (arithmetisches Mittel der Quadrate der

Wehenhöhen: Daraus kann die Energie des Wellenzuges berechnet

werden):

/ r Z".* i

Höhe Wellenkammverfahren

Ruhewasser¬
spiegel

T-i T, T, Ti. Tr T
1 '2 '3 '4 '5 '6

Zeit

Höhe Nulldurchgangsverfahren

Ruhewasser¬
spiegel A

u
r„ i

5 '>. '5

Zeit

Fig. 3.13. Beispiel einer Pegelaufzeichnung eines Wellenzuges und Abgrenzung der
einzelnen Wellen nach dem Wellenkammverfahren (oben) und dem Nulldurchgangsverfahren
(unten) (aus Schüttrumpf 1973).
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- Signifikante Wellenhöhe

H1/3 arithmetisches Mittel der nß höchsten Wellen des beo¬

bachteten Wehenzuges.

- Maximale Wehenhöhe

Hmax größte beobachtete Wellenhöhe oder maximal zu erwar¬

tende Welle.nhöhe innerhalb eines bestimmten Zeitraums.

Analog können Wellenperioden definiert werden:

- Mittlere Wellenperiode ^(arithmetisches Mittel aller Wellenperioden):

T - ZIl
m n

- Signifikante Wellenperiode:
TH1I3 arithmetisches Mittel der Perioden der nß höchsten

Wellen des beobachteten Wellenzuges (nicht: der n/3
längsten Wellen)
zu Hll3 gehörende Wellenperiode

- Maximale Wehenperiode
Tmax längste beobachtete Wellenperiode oder maximal zu er¬

wartende Wellenperiode innerhalb eines bestimmten
Zeitraums (nicht zu verwechseln mit THmax, der Periode
derhöchsten Wehe)

Von diesen Größen haben die signifikante Wellenhöhe H]/3 und die signifikante

Wellenperiode THII3 die größte Bedeutung, denn Hll3 entspricht der

von einem geübten Beobachter geschätzten Wellenhöhe, da die großen Wehen
stärker ins Auge fahen. Außerdem transportieren die Wehen dieser Höhe den

größten Teil der Energie eines Wellenzuges. Deshalb werden im folgenden
H]l3 und THlß als kennzeichnende Wellenhöhe und -période im engeren

Sinne bezeichnet.

2. Spektrale Darstellung. Diese geht von der Tatsache aus, daß sich jede
stetige Zeit- oder Ortsfunktion (also insbesondere die Form einer gewellten
Wasseroberfläche) als Überlagerung von sinusförmigen Komponenten
darstellen läßt. Die Zusammenstehung der "Größe" dieser Komponenten (Amplitude)

in Funktion der zugehörigen Frequenzen oder Perioden ist das Spektrum

der Ausgangsfunktion. Die mathematische Operation zur Gewinnung
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des Spektrums heißt Spektralanalyse, die sinusförmigen Komponenten werden

als spektrale Komponenten bezeichnet.

Da in der Literatur über den Meerwasserbau die im Zusammenhang mit der

Beschreibung des Seegangs verwendeten Begriffe und Zusammenhänge nur
knapp und teilweise ungenau beschrieben sind, folgt hier eine etwas ausführlichere

Darstellung.
Einen Einblick in das Wesen der Spektralanalyse liefert die Tatsache, daß das

menschliche Ohr eine Art natürlicher Spektralanalysator ist: Die Teil- oder
Obertöne, die man aus bestimmten Klängen heraushören kann, sind nichts
anderes als die stärksten spektralen Komponenten dieser Klänge. Die Spektralanalyse

wurde denn auch zuerst im Gebiet der Nachrichtentechnik entwickelt,
im Zusammenhang mit der Umwandlung akustischer in elektromagnetische
Signale. Aus diesem Gebiet stammen auch viele der verwendeten Begriffe.
Zwischen Schall- und Wasserwellen besteht eine weitgehende Analogie, außer

daß sich die Schallwellen räumlich ausbreiten (Wasserwehen nur entlang der

Oberfläche) und die Luftteilchen dabei in der Fortpflanzungsrichtung der

Welle schwingen (Longitudinalwelle im Gegensatz zur Transversalwelle, wo
die Teilchen quer zur Fortpflanzungsrichtung schwingen; bei den Wasserwellen

kommen beide Schwingungsarten vermischt vor). Auch haben die (hörbaren)

Schallwellen um mehrere Zehnerpotenzen kürzere Perioden, weshalb

man meist mit deren Kehrwert, der Frequenz /= 1/7, rechnet. Die Hin-
und Herbewegung Ç(x,t) der Luftteilchen um ihre Ruhelage entspricht der

Auf- und Abbewegung Ç(x,t) eines Punktes auf der Wasseroberfläche (nicht
zu verwechseln mit der oben erwähnten Bewegung der eigentlichen
Wasserteilchen).

Wenn bei einer Schwingung von deren "Form" gesprochen wird, so bezieht
sich das immer auf die Kurve der Bewegung in Funktion der Zeit. - Eine

sinusförmige Schwingung hat folgende Gleichung:

|(r) bzw. £(r) a cos(2%ft) + b sin(2nft)
A cos[2itf(t - T)] (32.11)

mit
A -vV + ab2) und t Arctan(ö/a) (32.12)

Die Schwingungsweite A ist die Amplitude und entspricht bei einer rein

sinusförmigen Welle der halben Wehenhöhe H. r ist die Phasenverschiebung.
Eine periodische Schwingung (Klang) setzt sich notwendigerweise aus Komponenten

(Teiltönen) zusammen, deren Frequenzen ganzzahlige Vielfache der

Grundfrequenz sind, denn sonst würde sich der Vorgang nach Ablauf der
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Grundperiode nicht wiederholen und wäre somit nicht periodisch. Eine
periodische Schwingung kann deshalb als Fourier-Reihe dargesteht werden:

Ç(t) -—+2ajca&ÇL%jflt)+ Ibisin(2njflt)
2 ;=0

J j=0 '

-^-+ÎAjCos[2njfl(t-x.)] (32.13)
2 ;=0 ' '

Das (Amplimden-)Spektram dieser Schwingung ist die Zusammenstellung der

a- und è oder der A- und t in Funktion der zugehörigen Frequenzen /•/,.
Die Berechnung erfolgt mit den Gleichungen:

T

a, —J^)cos(2njflt)dt (32.14)' I o

2
T

bj —Jc,(t)sm.(2%jflt)dt (32.15)
1 Io

mit
T — Periode der Grundschwingung

/i
Gesamtamplitude A und Phase %¦ ergeben sich nach (31.12). Fig. 3.2.1.4.

illustriert den Sachverhalt anhand eines Beispiels mit drei Komponenten
(Teiltönen).

Der Seegang ist nun allerdings kein periodischer Vorgang, denn die

Bewegungen wiederholen sich wegen der fortlaufend wechselnden äußeren

Bedingungen und der Vielzahl der Einflüsse nie. Die analoge akustische Erschienung

ist das Geräusch oder Rauschen. Auch diese Form kann als Überlagerung

von Sinusschwingungen gedeutet werden. Der Unterschied zur periodischen

Schwingung besteht darin, daß hier Komponenten (Teiltöne) aller
Frequenzen berücksichtigt werden müssen (also nicht nur die ganzzahligen
Vielfachen der Grundfrequenz). Allenfalls kann der Bereich der vorkommenden

Frequenzen durch einen Maximal- und Minimalwert begrenzt sein, das

sogenannte (Frequenz-)Band. Dies wird deutlich, wenn man den aperiodischen
Vorgang als periodischen Vorgang mit unendlich langer Periode T °° deutet.

Beim Grenzübergang T -> <», bzw. /. -> 0 rücken die Frequenzen /•/, der
einzelnen Komponenten immer näher zueinander und die zugehörigen Amplituden

streben gegen 0 (vgl. 32.14 und 32.15 sowie Fig. 3.14.). Anstelle der

Amplitude tritt daher die spektrale Dichte SA mit der Dimension
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^ ©
T, T/2

©
¦3 173

c,*f. N CON 3—<

0**

-x
s,

A i

»(f)= S.(f) df

— œ

C=>

L f — 0

©
0 f1=1/T f2=1/T2 f,=1/T

—rt—+—iAf 1/T Af Af
df — 0

Fig. 3.14. Spektrum der periodischen und der unperiodischen Schwingung.
Links: Zusammensetzung einer periodischen Schwingung aus drei Teilschwingungen und

spektrale Darstellung (ohne Berücksichtigung der Phasenverschiebung).
1 + 3 Erste bis dritte Teilschwingung
4 Gesamtschwingung als Überlagerung der drei Teilschwingungen
5 Amplitudenspektrum

Rechts: Unperiodische Schwingung und spektrale Darstellung
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[Amplitude-Frequenz"1] bzw. [Amplitude-Periode"1]. Sie entspricht der auf
ein Frequenzinkrement df (gegen 0 strebender, kleiner Bereich) bezogenen
Amplitude der betreffenden Teilschwingung:

SA(f) lim A"^l) (f=jfl,j=l-oo) (32.16)
/,->o df

Aus den diskreten Werten der Teilschwingungsamplituden im Falle einer
periodischen Schwingung (Klang) wird die stetige Kurve der spektralen Dichte
bei der unperiodischen Schwingung (Geräusch). Soll in diesem Fall die zu
einer bestimmten Frequenz gehörige Amplitude angegeben werden, so muß dazu

das Frequenzinkrement dfwillkürlich gewählt werden:

A(f) SA(f)-df (32.17)

Was hier über die Darstellung zeitlicher Bewegungsvorgänge (Schwingungen)

gesagt wurde, gilt analog auch für räumliche Erscheinungen, wobei
einfach die Zeit t durch die Raumkoordinate (z.B. x) ersetzt wird. Die geometrische

Beschaffenheit des Wasserspiegels längs einer Axe zu einem bestimmten

Zeitpunkt kann daher auf dieselbe Weise beschrieben werden, wie die

Bewegung des Wasserspiegels im Laufe der Zeit an einem festen Ort (vgl. auch
S. 152).
Die notwendigen Umformungen der Gleichungen (32.13 - 15) für den

Grenzübergang T -> oo kann aus Platzgründen hier nicht dargestellt werden,
verwiesen sei auf die Lehrbücher von Marko (1982) und Rayner (1971). Dort
wird ferner gezeigt, wie durch die Rechnung auch mit negativen Frequenzen
die Phasenverschiebung berücksichtigt werden kann, ebenso wird deutlich,
daß die Rechnung mit komplexen Zahlen (Ausdrücke, in denen die imaginäre
Einheit i V-l vorkommt) die Darstellung wesentlich vereinfacht. Dabei
wird die Definition der trigonometrischen Funktionen durch die Euler'sche

Formel

e1?' cos(ft) + i sin(ft) (32.18)

bzw. ihre Umkehrungen

cos(ft) -^-(e'f'+e^f) (32.19)

sin(/0 ^(e^'-e-^O (32.20)

verwendet (Analogie zu den hyperbolischen Funktionen cosh und sinn).
Die Bewegung der Wasseroberfläche bei Wellengang kann dann mit der
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folgenden Gleichung beschrieben werden:

&f) I SA(f)-e^f'df (32.21)

das Spektrum des Seegangs wird berechnet mit

SA(f) f Ç(t)-e-i2*f'dt (32.22)

(Fourier-Transformation).
In der Praxis wird allerdings nie mit dem Amplitudenspektrum nach (32.22)

gerechnet, sondern mit dem Energiespektrum. Sachlich ist dies gerechtfertigt,

weil die im Zusammenhang mit dem Seegang interessierenden Probleme

überwiegend Phänomene der Energieübertragung sind (z.B. Wellenentstehung,

Wirkung der Wellen auf Bauwerke). Zudem wird dadurch die Rechnung

erleichtert. Wie bereits in der Herleitung von (32.10) festgestellt wurde,
ist bei flachen, sinusförmigen Wellen die Energie pro Flächeneinheit direkt

proportional zur Varianz a? der Wasserspiegelbewegung, der Proportionalitätsfaktor

ist gleich dem spezifischen Gewicht pw-g des Wassers. Da in der

spektralen Darstellung der Seegang als Überlagerung von unendlich vielen,
unendlich flachen Sinuswehen beschrieben wird, sind beide Voraussetzungen
für die Gleichung (32.10) erfüllt. Deshalb wird in der Literatur oft die
Varianz (also die durch pw-g dividierte, physikalische Energie der Wellen) als

"Energie" oder auch "spektrale Energie", mit der Dimension [m2], bezeichnet.

Zwar wurde in (32.8) zur Definition der Varianz die quadratische
Abweichung £ 2 des Wasserspiegels längs der jc-Axe über eine Periode
Wellenlänge L) gemittelt, doch es wurde bereits gesagt, daß Raum- und Zeitkoordinate

bei sinusförmigen Wellen austauschbar sind. Da für den natürlichen
Seegang die Periode T der Grundschwingung als unendlich lang angenommen

werden muß, lautet die Definition der Varianz:

1
+m

a2 lim — /C2(t)dt (32.23)
4 r->°° T -T/2

Die Varianz ist übrigens ein Spezialfall der (Auto-)Kovarianzfunktion

+772

R,M lim—- f Ç(t)Ç(t+r)dt (32.24)
44 r-»~ T -T/2

(t= Phasenverschiebung), denn, wie aus (32.23) leicht ersichtlich, ist
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a2 Rg(0) (32.25)

Unterwirft man die Kovarianzfunktion einer Fouriertransformation nach

(32.22), d.h.

Srr(f) f Rcc(t)-e-i2*f*dr (32.26)

so ist das Resultat das Spektrum der Varianz, denn umgekehrt gilt nach

(32.21)

äw(t) Jsçç(f)-ei2*f*df (32.27)

und für t 0
+00

Ra(p) a-f fsçr(f)df (32.28)

Mithin ist der Beitrag eines Frequenzinkrementes J/zur Varianz für eine

bestimmte Frequenz/gleich

<r2(f) Sa(f)df (32.29)

(vgl. mit 32.17). Nach dem Faltungssatz der Fouriertransformation (näheres
dazu s. z.B. in Marko 1982 und Rayner 1971) ist andererseits die Fourier-
Transformation der Kovarianzfunktion gleich dem Quadrat des Betrags des

Amplitudenspektrums, nämlich

Sçç(f) SA(f)- SA*(f) df I SA(f) I2 df (32.30)

Dabei ist SA*(f) die zu SA(f) konjugiert komplexe Zahl, d.h. die beiden

Werte unterscheiden sich nur im Vorzeichen des Imaginärteiles. Das

Amplitudenspektrum ist in der Regel eine komplexe Größe; im Gegensatz dazu ist
das Spektrum der Varianz immer reell. Dies kann folgendermaßen
veranschaulicht werden: Durch das Spektrum werden die einzelnen Teilschwingungen

in der Art der Gleichung (32.11) als Sinus- und Cosinusfunktion dargestellt,

wobei der Realteil dem Cosinus- und der Imaginärteil dem Sinusglied
entspricht. Wie aus der erwähnten Gleichung und (32.12) hervorgeht,
entspricht dies der Charakterisierung dieser Teilschwingungen durch Amplitude

und Phasenverschiebung. Bei der Varianz hingegen spielen die

Phasenverschiebungen der einzelnen Teilschwingungen keine Rolle, sie wird nur
durch deren Amplitude bestimmt. Die Amplitude ist gleich dem Betrag jener
komplexen Zahl, welche die Teilschwingung charakterisiert. Es sei noch ein-
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mal darauf hingewiesen, daß in diesem Zusammenhang unter "Amplitude"
immer die mit dem Frequenzinkrement df multiplizierte spektrale Dichte zu
verstehen ist. Gleichung (32.30) scheint im Widerspruch mit der Tatsache zu
stehen, daß die Varianz einer sinusförmigen Schwingung gleich dem halben
Quadrat ihrer Amplitude ist. Dies rührt daher, daß in (32.21) (Zusammensetzung

der Schwingung aus den Teilschwingungen) sowohl über die positiven,
wie auch über die negativen Frequenzen integriert wird. Die zu den
betragsgleichen positiven bzw. negativen Frequenzen gehörigen spektralen Dichten
sind jeweils zueinander konjugiert komplex. In unserem Beispiel des

Energiespektrums, wo nur reelle Größen vorkommen, sind sie demnach sogar
gleich. Damit können (32.21) und (32.28) umgeformt werden zu

+°o

C« 2 J'sA(f)- ei2«f'df (32.31)
0

Ra(P) a2 2JSK(f)df (32.32)

BA(f) 2 SA(f), S^f) 2 StfJ) (32.33)

+°°

C(t) f*A(f>ci2"f'df (32.34)
o

¦H»

a2 j'S^f)df (32.35)

bzw.

+°°

R^r) I *^fyei2*f*df (32.36)

Die Beziehung zwischen den beiden Spektren lautet dann nach (32.30):

g^f) 2 Stff) 2 I SA(f)/2 \2df 1/2 I u9A(f) I2 df (32.37)

In der Praxis wird meist mit den Ausdrücken nach (32.35) und (32.36)
gerechnet (nur positive Frequenzen berücksichtigt einseitiges Spektrum).
Die Fläche unter der Kurve ¦$>//) ist dann nach (32.35) gleich der Varianz,
mithin bis auf den Faktor pw-g gleich der Gesamtenergie des Wehenganges.

Mit

wird
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In nicht ganz korrekter Weise wird in (vorwiegend älterer) Literatur
manchmal auch mit einem aus Amplitudenmessungen abgeleiteten, sogenannten

"Energiespektrum" gerechnet, wobei nicht die spektrale Dichte der
Varianz, sondern des Amplitudenquadrates dargestellt wird. Die Werte sind
nach den obigen Bemerkungen deshalb doppelt so groß:

Sjf) *2Stff) (32.38)

Dieses Spektrum über den positiven Frequenzbereich integriert ergibt

o

2E

.2Ea> / 5i/) df 2 fB^f) df =2 o{

(32.39)

E^wird manchmal in der Literatur ebenfalls als "Energie" bezeichnet. Nach

Longuet-Higgins (1952) ist dieser Wert (abgesehen vom Faktor pw-g) gleich
dem Energieinhalt einer Wehe mit der signifikanten Wehenhöhe //1/3:

Em 1/8//l/32 (32-4°)
bzw.

#i/3 ^(8£J 2,832-^ (32.41)

Von den häufiger gebrauchten Seegangsspektren wird das sogenannte "Spektrum

von Neumann" (Neumann 1953, Pierson et al. 1955) meist noch in der

obigen Form dargesteht; es gibt aber auch Autoren, die es bereits in ein
Varianzspektrum nach (32.35) bzw. (32.36) umrechnen. Leider wird nicht
immer darauf hingewiesen, welche Form des Spektrums gebraucht wird, was
das Studium dieser Literatur erschwert.

3.2.1.3. Direkte Wirkung der Wellen auf den Halm

Die unmittelbare Wirkung der Wehen auf das Schilf ist grundsätzlich gleich
wie jene des Windes: Die freie Bewegung der Wasserteilchen wird durch den

Schilfhalm behindert. Dabei entsteht auf der Luv-Seite ein Überdruck, an der

Lee-Seite durch die Wirbelbildung ein starker Druckabfall ("Sog"). Diese
zwei Kräfte wirken gleichsinnig und können deshalb für unsere Zwecke zu
einer einzigen zusammengefaßt werden, denn für die Zerstörung des Schilfes
durch Wellenschlag ist nicht die unmittelbare Krafteinleitung an der
Halmoberfläche maßgebend, sondern die durch die Gesamtbelastung bewirkte Bie-
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Fig. 3.15. Definitionsskizze zu den Gleichungen (32.42) und (32.43).

gung des Halmes. Es ist hier nicht die Rede von der meist viel stärkeren,
indirekten Belastung durch das von den Wehen in Bewegung gesetzte Treibzeug,
was in Kap. 3.3. behandelt wird.
Der Einfachheit halber nennen wir im folgenden die aus der Bewegung des

Wassers entstehende Kraftwirkung auf den Halm "Wasserdruck", obwohl der
Anteil des Unterdruckes auf der Leeseite eigentlich überwiegt. Die Berechnung

des Wasserdruckes erfolgt mit dem gleichen Ansatz wie für den Wind-
druck (Gleichungen 31.1 bzw. 31.2). Folgende Anpassungen sind notwendig:
- Anstelle der Dichte p, ist die Dichte pw des Wassers zu setzen.

- Der Luftwiderstandsbeiwert cl ist durch den Wasserwiderstandsbeiwert

cw zu ersetzen.

- Zusätzlich zur waagrechten Geschwindigkeit u der Wasserteilchen wird
auch die senkrechte Komponente v berücksichtigt, da deren Anteil bei
größerer Halmneigung wesentlich werden kann.

- Weil unter Wasser die Blätter des Schilfes abgestorben sind, kann die
Reibung längs des Halmes vernachläßigt werden.

Die Berechnungsgleichung für den Wasserdruck sieht dann wie folgt aus (vgl.
Fig. 3.15.):

qw dl cw Pwl2 wr -\wr\D dl [N] (32.42)
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<7w

dl

wr
D

Wasserdruck auf den Halmes (pro Längeneinheit) [N/m]
Länge des betrachteten Halmelementes [m]
Widerstandsbeiwert für den Wasserdruck auf den Halm [-]
Dichte des Wassers 1000 kg/m3
Relative Geschwindigkeit der Wasserteilchen 1 Halm [m/s]
Durchmesser des Halmes [m]

Die Relativgeschwindigkeit wr der Wasserteilchen senkrecht zum Halm ist

gleich der algebraischen Summe der auf die Halmnormale projizierten
waagrechten und senkrechten Komponenten (u -x') und (v - z') der

Teilchengeschwindigkeit. Dabei muß bei der gewählten Vorzeichenkonvention der

Betrag der vertikalen Komponente negativ eingesetzt werden (vgl. Fig. 3.15.):

wr (u -x) costp - (v - z') sin<p [m/s] (32.43)

u
v
x
z

x'
z"

Horizontale Geschwindigkeitskomponente des Wassers [m/s]
Vertikale Geschwindigkeitskomponente des Wassers [m/s]
Waagrechte Lagekoordinate des Halmes [m]
Senkrechte Lagekoordinate des Halmes [m]
Geschwindigkeit des Halmelementes in ;t-Richtung dx/dt [m/s]
Geschwindigkeit des Halmelementes in z-Richtung dz/dt [m/s]
Neigungswinkel des Halmelementes [rad]

Der unter Wasser liegende Teil des Stengels wird also einer verteilten
Belastung von

qw cw Pw/2 [(u -x) costp- (v - z) sinç)]•

•l(w -x') costp - (v - z) sincp ID [N/m] (32.44)

unterworfen. Die Ausdrücke auf der rechten Seite dieser Gleichung werden
wie folgt bestimmt:

- Die Lagekoordinaten x, z und q> sowie deren Ableitungen (Geschwindigkeiten

des Halmelementes x',z', q>') werden durch das mathematische
Modell laufend berechnet.

- Die Dichte des pw Wassers kann zu 1000 kg/m3 eingesetzt werden.

- Die Berechnung der Wasserteilchengeschwindigkeit («, v) aus den

Wellenkenngrößen mit Hilfe der Wehentheorien ist Gegenstand des Kapitels
3.2.3., die Abschätzung der Wehenkenngrößen als Funktion der Seegeometrie

und der Windgeschwindigkeit behandelt Kap. 3.2.2..

- Der Wasserwiderstandskoefizient cw muß experimenteh bestimmt werden

(vgl. folgendes Kapitel).
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3.2.1.4. Bestimmung des Wasserwiderstandskoeffizienten

Die Beanspruchung des Schilfhalmes durch die Wehen kann etwas vereinfacht
als "Kraftwirkung von Wehen auf feste Kreiszylinder bzw. Pfähle" betrachtet

werden. Dieses Problem wurde wegen der großen Bedeutung von Bauten im
Küstenbereich der Ozeane (Bohrplattformen, Hafenanlagen) schon von
verschiedenen Institutionen untersucht. Eine Übersicht einiger Ergebnisse bietet

Burkhardt (1967). Die Ergebnisse der verschiedenen Forscher differieren
stark: die Werte der Widerstandskoeffizienten cw nach Gleichung (32.42)

liegen zwischen 0,36 und 2,04. Von den in diesen Forschungsarbeiten
untersuchten Strukturen unterscheidet sich der Schilfhalm allerdings beträchtlich
durch seine größere Flexibilität: Er macht die Bewegungen des Wassers zu
einem hohen Grad mit. Aus naheliegenden Gründen sind derart bewegliche
Strukturen für Bauwerke ungeeignet und wurden deshalb nicht untersucht.

Die große Streuungsbreite der cw-Werte wird zum Teil damit erklärt, daß,

wie beim Luftwiderstand, auch hier die Reynolds'sche Zahl Re eine Rolle

spielt (s. Kap. 3.1.1., Gl. 31.3). Nimmt man als charakteristische Länge z.B.

einen maximalen Halmdurchmesser D von 1,5 cm und eine
Strömungsgeschwindigkeit u des Wassers von 2,5 m/s, so wird bei einer Zähigkeit vw des

Wassers von 10"6 m2/s die Reynolds'sche Zahl Re 37'500. Aus Fig. 3.3. mit
dem Widerstandsbeiwert eines Kreiszylinders in einer stationären Strömung
geht hervor, daß dieser Wert noch weit unterhalb des kritischen Bereichs Re

~ 5-105 liegt, wo der Widerstandsbeiwert stark abnimmt. Berücksichtigt man
in der Aufstellung von Burkhardt (1967) nur jene Autoren, welche eine
periodische Wellentheorie verwenden und die Ergebnisse ausdrücklich für
Reynolds'sche Zahlen < 5-105 angeben, so bleiben von den ursprünglich 18

noch deren 9. Davon schlagen vier einen cw-Wert von 1,2 vor, drei rechnen

mit dem Wert für die stationäre Strömung (was nach Fig. 3.3. für Re 500
bis 3-105 einem Wertebereich für cwvon 1,0 bis 1,2 entspricht). Die beiden

übrigen Autoren geben 1,6 bzw. 2,04 an, wobei der letzte Wert als Summe

von Mittelwert (1,626) und Standardabweichung (0,414) der Versuchsergebnisse

erhalten wurde.

Um Aufschluß darüber zu erhalten, ob die oben angegebenen cw-Werte auch

für Schilfhalme einigermaßen zutreffen, machten wir in der Wehenrinne der

Versuchsanstalt für Wasserbau an der ETH (VAW) einen Modellversuch mit
Kunststoffstäben von 1 cm Durchmesser (Beschreibung der
Versuchsanordnung in Kap. 3.3.4.). Diese Stäbe hatten eine Biegesteifigkeit von
15'690 Ncm2, was ziemlich genau einem Schilfhalm der gleichen Dicke ent-
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spricht (vgl. Teil III, Tabellen zu Kap. 3.4). Die Wassertiefe d betrug 50 cm,
die Wellenperiode T 0,9 s. Untersucht wurden Wellenhöhen H von 12 cm

(11-13 cm) und 16 cm (15 - 17 cm). Die entsprechende Wellenlänge L war
gleich 130 cm. Das Ausmaß der Bewegung der Stäbe wurde mit lange belichteten

Photos (Belichtungszeit 1 s, d.h. etwas länger als eine Wehenperiode)
festgehalten. Die gleiche Situation wurde mit dem mathematischen Modeh für
verschiedene cw simuliert. Die berechneten Bewegungen der Stäbe wurden
mit den Photographien verglichen. Bei der kleineren Wellenhöhe (12 cm)
war die Bewegung so klein, daß nur der gesamte Ausschlag (also Vor- und

Rückschwung zusammen) mit einiger Genauigkeit aus dem Bild gemessen
werden konnte. Bei H 16 cm war es möglich, auch den Vorschwung für
sich allein zu bestimmen. Die gemessenen und gerechneten Bewegungen sind

in Fig. 3.16. dargestellt.
Bei der totalen Bewegung zeigt sich eine qualitativ gute bis sehr gute
Übereinstimmung im Verlauf der gerechneten und gemessenen Kurven; für die
Wellenhöhe von 12 cm liegt die gemessene Linie zwischen jenen für cw= 1,0 und

1,5 (entsprechend etwa einem Wert cwvon 1,2), bei 16 cm hohen Wellen

folgt die gemessene Linie fast genau jener für cw 2,0 (entsprechend etwa cw

1,9). Wird nur der Vorschwung betrachtet, so liegt die gemessene Linie
ebenfalls in der Nähe der Kurve für cw 2,0 (da die Bewegung des untersten

Meßpunktes, 25 cm über Grund, für eine genaue Messung zu klein ist, wurde
in der Figur nur der obere Teil der gemessenen Linie eingezeichnet).
Die Größenordnungen der auf diese Weise ermittelten cw-Werte liegt also

durchaus im Bereich der Literaturangaben für den festen Pfahl. Daß der
größeren Wehenhöhe ein höherer c^-Wert entspricht, läßt sich nicht ohne weiteres

erklären. Vermutlich beschreibt die hier anzuwendende, lineare Wellentheorie

(S. 124 -130 und 154 -157) die Bewegung der Wasserteilchen nur
unzureichend: Höhe, Länge und Wassertiefe sowie der daraus resultierende
Ursell-Parameter (vgl. S. 123, Gl. 32.85) U 1,6 bzw. 2,2 verlangen zwar

eindeutig die lineare Theorie (auch eine Nachrechnung mit der Theorie dritter

Ordnung ergab kaum Unterschiede), doch die von der Wellenmaschine

erzeugten Wehen weichen von der in den Theorien vorausgesetzten Form
erheblich ab, da die Kraftübertragung vom Motor zur Schaufel (vgl. Fig. 3.45.)
über eine Transmission erfolgte, welche besonders bei größeren Amplituden
etwas Schlupf aufwies. Dadurch wurde die Bewegung unregelmäßig, was zu

Wellen mit relativ höheren und steileren Wehenbergen und relativ flacheren
und längeren Wellentälern führte. So war die Eneregie der Wellen zum
größeren Teil im Wellenberg konzentriert. Die Beanspruchung der Stäbe erhielt
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1,5 2,5
w 1 Z 3

Wellenhöhe 12 cm h Höhe über Grund cm

Totale Bewegung
10 cm

1,5 2,5
w i

25 -Hilf Wellenhöhe 16cm

1,5 2,5

5 10 cm

Totale Bewegung

4 w 1 2 3
75 -

Wellenhöhe 16 cm

5 10 cm

Vorschwung

Fig. 3.16. Vergleich von gerechneten und gemessenen Ausschlägen eines Kunststoffhalmes

von 1 cm Durchmesser unter dem Einfluß von Wellen mit einer Höhe von 12 cm
(oben) bzw. 16 cm (unten). Totale Bewegung Vorschwung + Rückschwung.

Gemessen Gerechnet für verschiedene Widerstandskoeffizienten c,.
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damit einen mehr schlagartigen Charakter, was zu größeren Ausschlägen
führt als eine zwar schwächere, jedoch während längerer Zeit wirkende Belastung

(wie sie im Modell simuliert wird). Da der Schlupf bei den 16 cm-Wellen

deutlich stärker war (dies waren die größten, die sich mit dieser Maschine

überhaupt erzeugen ließen), können wir annehmen, daß der cw-Wert bei dieser

Wellenhöhe nur scheinbar so hoch ist.

Auch die Nachgiebigkeit der nicht ganz starren Halterung für die Stäbe ließ
sich in der Rechnung nicht berücksichtigen, was sich ebenfalls bei der höheren

Belastung stärker auswirkt.
Aus all diesen Gründen schien es gerechtfertigt, für Schilfhalme auch mit dem

von vielen Autoren (vgl. Burkhardt 1967) empfohlenen cw-Wert stationär

umströmter Zylinder zu rechnen. Da, wie eingangs dieses Kapitels erwähnt,
die Reynolds'schen Zahlen in der Größenordnung von 104 liegen, setzten wir
den Wasserwiderstandsbeiwert

cw 1,2 (32.45)

in die Berechnungen mit dem mathematischen Modell.
Es bleibt noch darauf hinzuweisen, daß der cw-Wert nur eine relativ geringe
Bedeutung hat, denn die Hauptbeanspruchung des Schilfes entsteht nicht durch
die unmittelbare Wellenwirkung, sondern durch das von den Wellen bewegte

Treibzeug. Übrigens bewirkt eine Erhöhung des cw-Wertes bei vorhandenem

Treibzeug nicht unbedingt auch eine verstärkte Belastung: Je nach dem
Verhältnis der Eigenfrequenz des Systems Halm-Treibzeug zur Wellenfrequenz
wirkt ein höherer Widerstandsbeiwert als Dämpfer. Um den Einfluß des

Widerstandsbeiwertes auf die Halmbeanspruchung abzuschätzen, berechneten

wir mit dem mathematischen Modell einen praxisnahen Fall eines Schilfstandortes,

der einer Windgeschwindigkeit von ul 7 m/s und einem Treibholz
mit einer Masse von 6 kg pro laufenden Meter Uferlinie unterworfen ist. Es

wurden verschiedene Wellenhöhen zwischen 10 und 30 cm und -perioden
von 1,25 bis 3,3 s untersucht, wobei einmal mit cw= 1,2 und einmal mit cw=
1,7 gerechnet wurde. Die mittlere Beanspruchung, ausgedrückt als

Standardabweichung des positiven Biegemomentes am Hahnfuß, unterschied sich um
maximal 7 %, für den Maximalwert des Biegemomentes am Halmfuß betrug
die größte Differenz 8 %, wobei die größere Beanspruchung in diesem Fall
aus dem kleineren cw resultierte. Angesichts des verhältnismäßig geringen
Einflusses des Wasserwiderstandskoeffizienten cw auf die Gesamtbeanspruchung

erschienen umfangreichere Experimente für eine exaktere (^-Bestimmung

nicht gerechtfertigt.
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3.2.2. Ermittlung der Wellenkenngrößen

Zum Zwecke der Schiffahrt, zur Dimensionierung von Hafen- und anderen

Küstenbauten wurden schon früh (seit über hundert Jahren) Verfahren
gesucht, um die Größe der Wellen vorhersagen zu können. Da die Wehen durch
den Wind entstehen, suchte man zuerst Beziehungen zwischen der Wehenhöhe

H und der Windgeschwindigkeit m, (wobei je nach Beobachter die beiden
Ausdrücke auf verschiedene Weise definiert wurden). Einen ebenso
bestimmenden Einfluß haben aber die Streichlänge F (engl.: fetch), die Breite
und Form des Windfeldes (auch Streichfläche genannt) sowie die

Winddauer tw. Unter der Streichlänge versteht man die entgegen der
Windrichtung gemessene Ausdehnung der Wasserfläche vom interessierenden Ort

aus, die Streichfläche ist die vom Wind überstrichene Wasserfläche im Luv
des betreffenden Ortes. Die Begrenzung ist meist durch die Küste gegeben,
bei sehr großen Wasserflächen oder mehr lokalen Windereignissen auch

durch die Gebiete mit geringer Windgeschwindigkeit. Bei beschränkter Breite

des Windfeldes muß der Wert für die Streichlänge entsprechend abgemindert

werden. Dies geschieht hier mit dem auch theoretisch begründeten
Verfahren von Liang (1973). Eine ähnliche Methode beschreiben Bruschin und

Falvey (1975/76).
Eine ausführliche Übersicht über die bekannteren empirischen und halbempirischen

Formeln gibt Schüttrumpf (1973). Bruschin und Falvey (1975/76)
beschreiben im Hinblick auf den Genfersee eine Methode, welche sowohl mit
der signifikanten oder kennzeichnenden Wehenhöhe Hi/:i, als auch mit dem

Spektrum nach Neumann (1953) arbeitet. In neuerer Zeit wurden auch
mathematische Seegangsmodelle zur detaillierten Erfassung der Energieübertragung

zwischen Wind und Wellen entwickelt. Diese liefern für jeden Punkt
eines gewählten Netzes ein nach Richtung differenziertes Energiespektrum des

Wehenganges. Der Gebrauch solcher Modelle ist aber aufwendig, weil
entsprechend der Feinheit des Netzes die Windverhältnisse über der ganzen
Wasserfläche bekannt sein oder berechnet werden müssen. Resio und Vincent
(1978) beschreiben die Anwendung zweier in den USA entwickelter
mathematischer Seegangsmodehe auf den Lake Superior.
In den folgenden Kapiteln werden am Beispiel des Versuchsfeldes in Altenrhein

am Bodensee-Obersee die Verfahren von Bretschneider (1957) sowie

von Bruschin und Falvey (1975/76) vorgesteht.
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3.2.2.1. Bestimmung der Streichlängen

Wie zu Beginn des Kapitels 3.2.1. bemerkt wurde, breiten sich die durch eine

punktförmige Störung verursachten Wellen kreisförmig über die Wasserfläche

aus. In einem bestimmten Punkt A (Fig. 3.17.) treffen deshalb nicht nur
Wellen aus dem Gebiet entlang der Windrichtung (der Streichlänge), sondern

auch aus den seitlichen Regionen ein. Durch Überlagemng all dieser Wellen
entsteht schließlich der in A beobachtete Wellengang. Deshalb hat gerade bei
den Binnenseen (die in diesem Zusammenhang "kleinflächig" sind) die Breite
und Form der Streichfläche einen entscheidenden Einfluß auf die zu
erwartenden Wellengrößen.

c^

Aß

Fig. 3.17. Definitionsskizze zur Bestimmung der wirksamen Streichlänge für den
PunktA.
f. Länge des Richtungsvektors (freie Wasserfläche)
ö- Winkel zwischen der Windrichtung und dem Richtungsvektor

Nach dem Modell von Liang (1973) geschieht die Energieübertragung vom
Wind auf die Wasserfläche punktweise unabhängig, das heißt, in jedem Punkt
des Windfeldes entstehen Elementarwellen, die sich kreisförmig ausbreiten

(vgl. S. 82f) und sich dabei gegenseitig überlagern. Die Rechtfertigung dieser

Annahme sieht Liang in der Tatsache, daß durch die ständigen örtlichen und

zeitlichen Schwankungen der lokalen Windbewegung (Turbulenz) nur kurz-

kämmige und überall etwas verschiedene Wellen entstehen. Entsprechend
versteht er unter einem "Punkt" eine Fläche deren Ausdehnung etwa einer

Wehenlänge entspricht. Bezogen auf das ganze Windfeld kann eine solche Räche

ohne weiteres als Punkt betrachtet werden.

Die Ausbreitung der Elementarwellen geschieht bei wehendem Wind nicht
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gleichmäßig entlang des ganzen Kreisumfanges, denn die Luftströmung
bewirkt auf der Luvseite einen Druckanstieg (&pv Ap3; vgl. Fig. 3.18), auf der

Leeseite dagegen einen Druckabfall ("Sog"; Ap2, ApA), die sich beide zu einer

Kraft in Richtung des wehenden Windes summieren. Daduch wird der mit
dem Wind laufende Teil der Elementarwelle verstärkt, d.h. diesem wird ständig

neue Energie zugeführt, während der gegen den Wind laufende Teil
gebremst wird: diesem wird Energie entzogen. Damit wird die durch den Wind
in die Elementarwelle eingebrachte Energie in einen bestimmten Bereich um
die Windrichtung konzentriert. Die Form dieser Konzentration (Verteilung
der Energie längs des Kreisumfangs) findet Liang mit folgender Überlegung:
Da die Energie durch den Luftdruck übertragen wird, nimmt er an, sie sei

proportional zum Luftdruck verteilt. Der Druck auf eine schief angeblasene
Fläche in Funktion des Winkels ß ist mit den Bezeichnungen der Fig. 3.19.

gleich

Windrichtung

tApng^, AP 2Z

Fig. 3.18. Ausbreitung einer (gedachten) Elementarwelle bei wehendem Wind. Der von
links nach rechts blasende Wind verursacht auf der linken Seite (Luv) eine Druckanstieg
(+Ap auf der rechten (Lee) einen Druckabfall (-Ap
C Fortpflanzungsgeschwindigkeit der Welle
ut Windgeschwindigkeit
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p(0)cosß
piß) ; p(0) coszj8

cos/3

Entsprechend kann für die Energie

E(ß) E(0)cos2ß -n/2 <ß< +K/2

(32.46)

(32.47)

gesetzt werden, wobei unter E die innerhalb eines infinitesimalen Kreissegmentes

dß enthaltene Wellenenergie zu verstehen ist. Durch Modellversuche
konnte Liang diese Richtungsverteilung einigermaßen bestätigen. Die
Entwicklung seines Ansatzes führte ihn dazu, anstelle der üblicherweise
gebrauchten Streichlänge F eine Art Streichfläche FF mit der Dimension
[Länge-rad] zu verwenden. Für eine konstante Windgeschwindigkeit über
dem ganzen Windfeld läßt sich diese Streichfläche als

-/T/2

FF= ffcos2ßdß
+JC/2

[km-rad] (32.48)

anschreiben. Dabei ist/die Länge der freien Wasserfläche entlang der Richtung

ß (vgl. Fig. 3.17.). Auch für verschiedene Windgeschwindigkeiten ut
und -richtungen über einer Wasserfläche läßt sich nach Liang die zugehörige
wirksame Streichfläche berechnen. Dazu muß man eine Bezugsrichtung (z.B.

Wind

VD.dl

cosß

p„ m cosß

Fig. 3.19. Winddruck auf eine schief angeblasene Fläche.

p0 Staudruck des Windes

ps Winddruck auf die Räche, die mit dem Winkel ß auf der Senkrechten zur Windrich¬
tung steht
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(vvy.^a
vv0î\\

»)

\
Ii

Fig. 3.20. Einteilung des Windfeldes in Zonen gleicher Windgeschwindigkeit und -rich-
tung zur Berechnung der wirksamen Streichlänge nach Gl. (32.49).

Wind

X *
7777777777777777777777

eff unwirksam

Fig. 3.21. Abminderung der Länge eines Richtungsvektors um den unwirksamen Teil bei
Geländeneigungen von mehr als 10° am gegenüberliegenden Ufer.
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die Nordrichtung) auswählen und den Winkel 6 zwischen dieser Bezugsrichtung

und dem Richtungsvektor einführen (Fig. 3.20.). Bezeichnet man die
laufende Koordinate entlang des Richtungsvektors mit r, seine Länge mit/(ö),
so wird

l
A®

FF — f ful(r,e)R(ß(.r,0))drd9 (32.49)
U e o

/(fl)

ffdrdd
U *JL_ (32.50)

mit

J Jufr,e)drd6
e o

RQKrA) j">s>'e) \p\r,e)\<K/2 Q251)
< 0 sonst

Der Integrationsbereich für 0 ist dabei so zu wählen, daß alle Teile des

Windfeldes, für welche der Winkel ß zwischen -7t/2 und +7t/2 liegt, berücksichtigt
werden.
Bei steilen Ufern ist die Länge /(e) der entsprechenden Richtungsvektoren
nach einem Vorschlag von Bruschin und Falvey (1975/76) gemäß der Fig.
3.21. abzumindern, da der Wind dem Terrain nur bei Neigungen von weniger
als etwa 10° ohne Ablösung folgt.
Für die praktische Berechnung werden die Integrale durch entsprechende
Summierungen ersetzt (vgl. das folgende Beispiel).

Beispiel: Windfeld Altenrhein (s. Fig. 3.22.)

Aufgabe: Es werde die Streichfläche FF für das Schilfgebiet in Alten¬

rhein (bei der Mündung des Alten Rheines in den Bodensee)

bestimmt, und zwar für Winde aus W, NW und N, mit
konstanter Windgeschwindigkeit auf dem ganzen See.

Vorgehen: Wahl eines Punktes A vor dem Ufer, so daß die Wassertiefe

ungefähr die Hälfte der zu erwartenden Wellenlänge beträgt
(Tiefwassergrenze). Unter der (durch die Resultate zu
überprüfenden) Annahme einer maximalen Wellenlänge von rund
20 m ist dafür eine Tiefe von rund 10 m ausreichend, d.h. ein
Abstand von etwa 1-2 km vom Ufer.
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Bemerkung:

Anschließend wird das Winkelinkrement Aß für die Summierung

(willkürlich) gewählt: Aß 5° =0,0873 [rad]. Nun
können die Richtungsvektoren in die Karte gezeichnet und

herausgemessen werden. Die Auswertung geschieht am besten

in einer Tabelle (Tab. 3.2.).
Für keine der gewählten Windrichtungen wird mit den

angegebenen Richtungsvektoren der ganze Bereich ß -%/2 bis
-+-7C/2 abgedeckt, die Begrenzung wird hier durch den Verlauf
des Ufers bestimmt.

Friedrichshafen
Konstanz

Romanshorn

Fig. 3.22. Richtungsvektoren zur Berechnung der Streichlänge für das Versuchsfeld
Altenrhein. Bezugsrichtung ist Nord, d.h. der Winkel di ist gleich dem Azimut des Richtungsvektors

i.
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Tab. 3.2. Richtungsvektoren für das Windfeld vor dem Versuchsfeld in Altenrhein.

Nr. Richtung

en
/
[km]

ß[°] für Wind aus:

W NW N

1 -147,5 2,8 57,5
2 -142,5 3,1 52,5
3 -137,5 3,4 47,5
4 132,5 3,9 42,5 87,5
5 -127,5 4,3 37,5 82,5
6 -122,5 4,7 32,5 77,5
7 -117,5 5,1 27,5 72,5
8 -112,5 5,3 22,5 67,5
9 -107,5 5,2 17,5 62,5

10 -102,5 5,5 12,5 57,5
11 -97,5 6,0 7,5 52,5
12 -92,5 7,1 2,5 47,5
13 -87,5 8,1 2,5 42,5 87,5
14 -82,5 7,9 7,5 37,5 82,5
15 -77,5 9,2 12,5 32,5 77,5
16 -72,5 10,7 17,5 27,5 72,5
17 -67,5 12,9 22,5 22,5 67,5
18 -62,5 13,9 27,5 17,5 62,5
19 -57,5 31,8 32,5 12,5 57,5
20 -52,5 35,4 37,5 7,5 52,5
21 -47,5 41,9 42,5 2,5 47,5
22 -42,5 23,9 47,5 2,5 42,5
23 -37,5 22,2 52,2 7,5 37,5
24 -32,5 21,4 57,5 12,5 32,5
25 -27,5 19,0 62,5 17,5 27,5
26 -22,5 17,4 67,5 22,5 22,5
27 -17,5 17,1 72,5 27,5 17,5
28 -12,5 15,7 77,5 32,5 12,5
29 -7,5 11,2 82,5 37,5 7,5
30 -2,5 10,4 87,5 42,5 2,5
31 +2,5 9,6 47,5 2,5
32 +7,5 9,5 52,5 7,5
33 +12,5 9,6 57,5 12,5
34 +17,5 10,0 62,5 17,5
35 +22,5 10,4 67,5 22,5
36 +27,5 9,6 72,5 27,5
37 +32,5 9,3 77,5 32,5

37

cos2/3; 201,55 315,08 231,92

Mit Aß 5°= 0,0873 wird

FF ^ficos2ßiAß 17,6 27,5 20,2 [km-rad]

W-Wind NW-Wind N-Wind (32.52)
i=i
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3.2.2.2. Berechnung der Kenngrößen

3.2.2.2.1. Im Tiefwasser

Aus eigenen und fremden Meßreihen entwickelte Bretschneider in mehreren

Ansätzen (vgl. Schüttrumpf 1973) Diagramme mit Beziehungen zwischen
Wellenhöhe, Windgeschwindigkeit und Streichlänge. Auf den neuesten
Standgebracht und für den praktischen Gebrauch veröffentlicht wurden sie (u.a.)
im Handbuch des U.S. Army Coastal Engineering Research Center (1966).
Für den Bereich

s-FF
10 < -2-=— < 104 (32.53)

lassen sich die Funktionen von Bretschneider (1957) durch folgende
dimensionslose Gleichungen annähern:

§»& o,0024(^)1/2 (32.54)

mit g
FF

TH1I3
C

gT»™
0,092(J^) 1/2

2 KU, U
(32.55)

Erdbeschleunigung 9,81 m/s2

Steichlänge nach Liang (1973) [m]
Windgschwindigkeit [m/s]
Signifikante Wellenhöhe (s. S. 90) [m]
Signifikante Wellenperiode (s. S. 90) [s]
Fortpflanzungsgeschwindigkeit der signifikanten Welle im
Tiefwasser [m/s]

Den in (32.53) gegebenen Gültigkeitsgrenzen entsprechen für Windgeschwindigkeiten

von 3 m/s (=11 km/h Windstärke 2, "leichte Brise") bzw. 30 m/s
108 km/h Windstärke 11, "orkanartiger Sturm") Streichlängen von

FF (10+104)-
g

9,17+ 9174 m
917 + 917'430m

32.56)

rd. 10 m bis 10 km m; 3 m/s)
rd. 1 km bis 1000 km u, 30 m/s')

Mit diesen Größen werden die bei den schweizerischen Binnenseen anzutreffenden

Verhältnisse in genügendem Maße abgedeckt; eigentliche Kleingewässer

mit ihren speziehen Problemen sind nicht Gegenstand dieser Arbeit.
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Aus (32.55) leitete Bretschneider (1952) einen Ausdruck her für jene Min-
destwinddauer, die zur Ausbildung der nach (32.54) berechneten Wellen
notwendig ist:

FF FF FF
dFF dFF An dFF

tw J~F~ 2 /"pr — ]-=. [s] (32.57)

C Gruppengeschwindigkeit der Wellen Geschwindigkeit, mit der
sich eine Gruppe nicht ganz gleichlanger Wellen fortpflanzt C/2
bei flachen Tiefwasserwellen [m/s] (Zur Beziehung zwischen der
Fortpflanzungsgeschwindigkeit C der Wellen und ihrer Periode T
s. Kap. 3.2.3.

tw Mindestwinddauer zur Ausbildung der nach (32.54) berechneten
Wellen [s]

Wird THlß mit dem aus (32.55) gewonnenen Ausdruck (32.61) in diese

Gleichung eingesetzt, so wird

FF
dFF 8 FF374/urr o rr

IM MH 1SJ

0,092 (g u??/4 o FFXIA 0,276 (g u,2)l/A

(32.58)
oder, als Verhältnis auf FF bezogen

FF
tw

0,0345 V(g ufFF) [m/s] (32.59)

Mit der Auflösung der Gleichungen (32.54) und (32.55) nach //1/3 bzw. Tmß
können die notwendigen Formeln zur Berechnung der benötigten Wellenkenngrößen

aus Windgeschwindigkeit, Streichlänge und Winddauer zusammengestellt

werden:

u2FF
Hlß 0,0024V[- ] [m] (32.60)

//1/3

A/ru?FF n
0,578 V[- ] [s] (32.61)

— 0,0345 V(g«,2FF) [m/s] (32.59)
K

Diese Gleichungen sind dimensionsrein und können deshalb mit jedem
konsistenten Maßsystem gebraucht werden.
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Für die Streichlänge FF kann der nach Liang (1973) berechnete Wert unter
Vernachlässigung der Winkeldimension eingesetzt werden, wenn bei dessen

Berechnung die Winkel im Bogenmaß [rad] eingesetzt worden sind.

Die Windgeschwindigkeit ut in den Bretschneider-Gleichungen bezieht sich
auf eine Höhe von 10 m über dem Wasserspiegel, während bei neueren
ozeanographischen Untersuchungen üblicherweise die Windgeschwindigkeit
19,5 m über der Wasseroberfläche gemessen wird.
Zur Umrechnung der Windgeschwindigkeiten auf eine andere Höhe benutzen

Bruschin und Falvey (1975/76) das Fließgesetz für eine turbulente

Strömung entlang einer festen Wand. Der Strömungsvorgang ist "hydraulisch

rauh", d.h. die laminare Unterschicht ist sehr dünn im Vergleich zu
den Unebenheiten der Räche (=Wehen). Dann gilt folgende
Geschwindigkeitsverteilung in Abhängigkeit von der Höhe (Näheres s. z.B. Prandtl
1956 oder Schlichting 1968):

uz 2,5 k, ln(z/z0) [m/s] (32.62)

"z
U,
To

Pl
z

Windgeschwindigkeit in der Höhe z über dem Wasserspiegel [m/s]
Schubspannungsgeschwindigkeit [m/s] vtig/pj)
Schubspannung in der Grenzschicht [N/m2] bzw. [kg/(m s2)]

Dichte der Luft [kg/m3]
Höhe über der Wasseroberfläche [m]
Integrationskonstante (=Bezugshöhe) [m]

Für die Integrationskonstante gibt Charnok (1955; zit. in Bruschin und Falvey

1975/76) folgenden Ausdruck:

M2
zn 0,011— [m] (32.63

g

Gleichung (32.63) in (32.62) eingesetzt liefert

uz 2,5 m, In
Zg

2) [m/s] (32.64)
0,011 u*

Die Schubspannungsgeschwindigkeit u* ist proportional zu u^, d.h. zu der

von der Grenzfläche unbeeinflußten Windgeschwindigkeit. Da !•„ aus einer

terrestrischen Messung nicht bekannt ist, muß u* für die in der Höhe z

gemessene Geschwindigkeit aus (32.64) bestimmt werden. Für z 10 m
erhält man dann

10 m- g
h10 2,5 »«In 2) [m/s] (32.65)

0,011 u*
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Da (32.65) nicht explizite nach h* aufgelöst werden kann, rechnet man die
Werte am besten mit dem Nomogramm in der Figur 3.23. um, wo das

Verhältnis uz/ulQ in Funktion, der Höhe für verschiedene Windgeschwindigkeiten

u.Q herausgelesen werden kann. Auch so ist allerdings ein iteratives
Vorgehen nötig, da m10 für die Wahl der richtigen Kurve in Fig. 3.2.2.7. zuerst

geschätzt werden muß.

In der Literatur wird auch eine einfache Potenzfunktion für das Verhältnis

uz/uw angegeben:

Mio _ (z10
uz z

P0)" (32.66)

MO Referenzhöhe 10 m

Für den Exponenten n finden sich in Schüttrumpf (1973) Angaben von n

1/4 für z < 15 m und n 1/5 für z > 15 m. Für Stationen auf dem Land
empfehlen Resio und Vincent (1978) n 1/7. Zum Vergleich sind auch diese

Kurven in Fig. 3.2.2.7. eingezeichnet. In der letztgenannten Arbeit sowie in
Bruschin und Falvey (1975/76) werden Methoden zur Übertragung von
Meßwerten terrestrischer Stationen auf die Verhältnisse über einem See

beschrieben.

Zum praktischen Gebrauch lassen sich die Bestimmungsgleichungen
(32.59) bis (32.61) der Wehenkenngrößen für das metrische System
vereinfachen. Da sie dann nicht mehr dimensionsrein sind, müßen die
Windgeschwindigkeit U[ in m/s bzw. km/h, die Streichlänge FF in km, die Mindest-
winddauer tw in h, die Wellenhöhe Hl/3 in m und die Wehenperiode Tmri in
s eingesetzt werden:

Hm [m] 0,0242 V( u, [m/s]2 FF[km])

0,00673 V( ut [km/h]2 FF[km]) (32.67)

Tmn[s] 0,0586 V( tytm/s]2 FF[km])

0,309 V/(«,[km/h]2FF[km])= 3,77^Hlß[m] (32.68)

[km/h] 1,236 V( tytm/s]2 FF[km])

[km/h] 0,65lV( tyfkm/h]2 FF[km]) 7,94 V//^ [m] 2,11 Tm/3[s]

(32.69)
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Fig. 3.23. Nomogramm zur Umrechnung von gemessenen Windgeschwindigkeiten auf
eine andere Höhe über Grund: Relative Windgeschwindigkeitsprofile, bezogen auf «10in
der Höhe 10 m über Grund; Kurvenparameter u1Q (nach Gleichung 32.65).
Ebenfalls eingezeichnet sind Kurven des Potenzgesetzes (32.66) mit den im Text erwähnten
Exponenten.

n 1/4 (z < 15 m), bzw. n 1/5 (z > 15 m)
n 1/7
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Da die Wehenhöhe sowohl durch die Streichlänge, als auch durch die Winddauer

begrenzt sein kann, muß zuerst mit Hilfe von Gleichung (32.59) bzw.

(32.69) das Verhältnis dieser beiden Größen für die gewählte Windgeschwindigkeit

berechnet werden. Ist die gegebene Winddauer kleiner als der nach

(32.69) berechnete Wert tw, so muß die Streichlänge entsprechend reduziert
werden. Dazu wird (32.59) bzw. (32.69) nach FF aufgelöst:

FF' 0,0112% gufa*) (32.70)

bzw.

FF'[km] l,327V(K,[m/s]2iyh]4) 0,565 V( M,[km/h]2yh]4)

(32.71)
(Kontrolle: Die so errechnete Streichlänge muß kleiner als die nach Kap.
3.2.2.1. auf Grund der Topographie bestimmte sein.)

Bruschin und Falvey (1975/76) schlagen für Windgeschwindigkeiten von 10

bis 40 m/s die folgenden Formeln zur Berechnung der Wellenkenngrößen
vor:

/71/3[m] (3,l-104w;[m/s]2 +0,016 w/[m/s])VFF[km]

(2,4-10"5 w^km/h]2 + 0,0044 u;[km/h]) VFF[km] (32.72)

fw"/ _ icClIL vQ35 (¦*-:- p-262 (32.73)
FF Uf

Die zur Erzeugung des obigen Wellenganges notwendige Mindestwinddauer
kann aus (32.73) berechnet werden:

-0,262 pp 0,738

'» 35 *-rm [s] (32J4)
"/

Für tw in h, FF in km und ut in m/s bzw. km/h wird

« o-,. FF[km]°.738 FF[km]°738
fw[h] 0,875 Jn,7, 1,61 —- 32.75)

i/^m/s]0-476 «([km/h]0-476

Gleichung (32.73), die im Gegensatz zu (32.72) dimensionsrein ist, kann
ebenfalls nach FF aufgelöst werden:

FF' 0,00809 ^1.355.^0,645^0,355 > rm] (32.76)
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für tw in h, FF in km und ut in m/s bzw. km/h:

FF'[km] 1,198 fH,[h]1'355.M/[m/s]0,645 0(525 tJf^^-U^ml&f^
(32.77)

Die Ausdrücke in diesen Gleichungen sind die gleichen wie in den Bretschnei-
der-Formeln. Auch hier bezieht sich ut auf die 10 m über dem Wasserspiegel

gemessene Windgeschwindigkeit. Man beachte, daß Bruschin und Falvey keine

Formel zur direkten Bestimmung von Tmß geben, da diese Größe in
ihrem Verfahren nicht gebraucht wird. Bevor der weitere Berechnungsgang
dargestellt wird, folge zuerst die Anwendung der gezeigten Gleichungen auf
das Beispiel des Versuchsgebietes Altenrhein.

Beispiel: Windfeld Altenrhein

Für den im vorigen Abschnitt gewählten Punkt vor dem Schilffeld in Altenrhein am Bodensee

sollen die kennzeichnenden Wellengrößen Hlß und Tmß signifikante Wellenhöhe
und -période) bestimmt werden, und zwar a) für Wind aus NW mit einer Geschwindigkeit
von u, 7,8 m/s (1 m über dem Wasserspiegel) während 1 1/2 h und b) für einen Sturmwind

aus W mit ul0 75 km/h (10 m über dem Wasserspiegel) von rw 2 h Dauer.

a) Für Wind aus NW beträgt nach (32.52) die wirksame topographische Streichlänge

EE 27.5 km (s.S. 112).
Da die Windgeschwindigkeit 1 m über der Wasserfläche gemessen wurde, muß mjq mit
Hilfe der Fig. 3.23. berechnet werden:
Schätzung: h10 10 m/s

Ua/u,0 0,795 uw -j^- 9,8 m/s 10 m/s

Die Schätzung war also genügend genau, und es kann für die Windgeschwindigkeit der
Wert

Hl 9.8 m/s

eingesetzt werden.
Die Bretschneider-Gleichungen führen zu folgenden Resultaten:

(32.67): H1/3 0,0242-V(9,82-27,5) 1,24 m
(32.68): THlß 3,77-Vl,24 4,20 s

(32.69): FF/tw 2,11-4,20 8,87 km/h

Daraus tw 27,5/8,87 3,10 h > 1 1/2 h

Die Wellenhöhe wird also durch die Winddauer und nicht durch die (topographische)
Streichlänge begrenzt. Die einer Dauer von 1 1/2 h entsprechende, effektiv wirksame
Streichlänge FF' wird nach (32.71) berechnet:

FT 1,327- 3/(9,82-l,54) 10.4 km

Höhe und Periode der signifikanten Welle werden damit:

(32.67): i£1/3 0,0242-V(9,82-10,4) 0.77 m
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(32.68): ZWi/3 3,77-vb,77 3.30 s

Die dazu gehörige (Tiefwasser-)Wellenlänge beträgt (vgl. folgenden Abschnitt, S. 128,
Gl. 32.90):

gTmn2 9,81-3,32

Mit den Formeln von Bruschin und Falvey (1975/76) erhalten wir:

(32.72): Hlß (3,M0"4-9,82 + 0,016-9,8)V27,5 0,98 m

->7 cO,738
(32.75) tw 0,875 i^— 3,40h > 11/2 h

Wie zu erwarten, ist auch beim Gebrauch der Gleichungen von Bruschin und Falvey
der Seegang durch die Winddauer bestimmt, und es muß die effektiv wirksame Streichlänge

FF' nach (32.77) ermittelt werden:

(32.77): ££_' l.^S-l.S1-355^0-645 9.1km

Die Höhe H^ß der signifikanten Welle wird somit

(32.72): Klß (3,l-10-4-9,82 + 0,016-9,8)- v9,l 0.56 m

b) Für Wind aus W beträgt nach (32.52) die wirksame topographische Streichlänge

EE 17.6 km (s.S. 112).

Die Bretschneider-Gleichungen führen zu folgenden Resultaten (ut w10 75 km/h,
tw=2 h):

(32.67): Klß 0,00673- V(752-17,6) 2.12 m
(32.68): Zhvz 3.77-V2.12 5_5_s.

(32.69): FF/tw =2,11-5,5 11,6km/h

Daraus tw =17,6/11,6 1.5h<2h
In diesem Fall sind die Kenngrößen durch die Streichlänge und nicht durch die Winddauer

begrenzt, es kann also mit den obigen Werten gerechnet werden.
Die dazu gehörige (Tiefwasser-)Wellenlänge beträgt (vgl. folgendes Kapitel, S.124f):

-W/i/3 Zìe TS - ^J^®
Die Formeln von Bruschin und Falvey (1975/76) liefern:

(32.72): Klß (2,4-10-5-752 + 0,0044-75)Vl7,6 1.95 m

(32.75) iw 1,61- _'."„„ LUi<2h
17.60'738

750,476

Auch hier ist die Streichlänge die maßgebliche Begrenzung, die obigen Werte können
unmittelbar verwendet werden.
Nach Bruschin und Falvey (1975/76) sind die zu erwartenden Tiefwasserwellen um
rund 20 cm weniger hoch als nach den Bretschneider-Gleichungen, was im ersten
Beispiel einer Abweichung über 30% entspricht. In dieser Abweichung spiegeln sich die
Ungenauigkeiten wie sie bei halbempirischen Formeln immer zu erwarten sind. Schließlich

ist zu bedenken, daß diese Formeln nach Messungen auf dem Meer entstanden sind,
wo alle Abmessungen wesentlich größer sind, wir befinden uns deshalb hier am unteren
Rand des Gültigkeitsbereiches, besonders im Beispiel a), wo die effektiv wirksame
Streichlänge nur 9,1 km beträgt.
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3.2.2.2.2. Im Übergangsbereich und Flachwasser

Läuft eine Welle aus tiefem Wasser in einen flacheren Bereich, so verändert
sich ihre Form (Länge, Höhe), dagegen bleibt ihre Periode von der Wassertiefe

unbeeinflußt. Als Folge davon ändert sich auch die Richtung der Wehenkämme

(Beugung Refraktion): sie verlaufen mit abnehmender Wassertiefe
mehr und mehr parallel zur Uferlinie (genauer gesagt: zu den Höhenkurven
der Uferbank). Femer wird ab einer gewissen Steilheit des Ufers ein Teil der

Wehenenergie in Form einer vom Ufer weglaufenden Welle reflektiert
(Reflexion), was bei rechtwinklig auf das Ufer laufendenen Wehen zur Bildung
von sogenannten stehenden Wellen (Bildung von Schwingungsknoten mit
sehr kleiner und von -bauchen mit sehr großer Auf- und Abbewegung des

Wasserspiegels) führen kann. Da das Huygens-Fresnel'sche Prinzip der

Wellenausbreitung auch für Wasserwellen gilt, gehorchen Refraktion und Reflexion

den daraus abgeleiteten, aus der Optik bekannten Gesetzen. Dabei
entspricht die von der Wassertiefe d abhängige Wellenfortpflanzungsgeschwindigkeit

C dem optischen Brechungsindex eines Mediums.
Im folgenden werden zuerst die Verhältnisse bei einer senkrecht auf das Ufer
zu laufenden Welle beschrieben, danach folgen einige Bemerkungen zu
Refraktion und Reflexion.

1. Veränderung der Wellenkenngrößen beim Einlaufen in
Flachwasser. Die Abhängigkeit der Wellenkenngrößen von der Wassertiefe ist eng
verknüpft mit der durch die Welle verursachten Bewegung der Wasserteilchen

(die in Kapitel 3.2.3. behandelt wird). Seit dem letzten Jahrhundert werden

Wellen theoretisch untersucht. Ahen daraus resultierenden Theorien ist

gemeinsam, daß idealisierende Annahmen zu Grunde gelegt werden müssen:

Die einzelnen Wehen eines Wehenzuges sind periodisch (d.h. an einem
bestimmten Ort verändern sie ihren Charakter während eines bestimmten
Zeitabschnittes nicht) und langkämmig. Aus der zweiten Annahme folgt, daß

sich alle Bewegungen der Wasserteilchen nur innerhalb der durch die

Fortpflanzungsrichtung der Wellen und durch das Lot definierten (;c,z)-Ebene

abspielen.
Die verschiedenen Theorien unterscheiden sich in den weiteren notwendigen
Annahmen und dem Grad der Approximation (Ordnung) bei der Reihenentwicklung

der zu lösenden Gleichungen. Sie werden meist nach der resultierenden

Form der Wasseroberfläche oder nach ihrem Autor benannt. Die
bekanntesten und am häufigsten gebrauchten sind:
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- Sinusoidale Theorie erster Ordnung nach Airy-Laplace, auch lineare
Theorie genannt.

- Sinusoidale Theorie höherer Ordnung nach Stokes-Struik (vgl. Struik
1926), vor allem gebraucht werden die Approximationen zweiter und dritter

Ordnung (Stokes II und III).
- Cnoidale Theorie nach Korteveg und de Vries oder nach Keulegan und

Patterson.
Diese Theorie hat ihren Namen von der Jakobi'schen elliptischen Funktion cn(a,k2).

a ist das Argument k2 der Modulus. Diese Funktion ist wie folgt definiert: Gilt für das

Argument a:
<P

o V(l - k2 sin2e)

dann ist

cn(a,k2) cosp (32.79)
Außer dieser, die Wasseroberfläche beschreibenden Funktion kommen in der cnoidalen
Theorie auch noch die Funktionen

sn(a,k2) sine? (32.80)
und

dn(a,k2) V(l - k2 sin2<p) (32.79)
vor.
Auch hier existieren Approximationen höherer Ordnung.

- Einzelwellentheorie nach McCowan oder Boussinesq. Die Einzelwehentheorie

ist der Grenzfall der cnoidalen Theorie für Wellen mit unendlich

großer Periode und Länge. Im sehr flachen Bereich kann sie als gute Näherung

auch für Wellen mit endlicher Periode gebraucht werden, besonders

für solche im letzten Stadium unmittelbar vor dem Brechen.

Dietze (1964) umschreibt die Gültigkeitsbereiche der von ihm aufgeführten
Theorien folgendermaßen:
- Wehen mit "kleiner" (streng genommen: mit unendlich kleiner) Amplitude

werden durch die lineare Theorie nach Airy zutreffend beschrieben. Sie

kann als gute Näherung auch für Wellen mit "endlicher Amplitude" (finite
amplitude waves) gebraucht werden, wenn die Wehenhöhe verglichen mit
Wassertiefe und Wellenlänge klein ist.

- Für Wellen mit endlicher Amplitude im Tiefwasser- und Übergangsbereich

gilt die Theorie dritter Ordnung nach Stokes-Struik Stokes UI).
- Auf Wellen mit endlicher Amplitude im Flachwasser kann die Einzelwellentheorie

nach McCowan angewandt werden.

- Zur Abgrenzung von Tiefwasser- Übergangs- und Flachwasserbereich ist
das Verhältais von Wassertiefe d zur (lokalen) Wehenlänge L maßgebend
(s. S. 84):
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Tiefwasser: d/L > 0,5 (32.82)
Übergangsbereich: 0,04 < dfL < 0,5 (32.83)
Flachwasserbereich: d/L < 0,04. (32.84)
Wird die Wassertiefe auf die nur von der Periode abhängige
Tiefwasserwellenlänge L0 bezogen, so liegen die beiden Grenzen bei 0,5 bzw. 0,01.

Damit umgeht Dietze die Anwendung der cnoidalen Theorie, die wegen ihrer
mathematisch anspruchsvollen Form (elliptische Integrale und Funktionen) in
der Praxis nicht einfach zu handhaben ist. Der Gültigkeitsbereich der cnoidalen

Theorie liegt auf der flachen Seite des Übergangsbereichs, d.h. sie vermittelt

den Übergang von der Stokes'schen Theorie dritter Ordnung zur
Einzelwellentheorie.

Mit Hilfe des dimensionslosen Ursell-Stokes'schen Parameters U, definiert
als

U ~ [-] (32.85)
d J

schlagen Skovgaard et al. (1974) und Huber (1976) folgende Abgrenzungen
im Übergangs- und Rachwasserbereich vor:

Theorie erster Ordnung (Airy): U < 15 (32.86)
Theorie dritter Ordnung Stokes HI) U > 15 und d/L0 > 0,1 (32.87)

d.h. d/L >=0,14
Cnoidale Theorie U > 15 und d/L0 < 0,1 (32.88)

Mehr oder weniger ausführliche Darstellungen der obigen Theorien finden
sich in den eingangs dieses Kapitels (S. 81) angegebenen Lehrbüchern. Die
vohständigste Übersicht vermittelt Wiegel (1964) für die sinusoidalen Theorien

erster bis dritter Ordnung, die cnoidale Theorie und die Einzelwellentheorie.

Die Anwendung wird durch zahlreiche Nomogramme erleichtert.
Auf knappstem Raum übersichtlich zusammengestellt sind die notwendigen
Formeln für die lineare Theorie, für Stokes in und für die Einzelwehentheorie

nach McCowan in Dietze (1964). In breiterem Rahmen und mit Herleitungen

behandeln Press und Schröder (1966) dieselben Theorien. Übersichtliche

Tabellen zur Bestimmung der wesentlichen Größen nach der linearen und
der cnoidalen Theorie samt kurzer, rezeptartiger Anleitung und Zusammenstellung

der wichtigsten Formeln haben Skovgaard et al. (1974) herausgegeben.

Zur Theorie Stokes III ist noch zu bemerken, daß ihre Formeln je nach

Autor zum Teil in abweichender Form gebracht werden: "Die meisten der in
der Literatur angegebenen Beziehungsgleichungen für die Wellenkenngrößen
der Theorie 3. Ordnung enthalten Unstimmigkeiten, auf die Chappelear in [8]
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hingewiesen hat." (Dietze 1964; [8] ist der Hinweis auf das Literaturzitat
Chappelear und Borgman 1958). Nach der Erfahrung mit eigenen Berechnungen

scheinen die von Dietze (1964) und nach ihm von Press und Schröder
(1966) mitgeteilten Formeln für die Theorie dritter Ordnung (auf Chappelear

und Borgman 1958 zurückgehend) bessere Resultate zu liefern als jene in
Wiegel (1964).
Im Rahmen der vorliegenden Arbeit beschränken wir uns auf den Gebrauch

der sinusoidalen Theorien erster und dritter Ordnung (Airy und Stokes UI),
denn die hier interessierenden Vorgänge in der Seeufervegetation spielen sich

vorwiegend im Übergangsbereich ab.
Die Abgrenzungen nach Skovgaard et al. (1974) für Stokes in entsprechen z.B. bei einer
Wassertiefe von 1 m Wellenlängen von 2 m (d/L 0,5) bis 7 m (d/L 0,14).

Wenn auch in einzelnen Fällen Flachwasserverhältaisse vorkommen können,

so erschien der Verzicht auf die cnoidale Theorie vertretbar für das mathematische

Modell eines dynamischen Vorgangs, wo die Funktionen bei jedem
Rechenschritt neu berechnet werden müssen. Außerdem handelt es sich nie um
extreme Flachwasserverhältaisse, und die Resultate nach Stokes ITI für die

Bewegung der Wasserteilchen sind eher zu groß, liegen also "auf der sicheren

Seite". Femer ist zu bedenken, daß in der Natur nie die den Theorien zugrunde

liegenden Wellen konstanter Periode und Höhe vorkommen, sondern stets

eine Überlagerung zahlreicher Wehenzüge verschiedenster Größe, oft auch

mit verschiedener Fortpflanzungsrichtung. Die weiter unten zu besprechende

Anwendung des Wellenspektrums im Verfahren von Bruschin und Falvey
zur Berechnung des Wehenganges in Ufernähe basiert auf der linearen Theorie

(Airy), denn die spektrale Darstellung faßt ja die vorhandenen Wehen als

Überlagerung sehr vieler, sehr flacher sinusförmiger Komponenten auf.

In den folgenden Ausführungen bezieht sich der Index 0 immer auf die
Verhältnisse im Tiefwasser.

a) Lineare Theorie (Airy). Die von der Wassertiefe abhängige Wellenlänge

erfüllt folgende Gleichung:
7"2

L 4 tanh(27c4) [m] (32.89)
2 K L

Im Tiefwasser (d/L > 0,5) wird der Wert des hyperbolischen Tangens ungefähr

gleich 1 :

7-2 7-2 _——CXÌa.—-_

L0 -I tanh(2jc-0,5) =-| tanh 3,14159...
2tc 2k
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L0 j£- [m] (32.90)

Im Tiefwasser ist also die Wellenlänge nur von der Periode T abhängig. Im
metrischen System kann (32.90) für die numerische Rechnung vereinfacht
werden:

L0[m] 1,56 F[s]2 (32.91)

Im Flachwasser (d/L < 0,04 1/25) wird der Wert des hyperbolischen Tangens

ungefähr gleich dem Argument, d.h.

gT2 A
L 2tc^- (32.92)

2tc L

Durch Kürzen mit 2n und Auflösen nach L wird daraus

L 7/ V(g d) [m] (32.93)

Für den Tief- und Flachwasserbereich kann man somit die Wellenlänge L
einfach aus der Periode T und der Wassertiefe d nach (32.90) bzw. (32.93)
berechnen. Für den allgemeinen Fall (Übergangsbereich) ist dies nicht möglich,

da sich (32.89) nicht nach L auflösen läßt. Durch Einsetzen von (32.90)
in (32.89) erhält man nach entsprechender Umformung:

4- -^tanh(2rt-f-) [m] (32.94)
uLifi i-I Li

Daraus ist ersichtlich, daß d/L eine eindeutige Funktion von d/L0 ist, welche

sich als Tabelle (Tab. 3.3.) oder graphisch (Fig. 3.25.) darstehen läßt.

Praktisch geht man bei der Berechnung der Wellenlänge wie folgt vor:

- Berechnung von L0 aus (32.90) und daraus d/L0

- Ist d/L0 > 0,5 oder d/L0 < 0,01, wird L nach (32.90) bzw. (32.93)
berechnet. In den übrigen Fällen Herauslesen von d/L aus der Tabelle 3.3.,
daraus Berechnung von L.

- Berechnung von U= H-L2/d3 (32.85). Ist U > 15, so ist die lineare Theorie

nicht anwendbar (Rechnung mit Stokes III oder der cnoidalen Theorie).

Für die Wellenfortpflanzungsgeschwindigkeit C gilt allgemein:

C LIT [m/s] (32.95)

was für den Tiefwasserbereich zu

C°=tr =A^y?] [m/s] (32.96)

und für den Flachwasserbereich zu
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führt. Im Flachwasser ist also die Fortpflanzungsgeschwindigkeit nur noch

von der Wassertiefe abhängig. Im Übergangsbereich kann (durch Einsetzen

von 32.95 in 32.94 und Auflösen nach C auch geschrieben werden:

C C0 tanh(2ra./L) [m/s] (32.98)

Ein weiterer wichtiger Begriff ist die sogenannte Gruppengeschwindigkeit
C das ist diejenige Geschwindigkeit, mit welcher sich die Umhüllende

einer Gruppe von Wellen "benachbarter" Frequenzen fortpflanzt (vgl. Fig.
3.24); die entsprechende Erscheinung in der Akustik ist die bei der Überlagerung

zweier fast gleich hoher Töne entstehende Schwebung). Sie ist darum
bedeutsam, weil auch die Wellenenergie mit dieser Geschwindigkeit transportiert

wird. Ihre Größe wird meist im Verhältnis zur Wellenfortpflanzungsgeschwindigkeit

ausgedrückt:

C. 1 47t (d/L)

-t=l(l+sm4n(d/L)]) H(32-99)

Der Klammerausdruck von (32.99) strebt für Tiefwasser gegen 1 (der
hyperbolische Sinus strebt gegen unendlich) und für Flachwasser gegen 2 (der
hyperbolische Sinus wird gleich seinem Argument). In diesen beiden Fällen
kann die Gruppengeschwindigkeit sehr einfach angegeben werden:

Cg0 1/2 Cq (Tiefwasser) (32.100)
bzw.

Cg C (Flachwasser) (32.101)

Mit der Veränderung der Gruppengeschwindigkeit in Funktion der Wassertiefe

und mit dem Energieerhaltungssatz, der besagt, daß die mit der Welle
transportierte Energie bis auf die Reibungsverluste konstant bleibt, läßt sich
die Höhe der in flacheres Wasser einlaufenden Welle berechnen, sofern die

Energieverluste vernachlässigt werden. Es gilt:

E0-Cg0 E-Cg konstant [W/m-N-m/(m s)] (32.102)

E Wellenergie pro Flächeneinheit nach (31.10) [J/m2 N-m/m2]
E0 dasselbe für Tiefwasser
C Gruppengeschwindigkeit der Welle

Cm Gruppengeschwindigkeit der Welle im Tiefwasser

Da die Wellenenergie nach (31.10) proportional zum Quadrat der Höhe ist,

folgt aus (32.102):

H02-Cg0 H2Cg konstant (32.103)
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//02-l/2C0 H2-C (32.104)

mit Berücksichtigung von (32.100)

woraus schließlich

W- //0Z-
'

und

H2 H02 -;--?-— (32.105)
2Cs

k
sinh(4iT d/L)

^

(32.106)

Da C eine eindeutige Funktion von d/L und damit von d/L0 ist, können
sowohl C /C, als auch H/H0 in Funktion von ci/L0 tabelliert bzw. dargestellt
werden (vgl. Tab. 3.3. und Fig. 3.25.).

b) Theorie dritter Ordnung (Stokes III). Die Wellenlänge wird, unter
Benutzung der Wehenzahl

2ir
k -j- [m4] (32.107)

mit Hilfe der dimensionslosen Parameter a und kl berechnet:

sT2 a2
L -f (l + ~A—m)taiùikl [m] (32.108)

2% 4

Darin ist
cosh4kl+ 2 cosh 2kl+ 6 ,__ __.m [-] (32.109)

cosh 2/t/ -1

4tc2^2~ =tanh*Z[«+ — (sinh 2« + m«] (32.110)

Die Parameter a und kl müssen aus den folgenden zwei Gleichungen iterativ
bestimmt werden, wobei kl mit abnehmender Wellenhöhe gegen k-d
2nd/L strebt:

_d_ r„. a2

v?r2

und

„ // sinh2/t/ r,2 ix2 —3— a 1 +
gT* cosh/W

a2 r. 3 cosh 6kl + 2 cosh 4kl + 3 cosh 2kl + 3 -.1
+— |2m + ; J }

8 2 (cosh2*/-l)2 (32>11j1}
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Fig. 3.26. Nomogramm zur Bestimmung der Parameter a und kl nach der sinusoidalen
Theorie dritter Ordnung (Stokes III), in Funktion der relativen Wassertiefe d/L0' und der
relativen Wellenhöhe H/L0'. (L0' gT2/2n)
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Tab. 3.5. H/Hq in Funktion der relativen Wassertiefe d/L0' und der relativen Wellenhöhe

H/Lq. L0' gT 2/2k (aus Skovgaard et al. 1974).

d/L0' 0,005 0,006 0,007 0,008 0,009 0,010 0,015 0,020 0,025 0,030

H/L0'
,0002 1,848 1,692 1,593 1,523 1,471 1,428 1,288 1,201 1,139 1,092

4 2,072 1,837 1,684 1,580 1,506 1,451 1,291 1,202 1,14 1,092
6 2,261 1,975 1,782 1,648 1,553 1,483 1,296 1,203 1,140 1,092
8 2,423 2,097 1,876 1,718 1,604 1,520 1,304 1,205 1,141 1,092

,0010
15

2,564 2,207
2,441

1,962
2,149

1,785
1,937

1,656
1,778

1,559
1,656

1,312
1,339

1,207
1,214

1,141
1,144

1,093
2,860 1,094

20 3,103 2,635 2,308 2,068 1,887 1,746 1,371 1,224 1,147 1,095
25 2,804 2,447 I 2,185 1,985 1,829 1,404 1,236 1,151 1,096
30 2,572 2,289 2,074 1,906 1,438 1,249 1,155 1,098
35

,0040

2,385 2,156

2,232

1,976 1,472

1,505

1,263

1,278

1,161

1,167

1,100

2,042 1,102
50 2,162 1,569 1,309 1,181 1,108
60 2,271 1,628 1,341 1,196 1,115
70
80

2,370
2,461

1,684 1,373
1,404

1,212
1,229

1,122
1,736 1,131

90 1,786 1,434 1,247 1,140

,0100
120

1,833
1,921

1,464 1,264
1,299

1,149
1,520 1,170

140
160 1 Jnterhalb der dünnen Linie wird

1,573
1,623

1,334 1,191
1,368 1,213

180

,0200 iH/d> 0,78 (Welle bricht)
1,400

1,432

1,234

1,256
220 1,278
240 1,299
260
280

,0300
320
340
360
380

,0400
500
600
700
800
900

,1000
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0,035 0,040 0,045 0,050 0,060 0,070 0,080 0,090 0,100 dILo

HIL,o
1,054
1,054
1,054
1,054

1,054
1,055
1,055
1,056
1,057
1,057

1,058
1,061
1,063
1,067
1,071
1,075

1,080
1,090
1,102
1,115
1,128

1,143
1,157
1,172
1,186
1,201

1,215

1,023
1,023
1,023
1,023

1,023
1,023
1,024
1,024
1,024
1,024

1,025
1,026
1,027
1,028
1,030
1,032

1,034
1,039
1,045
1,052
1,059

1,068
1,077
1,086
1,096
1,106

1,116
1,216
1,136

0,997
0,997
0,997
0,997

0,997
0,997
0,997
0,997
0,997
0,997

0,998
0,998
0,998
0,999
1,000
1,000

1,001
1,003
1,005
1,009
1,013

1,017
1,022
1,028
1,034
1,040

1,046
1,053
1,060
1,067
1,075

1,082

0,975
0,975
0,975
0,975

0,975
0,975
0,975
0,975
0,975
0,975

0,975
0,975
0,975
0,975
0,975
0,976

0,976
0,977
0,978
0,979
0,980

0,982
0,985
0,987
0,990
0,994

0,998
1,002
1,006
1,011
1,016

1,021
1,048
1,077

0,939 0,912
0,939 0,912
0,939 0,912
0,939 0,912

0,939
0,939
0,939
0,939
0,939
0,939

0,939
0,939
0,939
0,939
0,938
0,938

0,938
0,938
0,938
0,937
0,937

0,937
0,937
0,937
0,937
0,937

0,938
0,939
0,940
0,941
0,942

0,944
0,954
0,968

0,912
0,912
0,912
0,912
0,912
0,912

0,912
0,912
0,912
0,911
0,911
0,911

0,911
0,910
0,910
0,909
0,908

0,908
0,907
0,906
0,906
0,905

0,904
0,904
0,903
0,903
0,902

0,902
0,903
0,906
0,912
0,921

0,892
0,892
0,892
0,892

0,892
0,892
0,892
0,891
0,891
0,891

0,891
0,891
0,891
0,891
0,891
0,891

0,890
0,890
0,889
0,889
0,888

0,887
0,886
0,886
0,885
0,884

0,883
0,882
0,881
0,880
0,879

0,878
0,874
0,872
0,871
0,872 |

0,875

0,877
0,877
0,877
0,877

0,877
0,877
0,877
0,877
0,877
0,877

0,877
0,877
0,876
0,876
0,876
0,876

0,876
0,875
0,875
0,874
0,874

0,873
0,872
0,871
0,870
0,869

0,868
0,867
0,866
0,865
0,864

0,863
0,857
0,852
0,848
0,845
0,843

0,843

0,868
0,868
0,868
0,868

0,868
0,868
0,868
0,868
0,868
0,868

0,868
0,868
0,868
0,867
0,867
0,867

0,867
0,866
0,866
0,865
0,865

0,864
0,863
0,862
0,862
0,861

0,860
0,859
0,858
0,856
0,855

0,854
0,848
0,842
0,836
0,830
0,826

0,822

,0002
4
6
8

,0010
15
20
25
30
35

,0040
50
60
70
80
90

,0100
120
140
160
180

,0200
220
240
260
280

,0300
320
340
360
380

,0400
500
600
700
800
900

,1000
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Die Fortpflanzungsgeschwindigkeit C kann nach der allgemeingültigen
Gleichung (32.95) aus (32.108) abgeleitet werden zu

C — =-f-^(l+-^-m)tanh.y [m/s] (32.112)
T 2% 4 '

Zar Erleichterung der Berechnungen wurden (32.110) und 32.111) in einem

Nomogramm (Fig. 3.26.) graphisch ausgewertet und, zusammen mit weiteren

für diese Theorie wichtigen Größen, tabelliert (Tabelle 3.4. im Anhang zu
diesem Teil). Als Eingangsparameter werden die vorausgesetzte Wassertiefe

d, Wellenperiode T und Wellenhöhe H benötigt, dazu die aus der Periode T
mit Gleichung (32.90) bzw. (32.91) nach der linearen Theorie berechnete

Tiefwasserwellenlänge L0' (entsprechend einer Wehe mit kleiner Amplitude)
und die zugehörige Fortpflanzungsgeschwindigkeit C0' (Gleichung 32.95).

Für die Gruppengeschwindigkeit C (und damit die Wellenhöhe) finden sich

in der Literatur keine näheren Angaben. Die Wellenhöhe wird in genügender

Näherung nach der Theorie erster Ordnung (lineare Theorie) bestimmt. Für
den Flachwasserbereich können auch die mit der cnoidalen Theorie errechneten

Wellenhöhen der Tabelle 3.5. (nach Skovgaard et al. 1974) verwendet
werden.
Praktisches Vorgehen:

- Berechnung von L0' gT 2/2n (für L0 [m]: 1,56-T[s]2) (32.90/91)

- Mit d/L0' und H0 Berechnung von H nach (32.106) bzw. Tab. 3.3. oder

Fig. 3.25., für Flachwasserverhältaisse nach Tab. 3.5.

- Mit d/Lff und H/d aus der Tabelle 3.4. C/C0'und d/L herauslesen und
C (C/C0')-L0'/T sowie L C-T oder d/(d/L) berechnen. Es können

auch die Werte a und kl aus dem Nomogramm Fig. 3.26 entnommen
werden, worauf L mit (32.108) und (32.109) berechnet werden kann. Ist
der Wert H/d bzw. H/L0' für die Tabelle bzw. das Nomogramm zu groß,
so bedeutet dies, daß die Wehe instabil wird (bricht, wenn H/d>0,lS oder

H/L>1/1). Für kleine Werte H/L0' oder H/d wird einfacher mit der

linearen Theorie gerechnet.

c) Umrechnung mit Hilfe des Wellenspektrums (nach Bruschin und

Falvey 1975/76). Die Idee des Verfahrens besteht darin, den durch die
berechneten signifikanten Tiefwasserwellenkenngrößen (H01/3 usw.) charakterisierten

Wellenzug mit Hilfe eines äquivalenten Spektrums in eine Anzahl

sinusförmiger Komponenten mit geringer Amplitude zu zerlegen, deren

Kenngrößen mittels der linearen Theorie auf die gewünschte Wassertiefe umzu-
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rechnen und wieder zu einem Spektrum zusammenzusetzen. Aus diesem

Spektrum kann dann bei Bedarf wiederum Hlß am gesuchten Ort bestimmt
werden. Andererseits kann auch die Wasserteilchengeschwindigkeit aus der

Überlagerung der entsprechenden Geschwindigkeiten der einzelnen Komponenten

berechnet werden.

Zwischen der signifikanten Wellenhöhe und dem gesamten Energieinhalt des

Seegangs besteht (vgl. Gl. 32.39 - 41) eine einfache empirische Beziehung (bei
der Varianz o2 wird im folgenden der Index - weggelassen):

-^- Ea> 1/8Hlß2 =2o2 [m2] (32.113)
r w o

E Energiezahl nach Neumann [m2]

a2 Varianz des Wasserspiegels (z-Richtung) [m2]

Andererseits gilt nach Neumann (1953):

£wmax =2omax2= 18,2(-^)5 [m2] (32.114)

Uj Windgeschwindigkeit 10 m über der Wasseroberfläche [m/s]

Dabei entspricht Eamia dem Energieinhalt der signifikanten Welle bei
vollausgereiftem Seegang (fully arisen sea FAS).
Wenn sich der Seegang bei wehendem Wind entwickelt, so entstehen zuerst
kürzere (höherfrequente), dann immer längere (niederfrequente) Wellen.
Zeichnet man die dazugehörigen Spektra auf (Fig. 3.27.), so kann man sagen,
daß das Spektrum des voll ausgereiften Seegangs gleichsam "von rechts her"

aufgefüht wird. Kann sich der Seegang nicht vollständig entwickeln, weil die

Streichlänge zu klein und/oder die Winddauer zu kurz ist, so kommt der Prozeß

mit einer bestimmten erreichten minimalen Frequenz fk zum Stillstand.
Da die Fläche unter der Kurve der Energie des Wellenganges entspricht, folgt
aus Figur 3.27., daß/t eine Funktion vom Verhältnis der aktuellen Energie
des Seegangs zur Energie des voll ausgereiften Seegangs ist (Verhältnis der
schraffierten Fläche in der Figur zur Gesamtfläche). Das Spektrum nach
Neumann kann derart in eine dimensionslose Form umgewandelt werden, daß diese

Funktion unabhängig von der Windgeschwindigkeit wird. Dazu ist die

Frequenz/zu ersetzen durch

% fu,
X —!—L- [-] (32.115)

g

und die spektrale Dichte der Varianz durch
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Y aa /V» 128V H (32.116)

(¦^¦xV ,* (i).
/3 Konstante 3,05 m2/s5

j^j-iX) Spektrale Dichte der Varianz in Funktion von X g.XX)-df/aW

Dann kann das entsprechende X^ aus der Tabelle 3.6. bzw. der Figur 3.28. als

Funktion des Verhältnisses cr2/crmax2 Ew/Eo)maxentnommen und fk
berechnet werden:

fk =— [Hz]-[s"1] (32.117)
TZUi

In Wirklichkeit ist allerdings das Spektrum nicht so scharf begrenzt, sondern

etwa gemäß der gestrichelten Linie in Fig. 3.27. (unteres Bild). Es ist für
unsere Zwecke genügend genau, wenn wir nach einem bei Schüttrumpf (1973)
mitgeteilten Vorschlag mit

frnin 0,85 fk (32.118)

rechnen. Im Bereich/</^ wird die spektrale Dichte so gewählt, daß die
Gesamtfläche unter der Kurve gleich der nach (32.113) berechneten Varianz a2

wird (strichpunktierte Linie in Fig. 3.27.).
Die Gleichung des dimensionslosen Spektrums nach Neumann lautet:

-1
i 2X2

Y —l—e [-] (32.119)
X6

e Basis der natürlichen Logarithmen 2,781828

Praktisches Vorgehen (vgl. Beispiel S. 144ff):

- Berechnung von O"o2/o-max2 E 0/E ax aus H01/3 mit den Gleichungen
(32.113) und (32.114).

- Herauslesen von fk aus Tab. 3.6. oder Fig. 3.28 und Berechnung von
fmln= 0,85 fk (32.118) und/majc ~ 3fk (die an sich möglichen höheren

Frequenzen werden vernachlässigt, da ihr Beitrag verschwindend klein ist).

- Unterteilung des Intervalls fmin+fmax in Schritte der Breite Af ~ 0,15fk
bzw. nach (32.115) aX Tt- Af -u,/g 0,15 n-fk-u{/g .Für /> 2 fk
kann die Schrittweite verdoppelt werden.

- Für jeden Schritt i.•

- Berechnung der mittleren Frequenz fi =/;.. + 4/, wobei/, =fmin +
4/72. Daraus Xi nffufg bzw. XiA + aX und die mittleren Perioden

Tt 1/fi.
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*rr«) [m2-s]

Spektrum des vollausgereiften Seegangs (FAS)

I1
Spektrum des bis zur Frequenz f^
entwickelten Seegangs

- f [1/s]

*KU) [m2-s]

wirkliches Spektrum
für die Berechnung angenommen

f f
min k

f 1/s

:0,85fk

Fig. 3.27. Zusammenhang zwischen dem Spektrum des vollausgereiften Seegangs und
jenem des entstehenden (kleine Figur oben), bzw. wegen begrenzter Streichlänge oder Winddauer

nur teilweise entwickelten Seegangs (unten).
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- Berechnung von Yi nach (32.119) und daraus die spektrale Dichte der

Varianz nach (32.116): 0^) ß-TtP-'uJgf-YJUM. B^x) wird so

gewählt, daß die gesamte Varianz des so berechneten Spektrums die

Gleichung (32.113) erfühl:

Bßrffd Af) =1/2-1V a2 1/8 H01/32 (vgl. S. 145 ff).
- Berechnung der Amplituden Aoi der einzelnen Komponenten aus

A0i-2= 2-0cJfty Af (gemäß 32.37 und 32.17). Die Wellenhöhen der

(sinusförmigen) Komponenten sind H0i 2A0i, die Tiefwasserwellenlängen

nach (32.90 bzw. 91) L0l- g-Tfän) [bzw. 1,56-Tft]2].
- Umrechnen der Kenngrößen Hoiund Loi der Tiefwasserwellen auf die

gewünschte Wassertiefe (/7, und L,) mit Hilfe der linearen Theorie (s. S.

124 ff), ev. Berücksichtigung von Refraktion und Reflexion (s.u.).

- Berechnung der Energie des gesamten Spektrums E/(pw-g) Z(A2/2)
X(//j2/8) (folgt aus den Gleichungen 32.37, 32.17 und 32.10).

- Berechnung des definitiven Hlß nach (32.113): /71/3 4-V[£7(pw-g)]
4-V[2,(A.2/2)]

Tab. 3.6. Xk für den teilweise entwickelten Seegang in Funktion von vorhandener
Wellenenergie zur Energie des vollentwickelten Seegangs (o2/o,max2 EJEm max).

*ma) ü _ w ta max

^
V

0,6 \0,4 \
\,

0,2 \\0,1
V

0,06 \
0,04 V

\0,02

0,01

,006
,004

,002

^/O-max2 x* oV 2
'max **

1,000
1,000
0,9999
0,9508
0,7171

0,0
1

2
3
4

0,00599
0,00442
0,00331
0,00252
0,00152

1,5
6
7
8

2,0

0,4506
0,2658
0,1565
0,09426
0,05849

0,5
6
7
8

9

0,000535
0,000211
0,0000510
0,0000169
5,32-10"7

2,5
3,0
4,0
5,0

10,0

0,03744
0,02469
0,01673
0,01162
0,00826

1,0
1

2
3

4

7.05-10-8
1.71-10-8
2,42-10"9
2,96-1010

15,0
20,0
30,0
50,0

1,0 2,0

Fig. 3.28.Nomogramm zur Bestimmung der minimalen Frequenz/^ des teilweise ent-
wicktelten Seegangs. fk g X/(n-ut)
(Nach Kinsmann 1965, aus Bruschin und Falvey 1975/76)
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sin «2

sino..

^i ¦h
2

2. Refraktion. Bezeichnet man mit a den Winkel zwischen der
Fortpflanzungsrichtung der Wehen Orthogonale auf die Wehenscheitel) und den

Senkrechten auf die Höhenlinien des Untergrundes, so kann das Snehius'sche

Brechungsgesetz wie folgt formuliert werden:

41- a7T <32-12°)
LX Ca

Wellenlänge bei Wassertiefe 1 und 2 [m]
Wellenfortpflanzungsgeschwindigkeit bei Wassertiefe 1 und 2 [m/s]

Die Erklärung dieser Gleichung folgt unmittelbar aus der Figur 3.29., wo die

Situation mit einer plötzlichen Änderung der Wassertiefe dargestellt ist.

Erfolgt der Wechsel nicht plötzlich, sondern stetig, so geschieht auch die

Winkeländerung allmählich, die Wellenscheitel und die Orthogonalen sind dann

nicht mehr geknickt, sondern stetig gekrümmte Kurven (Fig. 3.30.).
Sind die Höhenlinien (einigermaßen) parallel, so kann für den Einfallswinkel

ax der entsprechende Winkel (a0) beim Beginn des Übergangsbereiches

(d/L0 - 0,5) gesetzt werden. Die Richtung der Orthogonalen kann dann für
jeden Punkt sofort angegeben werden:

sin a L
(32.121)

sin (Xq L0

Orthogona
Wellenscheitel

OCi

Stufe
0CS/ //O-i///d„ < d /^2 "1 / /// // / // /// /

Fig. 3.29. Veränderung der Wellenform und -richtung bei einer plötzlichen Änderung der
Wassertiefe d.
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Sind die Höhenlinien nicht parallel, so muß die Richtung jeder Orthogonalen
schrittweise bestimmt werden (Fig. 3.31.). Mit den Bezeichnungen dieser
Figur ist öj durch

cty a, + 02-0. (32.122)

zu ersetzen und entsprechend in (32.120) zu verwenden.
Die Wellenlängen L und damit das Verhältnis L/LQ bestimmt man meist mit
der linearen Theorie; bei sehr hohen Wellen und großer geforderter Genauigkeit

sind die so erhaltenen Wellenlängen mit einer entsprechenden Theorie
höherer Ordnung zu überprüfen.
Der Einfluß der Refraktion auf die Wellenhöhe H kann mit folgender
Überlegung erfaßt werden: Die durch einen bestimmten Querschnitt senkrecht zu
den Orthogonalen transportierte Energie bleibt konstant. Wegen der
Richtungsänderungen der Orthogonalen verändert sich deren Abstand untereinander

(vgl. Fig. 3.29.). Hat ein betrachteter Querschnitt vor der Refraktion die
Breite bv so beträgt diese danach b2. Die Gleichung (32.103) kann nun
erweitert werden zu

Wel 1en-

d > d0

Orthogonal

/ / >

uL-

/^..
a.\ / //\ s y

K
Höh

Höhe

Fig. 3.30. Refraktion der Wellen bei stetig abnehmender Wassertiefe d (Höhenlinien
parallel).
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H2-Cgl-b2 H2-Cgl-bx (32.123)

Ist /// die Wellenhöhe nach (32.103) bzw. (32.105) ohne Berücksichtigung
der Refraktion, so wird aus (32.123):

bzw.

H2 H2 Cglbl H2 -^
Cg2b2

brib, bri
0

y_i_ H2 _o. (32.124)
2CglCg2 blb2 b2

Tangente an die
Höhenlinie 0

i n A

Tangente an die
Höhenlinie 1

Tangente an die
Höhenlinie 2

i n C

d -. d

jrthogonale
Tiefwasser

Winkelhalbierende

ï*^i.I.

Winkelhalbierende

eri)

OC-,- =CC- 4.(02-60

Fig. 3.31. Schrittweise Konstruktion einer Orthogonalen zu den Wellenscheiteln bei nicht
parallelen Höhenkurven des Untergrundes (die Wellenscheitel selbst sind wegen der
Übersichtlichkeit nicht gezeichnet).
Die Richtung im Tiefwasser (oq) ist durch äußere Gegebenheiten (Windrichtung) bestimmt.
Dargestellt ist der Konstruktionsschritt zwischen der Höhenlinie 1 und der Höhenlinie 2.

(Nach Silvester 1974)
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H2 H, V(-^-) HjKR (32.125)

Der Wert KR ist der Refraktionskoeffizient (dimensionslos). Da, wie
oben bemerkt, bei parallelen Höhenlinien des Seegrundes die Richtung der
Wellenkämme und der Orthogonalen für jeden Punkt unmittelbar angegeben
werden kann, ist auch das Verhältnis brJb2 einfach zu bestimmen, denn nach

Fig. 3.29. gilt (wenn für die Werte mit dem Index j die entsprechenden Werte

für die Grenze des Tiefwasserbereichs gesetzt werden):

b0 =ccosa0, b2 ccosct^ (32.126)

Damit läßt sich aus (32.124) und (32.125) für den Refraktionskoeffizienten

KR eine geschlossene Formel herleiten:

2 b0 coscCq coscXq
R

b2 coso^ V(l - sin2^)
KR2 =-r-= — : (32.124)

was mit Berücksichtigung von (32.121)

V{ cos^ j
vtl - (L/L0 Sina«)2]

ergibt. Sind die Höhenlinien des Seegrundes nicht parallel, so muß das

Verhältnis b0/b2 aus den gezeichneten Orthogonalen herausgemessen werden.

3. Reflexion. Da röhrichtbestandene Seeufer im ahgemeinen flach sind, ist
der Einfluß der Reflexion meist untergeordnet, denn der größte Teil der

Energie der einlaufenden Wellen wird durch die Bodenreibung und das

Brechen aufgezehrt. Ähnlich wie für die Refraktion, wird auch die Reflexion
meist mit einem Koeffizienten (Reflexionskoeffizient R) erfaßt:

HR RH; (32.129)

wobei HR die Höhe der zurückgeworfenen (reflektierten) Welle, Hf die Höhe

der einlaufenden Welle (allenfalls mit Berücksichtigung der Refraktion)
bedeutet. Die Richtung der reflektierten Linie entspricht der Spiegelung der

Orthogonalen an der Senkrechten zur Uferlinie (Einfallswinkel Ausfallswinkel).

Da sich die reflektierten Wehen mit den einlaufenden überlagern,
entstehen kurzkämmige Wellen, denn die Wasserbewegung wird dort
verstärkt, wo zwei Wehenberge oder -täler sich treffen und abgeschwächt, wo
sich Wellenberg und -tal überlagern. So entsteht das bewegte Bild eines Sees

bei Windstille oder wenig Wind, da sich dann nur x-Mal reflektierte Wellen
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unterschiedlicher Herkunft auf dem See "tummeln"; weht ein stärkerer Wind,
so dominieren die Windwellen, da an flachen Ufern die Reflexion nur gering

ist (R -> 0). Ganz anders wird die Situation natürlich, wenn das Ufer steil
oder gar durch eine Mauer verbaut ist: Dann wird ein sehr großer Teil der

Wellenenergie reflektiert R -»• 1).

In der Literatur (z.B. auch bei Bruschin und Falvey 1975/76) wird die durch

die Reflexion bewirkte, resultierende Wellenhöhe meist als lineare Überlagerung

der einlaufenden und der reflektierten Welle ausgedrückt:

h h;+hr=h;(i+r) (32.130)

Dies gilt genau aber nur bei monochromatischen Wellenzügen (d.h. bei
solchen, die nur aus Wellen einer Frequenz bestehen), was in der Natur jedoch
nicht zutrifft. Wir rechnen deshalb eher mit einer Summierung der Energien
der einlaufenden und der reflektierten Wehe, was

h2 h;2+hr2=h;2(i+r2) (32.131)

bzw.

H //;V(1+Ä2) (32.132)

ergibt. Im Falle einer Ufermauer und senkrecht einlaufender Wehen wäre

allerdings vorsichtigerweise doch besser mit (32.130) zu rechnen.

Der Reflexionskoeffizient R kann für ein natürliches Seeufer unmöglich
genau bestimmt werden, da sowohl die Form der Unterwasserböschung, wie
auch deren Rauhigkeit und die Art und Richtung der Wehen zu berücksichtigen

wären. Die in der Literatur zu findenden Werte wurden aus Modellversuchen

mit ebenen Böschungen und senkrecht auflaufenden Wehen ermittelt und

können deshalb nur als erste Näherung gelten. Wiegel (1964) bringt eine von
Miche im Jahre 1953 hergeleitete Formel für/?:

R pR' (32.133)

mit

2 7, sin2r ,/r y[°] -, sin2y[°]Vr^ljJ^r V[Zn-]
R' - - —- - <1 (32.134)

//„, L0 Tiefwasserwellenhöhe bzw. -länge [m]
y, y [°] Böschungsneigung, von der Waagrechten aus gemessen, in [rad]

bzw. [°]
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Für p empfiehlt Miche:

- Glatte, undurchlässige Böschungen: p 0,8

- Abgestufte Böschungen: p ~ 0,33

- Regelmäßige Böschungen aus Blöcken: p 0,3 + 0,6

(32.135)

4. Beispiel. Gegeben seien die Tiefwasserkenngrößen nach Bretschneider
des Beispiels a) von S. 119 f:

#oi/3 =0.77 m

Tm/3 3.3 s

Lomß 17,0 m
Wie groß sind diese Werte bei einer Wassertiefe d= 1ml
Da das fragliche Ufer ziemlich genau westexponiert ist, kann für die Refraktion

mit einem Einfallswinkel a0 ~ 45° gerechnet werden. Die Uferbank ist
sehr flach, deshalb werde die Reflexion vernachlässigt.

a) Berechnung mit der linearen Theorie

d/L0 1/17,0 0,059

Die Fig. 3.5. oder die Tabelle 3.3. liefert dazu:

d/L 0,103 -> Lmß 1/0,103 9,7 m

H/H0 0,996 -> Hnß 0,996-0,77 0,77 m

Der Refraktionskoeffizient berechnet sich nach (32.128). Mit L/L0= 0,059/0,103 (bzw.
9,7/17,0) 0,573 wird

2 ços45f =0773 undR vtl - (0,573- sin45°)2]

KR 0,88

So wird

fhj? KR Hi 1/3 0,880,77 =068 m

Zur Kontrolle wird nun der Ursell-Stokes'sche Parameter U berechnet (Gleichung 32.85):

U Ä 64,0
l3

Da(7> 15, folgt noch

b) Die Berechnung mit der Stokes'schen Theorie dritter Ordnung
d/Lr,1 1/17,0 0,059

Nach dem Ergebnis der obigen Rechnung ist zu erwarten, daß die Wellenhöhe fast
ausschließlich durch die Refraktion beeinflußt wird, wir setzen deshalb als Näherung

H/L0' 0,68/17,0 0,040
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Aus dem Nomogramm Fig. 3.26. bzw. der Tabelle 3.4. kann durch entsprechende Interpolation

a =0,215
und

kl 0,56

entnommen werden. Damit kann die Wellenlänge berechnet werden:

(32.109): m
cosh(40.56) + 2 coshQ-O 56) + 6

cosh(2-0,56) - 1

0 2152
(32.108): L/L0' (1 + "^ 20,33) tanh0,56 =0,627

LHin 0,627-17,0 10,7 m¦"//1/3

Die Tabelle 3.5. liefert für rf/L0' 0,059 und HrJL0' 0,77/17,0 0,045 den Wert

H/H0 0,958 -> Hj 1/3 0,9580,77 0,74 m

Die signifikante Wellenhöhe mit Berücksichtigung der Refraktion erhalten wir mit dem nach
der linearen Theorie berechneten Refraktionskoeffizienten (L/L0 L/L0' 10,7/17,0
0,629):

So wird

„• 2 COS43" 0,790 bzw.* vtl - (0,629- sin45°)2]

KR 0,89

Hlß KR ¦H[ lß 0,890,74 ¦¦ 0,66 m

Die Abweichung von dem eingangs als Näherung geschätzten Wert (H 0,68 m) ist so

klein, daß die Rechnung nicht wiederholt zu werden braucht (erst bei der Berechnung der
Oberflächenform in Kap. 3.2.3. wird der der richtigen Wellenhöhe entsprechende Parameter

a gebraucht, damit die erhaltene Gleichung für den Wasserspiegel tasächlich einer
Wellenhöhe von 0,66 m entspricht). Bei der Wellenlänge ist der Unterschied größer, nach
Stokes III sind die Wellen um rund 10% länger. Wir rechnen im folgenden mit diesem Wert,
da U > 15.

c) Berechnung mit Hilfe des Wellenspektrums

DieWindgeschwindigkeit beträgt ul 9,8 m/s (vgl. S. 119), somit wird die Energiezahl
nach NEUMANN die doppelte Varianz)

(32.114): £wmax= 2o-max2= 18,2 (-^L-)* 0,5659 m2

Andererseits wird

(32.113): Em 2 <r2 l/8-0,772 0,07411 m2

und somit das Verhältnis von vorhandener zu maximaler Energie gleich

<r2 0,07411 0131a2 0,5659
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Dazu liefert Figur 3.28., bzw. die Tabelle 3.6.

Xk 0,739

woraus

(32.117): /j. - 9'81"0'739 - 0,2356 Hz
tc-9,8

und

(32.118): /„,„ 0,850,2356J min ' '
L. 30,2356J max '
4/ 0,150,2356

adX 0,15-0,739

0,2003 Hz
0,7 Hz
0,0353 Hz
0,111

Die weitere Berechnung erfolgt am besten mit einer Tabelle (Tab. 3.7.). Von der ersten Zeile

(f =fmin ~*~fk /i 0,2179 Hz) können vorerst nur die Kolonnen 1 bis 6, 12 bis 14 und
16 berechnet werden. Die spektrale Dichte der Varianz, bzw. das Amplitudenquadrat
(Kolonne 8) für/, des Tiefwasserspektrums erfolgt aus der Bedingung, daß die Summe aller

Amplitudenquadrate gleich der doppelten Varianz 2a 0,07411 m2 ist. Da die Summe der

Amplitudenquadrate für f>h gleich ZA02 0,0695 m2 ist (Kolonne 11), wird A012

0,07411 - 0,0695 0,0046 m\

Die ganze Rechnung läßt sich einfach mit Hilfe eines programmierbaren Taschenrechners,
ohne Hilfe von Nomogrammen und Tabellen, durchführen. Tabelle 3.7. wurde auf einem
SHARP PC-1401 mit dem folgenden BASIC-Programm gerechnet, welches für jeden
Frequenzschritt die Werte der Kolonnen 4 bis 20 ausdruckt:

1: INPUT "D,F"; Z, X: Z Z/F: X X/F
(Z Af; X Anfangsfrequenz =/2 [!] oder die Frequenz bei einem Wechsel der
Schrittweite; die erste Zeile mit/mlB wird erst am Schluß gerechnet (s. oben, Erklärung
zu Tab. 3.7.)

2: Y XA-6*EXP(-.5/XA2): T 1/(X*F): L G*TA2: PRINT T,L: PRINT X,Y:

(L=L0)

R B*Y: A 2*R*F*Z: PRINT R,A: H 2*VA: E E + A

(R ^çoo;A=a40,2; h=#o; e 2V>
3: PRINT H, E:X= X+ Z: M D/L: L M

(M d/L0)

4: N L: L M/HTN(2*/i*N): IF ABS(L - N)/N > 0.0001 THEN 4

(L d/L rf/[L0-tanh{2)i(i/L}]; iterative Berechnung)

5: PRINT M, L: N 4*7C*L: M M/L: J V(1/(M*(1 +N/HSN N))): PRINT D/L.J:
M d/L0, L d/L; M L/L0 C/C0; J HfH0)

H H*J: PRINT H: K V(C/V(1-Q*MA2)): H K*H

(H=H,; k kr. H=KR-Hj)

6: PRINT K,H: A HA2/4: S S+A: PRINT A,S: GOTO 2

(A=/.(2; S IA2)
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Vor Beginn der Rechnung sind einzugeben:
G g/(2%) 9,81/(2-jc) S 0 oder Anfangswert I A;2
B /J-7i2-(H;/a?)6/128 3,05-7t2-(«,/9,81)6/128
F -f/X g/(n-u,) 9,81/(7t-K,) C cosoj, (für Refraktion)
E 0oder Anfangswert EAQ2 Q sin2a0
D d (Wassertiefe)

Da die Rechnung mit der zweiten Zeile beginnt und mit der ersten beendet wird, sind die
Summen in Kolonne 20 zunächst um den Betrag des ersten Elementes zu klein, jedoch
stimmt die Gesamtsumme am Schluß, und die übrigen Glieder können korrigiert werden.

Die drei Methoden ergeben für die Wellenhöhe Hlß fast übereinstimmende
Werte (0,68 0,66 bzw. 0,69 m). Die Wellenlänge wird nach der linearen
Theorie etwas geringer (9,7 m) als nach Stokes HI (10,7 m). Aus dem Spektrum

folgt zwar keine eindeutige Wehenlänge (wegen der Überlagerung variiert

diese ständig), doch die den größten Komponenten zugehörigen Längen
von 11,84 bzw. 10,25 m lassen erwarten, daß bei Wehen mit der signifikanten
Höhe auch etwa mit der Länge nach Stokes HI zu rechnen ist.

Im mathematischen Modell zur Berechnung der Schilfhalmbeanspruchung
kann mit einer Variante auch ein in spektrale Komponenten zerlegter Wellenzug

eingegeben werden, so daß in diesem Fah Länge und Höhe der signifikanten

Wehe nicht explizite benötigt werden.
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Tab. 3.7. Umrechnung eines Tiefwasserwellenspektrums auf begrenzte Wassertiefe

/ i /. r. hl *. Y; *c$ A 2 Hot *V
1 2 3 4 5 6 7 8 9 10 11

0,2003
0,2356

1 0,2179 4,59 32,88 0,6839 _ _ 0,0046 0,1356 _

2 0,2533 3,95 24,34 0,7948 1,7970 0,4200 0,0296 0,3446 0,0296
0,2709 3 0,2886 3,47 18,74 0,9057 0,9844 0,2301 0,0162 0,2550 0,0459
0,3063 4 0,3239 3,09 14,88 1,0188 0,5582 0,1304 0,0092 0,1920 0,0551
0,3416 5 0,3593 2,78 12,09 1,1275 0,3283 0,0767 0,0054 0,1472 0,0605
0,3770 6 0,3946 2,53 10,03 1,2385 0,2000 0,0467 0,0033 0,1149 0,0639
0,4123 7 0,4300 2,33 8,45 1,3494 0,1258 0,0294 0,0020 0,0911 0,0659
0,4653 Ab hier Schrittweite 4/verdoppelt

8 0,5006 2,00 6,23 1,5712 0,0542 0,0126 0,0017 0,0846 0,0677
0,5360 9 0,5713 1,75 4,78 1,7930 0,0257 0,0060 0,0008 0,0583 0,0686
0,6067 10 0,6420 1,56 3,79 2,0148 0,0132 0,0030 0,0004 0,0417 0,0690
0,6774 11 0,7127 1,40 3,07 2,2366 0,0072 0,0016 0,0002 0,0309 0,0693
0,7481 pjjgj. könme die Rechnung abgebrochen werden. Die folgenden Werte dienen

zur Demonstration der Größernordnung der mhfmax 3fk vernachlässigten Einflüsse.
12 0,7834 1,28 2,54 2,4585 0,0041 0,0009 0,0001 0,0234 0,0694

0,8187 13 0,8540 1,17 2,14 2,6803 0,0025 0,0005 0,0000 0,0182 0,0695
0,8894

1: Grenze der Frequenzbereiche [Hz]
2: Zähler
3: Mittlere Frequenz des Bereichs [Hz]
4: Periode T [s] 1//
5: Tiefwasserwellenlänge [m] nach (32.90)
6: X Kf-uJg [-]
7: Dimensionsloses Spektrum nach (32.119)
8: Spektrale Dichte der Varianz [m2-s] nach (32.118)
9: Amplitudenquadrat A2 [m2] 2 8Cr'4f

10: Wellenhöhe// 2A "
11: Summe der Amplitudenquadrate ab Zeile 2 (vgl. Text)
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3.2.3. Berechnung der Wasserteilchengeschwindigkeit

Wie in Kap. 3.2.1.3. gezeigt, ist es die Geschwindigkeit der Wasserteilchen,
welche den Einfluß der Wellen auf andere Objekte bewirkt. Eine eher
anschaulich gehaltene Darstellung der Wasserbewegungen in den Wellen findet
sich in Binz (1980), weshalb wir uns hier kürzer fassen können. Entscheidend

ist die Tatsache, daß es sich bei Wellen nicht um wandernde Wassermassen

handelt. Nur die Form der Wasseroberfläche ist es, welche diesen Eindruck
hervorruft. Die einzelnen Wasserteilchen bewegen sich in Wirklichkeit auf
mehr oder weniger geschlossenen Bahnen, den Orbitalbahnen. Ihre
Geschwindigkeit heißt dementsprechend auch Orbitalgeschwindigkeit (Fig.
3.32.). Eine Ausnahme bilden die brechenden Wellen: Wenn die Wehe
instabil wird (bricht), gerät die ganze Wassermasse des Wellenberges in Bewegung,

was den Brechern eine enorme Zerstörungskraft verleiht. Die Ursachen

für das Brechen sind einerseits zu geringe Wassertiefe (Einfluß der Bodenreibung)

und andererseits zu große Höhe im Verhältnis zur Länge (Steilheit),
z.B. unter starkem Windeinfluß.
Die Form der Orbitalbahnen hängt von der relativen Wassertiefe d/L und

von der Steilheit H/L der Wehen ab (Fig. 3.33 -3.35.). Sind die Wehen flach

Wanderung der Welle Wasser tei 1 eher

t- "1 zu r Zei t t£ /*1\

Welle zur Zeit t-| U\ Welle zur Zeit t2
L/2 | gedachte Kreise, worauf

Abnahme -—1 (/sich die Wasserteilchen
der Kreis-y bewegen
durchmes- ["¦

"' i

Fig. 3.32. Die Bewegung der Wasserteilchen, dargestellt am Beispiel einer flachen Welle
im Tiefwasser. Sie ist in zwei Phasen dargestellt, zu einem Zeitpunkt r, und zu einem etwas
späteren Zeitpunkt t2 (z.B. eine halbe Sekunde später). Die Bahnkurven (Orbitalbahnen) der
Wasserteilchen sind hier geschlossene Kreise. Der dick ausgezogene Teil der Kreise stellt
die Bewegung einiger Wasserteilchen zwischen den beiden Zeitpunkten dar.
(Bemerkung: Die Zeichnung ist nicht maßstäblich, Wellenhöhe und Druchmesser der
Orbitalbahnen sind im Verhältnis zur Wellenlänge zu groß. Dies gilt auch für die folgenden Figuren

3.33. -3.35..) (Aus Binz 1980)



151

(Gültigkeitsbereich der linearen Theorie), so sind die Orbitalbahnen geschlossene

Ellipsen oder Kreise. Bei steilen Wellen kommen die Wasserteilchen
nach einem Umlauf nicht mehr genau an den Ausgangspunkt zurück, d.h. es

findet ein gewisser Massentransport statt (Whidverfrachtung).
Die Form der Wasseroberfläche entsteht durch die Orbitalbewegungen der
Wasserteilchen. Dadurch, daß die einander längs einer Linie folgenden Was-

7-

iRuhewasser
Spiegel

okleiner
als L/2

Ç2
fffi )>i>)iiiiini)))i) ini n>Tn )iii)in)i<)i)iiinn>

Fig. 3.33. Welle im Übergangsbereich (Wassertiefe kleiner als die halbe Wellenlänge). Statt
auf einer Kreisbahn bewegen sich die Wasserteilchen auf Ellipsen bzw. am Seegrund hin
und her.

z

"St
kleiner
als L/25

77777777777 77777777777777777777777777777777777777777777

Fig. 3.34. Welle im Flachwasserbereich (Wassertiefe kleiner als 1/25 der Wellenlänge). Die
Ellipsen sind flacher, die waagrechte Bewegung der Wasserteilchen ist über die ganze Was-
sertiefe ungefähr gleich groß.

7777777777777777777777777777777777777777777777777777777;

Fig. 3.35. Bei vergleichsweise kürzeren und höheren (=steileren) Wellen, wie sie in der
Uferzone vorherrschen, sind die Bahnen der Wasserteilchen nicht mehr ganz geschlossen.

Fig. 3.33. - 3.35. Schematische Darstellung der Wasserteilchenbewegung in einer Welle.
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serteilchen die gleiche Bewegung ein wenig phasenverschoben mitmachen,
entsteht die Form der wandernden Welle. Die zur möglichst guten,
näherungsweisen Beschreibung der verschiedenen Oberflächenformen geeigneten
mathematischen Funktionen haben den im Kapitel 3.2.2.2.2. (S. 122)
aufgeführten Wehentheorien den Namen gegeben.
Im folgenden werden die Formeln für die Wasseroberfläche, die
Orbitalgeschwindigkeiten und die lokalen Beschleunigungen der Wasserteilchen nach

der linearen Theorie und nach Stokes III zusammengestellt. Bei der spektralen

Darstellung der Wehen werden die Bewegungen der Wasserteilchen für die

einzelnen (sinusoidalen) Komponenten nach der linearen Theorie bestimmt
und anschließend überlagert.
Die von den verschiedenen Theorien (mit Ausnahme der hier nicht weiter
verfolgten Einzelwehentheorie nach Mc Cowan oder Boussinesq; vgl. S. 122)
behandelten Wehenarten sind alle periodische Vorgänge, die sich im Raum
mit einer bestimmten Geschwindigkeit C fortpflanzen. Ein (gedachter)
Beobachter, der sich mit der gleichen Geschwindigkeit auf einer solchen Wehe

fortbewegt, wird deshalb ständig das gleiche Bild wahrnehmen, für ihn
bewegt sich die Wasseroberfläche nicht. Der Zustand (Lage des Wasserspiegels,

Teilchengeschwindigkeit) hängt nur von der Entfernung x - xB vom
Beobachter ab xB bezeichne den Ort des Beobachters). Beginnt der Beobachter
seine Reise am Ort x 0 zur Zeit t 0, so gilt

xB Ct (32.136)

der Zustand der Wehe zur Zeit t ist somit durch den Ausdruck

xx x-xB x-C-t (32.137)

eindeutig bestimmt (vgl. Fig. 3.36.). Bei Wellen dieser Art entspricht also
jeder Verschiebung im Raum eine bestimmte Änderung der Zeit und umgekehrt,

d.h. die Raum- und die Zeitkoordinate sind in gewissem Maße
austauschbar. Machen wir dieselben Überlegungen wie oben statt für den Ort x
für die Zeit t, so gilt

h ~ (32.138)

und analog ist der Zustand der Wehe am Ort x bestimmt durch

" '*-'= -g-t ¦ (32.139)

Da die trigonometrischen Ausdrücke in den hier behandelten Wehentheorien

27t-periodisch sind, rechnet man zweckmäßigerweise statt mit xx oder tt mit



[rad] (32.140)
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„ 2iz 2k „& —^ T"
L Wellenlänge [m]
T Wellenperiode [s]

Der Ausdruck 0 heißt Phasenwinkel (oder kurz: Phase), während der Wert

27t

T
co [s'1 oder Hz] (32.141)

Kreisfrequenz genannt wird. Die Wellenzahl k wurde bereits in (32.107)
definiert (k 27t/L). Mit Hilfe der Definitionsgleichung (32.95) der Wellen-

z_(x,0) Zc(»)
XX X - X

x„ 0

t t

z (x,t) zs(w)
XX X - X

x. C-t

Fig. 3.36. Situation eines gedachten, auf der Welle im Punkt B mitwandernden Beobachters.

Die Wahl des Punktes B ist natürlich frei, zur Verdeutlichung wurde hier ein Wellenscheitel

gewählt.
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fortpflanzungsgeschwindigkeit C können sowohl Ort, als auch Zeit im
Phasenwinkel ©berücksichtigt werden:

0 2k(J--±t) [rad] (32.142)

a) Form der Wasseroberfläche und Geschwindigkeit der Wasserteilchen

nach der linearen Theorie.
Mit den Bezeichnungen der Fig. 3.12. (S. 84) gelten folgende Beziehungen:

- Form der Wasseroberfläche:

C -y cos© [m] (32.143)

H
e
L
T

Vertikale Abweichung des Wasserspiegels von der Ruhelage [m]
Wellenhöhe [m]
Phasenwinkel 2n-(x/L - t/T)
Wellenlänge [m]
Wellenperieode [s]

Orbitalgeschwindigkeiten

u

v

u
v
k
z

d

¦RH COSh(/fcz) ~ r n /-,„ a „^—lïnh7M)COS0 [m/s] (32.144)

¦^-^TtË-^0 [m/s] (32.145)
T s\nn(kd)

Waagrechte Orbitalgeschwindigkeit der Wasserteilchen [m/s]
Senkrechte Orbitalgeschwindigkeit der Wasserteilchen [m/s]
Wellenzahl (2ti/L)
Senkrechte Koordinate Entfernung vom Seegrund [m]
Wassertiefe (bis zum Ruhewasserspiegel) [m]

- Lokale Beschleunigungen:
du 2 n2H cosh(kz) _ r 2l ,„ ,,a-j— —^ • .),' sin0 [m/s2] (32.146)
dt Tz smh(kd)

dv 2n2H sinh(/fcz) „ r .i,,,,..-,-j— -—* ¦ .„Z cos® [m/s2] (32.147)
dt Tz smh(kd)

— Partielle Ableitung nach der Zeit, ergibt lokale Beschleunigung der
" ' Wasserteilchen in waagrechter (u) und senkrechter (v) Richtung

Die graphische Darstellung einer sinusoidalen Wehe mit den Kenngrößen des

Beispiels aus Kapitel 3.2.2. (S.144ff) zeigt Fig. 3.37..

Im Gültigkeitsbereich der linearen Theorie können die Bahnkoordinaten der



2,0 r-> »»- "

I 2 : 3 m/s

1,5
=*¥

H/2
1,0

H/?
0,5

A

Wasseroberflache und Geschwindigkeitsprofil nach Stokes III
Wasseroberfläche und Geschwindigkeitsprofil nach Airy
(lineare Theorie)

Fig. 3.37. Form einer Welle (T= 3,3 s; d 1 m; L 10,6 m; H=0,66 m, C 3,2 m/s) und Geschwindigkeitsprofil (waagrecht) unter dem
Wellenscheitel, nach der linearen oder sinusoidalen Theorie erster Ordnung (Airy-Laplace) und nach der sinusoidalen Theorie dritter Ordnung
(Stokes III).
Aus der Abbildung wird ersichtlich, daß in diesem Fall die lineare Theorie sowohl fürdie maximale Erhebung des Wasserspiegels über die
Ruhelage, wie auch fürdie maximale Geschwindigkeit derWasserteilchen unter dem Wellenscheitel, zu geringe Werte liefern würde, wogegen die
Orbitalgeschwindigkeiten am Seegrund nach beiden Theorien ungfähr gleich groß sind.
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Wasserteilchen durch einfache Integration über die Zeit von (32.144) und

(32.145) erhalten werden, wobei für x und z die Koordinaten der Ruhelage
des betreffenden Wasserteilchens (x0, z0) in die Formeln eingesetzt werden.

Diese Näherung ist genügend genau, solange die Durchmesser der Orbitalbahnen

klein sind gegenüber der Wellenlänge L (waagrechter Durchmeser) bzw.
der Wassertiefe d (senkrechter Durchmesser). Die Bestimmungsgleichugnen
für die Bahnkoordinaten der Wasserteilchen lauten dann:

H cosh(kZ(i) _. r ,.„ „ .„.x-x0 ; J -sin0 [m] (32.148)
2 smh(kd)

H sinh(fa0) WMnmz-z0 + .„£ • cos© [m] (32.149)
2 sum(kd)

Dies sind Gleichungen für eine Ellipse mit den Halbachsen

m I^eosHkz^
2 sinh(iW)

r. JL«5*CÉq>. [m] (32.151)
2 smh(kd)

An der Wasseroberfläche vereinfachen sich diese Ausdrücke zu

rr ^coth(kd) [m] (32.152)
2

r, y M <32-153)

Für d/L 0,5 (Grenze des Tiefwasserbereichs) wird k-d 2n-0,5 3,14...

wofür der hyperbolische Cotangens 1,004 (also praktisch gleich 1) wird. In
diesem Fall werden die Orbitalbahnen zu Kreisen, deren Radius an der
Wasseroberfläche gleich der halben Wehenhöhe (der Durchmesser also gleich der

Wellenhöhe) ist. Da der hyperbolische Cotangens für kleine Argumente (d.h.
im Flachwasserbereich) groß wird, zeigt sich aus den obigen Gleichungen,
daß im Seichtwasser die waagrechte Bewegung der Wasserteilchen die
senkrechte bei weitem übertrifft.
Am Seegrund (z0 0) werden die Bahnradien

r_ — [m] (32.154)
2 sinhOW)

r2 0 [m] (32.155)
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Gleichung (32.154) kann die Frage beantworten, von welcher Tiefe (bezogen
auf die Wellenlänge) an auch die waagrechte Bewegung der Wasserteilchen

am Seegrund praktisch verschwindet. Nehmen wir die bereits wiederholt
erwähnte Grenze von d/L 0,5, so wird der hyperbolische Sinus von k-d
gleich sinh(3,14...) 11,5 das heißt, die Gesamtbewegung ist eine halbe

Wellenlänge unter dem Seespiegel etwas weniger als ein Zehntel so groß wie
die Wellenhöhe.
Die Gleichungen (32.152) (waagrechte Bewegung an der Oberfläche) und

(32.154) (waagrechte Bewegung am Seegrund) unterscheiden sich um den

Faktor cosh(;«;-<i); für d/L 0,04 (Seichtwasserwellen) wird dieser gleich
1,03: die waagrechte Bewegung der Wasserteilchen ist somit im Flachwasser

über die gesamte Wasserteife fast gleich groß.

b) Form der Wasseroberfläche und Geschwindigkeit der Wasserteilchen

nach der Theorie dritter Ordnung (Stokes ni).
Die im folgenden verwendeten Parameter a und kl wurden bereits im vorigen

Kapitel eingeführt (32.107 - 32.112).

- Form der Wasseroberfläche:

C Ci COS0+ C2 cos(2@) + f3 cos(3@) [m] (32.156)

mit

La „„ a2 9 sinh(5/W) + 15 sinh(3.W) + 6 sinh(/W) 1
Ci 1 sinh(W) + f1

27t l 64 cosh(2kt) - 1
J

[m] (32.157)
L^_ sinh(4*/)+4sinh(2*/)

2
167t cosh(2jt/)-l

C3
La2 3 sinh(lkl) + 15 sinh(5.W) + 27 sinh(3,W) + 39 sinh(kl)

2567t [cosh(2kI)-l]2

[m] (32.159)

Orbitalgeschwindigkeiten:

u «j cosh(fa) cos©+ «2 cosh(2£z) cos(2®) +

+ m3 cosh(3£z) cos(3 0) [m/s] (32.160)

v m. sinh(/.z)-sin©-i- u^ sinh(2/tz) sin(2@) +

+ M3 sinh(3Ä:z) sin(3 0) [m/s] (32.161)

mit
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m, — [m] (32.162)
T

3L02 1

2T cosh(2rc/) - 1

3L02 2cosh(2.W)-ll
"

16 T
'

[ cosh(2kl) -1]2

[m] (32163)

[m] (32.164)

-Lokale Beschleunigungen:

¦z— ——w, cosh(fe) sin© + -\-f~u2 cosh(2kz) sin(2©) +

+ -y- «j cosh(3Â:z) sin(3@) [m/s2] (32.165)

-— MaSinh(^z) cos© - —— u2 sinh(2/tz)cos(2®) -

- -y- «3 sinh(3kz) cos(3@) [m/s2] (32.166)

Die Bahnkoordinaten können bei Wehen mit größerer Amplitude nicht mehr
in geschlossener Form (wie 32.118 und 32.119) angegeben werden, da für x
und z in den Gleichungen der Orbitalgeschwindigkeit auch nicht näherungsweise

die Ruhekoordinaten x0 und z0 eingesetzt werden dürfen. Wie in Fig.
3.37. sichtbar ist, nimmt die Teilchengeschwindigkeit gegen den Scheitel stark

zu ("Konzentration der Geschwindigkeit im Wellenberg"). Im eigentlichen
Seichtwasser verstärkt sich diese Erscheinung und kann nur durch die cnoidale

und schließlich die Einzelwellentheorie zutreffend beschrieben werden.
Kurz bevor die Welle bricht, wird die Teilchengeschwindigkeit u im Wehenscheitel

gleich der Fortpflanzungsgeschwindigkeit C der Wehe.
Die obigen Festellungen stehen in einem scheinbaren Widerspruch zu den

Überlegungen zur Gleichung (32.154); diese gelten jedoch nur für Wellen mit
kleiner Höhe gegenüber der Wassertiefe. Doch ist auch bei Wellen größerer

Amplitude im Seichtwasserbereich die Teilchengeschwindigkeit unterhalb
des Ruhewasserspiegels bis zum Seegrund von gleicher Größenordnung.
Die in Fig. 3.37. dargestellte Welle mit dem Geschwindigkeitsprofil unter
dem Wehenscheitel ist dieselbe, die im Zahlenbeispiel zum vorigen Kapitel
berechnet wurde:

T =3,3s; H 0,66 m

kl =0,56
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CC 0,213 Dieser Wert stimmt nicht mit dem auf S. 145 erhaltenen
überein, denn dort wurde mit H 0,68 m gerechnet.
Wenn wir bei der Darstellung der Oberifächenform die
exakte Wellenhöhe von 0,66 m erhalten wollen, müssen wir
a aus (32.111) iterativ berechnen oder durch Interpolation
aus der Tabelle 3.4. bestimmen. Mit dem neuen a wird
die Wellenlänge L 10,6 m statt wie im Beispiel
angenommen 10,7 m: der Unterschied ist unbedeutend und
durfte bei der Bestimmung nur der Kenngrößen vernachlässigt

werden.

L 10,6 m
C =L/T= 10,6/3,3 3,21 m/s

(32.157): c, - 10'60'213 ¦{sinh0,56 +

(32.158):

(32.159):

0,2132 9 sinh(50,56)+15 sinh(3-0,56)+6 sinh0,56-,

64 cosh(2-0,56)-l

0,255 m

10,60,2132 sinh(4-0,56)+4 sinh(2-0,56)

16tc cosh(20,56)-l

0,140 m

_
10,60,2133 3sinh(7-,56)+15sinh(5-,56)+27sinh(3-,56)+39sinh0,56

2567t" [cosh(2-0,56)-l]2

0,077 m

Die Gleichung der Wasseroberfläche lautet damit:

(32.156): Ç 0,255 cos©+ 0,140 cos(2@) +0,077 cos(3@)

Für den Wellenberg (©= 0, 2tc, 4tc, wird

f(0) =0,255 + 0,140 + 0,077 0,472 m

und für das Wellental (© ic, 3jc, 57t,...)

C(7t) =-0,255 + 0,140-0,077 =-0,192 m

Die betragsmäßige Summe der Verschiebungen des Wasserspiegels im
Wellenberg und im Wellental ergibt die Wehenhöhe:

H =0,472 + 0,192 0,664 m

was mit dem angenommenen Wert übereinstimmt und die Richtigkeit der obigen

Rechnung bestätigt.
Das Profil der waagrechten Komponente der Orbitalgeschwindigkeit kann
mit
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,,-.,_, 10,60,213
(32.162): u, =0,685 m/s1

3,3

/,, ,„>,, 3-10.6-0.2132
(32.163): m, =0,315 m/s2 2-3,3-[cosh(2-0,56)-l]

,„.,,, 3-10,6-0,2132 2cosh(2-0,56)-ll „„„„(32.164): u, :—: — - =0,092 m/s5
16-3,3 [cosh(2-0,56)-l]2

angeschrieben werden als:

(32.160): u 0,685cosh(-2^)cos@+0,315 cosh(-y^-)cos(2®) +

+ 0,092 cosh(-^)cos(30)

Die senkrechten Komponenten folgen aus

(32.161): v 0,685 sinh(-^sin© + 0,315 sinh(^-) sin(2@) +

+ 0,092 sinh(-^)sin(3@)

c) Bereiche der anwendbaren Theorie.
Die Wasserteilchengeschwindigkeit in den Wehen war schon seit langem
Gegenstand theoretischer und experimenteller Forschung. Aus der Fülle der ent-

sprechendne Literatur seien hier die Untersuchungen von Le Méhauté et al.

(1968), IwAGAKi und Sakai (1970) sowie Tsuchiya und Yamaguchi (1972)

herausgegriffen.
Für den Gültigkeitsbereich der linearen Theorie kann im Übergangs- und
Flachwasserbereich die schon bei der Berechnung der Wellenkenngrößen
verwendete Grenze (32.86)

Hf 2

U ^^<15
dJ

angewandt werden. Zur Berechnung der Teilchengeschwindigkeit am
Seegrund ist die lineare Theorie auch bei Wehen größerer Amplituden geeignet

(Büsching 1974; dies geht auch aus den obgenannten Arbeiten hervor).
Für die unmittelbare Wirkung der Wehen auf den Schilfhalm ist allerdings
die Geschwindigkeit am Seegrund unbedeutend, da das vom Wasser
verursachte Biegemoment proportional zum Abstand vom Einspannort
Seegrund) ist. Für die noch stärkere, indirekte Wirkung durch das von den Wellen

bewegte, schwimmende Treibzeug ist natürlich die Teilchengeschwindigkeit

an der Wasseroberfläche maßgebend. Wie bereits auf S. 158, festgestellt
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wurde, beschreibt die Stokes'sche Theorie dritter Ordnung bei flachem Wasser

die starke Zunahme der Orbitalgeschwindigkeit oberhalb des Ruhewasserspiegels

nur unvollkommen. Die so berechneten Geschwindigkeiten sind
somit am Seegrund tendenziell zu groß, an der Oberfläche tendenziell zu klein.
Da nicht alle der genannten Arbeiten die Theorie Stokes III berücksichtigen, wurden wo nötig

die entsprechenden Werte mit den in dieser Arbeit zitierten Formeln (zurückgehend auf
Chappelear und Borgman 1958) nachgerechnet. Einige stichprobenweise Kontrollen zeigten

ferner, daß diese Formeln (im Sinne der Experimente) eher bessere Resultate liefern als

die in einigen der obigen Untersuchungen angewandten (vgl. S. 123f).

Unter Berücksichtigung dieser Aspekte lassen sich aus den obgenannten
Arbeiten folgende Schlüsse ziehen:

Nach Iwagaki und Sakai (1970) ergibt die Stokes'sche Theorie dritter
Ordnung im Bereich des Ruhewasserspiegels für alle untersuchten Fähe befriedigende

Resultate, das heißt bis d/L > 0,06 (entsprechend d/L0' > 0,02; dabei

ist L0' gT2/2n entsprechende Tiefwasserwellenlänge bei kleiner Amplitude).

Die relative Wellenhöhe betrug bei diesen Versuchen ungefähr H/d ~

0,24 + 0,3 Betrachtet man das ganze Geschwindigkeitsprofil, so sollte die
Grenze etwa bei d/L > 0,1 (entsprechend d/L0' > 0,06) gezogen werden.
Die Wellensteilheit sollte nicht mehr als H/L H/d- d/L ~ 0,24-0,1 ~

0,024 (entsprechend H/L0' » 0,015) betragen. Da die Geschwindigkeiten
nach Stokes HI auf der Höhe des Ruhewasserspiegels mit den experimentellen
Werten übereinstimmen, sind sie demnach oberhalb des Ruhewasserspiegels
im flachen Bereich nicht nur tendenziell, sondern absolut zu klein.
Dagegen zeigen die Versuche von Le Méhauté et al. (1968) ein etwas anderes

Bild: Dort stimmen zum Teil Theorie und Experiment für den Flachwasserbereich

unmittelbar unter dem Wehenscheitel überein, wo nicht, sind die
theoretischen Werte generell zu groß. Da Le Méhauté und seine Mitarbeiter
relative Wellenhöhen von H/d ~ 0,4 und H/d 0,5 untersuchten, kann nach

ihren Ergebnissen die Begrenzung für die Anwendung von Stokes ID. in
Abhängigkeit von der Wellensteilheit H/L differenziert werden: Für Wellen
mit H/L » 0,02 (entsprechend H/L0' 0,0045) liefert die Theorie Stokes III
befriedigende Resultate im ganzen Übergangsbereich, das heißt bis d/L >

0,04 (entsprechend d/L0' > 0,010). Beträgt die Wehensteilheit H/L 0,025

(entsprechend H/L0' ~ 0,009), so liegt die Begrenzung bei d/L > 0,06
(entsprechend d/LQ' > 0,022). Bei noch steileren Wehen mit H/L ~ 0,030
(entsprechend H/L0' 0,012) kann nur noch bis etwa d/L > 0,10 (entsprechend

d/Lr] > 0,058) mit Stokes BI gerechnet werden.

Der Großteil der von Tsuchiya und Yamaguchi (1972) gezeigten Meßresultate

wurden 71% bzw. 86% der Wassertiefe über dem Seegrund erhoben, wo



162

sich die lineare Theorie am besten den Daten anpaßt. Für vier Fälle wird in
dieser Arbeit auch noch ein ganzes Geschwindigkeitsprofil gezeigt, wobei für
d/L 0,128 bzw. 0,122 mit H/L 0,04 bzw. 0,068 (entsprechend d/L0'
0,089 mit H/L0' 0,028 bzw. 0,050) die Meßwerte gut mit Stokes IB
übereinstimmten, während für d/L 0,051 bzw. 0,052 mit H/L 0,023 bzw.
0,032 (entsprechend d/L0' 0,020 mit H/L0' 0,0089 bzw. 0,0124) die
Werte der Theorie im Bereich des Ruhewasserspiegels um 30 - 50% zu groß
werden. Im Gegensatz dazu hatten Le Méhauté et al. (1968) bei einer Steilheit

H/L 0,06 bereits für eine Wassertiefe d/L ~ 0,125 keine gute
Übereinstimmung zwischen Theorie und Experiment mehr festgestellt.
Daß die Meßwerte teils über (Iwagaki und Sakai 1970), teils unter (Le Méhauté

et al. 1968 sowie Tsuchiya und Yamaguchi 1970) den theoretischen liegen,
erklärt sich wahrscheinlich durch die verschiedenen Methoden der
Geschwindigkeitsmessungen (Wasserstoffblasen, bzw. suspendierte "Nitrile rubber"-
Würfelchen bzw. Doppler-Strömungsmesser). Es ist darum anzunehmen, daß

die Messungen zwar den relativen Verlauf der Orbitalgeschwindigkeiten richtig

erfassen, während offen bleiben muß, ob und allenfalls mit welcher
Methode auch absolut zutreffendste Werte erhalten werden.

Was für Folgerungen lassen sich aus diesen Ergebnissen für die vorliegende
Arbeit ziehen? Das im Kapitel 3.2.2. durchgerechnete Beispiel des Schilffeldes

in Altenrhein ergab unter den vorausgesetzten Annahmen (Windstärke
und -dauer) eine relative Wassertiefe d/L =1/10,7 0,1 und H/L
0,66/10,7 0,06, was zumindest nach den Resultaten von Tsuchiya und Yamaguchi

(1972) gerade noch im Gültigkeitsbereich der Stokes'schen Theorie
dritter Ordnung liegt. Bei schweren Stürmen sind zwar durchaus auch größere

Wehen möglich, dann ist allerdings in zunehmendem Maße (sobald die
Wellenhöhe größer als 0,78<i 0,8 m wird) mit brechenden Wellen zu
rechnen, welche sich der theoretischen Erfassung ohnehin praktisch vollständig

entziehen. Der Schilfbestand von Altenrhein ist einer der exponiertesten
der Schweiz, er liegt am schmalen Ufer einer ungefähr parallel zu einer

Hauptwindrichtung liegenden, großen Wasserfläche. Für die meisten anderen

ist daher auch bei starkem Wind mit z.T. wesentlich kleineren Wehen zu rechnen.

Es erscheint daher gerechtfertigt, im Rahmen dieser Arbeit die
Orbitalgeschwindigkeiten mit der linearen Theorie zu berechnen, bzw. bei größeren
Wehenhöhen (U > 15) mit Stokes m.
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3.3. DIE BELASTUNG DURCH DAS TREIBZEUG

3.3.1. Allgemeines

Von allen äußeren Belastungen natürlicher Schilfbestände ist das auf dem

Wasser schwimmende Treibzeug bei weitem die gefährlichste. Nur
geschwächte Bestände (z.B. durch sehr starke Überdüngung oder toxische
Einflüsse) können bereits durch die reine Wind- und Wellenbelastung "normalen"

Ausmaßes geschädigt werden (Hürlimann 1951): Andernfalls hätten sich

an den Seeufern gar keine umfangreichen und langlebigen Schilfbestände
entwickeln können.
Bei sehr starken Stürmen ist es durchaus möglich, daß ein TeU der oberirdischen Organe des

Schilfes nur durch die unmittelbare Einwirkung von Wellen und Wind zerstört wird, ein
gesunder Bestand wird jedoch durch ein solch außergewöhnliches Ereignis nicht nachhaltig
geschädigt, da er sich in den ruhigen Zwischenphasen genügend erholen kann.

Verschiedene Faktoren haben in den letzten Jahrzehnten zu einer starken
Zunahme des Treibzeugs geführt:
- Natürlicherweise anfallendes Treibholz wird von der ansäßigen Bevölkerung

nicht mehr genutzt und bleibt deshalb im See.

- Durch gedankenloses Handeln gelangen Unmengen von Zivilisationsabfäl¬
len unmittelbar oder durch die einmündenden Bäche und Russe in den See.

Durch Strömung und Windverfrachtung gelangen sie früher oder später an

irgendein Ufer. Dabei handelt es sich um alle nur denkbaren Produkte, die

leichter als Wasser sind (vgl. Teil I, Kapitel 2.3. und Moret 1980,1981).
- Erreicht der Gehalt des Wassers an Nährstoffen einen bestimmten Wert, so

entwickeln sich in der warmen Jahreszeit Fadenalgen (Cladophora spp.).
Diese bilden mächtige, schwimmende Watten, welche sich unter Umständen

zu einem großflächigen, dichten Teppich vereinigen. Entsteht ein
solcher Teppich inerhalb eines Schilfbestandes, so ist eine Schädigung schon

bei kleinerem Wellengang unausweichlich. Auch ein einzelnes Algenpaket,
welches sich um einen Schilfhalm legt, wirkt auf dieselbe schädigende Art.
Es wird im übrigen vermutet (Schröder 1979, 1987, Henning und Kohl
1981), daß die in einem Schilfbestand verbleibenden Algenwatten bei

ihrem Abbau Giftstoffe freisetzen, welche das durch die mechanischen

Einwirkungen bereits geschädigte Schilf noch zusätzlich belasten.
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3.3.2. Wirkungsmechanismus

Vereinfachend lassen sich zwei Wirkungsweisen feststellen, die sich allerdings
in der Natur nicht immer sauber trennen lassen:

- Das Treibzeug ist eine mehr oder weniger feste, einigermaßen kompakte
Masse, die sich unabhängig vom Schilfhalm bewegt (Fig. 3.38.), oder

- das Treibgut besteht aus einer wenig festen Masse, die sich um den Halm
legt und sich mehr oder weniger stark mit ihm verbindet (Algenwatten,
Fig. 3.39.)
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Fig. 3.38. Schwimmendes, festes Treibzeug (Treibholz und abgebrochene Schilfhalme) in
einem Schilfbestand (Photo F. Klötzli).
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Treibzeug der ersten Art (Holzstücke, abgebrochene Halme usw.), welches

eine bestimmte Ausdehnung überschreitet, sammelt sich vor der Bestandesfront

an, wenn diese einigermaßen geschlossen ist (Fig. 3.40.). Die Wehen

bewegen dieses Treibzeug ständig hin und her, es wird von jeder Wehe gegen
das Schilf getrieben. Die Halme biegen sich unter dieser Last; entsprechend

3te

i
%<"^^É5

¦'¦

m

Fig. 3.39. Algenwatten in Schilfbeständen.
Oben: Zusammenhängender Algenteppich in einem Schilfbestand bei Küsnacht ZH.

(Photo Amt für Gewässerschutz des Kantons Zürich)
Unten: Bei sinkendem Wasserstand durch das Gewicht der Algen niedergedrückte Schilf¬

halme in Altenrhein. Wegen des tiefen Wasserstandes auf diesem Winterbild sind
auch die Überreste abgebrochener Halme deutlich sichtbar.
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der Halmsteifigkeit entsteht dabei eine Rückstellkraft FR, welche zusammen
mit dem rückströmenden Wasser des Wehentales den Halm zurückfedern läßt
und das Treibzeug wieder zurückstößt (Fig. 3.41.).
Sind die Wellen klein, so überwiegt die Rückstellkraft, und es braucht mehrere

Wellen, bis das zurückgeworfene Treibzeug wieder mit dem Halm in
Berührung kommt; hört der Wehengang auf, so steht der Halm (bei Windstihe)
wieder senkrecht.

Nimmt die Größe der Wellen zu, so wird irgendwann ein Punkt erreicht, wo
sich die Verhältnisse rapid verschlechtern: Durch die starke Schräglage
bedingt, wirkt nur noch eine reduzierte Komponente der Rückstellkraft
wegschiebend auf das Treibzeug. Als weiteres Hemmnis tritt die Reibungskraft
zwischen Halm und Treibzeug in Erscheinung. Wegen dem nun größeren
Abstand zwischen dem Fußpunkt des Halmes und dem Berührungspunkt mit dem

Treibzeug werden die Hebelverhältnisse für den Schilfhalm ungünstiger,
außerdem werden so auch die ohnehin weniger steifen, oberen Halmpartien mit
einbezogen, was die Rückstellkraft noch weiter verringert. Kritische Verhältnisse

sind dann erreicht, wenn der Halm während des Wehentals das Treibzeug

nicht mehr "abschütteln" kann. Es wird dann von jeder Wehe noch ein
Stück weiter auf dem Halm nach oben geschoben, der Halm wird richtiggehend

überrollt. Ist der Wasserstand hoch, so ist der Halm wegen des längeren
Hebelarmes für den Angriffspunkt des Treibzeugs beweglicher, die ausgeübten

Kräfte sind genereh kleiner, und der Halm wird deshalb eher überrollt als

bei niedrigem Seestand. Andererseits sind in diesem Falle die Beanspruchungen

(und damit die Schäden) für das Schilf kleiner, da ein verhältnismäßig
größerer Teil des Halmes schon unter Wasser liegt und die Spitze des Halmes
schon mit relativ kleiner Krümmung des Stengels auf die Wasseroberfläche

gedrückt werden kann und so dem Treibgut erlaubt, darüber hinweg zu gleiten.

Wegen der geringeren Kraft ist bei hohem Seestand auch die Gefahr, daß

sich das Treibgut in den Blättern verfängt, weniger groß. Bei normalen
Verhältnissen ist meist der über dem Wasser liegende Teil des Halmes so groß,
daß das Überrolen nicht glatt vor sich geht; der Halm wird geschwächt, ein

Teil der Blätter wird zerfetzt und die Grenzbeanspruchung im Stengel (vgl.
Teil III, Kap. 1.2., S. 346) wird fast immer überschritten, so daß sich der

Halm nicht mehr vollständig wieder aufrichtet.
Ob der Halm überrollt wird ist deshalb (abgesehen von den belastenden
Faktoren) eine Frage seiner Steifigkeit (Widerstand gegen Verkrümmung), ob

und wie er diesen Fall überlebt dagegen eine Frage seiner Festigkeit (maximal

ertragbare Beanspruchung).
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Fig. 3.40. Schematische Darstellung eines durch Treibzeug belasteten Schilfbestandes
(seeseitige Front) (aus Binz 1978).

Treibzeug*

Laufrichtung der Wellen

F

Halm

A)

'¦!j.:?,.;.;:!y.±'.

c)

Hebelarm

FR Rückstellkraft des Halmes Gj Gewicht des Treibzeugs

Fig. 3.41. Einzelne Phasen beim Überrollen eines Halmes durch festes Treibgut (Schema;

wegen der Übersichtlichkeit wurde nur ein Halm gezeichnet). In Wirklichkeit lassen sich
die einzelnen Phasen nicht eindeutig gegeneinander abgrenzen, sondern gehen allmählich
ineinander über.
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Nimmt beim Überrollvorgang die Wehenbewegung ab oder verschwindet

ganz, so bleibt das Treibzeug auf dem Halm liegen (Fig. 3.41. d) und drückt
ihn (teilweise) unter Wasser. Schilfblätter können unter Wasser nicht assimilieren

(Hürlimann 1951), sie sterben nach einiger Zeit ab und verfaulen.
Bleibt bei ungünstigen Verhältnissen der ganze Halm während längerer Zeit
unter den Wasserspiegel, so stirbt er ganz ab. Wenn sich Halm und Treibzeug
auf unglückliche Weise verklemmen, kann die dem Stengel aufgezwungene

Bewegung so groß werden, daß er bricht. Da die Bruchstelle fast immer unter
Wasser liegt, gelangt Wasser durch den Halmstumpf bis ins Rhizomsystem
hinunter. Dies beeinträchtigt den Sauerstofftransport zwischen den verschiedenen

Organen der Pflanze und führt in schweren Fähen zum fortschreitenden

Absterben einzelner Partien oder ganzer Bestände ("Schilfsterben"). Das

gleiche geschieht, wenn Halme unter Wasser verfaulen (Klötzli 1971, Sukopp

et al. 1975).

Wird der Halm nur teilweise ins Wasser gedrückt, so kann er sich bis zu einem

gewissen Grad an die neue Situation anpassen: Durch asymmetrische Wachstum

in den Knoten (Hürlimann 1951) richtet sich der obere Teil des Halmes

mit der Zeit wieder auf, die Pflanze wird —förmig, in seltenen Fähen beginnt
der Halm in der Horizontalen weiter zu wachsen (Leghalme; vgl. Teil I, Kap.
1.1., S. 21). Wurde der Halm durch das Treibzeug verletzt, so büden sich in
einem oder mehreren Knoten neue Austriebe. Diese Tochtersprosse erreichen
aber nie auch nur annähernd die ursprüngliche Größe des Primärtriebes. So

wird trotz dieser Anpassungsmechanismen der Halm durch Wellen und Treibzeug

geschwächt, was sich auf längere Sicht fatal auswirken kann: Die
reduzierte Blattfläche produziert weniger Sauerstoff und Assimilate, dazu mobilisiert

die Bildung der Tochtersprosse Stoffe und Kräfte, die normalerweise im
Rhizom für den Neuaustrieb der nächsten Halmgeneration gespeichert werden.

Wassereinbrüche bringen Teile des Rhizoms zum Absterben. Durch ah

diese Umstände ist die Halmgeneration des nächsten Jahres bereits von vorneherein

benachteiligt, sie wird daher der Belastung noch weniger Widerstand
leisten können als die letzte.

Während die soeben beschriebene erste Art von Treibzeug (nur) bei bestimmten

Ereignissen (starker Wind, Sturm) zur Schädigung des Schilfbestandes

führt, wirkt die zweite Art (Algenwatten) auch bei schwachem Seegang
nachteilig. Bei starkem Wellengang ist die Wirkung ähnlich wie bei festem

Treibgut, nur daß das filzige Gewebe der Algen beim Überrollen des

Schilfhalmes in jedem Fall den größten Teil der Blätter zerfetzt.
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Der Wellenberg hebt die Algenwatte an (Fig. 3.42.), was ohne großen Widerstand

geschieht, da das schwimmende Algenpaket sehr locker um den Halm

liegt. Beim folgenden Wellental gelangt das Algenpaket an die Luft und legt
sich, weil nicht mehr durch das Wasser getragen, sehr eng um den Halm. Die
dadurch entstehende Reibung verhindert, daß die Algen dem Wasserspiegel

folgend nach unten rutschen, das Paket klebt ungefähr in der Höhe des

Wellenscheitels am Schilfhalm. Es ist klar, daß durch Knoten und Blätter die

Reibung noch zusätzlich verstärkt wird. Da der Halm durch die Welle in die

Schräge gedrückt wird, verursacht das Gewicht der am Halm klebenden

Algen ein umkippendes (Dreh-)Moment, welches verhindert, daß sich der Halm
wieder vollständig aufrichtet, wenn dieses Moment größer ist als das

Rückstellmoment des gekrümmten Stengels. Folgt nun eine größere Welle, so

bringt sie das ganze Algenpaket erneut zum Schwimmen und schiebt es wieder
ein Stückchen dem Halm entlang nach oben, wodurch wegen dem nun längeren

Hebelarm das umkippende Moment noch größer wird, was den Halm in
eine noch stärkere Schräglage drückt, was wiederum den Hebelarm des

Algenpakets verlängert. Dieser Prozeß führt nur darum nicht zum sofortigen
Bruch des Stengels, weil beim Kippen des Halmes das Algenpaket wieder auf
die Wasseroberfläche gelangt und schwimmt, so daß sein Gewicht nun ständig

vom Wasser getragen wird. Auch in diesem Fall beginnt sich die Spitze des

niedergedrückten Halmes durch entsprechendes Wachstum aufzurichten, der

Halm wird —förmig, der Stengel bleibt auch ohne äußeres Biegemoment
gekrümmt. Eine Rückstellkraft entsteht somit erst wieder bei einer zusätzlichen

Verformung. Da die Anzahl der während eines Tages gegen das Ufer laufenden

Wellen in der Größenordnung von vielen Tausenden liegt, sieht man
leicht, daß eine starke Schädigung des Schilfes unausweichlich ist, wenn auch

nur jede hundertste Wehe das Algenpaket ein wenig weiter schiebt.

Für die Halmschädigung spielt somit das Gewicht des Algenpaketes eine große

Rohe. Die Algen selbst sind zwar nicht schwer, wegen ihrer wattigen Struktur

vermögen sie aber wie ein Schwamm große Mengen von Wasser aufzusaugen
und (eine Zeitlang) festzuhalten, wodurch das Algenpaket ein beträchtliches
Gewicht erhält. Bis es durch Abtropfen und Austrocknen wieder so leicht
geworden ist, daß es für den Halm keine Gefahr mehr darsteht, hat sich dieser je
nach Situation meist längst an seine neue Form angepaßt. Außerdem kann das

Algenpaket durch Regen, eine besonders hohe Welle oder Gischt wieder
erneut Wasser aufnehmen.

Bei dieser zweiten Art von Treibzeug ist vor allem die Menge des um den

Halm schwimmenden Treibzeugs für den Schaden ausschlaggebend, während
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Fig. 3.42. Einzelne Phasen der Halmzerstörung durch ein Algenpaket (Schema). Je nach
vorhandenem Wellenklima können zwischen den einzelnen Phasen längere Ruhepausen
liegen. Hat der Halm eine bestimmte Schräglage erreicht, so wirkt sich sinkender Wasserstand
in ähnlicher Weise aus (vgl. Fig. 3.39.).
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die kritische Größe der Wehen so klein ist, daß sie an einem See mit Sicherheit
immer wieder überschritten wird. Bemühungen zur Erhaltung des Schilfes
müssen sich daher in erster Linie darauf richten, den Bestand so weit wie

möglich von schwimmenden Algenwatten frei zu halten. Der Versuch, die
natürliche Wellenbelastung zu verringern, erscheint wenig erfolgreich. Daß

dies, wenn auch mit etwas anderen Akzenten, ebenso für das feste Treibzeug
(erste Art) gilt, zeigte sich als Ergebnis der Arbeiten am und mit dem
mathematischen Modell.
Die obigen Darlegungen zeigen, daß bei Algenbehang im Prinzip die Anzahl
der Wellen auch eine entscheidende Rohe spielt. Bei solchen Schilfbeständen
sollte deshalb darauf geachtet werden, daß diese Zahl nicht noch aus künstlichen

Quellen (Boote, Schiffe) vermehrt wird, so daß sich das Schilf wenigstens

während der Perioden der Windstille etwas erholen kann.

3.3.3. Bewegungsdifferentialgleichung für das Treibzeug

Um eine Berechnung überhaupt möglich zu machen, muß das Treibzeug
idealisiert werden. Wir behandeln hier das Getreibsel als starren, schwimmenden,

"langen", prismatischen Körper, der von den Wellen auf eine geschlossene,

gerade Bestandesfront geworfen wird (Fig. 3.40.). Diesen Annahmen
entspricht in der Natur z.B. ein vor dem Röhrichtgürtel schwimmendes Rundoder

Kantholz. Die Voraussetzung der "Länge" des Treibzeugs hat den
gleichen Grund wie die Annahme langkämmiger Wehen: Alle Vorgänge spielen
sich in der x-z-Ebene ab (Fig. 3.43.). Die Betrachtung erstreckt sich auf einen

Streifen dessen Breite quer zur Uferlinie gleich "1" ist.

Es ist naheliegend, bei der Formulierung der auf das Treibgut wirkenden
Kräfte von einem ähnlichen Ansatz auszugehen, wie er für den Wasser- und

Winddruck auf den Halm verwendet wird (vgl. Kap. 3.2.1.3. und 3.1.3.):
Auch das Treibzeug ist ein vom Wasser umströmter Körper, der in seiner
freien Bewegung behindert ist, und zwar einerseits durch die Schilfhalme und
andererseits durch seine eigene Trägheit (Masse). Alles, was über die direkte

Belastung des Halmes durch die Wellen gesagt wurde, gilt deshalb zumindest

qualitativ hier genauso. Im einzelnen sind gewisse Änderungen zu beachten, so

ist das Treibzeug weder fest am Boden verankert, noch reicht es bis auf den

Seegrund hinunter. Ein weiterer Faktor, der in die Rechnung einbezogen werden

muß, sind (wie bereits angedeutet) die Massen des Treibzeugs und des von
ihm verdrängten Wassers. Im Gegensatz zum leichten Halm mit seinen gerin-
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gen Abmessungen können nämlich im Fah des Treibzeugs die beiden obge-
nannten Massen beträchtliche Werte annehmen, so daß sie nicht mehr
vernachlässigt werden dürfen; sie sind nicht um Größenordnungen kleiner als

etwa das als Bezugsgröße zu wählende Volumen eines kleineren Wehenberges.
Die zur Formulierung des Belastungsansatzes herbeigezogene Gleichung
(32.42) muß also um einen die erwähnten Massen berücksichtigenden Term
erweitert werden, man spricht vom Überlagerungsverfahren (Burkhardt
1967). Der Anschaulichkeit wegen ist es besser, die Belastungsgleichung als

Bewegungsdifferentialgleichung für das Treibzeug zu formulieren (das
Produkt aus Masse und Beschleunigung des Treibzeugs ist gleich der Summe
aller wirkenden Kräfte). Trotzdem sind die aus (32.42) stammenden Ausdrücke
ohne weiteres zu erkennen.

Halm

F reibze ug

l » u

frei schwim- in Berührung
mend mitdemHalm

Fig. 3.43. Definitionsskizze zu den Bewegungsdifferentialgleichungen (33.Iff) des

Treibzeugs.
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M
M'
x"
u

Für die horizontalen Komponenten lautet die Gleichung (mit den Bezeichnungen

der Figur 3.43.):

(M + M')-x (M + M')-u + Gd Pw/2 AT (u - x) \u - x\ - Fx

IM (33.1)
(Verdrängte) Masse des Treibzeugs [kg]
Wassermasse, die physikalisch dem Treibzeug zuzuordnen ist (s.u.)
Beschleunigung des Treibzeugs in x-Richtung [m/s2]
Beschleunigung der Wassserteilchen in jc-Richtung [m/s2]
Wasserwiderstandskoeffizient des Treibzeugs, entspricht dem cw
des Halmes [-]
Dichte des Wassers [kg/m3]
Benetzte Fläche des Treibzeugs Eintauchtiefe-1 [m-Vm1]

Geschwindigkeit der Wasserteilchen in x-Richtung [m/s]
Geschwindigkeit des Treibzeugs in ^-Richtung [m/s]
x-Komponente der vom Halm auf das Treibzeug (und umgekehrt)
ausgeübten Kraft [N]

x Lagekoordinate des Treibzeugs (s. Fig. 3.43.) [m]

Die linke Seite von (33.1), das Produkt von Masse und Beschleunigung, kann
in entgegengesetzter Richtung auch als sogenannte Trägheitskraft des

Treibzeugs interpretiert werden; diese Trägheitskraft steht mit den äußeren

Kräften im Gleichgewicht.
Der erste Term auf der rechten Seite ist die aus dem Druckgradienten
(ersichtlich am Wasserspiegelgefälle) resultierende hydrostatische Kraft, der
zweite ist die hydordynamische Kraft als Folge der Geschwindigkeitsdifferenz

zwischen Wasser und Treibzeug.
Der Betrag der hydrostatischen Kraft wird mit folgender Überlegung gefunden:

Das Treibzeug verdrängt ein Wasservolumen mit derselben Masse; denkt

man sich anstelle des Treibzeugs dieses Wasservolumen, so erfährt dieses

durch den Druckgradienten die Beschleunigung u, genauso wie die Wasserteilchen

der Umgebung. Die gesamte hydrostatische Kraft auf das betrachtete
Volumen ist daher gleich dem Produkt von dessen Masse mal Beschleunigung.
Wird das betrachtete Wasservolumen durch einen festen Körper (Treibzeug)
eingenommen, so wirkt auf diesen natürlich die genau gleiche hydrostatische
Kraft. Da nun allerdings der freie Fluß des Wassers gestört ist, muß das

umgebende Wasser ausweichen, bestimmte Wasserteilchen müssen deshalb mehr

beschleunigt werden als in einer ungestörten Wehe. Dieser Effekt wird
berücksichtigt, indem der Masse M des Treibzeugs noch eine Zusatzmasse M'
zugezählt wird, anders gesagt, ein Teil des Umgebungswasser wird als zum
Treibzeug gehörig mitgerechnet. Die Gesamtmasse (M + AT) wird als

virtuelle Masse bezeichnet, im Gegensatz zur effektiven Masse des Treibzeugs,
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welche gleich der von diesem verdrängten Masse ist. Die Größe der

Zusatzmasse M' (und damit die Größe der gesamten virtuellen Masse) ist abhängig

von der Form des Treibzeugs und vom Strömungszustand, sie kann
deshalb nicht theoretisch bestimmt weden. Es wird angenommen, daß sie proportional

zur verdrängten Masse sei. Das Verhältnis zwischen den beiden kann
dann durch einen Strömungsbeschleunigungsbeiwert oder kürzer:
Massenkoeffizient (inertial coefficient, mass coefficient)

m ~ M H }

ausgedrückt werden.

Der Wasserwiderstandsbeiwert, den wir schon bei der direkten Wirkung der
Wellen auf den Halm angetroffen haben (Gl. 32.42ff und Kap. 3.2.1.4.), wird
hier mit Gd bezeichnet um ihn von dem für den zylindrischen Schilfhalm
geltenden cw zu unterscheiden. In Analogie zum Massenkoeffizienten spricht
man bei der Anwendung des Überlagerungsverfahrens hier auch vom
Schubkoeffizienten (drag coefficient). Sowohl der Massen-, wie auch der Schubkoeffizient

müssen experimentell bestimmt werden (vgl. Kap. 3.3.4.). Mit diesen

beiden Koeffizienten kann (33.1) umgeschrieben und vereinfacht werden

zu

Gm-M-x" Gm-M-u +Gd^AT(u-x)\u-x\-Fx (33.3)

Dieser Ansatz entspricht in seiner Form genau der Gleichung, die Raichlen
(1965) zur Beschreibung der Bewegung verankerter Boote verwendete. Der
einzige Unterschied besteht darin, daß Halm und Treibzeug nicht fest miteinander

verbunden sind, während die von Raichlen untersuchten Boote durch
die Verankerung festgehalten werden. In unserem Fah kann daher die Kraft
Fx nur eine Druckkraft oder dann gleich 0 sein.

Eine Komplikation bedeutet die Tatsache, daß das Treibzeug bald vollständig
oder teilweise untergetaucht ist, bald vollständig aus dem Wasser herausgehoben

ist. So wie die Bewegungsdifferentialgleichung für das Treibzeug oben

formuliert wurde, gilt sie für die normale Schwimmlage, d. h., die Masse des

Treibzeug ist gleich der von ihm verdrängten Wassermasse. In ahen anderen

Fällen müssen auf der rechten und linken Seite der Gleichung andere Massen

eingesetzt werden: Für die Trägheit (linke Seite) bestimmend ist die effektive
Masse des Treibzeugs plus die Zusatzmasse. Für die hydrostatische Kraft darf
nur das untergetauchte Volumen plus die entsprechende Zusatzmasse berücksichtigt

werde, das Treibzeug wird hier also nur mit der von ihm effektiv ver-
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drängten Masse berücksichtigt (analog wird für die hydrodynamische Kraft
die momentane effektive Eintauchtiefe berücksichtigt). Um die Rechnung
nicht noch mehr zu komplizieren, nehmen wir an, daß sowohl die vom Treibzeug

effektiv verdrängte Wassermasse, wie auch die Zusatzmasse, direkt
proportional zur Eintauchtiefe des Treibzeugs seien (vgl. Fig. 3.44.):

M fp-MT

M Effektiv verdrängte Masse des Treibzeugs [kg]
MT Masse des Treibzeugs [kg]

/ ••• Proportionalitätsfaktor [-]

[kg] (33.4)

und (vgl. Gl. 33.2):

M' fp-(Gm - 1)-Mr [kg] (33.5)

Wie aus (33.4) und dem oben gesagten hervorgeht, ist der Proportionalitätsfaktor

f so angesetzt, daß er in der Ruhe-Schwimmlage des Treibzeugs den

Wert 1 annimmt. Für die übrigen Lagen gilt:

sr_

Fig. 3.44. Definitionsskizze zu den Größen im Zusammenhang mit der momentanen
Eintauchtiefe des Treibzeugs. (Um die Maßlinien übersichtlicher zeichnen zu können, wurde
hier der Wasserspiegel vereinfachend als waagrechte Linie gezeichnet.)
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0 < / ZsT'.Z" < ^- (33.6)

zsT Höhe des Wasserspiegels am Ort des Treibzeugs (Fig. 3.3.7.) [m]
zu Höhenlage der Unterkante des Treibzeugs [m]

AT Eintauchtiefe des Treibzeugs in der Ruheschwimmlage [m]
pw Dichte des Wassers [kg/m3]
Pj. Dichte des Treibzeugs

Die obere Begrenzung entspricht dem vollständig untergetauchten Treibzeug,
die von ihm verdrängte Wassermasse ist dann um das Verhältnis der beiden
Dichten größer (da das Treibzeug schwimmt, ist seine Dichte kleiner als jene
des Wassers) als die Masse des Treibzeugs. Der Wert 0 wird erreicht, wenn
das Treibzeug vollständig aus dem Wasser gehoben ist. Gehen wir mit diesen

Annahmen in Gleichung (33.1) so wird diese

+ Gd^L-AT(u-x)\u-x\-Fx, (33.7)

[MT +fp(Gm -1)MT] x' [fp-MT +fp(Gm - 1) MT]-u +

"w f2 Jp

mit Ausklammerung

[l+fp(Gm-l)]MTx- =fp[GmMTu+Gd -^AT(u-x)\u-x\]-Fx
(33.8)

und schließlich

Xf P F
MTx ^-[GmMTu+Gd ^-Ar(u-x)\u-x\\- -^

Jm Jm

mit (33.9)

fm l+fJGm-l) (33.10)

Dabei wurde stihschweigend angenommen, daß auch die Schubkraft proportional

zur Eintauchtiefe sei. Verliert das Treibzeug den Kontakt mit dem

Halm, so wird die äußere Kraft Fx 0.

Für die Berechnung der vertikalen Bewegungen des Treibzeugs berücksichtigen

wir in erster Linie die Schwerkraft (Gewicht und Auftrieb des

Treibzeugs):

Gewicht MT-g [N] (33.11)
Auftrieb fpMT-g [N] (33.12)

g Erdbeschleunigung(=9,81 m/s2)
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In der Ruheschwimmlage (fp 1) sind Gewicht und Auftrieb einander natürlich

gleich. In ahen anderen Fähen entsteht eine nach oben (f > 1) oder nach

unten (f < 1) gerichtete, antreibende Kraft. Der Wasserwiderstand bei der
senkrechten Bewegung des Treibzeugs (bzw. die antreibende hydrodynamische

Kraft, wenn die Geschwindigkeit v der Wasserteilchen größer ist als die

Geschwindigkeit des Treibzeugs) muß mangels besserer Kenntoisse analog
wie bei der waagrechten Bewegung angenommen werden:

W2 Gd-^AT(v-z)\v-z\ [N] (33.13)

Wz Wasserwiderstand (hydrodynamischerDruck) (positiv in z-
Richtung)

z ' Geschwindigkeit des Treibzeugs in z-Richtung [m/s]
v Senkrechte Geschwindigkeit der Wasserteilchen [m/s]

Da die senkrechte Bewegung des Treibzeugs praktisch rechtwinklig zum
Wasserspiegel geht, wird für den Wasserwiderstand die Eintauchtiefe nicht
speziell berücksichtigt, das heißt wir nehmen an, der Wasserwiderstand (bzw.
-antrieb) sei immer voll wirksam. Sobald sich das Treibzeug vollständig
außerhalb des Wassers befindet, übt das Wasser natürlich keinerlei Kraft mehr
auf das Treibzeug aus. Da der exakten Erfassung der senkrechten Bewegung
des Treibzeugs geringere Bedeutung zukommt und angesichts der übrigen
Unsicherheiten, sind diese Vereinfachungen gerechtfertigt.
Die Bewegungsdifferentialgleichung für die z-Komponente erhält damit die

folgende Form:

fm-Mrz" Auftrieb - Gewicht + Wz + F2 [N] (33.14)

Fz z-Komponente der vom Halm auf das Treibzeug ausgeübten Kraft

bzw. mit Berücksichtigung von (33.11 - 33.13):

Mrz" =y-[MT-g(fp-l)-Gd -^AT(v-z)\v-z\ + Fz]

fm nach (33.10) (33.15)

Die Berechnung von F,, und Fz erfolgt in Kap. 4.2.2.1. (S. 218).
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3.3.4. Untersuchungen zur Bestimmung der Koeffizienten Gd
und Gmm

3.3.4.1. Versuchseinrichtung

Zur Durchführung der Versuche mit Wellen stand an der Versuchsanstalt für
Wasserbau, Hydrologie und Glaziologie an der ETH (VAW) eine in einer

entsprechenden Rinne montierte Wehenmaschine zur Verfügung (Fig. 3.45.).
Eine oszillierende Metallschaufel erzeugte die Wellen. Sie wurde mittels
zweier Pleuelstangen durch einen stufenlos regulierbaren Elektromotor in

Bewegung gesetzt. Die Exzentrizität der Pleuelstangen, und damit die Amplitude

der Bewegung, ließ sich verstehen. Damit konnte die Wellenhöhe reguliert

werden. Wie bereits in Kap. 3.1.4. erwähnt, erfolgte die Kraftübertragung

zwischen dem Motorengetriebe und der Exzenterachse durch zwei
Riementransmissionen, welche die maximal übertragbare Leistung begrenzten

(Schlupf). Die größtmögliche mittlere Wellenhöhe betrug 16 cm (15 bis 17

cm). Der Bereich möglicher Wellenperioden war von Seiten der Maschine auf
0,4 -1,5 s begrenzt.
Die Maße der Rinne (Fig. 3.46.) betrugen: Länge rund 10 m, Breite 1,0 m und

Tiefe 1,25 m.
Zur Vermeidung von Wellenreflexionen war das rückwärtige Ende der Rinne
als Schotterböschung mit einer Neigung von 1:2 ausgebildet. Ein Glasfenster

im Bereich der zu untersuchenden Einbauten erlaubte die Beobachtung und

vor allem das photographische Festhalten der Bewegungen.
Da im ursprünglichen Konzept auch (hier nicht besprochene) Versuche mit
lebenden Halmen vorgesehen waren, entschlossen wir uns, trotz der relativ

geringen Abmessungen der Rinne und der erzeugten Wehen, die Versuche im
Maßstab 1:1 durchzufühm. Dies hatte einerseits den zusätzlichen Vorteil, daß

die komplexen .Ähnlichkeitsprobleme (hydraulische, statische und dynamische
Ähnlichkeit hätte berücksichtigt werden müssen) umgangen werden konnten,
andererseits den Nachteil, daß von der Wehenmaschine nur der oberste

Leistungsbereich ausgenutzt werden konnte. Dadurch war der Spielraum für die

veränderlichen Parameter stark eingeschränkt.

Wegen des kleinen Durchmessers der verwendeten Stäbe war es mit vertretbarem

Aufwand nicht möglich, die Beanspruchungen unmittelbar zu messen.
Stattdessen registrierten wir die Verformungen und berechneten daraus die

Beanspruchungen. Dazu photographierten wir die Einbauten während der

Belastung genau von der Seite, und zwar mit einer Belichtungsdauer, die etwas
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größer als die Wellenperiode war. Dadurch waren der maximale und der
minimale Ausschlag in jeder Höhe im Rahmen der Bildgenauigkeit bestimmbar.

Ein verschiebbares Gitternetz mit 5 cm Maschenweite diente als "Koordinatennetz"

und erlaubte das Ausmessen der Ausschläge. Da auch das mathematische

Modell die Resultate in erster Linie als Verformungen liefert, war der

Vergleich mit den Modellversuchen einfach. Aus den durch die Ausschläge in

ft

•s.

<*.

Fig. 3.45. Wellenmaschine an der VAW. Die durch Leitbleche ausgesteifte Schaufel
(oben) erzeugt durch ihre Hin- und Herbewegung die Wellen. Der Antrieb erfolgt durch
einen Elektromotor (unten) mit Übersetzungsgetriebe und zwei Transmissionsriemen auf eine
Achse mit zwei Exzenterscheiben, die durch Pleuelstangen mit der Schaufel verbunden sind.
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verschiedenen Höhen definierten Krümmungen ließ sich bei Bedarf das

Biegemoment berechnen. Dazu ist allerdings die genaue Kenntnis der Biegesteifigkeit

in jedem Punkt des untersuchten Stabes notwendig. Deshalb verwendeten

wir zur Bestimmung der Widerstandskoeffizienten nicht lebende Halme,
sondern Kunststoffstäbe mit einem Durchmesser D von 1 cm und einer

Biegesteifigkeit E-J von 15689 N-cm2, die spezifische Masse (Dichte-Querschnitt)

betrug 1,14 g/cm. Durchmesser und Biegesteifigkeit entsprechen
einem mittleren bis kleineren Schilfhalm, dagegen ist die spezifische Masse
erheblich größer (ungefähr um den Faktor 2).
Die Stäbe wurden in zwei Punkten befestigt (Fig. 3.47.): das (untere) Ende

steckte in etwa 1 cm tiefen, passenden Löchern, die wir in ein am Boden
befestigtes Holzbrett gebohrt hatten. Die zweite Halterung bestand aus einer

gelochten Kunststoffschiene in einer Höhe von 25 cm oberhalb des Rinnenbodens.

Damit erstrebten wir eine ungefähr den natürlichen Verhältnissen
entsprechende, elastische Einspannung der Stäbe. Entsprechend wurde auch der

Grund der Rinne vor den Einbauten durch verputzte Zementsteine um 25 cm
angehoben (die nutzbare Tiefe der Rinne betrug damit noch 1 m). In die
beschriebene Halterung montierten wir sechs Stäbe in einem Abstand von je
14 cm. Zur besseren Erkennung auf den Photos färbten wir jeden zweiten
davon weiß (die übrigen waren rot).
Als Treibzeug (Fig. 3.48.) verwendeten wir Kanthölzer von 12 cm Seitenlänge,

deren eine Ecke in einem 45°-Winkel abgeschnitten und unterhalb des

Schnittes wieder befestigt wurde, so daß die Schnittfläche des abgeschnittenen
Stückes auf der ursprünglichen vorderen Fläche lag. Dadurch berührte das

Treibholz die Stäbe nur in einem, wohldefinierten Punkt. Einige Leitschaufeln

aus Sperrholz dienten zur Stabilisierung. Dies war nötig, da in den beengten

Verhältnissen der Rinne das Treibzeug selbst Reflexionen der Wellen
verursachte, welche das Treibholz gegen die Längsrichtung der Rinne abdrehten.

Die beiden verwendeten Hölzer hatten gleiche Außenmaße, aber wegen
verschiedener Dichte des Holzes unterschiedliche Massen von 4,90 bzw. 5,99 kg.
Die für diese Versuche erzeugten Wehen hatten eine Höhe H von 12 cm (11 -

13 cm) bzw. 16 cm (15 - 17 cm) und eine Periode 7/von 0,92 s, was einer

Wellenlänge L von 130 cm entspricht (vgl. Kap. 3.2.2.2.). Das Wasser war
50 cm tief, die relative Wassertiefe d/L demnach gleich 50/130 0,385. Damit

befanden wir uns im Übergangsbereich zwischen Tief- und Flachwasser.

Der Ursell-Parameter U (s. Gl. 32.85) für die beiden Wellenhöhen ergab

U= 121302/503 bzw.16-1302/503 und legte somit die Verwendung der linearen

Wellentheorie (Airy) nahe.
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Fig. 3.47. Halterung der Plastikstäbe in der Wellenrinne der VAW.
Oben: Draufsicht und Längsschnitt. Unten: Blick durch die seitlichen Beobachtungsfenster.
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Fig. 3.48. Modelltreibzeug.
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Fig. 3.49. Laufende Versuche mit Kunststoffstäben in der Wellenrinne.
Oben: Momentaufnahme eines Versuchs ohne Holzstück (vgl. Kap. 3.2.1.4.). Um auf

den Bildern die Bewegungen besser sichtbar zu machen, ist jeder zweite Stab weiß
gefärbt.

Unten: Belichtungsdauer 1 s (Wellenperiode 0,92 s). Da die Kamera auf der Höhe des Ru¬

hewasserspiegels montiert ist, sind die oberen Enden der drei weißen Stäbe deutlich
sichtbar.
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Eine Aufnahme bei laufendem Versuch zeigt Fig. 3.49. Daraus ist ersichtlich,
daß die Bewegungen keineswegs ganz regelmäßig verliefen, sondern daß

infolge der oben erwähnten Reflexionen die Ausschläge bald auf der einen, bald
auf der andern Seite größer waren. Indem wir verschiedene Phasen dieses

Vorgangs festhielten, suchten wir einen annehmbaren Mittelwert für die

Verformungen zu erhalten.

3.3.4.2. Ergebnisse

Es muß hier gleich vorweggenommen werden, daß die Versuche nicht die
gewünschten Resultate in dem Sinne lieferten, daß nun für das Treibzeug Werte

von Gd und Gm eindeutig definiert wären. Die Gründe dafür und die daraus

zu ziehenden Schlußfolgerungen werden weiter unten erörtert.
Es ist nicht möglich die beiden gesuchten Koeffizienten unmittelbar aus den

Halmbewegungen zu berechnen (wie etwa den Luftwiderstandsbeiwert cl aus

den Windkanalversuchen), denn die Situation des zeitweise freischwimmenden,

zeitweise auf die Stäbe drückenden Treibzeugs ist nicht vergleichbar mit
dem festeingespannten, quasi starren Pfahl, der in der Literatur schon ausgiebig

behandelt wurde. Deshalb blieb nichts anderes übrig, als mit dem
mathematischen Modell Läufe für unterschiedlich angenommene Wertepaare (Gd,

Gm) durchzurechnen und die Resultate (Ausschläge) mit den photographier-
ten Bildern zu vergleichen. Dabei nahmen wir an, daß jene Kombination von
Gd und Gm, welche in allen drei Fähen mit den Bildern einigermaßen
übereinstimmende Werte lieferte, die "richtige" sei.

Die Läufe wurden für eine Dauer von 25 s gerechnet, wobei zur Beurteilung
der Resulate die ersten 3,2 s (entsprechend 3 1/2 Wellenperioden) nicht
berücksichtigt wurden. Damit sollte der Einfluß der notwendigerweise willkürlich

gewählten Anfangsbedingungen ausgeschaltet werden. Die Ergebnisse
der Berechnungen sind in den Figuren 3.50 - 3.52 (S. 189-5-191) für die drei
untersuchten Fälle wiedergegeben. Dargesteht sind die berechneten Auslenkungen

in positiver Richtung für den obersten Stabpunkt, und zwar je der
Maximalwert und Mittelwert innerhalb der letzten 3 1/2 Wehenperioden sowie

der Maximalwert eines ganzen Laufes. Zur Berechnung des Mittelwertes
wurden nur jene Schwingungen berücksichtigt, wo das Treibzeug in Kontakt
mit den Stäben war. Bei einigen Kombinationen von Gd und Gm kam es vor,
daß jede zweite Schwingung viel kleiner war; in diesen Fähen rechneten wir
zwei Mittelwerte aus, nämlich einen für ahe Ausschläge und einen nur für die
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"großen" (in den Figuren durch eine senkrechte Linie miteinadner verbunden).

Aus den aufgenommenen Bildern (je drei pro Fall) maßen wir folgende
Ausschwünge des obersten Stabendes (Tabelle 3.8.):

Tab. 3.8. Gemessene Ausschläge in cm der oberen Stabenden bei den Versuchen mit
Treibzeug (Mittelwert und, soweit unterscheidbar, Einzelwerte der 3 weißen Stäbe).

Masse des Treibholzes MT 5,99 kg, Wellenhöhe H 16 cm (Fall 1)

Bild Nr.

1.1

1.2

1.3

Mittelwert [cm]

22,8

24,3
20.2

Einzelwerte [cm]
1 2

26,6

30,2

20,3

22,0

24,1

20,1

19,7

18,7

19,7

Masse des Treibholzes MT 5,99 kg, Wellenhöhe H 12cm (Fall 2)

Bild Nr.

2.1

2.2

2.3

Mittelwert [cm]

14,7

12.0

11,0

Einzelwerte [cm]
1 2

26,1

12,5

4,2

14,1

11,4

11,3

3,8

17,4

Masse des Treibholzes MT 4,90 kg, Wellenhöhe H 12 cm (Fall 3)

Bild Nr.

3.1

3.2
3.3

Mittelwert [cm]

ILI
12,7

9,4

Einzelwerte [cm]
1 2 3

13,1

16,0

5,4

12,6

9,3

9,5

9,4

13,3

Man ersieht aus den zum Teil stark verschiedenen Einzelwerten, daß das Holzstück

bisweilen in eine starke Schräglage gedrückt wurde. In diesen Momenten

konzentrierte sich fast die ganze Last auf einen oder zwei der Stäbe, während

die anderen praktisch unbelastet blieben. Aus diesem Grund wählten wir
als Vergleichswert nicht einfach den Mittelwert oder Median aus den drei
Bildern jedes Falles, sondern den in der Tabelle unterstrichenen Wert jenes
Bildes, wo die Differenz zwischen den Auslenkungen der drei sichtbaren Stäbe

minimal war. Diese Werte sind auch in den Figuren 3.50. - 3.52. als Linien
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zum Vergleich eingezeichnet. Außer im ersten Fall (MT 5,99 kg, H
16 cm) sind dies gleichzeitig die Medianwerte.
Man kann sich fragen, womit man diese Meßwerte vergleichen soh. Da wir
beim Photographieren darauf achteten, eher große Ausschläge zu
"erwischen", erscheint es naheliegend, den Bereich Mittelwert-Maximum der letzten

3 1/2 Wellenperioden zu wählen (in den Figuren durch o [Mittel] bzw. x

[Maximum] dargesteht). Sucht man nun Gd -Gm-Kombinationen, bei welchen
in ahen drei Fällen die oben erwähnte Linie durch den verlangten Bereich
geht, so findet man nur

Gd=2,0 Gm=l,25 und

Gd=l,75 Gm=l,25
Man kann somit für ein Treibzeug in der Form eines Kantholzes mit Koeffizienten

von

Gm 1,25 [-] (33.16)

und

G, =1,75 + 2,0 [-] (33.17)

rechnen. Bezüglich des Schubkoeffizienten Gd gilt sinngemäß auch das, was

in Kap. 3.2.1.4. über den Wasserwiderstandskoeffizienten cw gesagt wurde,
es dürfte deshalb auch hier eher der niedrigere Wert der Wirklichkeit
entsprechen. Verglichen mit den bei Burkhardt (1967) und Dietze (1964)
angegebenen Werten für den Massenkoeffizienten Gm liegen unsere
Versuchsergebnisse wesentlich niedriger: Die meisten der von den verschiedenen
Autoren angegebenen Werte bewegen sich in der Nähe der für Potentialströmungen

theoretisch ableitbaren Größe von Gm 2,0. Da aber die Strömung um
ein von Wellen bewegtes Treibholz ahes andere als eine Potentialströmung ist,

gibt es keinen Grund, von dem aus den Versuchen ermittelten Gm 1,25
abzusehen. Es ist übrigens anzunehmen, daß in einer hin- und hergehenden

Strömung die Wassermasse, welche physikalisch dem festen Körper zuzuordnen

ist, weniger groß ist als in einer stetigen Strömung, denn dieser von der übrigen

Strömung umflossene Wasserkörper muß ja bei jedem Richtungswechsel
neu aufgebaut werden. Noch wichtiger ist wahrscheinlich der Umstand, daß

das Treibzeug meist nur teilweise im Wasser liegt und deshalb nicht wie die in
der Literatur behandelten Strukturen allseitig umströmt wird.
Aus den Figuren 3.50. - 3.52. geht hervor, daß die Größe der Ausschläge
nicht in einfacher Weise von den Koeffizienten GdundGm abhängt (wie etwa
der Wasserwiderstandskoeffizient cw des Halmes im Falle ohne Treibzeug,
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wo die Bewegung mit wachsendem cw stetig zunimmt; vgl. Fig. 3.16.). Diese

Erscheinung läßt sich auch bei der Variation anderer Parameter beobachten

(z.B. der Wehenhöhe, aber auch beim eben erwähnen cw im Falle von
vorhandenem Treibzeug). Der Grund liegt darin, daß es sich beim Zusammenwirken

von Wehen, Halm und Treibzeug um ein schwingendes System mehrer

Teile handelt, die je unterschiedliche Eigenfrequenzen haben. Stetige,
große Ausschläge sind daher die Folge von Resonanzerscheinungen. Eine

Erhöhung des Gm-Wertes, eigentlich eine Erhöhung der Masse des Treibzeugs,
vergrößert dessen Trägheit und erniedrigt damit seine Eigenfrequenz.
Andererseits wird dadurch die Wucht des Aufpralls auf den Halm stärker, was zu

größeren Ausschlägen führt. Dies wiederum hat eine hohe Rückstellkraft in
den Stäben zur Folge. Dadurch wird das Treibzeug, sobald der Wellenberg
vorübergezogen ist, mit großer Kraft nach rückwärts gestoßen und dadurch

unter Umständen so weit von den Stäben entfernt, daß es mehrerer Wellenberge

bedarf, bis das Treibgut erneut mit den Halmen in Berührung kommt.
Hohe Massenbeiwerte führen deshalb zu seltenen, aber umso heftigeren
Zusammenstößen. Dagegen bewirkt eine Erhöhung des Schubkoeffizienten Gd
eher eine regelmäßige Bewegung: Die Strömungskraft des Wassers auf das

Treibzeug ist größer, deshalb folgt dieses stärker der Bewegung der
Wasserteilchen. Da beim Treibzeug der Seen wegen der unterschiedlichen Beschaffenheit

der einzelnen Objekte die effektiven Gd- und Gm-Werte erheblich
streuen, da ferner Frequenz und Höhe der natürlichen Wehen ständig wechseln,

ist eine genaue Voraussage der zu erwartenden Beanspruchung kaum

möglich. Eine kleine Veränderung eines der obgenannten Parameter (vgl. die

Ergebnisse der Modellrechnungen in den Figuren 3.50. - 3.52. und in Kap.
4.4) kann ohne weiteres zu 50% größeren oder kleineren Ausschlägen führen.
Daraus läßt sich der Schluß ziehen, daß für das Überleben des Schilfes in
erster Linie die Frage "Treibzeug vorhanden oder nicht?" entscheidend ist. Die
Wellenhöhen scheinen daneben zwar nicht bedeutungslos, aber doch erst in
zweiter Linie maßgebend zu sein.

Fig. 3.50.-3.52. (S.l89 - 191) Berechnete Ausschläge von Plastikstäben in positiver
Richtung unter der Einwirkung von Wellen und Treibholz (gleiche Situation wie in den
Modellversuchen), in Abhängigkeit von den Schub- und Massenkoeffizienten Gd und Gm.
a Maximum während der ganzen Rechnungsdauer (23,5 s)

a Maximum während der letzten 3 1/2 Wellenperioden (3,3 s)
o Mittelwert und Anzahl der dabei berücksichtigten Ausschläge während der letzten 3,3 s.

~ Rechnung instabil (bedeutet, daß das Treibholz über die Stäbe geworfen wird).
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