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3. BELASTUNGEN

3.1. DIE BELASTUNG DURCH DEN WIND
3.1.1. Die Wirkung des Windes

Der Schilfhalm mit seinen Bléttern und ggf. seiner Bliite stellt dem wehenden
Wind eine betrichtliche Angriffsfliche entgegen. Wohl sind die Blitter dank den
langen Blattscheiden sehr beweglich und legen sich "in den Wind" (vgl. Fig.
3.5.), trotzdem besteht eine sehr starke Wechselwirkung zwischen Schilf und
Wind. Einerseits iibt der Wind auf den Halm eine verhiltnisméBig starke Kraft
aus (welche nach KrotzL1 [mdl. Mitt.] bei geschwichten Bestinden bereits zum
Bruchfiihrenkann). Andererseits wird der Wind durch das Schilf gebremst, denn
gemil dem dritten Newton'schen Prinzip (actio=reactio) wirkt die obgenannte
Kraft mit gleichem Betrag und umgekehrter Richtung auf die strémende Luft.
RUDESCU (1965; zit. in RODEWALD-RUDESCU 1974) hat die Verianderung der Wind-
geschwindigkeiten innerhalb von Schilfbestinden gemessen (Fig. 3.1.). In (ver-
glichen mit Schweizerseen) relativ lockeren Bestédnden mit 25 bzw. 50 Hal-
men/m? und einer Hohe von 3 - 4 m stellte er totale Windstille in Abstinden von
10 - 60 m vom Rand fest. Die entsprechenden Windstidrken betrugen 5 Beaufort
("frische Brise", 8 - 11 m/s; bewegt unbelaubte Aste, kleinere Biume schwan-
ken) bis 8 ("stiirmischer Wind", 17 - 21 m/s; bricht Zweige und Aste ab, starker
Widerstand beim Gehen).

Eine exakte Berechnung der zwischen Wind und Schilfhalm wirkenden Krifte
ist wegen der komplizierten, unregelmiBigen Form der Pflanze unméglich. Da
die Luftsromung um den Halm bei den interessierenden Windgeschwindigkei-
ten stets turbulent ist, kann die Windkraft als Funktion des Staudrucks beschrie-
ben werden, wie dies auch bei der statischen Berechnung von Hochbauten getan
wird. Der Staudruck p, ist der, der kinetischen Energie der Luftmassen entspre-
chende, Druck und damit proportional zum Quadrat der Windgeschwindigkeit
u;. In der einfachsten Form kann die Windkraft direkt proportional zum Staud-
ruck angenommen werden. Der Proportionalititsfaktor ist der (Luft-) Wider-
standsbeiwert c; (vgl. z.B. SCHLICHTING 1968).

Mit diesem Ansatz kann die pro Lingeneinheit auf den Schilfhalm wirkende
Kraft folgendermaBen formuliert werden (vgl. Fig. 3.2.):
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qdl = CIPW‘IDdlcosm [N] (31.1)
St
Darin bedeuten:

Py ... Staudruck des Windes [N/m?]

q; ... Windbelastung des Halmes pro Lingeneinheit [N/m]
dl ... Ldnge des betrachteten Halmelementes [m]

¢; ... Widerstandsbeiwert fiir den Luftdruck auf den Halm [-]

p ... Dichte der Luft~1,2 kg/m3

u; ... Windgeschwindigkeit [m/s]

D ... Durchmesser des Halmes [m]

x ... Waagrechte Lagekoordinate des Halmes [m]

z ... Senkrechte Lagekoordinate des Halmes [m]

¢ ... Neigungswinkel des Halmelementes [rad]

x" ... Geschwindigkeit des Halmelementes in x-Richtung = dx/dt [m/s]

h 0o 1 o 1 o 1 0 1 uu, o 1
3,0 -
2,0 =f--- 25 Halme.'m2
&3 Windstarke 5
1,0 - :::::'
0,0
3,0 oot D o D o
o 2o i 25 Halme/m’
S 5l = Windstarke 8
1,0 4= i %
0,0
3,0 o
20K | p 50 Halme/m?
% A B Windstirke 5
1,0 4~
0,0
""" 2
""" 50 Halme/m
Windstérke 8
T p X
5 10 20 30

Fig. 3.1. Abnahme der Windgeschwindigkeitin einem Schilfbestand nach Werten von RUDES-
CU(1965). Dargestellt ist die relative lokale Windgeschwindigkeit bezogen auf die Windge-
schwindigkeit u, auBerhalb des Bestandes. x ist die Entfernung [m] vom Bestandesrand, 4
die Hohe iliber dem Wasserspiegel.
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Der Halm wird also einer verteilten Belastung von

q; = ¢ Plp (- x) luy- x'L D cosg [N/m] (31.2)

unterworfen. Zu den Ausdriicken auf der rechten Seite dieser Gleichung ist fol-

gendes zu bemerken:

- Die Windgeschwindigkeit muf} als unabhidngige Variable frei gewahlt wer-
den.

- Die waagrechte Geschwindigkeit x” des Halmelementes sowie dessen Nei-
gungswinkel ¢ werden von dem in Kapitel 4 niher beschriebenen mathema-
tischen Modell laufend berechnet.

- Die Dichte p, der Luft ist zwar temperatur- und druckabhéngig, wird aber
durch den oben angegebenen Wert von 1,2 kg/m? fiir unsere Zwecke genii-
gend genau angendhert.

- DerLuftwiderstandsbeiwert ¢; kann nur experimentell bestimmt werden und
ist im allgemeinen nicht konstant, sondern abhéngig von der Reynolds'schen
Zahl Re (= Verhiltnis zwischen Trigheits- und Zihigkeitskréften, vgl. Fig.
3.3.):

Re = u Alv -] (31.3)
Re ... Reynoldssche Zahl [-]
A ... charakteristische Linge (z.B. Halmdurchmesser) [m]
v ... kinematische Z#higkeit der Luft [m?/s]
¥4
3
i 4

41

dl

Fig. 3.2. Definitionsskizze fiir die Gréfen der Gleichung (31.1).
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011 }* Re
0,1 1 1 100 1000 10 10° 106

Fig. 3.3. Widerstandsbeiwert ¢; (Luft) = ¢, (Wasser) eines stationdr umstromten Kreiszylin-
ders in Abhiingigkeit von der Reynolds'schen Zahl (aus BURKHARDT 1967).

Wie aus der obigen Formel ersichtlich, ist die Reynolds'sche Zahl keine fest defi-
nierte GroBe, sondern abhidngig von der Wahl der "charakteristischen Lén-
ge"(und natiirlich von der Windgeschwindigkeitund der Zéhigkeit der Luft). Die
Zihigkeit der Luft ist temperaturabhéngig und schwankt bei den hier in Betracht
kommenden Lufttemperaturen zwischen etwa 0,15 und 0,20 cm?/s (DRACOS
1973). In Fig. 3.3. ist der Widerstandskoeffizient ¢; als Funktion der Rey-
nolds'schen Zahl fiireinen umstromten Zylinder dargestellt, derndherungsweise
mit einem Schilfhalm verglichen werden kann. Danach variiert der Wert ¢, fiir
einen Bereich von Re =5-10% bis 2-10° nur ganz allméhlich (zwischen 0,9 und
1,2). Welchen Windgeschwindigkeiten entspricht dieser Bereich etwa? Um die-
se Frage zu beantworten 16sen wir (31.3) nach &, auf und erhalten

u, = ReVid. (31.4)

In den der Fig. 3.1.1.3. zugrunde liegenden Experimenten wurde als charakteri-
stische Lange A der Durchmesser des Zylinders eingesetzt. Fiir einen angenom-
menen Halmdurchmesser von 0,5 bis 1 cm wird somit (alle Lingen auf m umge-
rechnet):
w, =(510%+2-10%)0,15:10"4/0,005
=1,5+600 m/s
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bzw. u, = (510%+210%0,15104/0,01
=0,75+300 m/s .

Wenn auch der stationidr umstrémte Zylinder und der dem Wind ausgesetzte
Schilfhalm nur sehr bedingt vergleichbar sind, so kann aus den obigen Werten
doch der Schluf gezogen werden, da3 die Reynolds'sche Zahl bei den in der Na-
tur vorkommenden Windgeschwindigkeiten nidherungsweise als konstant
angenommen werden konnte. In der Natur kommen zwar auch niedrigere Wind-
geschwindigkeiten bis zur volligen Windstille vor: Die Belastung des Halmes ist
dann aber so klein, daf} sie fiir die Halmschidigung keine Rolle spielt. Trotzdem
miissen bei der experimentellen Bestimmung des ¢,-Wertes von Schilfhalmen
mehrere Windgeschwindigkeiten beriicksichtigt werden, weil der Halm bei zu-
nehmender Belastung seine Form 4dndert (Biegung des Stengels, Drehen der
Blitter in die Windrichtung). Durch die Biegung wird die Windkraft in zwei
Komponenten aufgeteilt, ndimlich in eine senkrecht zur Halmachse und eine pa-
rallel zur Halmachse. Die Komponente senkrecht zum Halm gehorcht ungeféhr
derin (31.1) formulierten Beziehung. Dagegen gilt dies nicht fiir die Komponen-
te lings des Halmes, denn diese duBert sich einerseits als Reibung, andererseits
als Widerstand der Blitter gegen die dem Halm entlang streichenden Luftteil-
chen (Wirbelbildung). Da der zweitgenannte Anteil iiberwiegt, ist auch hier eine
Abhingigkeit vom Quadrat der Windgeschwindigkeit anzunehmen, jedoch mit
einem anderen und kaum bestimmbaren Widerstandsbeiwert. Daher erschien es
ratsam, fiir die Berechnungen auf eine Unterteilung der Windkraft in die zwei
Komponenten zu verzichten. All die obgenannten Einfliisse faten wir zusam-
men in einem globalen, fiir mehrere Windgeschwindigkeiten experimentell be-
stimmten Luftwiderstandsbeiwert c;, der das Verhiltnis zwischen dem Staud-
ruck des Windes und der gemessenen (lokalen) Gesamtkraft auf den Halm be-
zeichnet.

3.1.2. Die Versuche im Windkanal

In der Gleichung (31.2) sind alle vorkommenden GréBen auBer ¢, entweder vor-
gegeben (Windgeschwindigkeit u;, Halmdurchmesser D), bekannt (Dichte der
Luft p) oder aus den Lagekoordinaten ableitbar (lokale Geschwindigkeit x'und
lokale Neigung ¢@des Halmes). Im Luftwiderstandsbeiwert ¢, sind gleichsam al-
le Unsicherheiten und mangelnden Kenntnisse beziiglich des Wechselspiels
zwischen Halm und Wind enthalten. Um auf experimentellem Weg Anhalts-
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punkte iiber die Gréfenordnung zu bekommen, wurden im Windkanal des Insti-
tuts fiir Aerodynamik an der ETH einige Messungen durchgefiihrt.

3.1.2.1. Material und Methoden

Versuchsanordnung. Es wurden zwei Versuchsreihen durchgefiihrt, eine am
11. 10. 1979 mit Halmen aus dem Versuchsfeld Altenrhein, Fliche G (vgl. Kap.
I 3.4),und die zweite am 17. 10. 1979 mit Halmen aus dem Klotener Ried (Rand
der Verpflanzungsfliche, s. KLotzL1 1975, 1976).

Aus der Fliche G entnahmen wir je drei "gro3e" und drei "kleine" Halme. Die
"groBen" waren rund 170 cm lang (inklusive Rispe), die "kleinen" (welche keine
Rispe trugen) dagegen nur rund 110 cm. Aus dem Klotener Ried wurden nur blii-
hende Individuen von 160 - 180 cm Lénge entnommen.

Die Versuchsanordnung ist in Fig. 3.4. dargestellt. Die zu untersuchenden Hal-
me wurden auf einer in den Boden des Windkanals eingelassenen Platte aufrecht
stehend fixiert. Diese Platte iibertrdgt die auf sie einwirkenden Krifte auf ein
KraftmeBgerit, welches seinerseits an einen Plotter angeschlossen ist. Dieser
stellt die Kraft wahlweise in Funktion der Zeit oder der Windgeschwindigkeit
dar. Diese ist stufenlos regulierbar. In unseren Versuchen wurde sie jeweils um

U wind
e Halm
Halterung
/ Messplatte \
Z
Z F = Windkraft
T 7| " Messdose 1
)

Antrieb \ \ Plotter /
| V
Q ~— (T

Fig. 3.4, Messung der Windkraft auf das Schilf im Windkanal. Schematische Darstellung der
Versuchsanordnung (Windkanal am Aerodynamischen Institut der ETH).
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Fig. 3.5. Windkanalversuche mit Schilf.

A. 10 Halme im Verband, Windgeschwindigkeit zunehmend

B. 3 Halme hintereinander, Windgeschwindigkeit zunehmend

‘C. 3 Halme nebeneinander, Windgeschwindigkeit abnehmend. Man beachte, wie die
Blitter auch bei Windstille (,= 0) immer noch in die Windrichtung gedreht sind.
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5 m/s allmihlich veridndert und dann eine gewisse Zeit stationér gelassen, wih-
rend welcher die Situation fotografiert wurde (Fig. 3.5.). Aus diesen Bildern lie
sich der Neigungswinkel ¢ an jeder Stelle des Halmes herausmessen.

Auf diese Weise sind in der iiber die ganze Halmlénge integrierten Gleichung
(31.1) alle GroBen auBer ¢, bekannt, somit 148t sich der Widerstandkoeffizient
ausrechnen.

In der ersten Versuchsserie war urspriinglich vorgesehen, je einen Verband von
drei "groBen" und drei "kleinen" Halmen zu testen. Dazu verfertigte die Werk-
stitte der Versuchsanstalt fiir Wasserbau, Hydrologie und Glaziologie an der
ETH (VAW)diein Fig. 3.6. skizzierte Halterung. Darinkonnten im Abstand von
je 25 cm drei Schilfhalme fixiert werden. Die Differenz zwischen Halmdurch-
messer und Innendurchmesser der PVC-Rohrchen wurde durch Umwickeln der
Halme mit Isolierband ausgeglichen. Dies hat den Nachteil, daB die Einspann-

I A

40
170 125
/ Schrauben mit Flugelmutter
SZ___S¢Z A4
: : i PVC-Brett ; L&ngshalbierte
; : : ; PVC-R6hrchen
-r=285 108, 5‘\125 1625 '
(] o [] 5 °
PVC-Brett Locher @ 6,5 fur ™
Befestigung auf dem .
\ Messbrgett . Draufsicht 1:5
| A

langshalbierte PVC-Rdéhrchen, Innen @ 12

201 | Schnitt A-A 1:5

Fig. 3.6. Halterung fiir drei Schilfhalme im Windkanal.
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verhiltnisse nicht mehr eindeutig sind (elastische Einspannung). Dafiir
vermindert die Polsterung den Querdruck auf den Halm an der Einspannstelle,
was die Gefahr eines friihzeitigen Halmbruches reduziert. (Ahnliche Probleme
stellten die Steifigkeitsmessungen, die andere Zielsetzung fiihrte dort jedoch zu
anderen Losungen [s. Kap. III 3.1 und III 4.3].) Die Halterung konnte auf die
MeBplatte im Windkanal geschraubt werden. Weil sie in den Luftstrom hinein-
ragte (die Oberfliche der MeBplatte verlduft bodeneben), muBlte der so verur-
sachte Luftwiderstand in Funktion der Windgeschwindigkeit mit einem Vorver-
such ohne Halme gemessen werden. Von den MeBwerten der eigentlichen Ver-
suche konnte dann der auf die Halterung fallende Anteil an der Gesamtkraft sub-
trahiert werden.

Da die MeBplatte drehbar ist, war es méglich, die drei Halme sowohl neben-, als
auch hintereinander dem Luftsrom auszusetzen und den entsprechenden Luftwi-
derstand zu messen.

Zuerst priiften wir die drei "groBen" Halme. Diese stellten wirerst nebeneinander
und unterwarfen sie in der weiter oben erwidhnten Weise Windgeschwindigkei-
ten von O - 15 m/s (der letzte Wert entsprechend Windstérke 7, "steifer Wind",
wobei stirkere Baume schwanken, Hemmung beim Gehen). Dann stellten wir
sie hintereinander und belasteten sie in derselben Weise. Anschlieend setzten
wir sie wihrend gut zwei Minuten einer Windgeschwindigkeit von 10 m/s
(Windstarke 5, "frische Brise", bewegt unbelaubte, groflere Aste, kleinere Biu-
me schwanken). Dabei nahm die Kraftin denersten 50 s um etwa 2% abund blieb
danach konstant; das bedeutet, dal die Belastungsdauer in unserem Fall keine
Rolle spielt. In der Natur treten ja die hohen Windgeschwindigkeiten (Ben)
auch nicht minutenlang ununterbrochen auf. Nach dieser Messung steigerten wir
die Geschwindigkeit so weit, bis alle drei Halme gebrochen waren: Dies war der
Fallbei17,2m/s, 22,7 m/sbzw. 27,3 m/s, was einem Windstirkenbereich vonet-
wa 7/8 ("steifer Wind" bis "stiirmischer Wind", bricht Zweige und Aste ab) bis 10
("schwerer Sturm", Bdume werden umgebrochen, bedeutende Gebdudeschi-
den).

Die drei "kleinen" Halme brachen schon in einem ersten Vorlauf, so daB sie nicht
mehr untersucht werden konnten. Da kleine Halme so rasch brechen, ist es
schwierig, gute MefBresultate zu kriegen, und wirbeschlossen deshalb, auf weite-
re Versuche mit solchen Halmen zu verzichten, umso eher, als man annehmen
darf, daB} sich die kleinen Halme dhnlich wie die oberen Partien der groBen ver-
halten.

Mit der zweiten Serie (Halme aus dem Klotener Ried) wollten wir einerseits ei-
nen etwas grof3eren Verband von 10 Halmen und ergidnzende Versuche mit Ein-
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zelhalmen durchfiihren. Die Anordnung des Zehnerverbandes zeigt die Skizze
der entsprechenden Halterung, ebenfalls von der Werkstiitte der VAW herge-
stellt (Fig. 3.7.). Aus den Erfahrungen mit der ersten Halterung gelangten wir
zum SchluB, daf} auf die Rohrchen verzichtet werden kann, wenn man das
Grundbrett etwas dicker (ungefdhr 4,5 cm) nimmt und die Locher bis auf S mm
durch bohrt. Diese Vereinfachung hat sich sehr gut bewihrt.

Den Zehnerverband unterwarfen wir iiber Stufen von jeweils 5 m/s einer Wind-
geschwindigkeit bis 30 m/s (Stdrke 11, "orkanartiger Sturm", schwere Schiden
verbreitet). Rund die Hilfte der Halme wurde dabei geknickt, was sich in einem
ruckartigen, leichten Abnehmen der Totalkraft duBerte.

Die Versuche mit den Einzelhalmen dienten mehr zu qualitativen Beobachtun-
gen. Ein Halm wurde zweimal, zuerst mit, dann ohne Blitter untersucht.

Auf weitere Versuche mufliten wir leider verzichten, denn kleine, von den Pflan-
zen losgerissene Teilchen fiihrten allm#hlich zu einer untragbaren Luftver-
schmutzung im Windkanal, was insbesondere fiir die in jener Zeit ebenfalls im
Windkanal untersuchten Skifahrer duBerst unangenehm geworden wire.

Auswertung. Die iiber die ganze Halmlidnge integrierte Gleichung (31.1) ergibt
auf der linken Seite die totale Windkraft

Fyma = Jaidi = c,Ply Jau-x)l,-x1D cospdl (31.5)
Halm Halm

Wie bereits oben erwihnt, wurde die Windgeschwindigkeit um jeweils 5 m/s
verdndert und dann eine gewisse Zeit konstant gelassen, bis sich ein stationirer
Zustand einstellte. Der Halm bewegte sich dann nicht mehr, was bedeutet, daB in
(31.5) der Ausdruck x (= lokale Geschwindigkeit des betrachteten Halmstiicks)
verschwindet, d.h. es wird

u-x)ly-x1 = u,2 (31.6)

(4, ist konstant und somit immer positiv). Gleichung (31.5) kann damit in
folgender einfacherer Form angeschrieben und nach c; aufgelost werden:

Fuia = Py Ju? D cospdl (31.7)
Halm
Fis
¢ = Wind (31.8)
uf Pl /D cosgl

Halm
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Fig. 3.7. Halterung fiir einen Zehnerverband von Schilfhalmen im Windkanal.
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Mit dieser Gleichung wurden die ¢;-Werte fiir die verschiedenen Fille gerech-
net. Fy;,;, und u;, waren unmittelbar dem vom MeBgerit erzeugten Plot zu ent-
nehmen (wobei, wie gesagt, von der gemessenen Gesamtkraft noch der auf die
Halterung entfallende Anteil zu subtrahieren war). Die Dichte p, der Luftist eine
Funktion der herrschenden Temperatur und des Luftdruckes und betrug am 11.
10. (Versuche mit den Altenrheiner Halmen) 1,115 kg/m3,am 17. 10. (Versuche
mit den Klotener Halmen) 1,144 kg/m3. Das Integral von (D cos@d! ) mufSte nu-
merisch bestimmt werden. Dazu bestimmten wir bei den Halmen im Abstand
von je 10 cm den Durchmesser. Die Neigungswinkel ¢ entnahmen wir den Fo-
tografien (Fig. 3.5.), dies in Abstidnden von 20 cm (auf dem Halm). Unter Beach-
tung der Tatsache, daf} auf den Bildern die untersten 40 cm der Halme nicht sicht-
bar sind, lieBen sich so jedem Halmabschnitt Neigungswinkel und Durchmesser
zuordnen, die Summe der entsprechenden Produkte fiir den ganzen Halm lieferte
das gesuchte Integral. Ein genaueres Integrationsverfahren war in diesem Falle
angesichts der verschiedenen Mefungenauigkeiten nicht angebracht (z.B.
nimmt der Halmdrurchmesser janichteinfach stetig von unten nach oben ab; bei
den Verbinden war nicht jedes Individuum genau gleich gekriimmt).

Im Kapitel 3.1.1. wurde darauf hingewiesen, daf3 sich die resultierende Gesamt-
kraft des Windes aus einer Komponente senkrecht und einer Komponente paral-
lel zur (lokalen) Halmachse zusammensetzt. Man kann sich fragen, ob nicht
eventuell die parallele Komponente (Reibung) vernachlédssigbar wire. In diesem
Fall miiite im Ansatz (31.2) nur die Geschwindigkeitskomponente senkrecht
zum Halm beriicksichtigt werden, also (¢;- x') cos ¢, die auf den Halm wirkende,
verteilte Belastung wird dann

al = <Pl y-x)cosoly- xlcosp D . (31.9)

Esistzubeachten, dall die MeBeinrichtung des Windkanals nur horizontale Krif-
te miBt. Fiir die Berechnung von ¢; darf deshalb nur die horizontale Komponente
q,” der verteilten Kraft von (31.9) beriicksichtigt werden:

qlﬁ = qlf cosQ = C[T p{/z (LLI - x') Iul -x|1D COS3§D. (3110)

Mit denselben Umformungen wie fiir die Berechnung von ¢, erhalten wir

F..
ef = Wind : (31.11)
uf Pily | D cospal
Halm

Die Windkanalversuche wurden sowohl nach (31.8), als auch nach (31.11) aus-
gewertet.
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3.1.2.2. Resultate und Diskussion

Die aus den Windkanalversuchen ermittelten Luftwiderstandsbeiwerte sind in
der Tabelle 3.1. zusammengestellt und in den Fig. 3.8. (Einzelhalme) und 3.10.
(3 bzw. 10 Halme) als Funktion der Windgeschwindigkeit graphisch dargestelit.
Die ausgezogenen Linien beziehen sich jeweils auf die nach (31.8) berechneten
¢;-Werte, die gestrichelten auf die nach der Gleichung (31.11) bestimmten c,f-
Werte. Fig. 3.10. zeigt in der gleichen Figur die Werte fiir den Verband von zehn
Halmen, die drei Halme hintereinander und den Mittelwert von den fiinf Einzel-
halmen, wobei fiir diesen letzten Wert Einzelhalm Nr. 4 nur bis zu einer Windge-
schwindigkeit von ; = 5 m/s, Einzelhalm Nr. 1 nur bis &, = 15 m/s beriicksich-
tigt werden konnten, da sie bei den hoheren Windgeschwindigkeiten geknickt
waren. Man sieht in Fig. 3.10., daB die nach (31.8) berechneten c;-Werte bei al-
len Windgeschwindigkeiten recht nahe beieinander liegen und die Kurven einen
sehr dhnlichen Verlauf zeigen. Da dies fiir die cf—Werte nach (31.11) nicht der
Fall ist, nehmen wir an, daB} die Berechnung mit (31.8) den Sachverhalt besser
wiedergibt. Allen folgenden Uberlegungen und Berechnungen werden deshalb
die Widerstandsbeiwerte ¢; nach (31.8) zu Grunde gelegt. Die vom Wind auf das
Schilf ausgeiibte Belastung wird entsprechend mit (31.2) berechnet.

Beim Betrachten der Kurvenfilltdie starke Abnahme des Widerstandsbeiwertes
¢; zwischen den Windgeschwindigkeiten i, = 5 und 10 m/s auf. Dies ist ledig-
lich beim Einzelhalm Nr. 4 auf das Knicken zuriickzufiihren. Obwohl die Werte
fiiru; =5 m/s verhiltnismiBig ungenau sind (die Windkraft wird ermittelt als die
vergleichsweise kleine Differenz zwischen der Totalkraft und der Kraft auf das
Gestell), kann diese Abnahme nicht zufillig sein, da sie bei allen Versuchen auf-
tritt. Es handelt sich hierbei um eine Reaktion des Halmes, der die Belastung mi-
nimiert, indem er bei zunehmender Windstédrke sozusagen seinen c,-Wert ver-
ringert. Wie dies geschieht, zeigt Fig. 3.5., besonders gut der Fallmit den 10 Hal-
men im Verband: Einerseits drehen sich die Blitter in die Windrichtung, ande-
rerseits verringert sich die Angriffsfliche auf den Stengel infolge der Biegung.
DaB der Einfluf} der Blattstellung der maB3gebende ist, folgt aus den ¢;-Werten
fiir den Einzelhalm Nr. 5 (Fig. 3.8.): Dieser wurde sowohl mit, als auch ohne
Blidtteruntersucht. Beiu; = 5 m/s ist der ¢,-Wert fiir den Halm mit Bléttern rund
doppelt so groB, wie fiir den blattlosen Halm, bei u; = 15 m/s betrégt der Unter-
schied blof noch rund ein Drittel. Bei den drei Halmen nebeneinanderist der Ab-
fall des ¢,-Wertes bei denniedrigeren Windgeschwindigkeiten bedeutend weni-
ger ausgepragt (Fig. 3.9.), weil diese Reihe mit abnehmender Windgeschwin-
digkeit gemessen wurde: Die Blitter, die sich bei der hoheren Geschwindigkeit
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in die Windrichtung gedreht hatten, verharrten in dieser Stellung auch noch eini-
ge Zeitnach dem Aufhéren des Windes (Fig. 3.5. C). Die Ursache dafiir ist die im
Vergleich mit der Riickstellkraft gro8e Reibung der Blattscheiden am Stengel.
Nicht ganz sicher erkldren 146t sich der hohe ¢;-Wert von 1,44 bei u; = 15 m/s
bei der gleichen Anordnung, dieser wird in keinem der anderen Fille erreicht.
Immerhin ist zu bedenken, da} die Aufstellung von drei1 Halmen nebeneinander
die groBte Krafteinwirkung erwarten 148¢t, da die drei Halme voll dem Wind aus-
gesetzt sind. Dagegen stechen beim Verband von 10 Halmen und bei drei Halmen
hintereinander einzelne Individuen im Windschatten der anderen. Zwar sind die
drei Halme mit 25 cm Abstand ziemlich weit voneinanderentfernt, so da bei der
Betrachtung der Stengel allein keine gegenseitige Beeinflussung und mithin et-
wa gleichgroBe Widerstandsbeiwerte wie bei den Einzelhalmen zu erwarten wii-
ren; offensichtlich erstreckt sich aber der EinfluBl der Blitter iiber einen
bedeutend gréBeren Bereich als jener der Stengel.

Es ist klar, daB mit den vorliegenden Untersuchungen der unmittelbare Einfluf3
des Windes auf das Schilfnoch lange nicht vollstindig erfaBtist. Dazu wire eine-
reseits eine viel groere Anzahl von Messungen notwendig (Statistik), anderer-
seits istes unbekannt, obdas Schilf der zwei Wuchsorte KlotenerRied und Alten-
rhein auch fiir die iibrigen schweizerischen Schilfbestinde représentativ ist. Der
Platz im Rahmen der vorliegenden Arbeit liel jedoch eine weitergehende Be-
handlung dieses Problems nicht zu.
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Tab. 3.1. Luftwiderstandsbeiwerte ¢, der untersuchten Schilfhalme bzw. Verbidnde von
Halmen. Bei allen Anordnungen, auler bei den drei Halmen nebeneinander, erfolgte die Mes-
sung bei zunehmender Windgeschwindigkeit.

Die eingeklammerten Zahlen sind die mit Gl. (31.11) berechneten c/-Werte.

Die mit * gekennzeichneten Werte wurden bei der Berechnung der Mittelwerte nicht bertick-
sichtigt.

u; [m/s] 5 10 15 20 25 30
Einzelhalm Nr. 1 2,63 1,42 0,90 0,60
%k
Einzelhalm Nr. 2 1,89 1,28 0,94 0,79
(2,40) (2,39) (2,39) (2,27)
Einzelhalm Nr. 3 1,32 0,91 0,77 0,63
(1,67) (1,79 (2,32) 1,67)
Einzelhalm Nr. 4 2,67 0,88 0,39 0,41
(4,86) (1,81) (0,85) (1,13)
E % *
Einzelhalm Nr. 5 1,86 1,27 0,92 0,77
(2,15) (2,08) (2,02) (1,83)
Einzelhalm Nr. 5 0,84 0,82 0.64 0,53
ohne Blitter (0,89) (1.15) (1,18) (1,11)
k * % *
Mittelwert der 2,07 1,22 0,88 0,73
5 Einzelhalme 2,99) (2,32) (2,26) (1,92)
10Halme 2,45 1,43 1,08 0,92 0,90 0,83
(3,06) (2,09) (1,83) (1,66) (1,84) (1,86)
3 Halme hinter- 2,17 1,36 1,07
einander (2,35 (1,52) (1,26)
3 Halme neben- 1,82 1,47 1,44
einander (2,00) (1,75 (1,80)




- 78 -

Cl ‘ Y CI ‘

3,0 - 3,0 -

204 o0l T

1,04 1,04 \

0!0 T 1) L4 R ] T b U 0|O v v L] L] L] ’
0 5 10 15 20 25 m/s 0O 5 10 15 20 25 mss
Einzelhalm Nr. 1 Einzelhalm Nr. 2

C C B
A | A X

3,0 - 3:0 A

2,0 - T 2,0 -

104 T~—10 1,0

Oso T T T T T P U an T T T T T ]
0 5 10 15 20 25 m/s 0 5 10 15 20 25 m/s
Einzelhalm Nr. 3 Einzelhalm Nr. 4

9
A

C| -Werte berechnet mit

3,0 - Gl. (31.8)

204 TTemme--all

S m - e ohne Blatter ~~""- C, -Werte berechnet mit
1,0 - & i 'al. (31.11)

ohne Blatter
0,0 : T T T — > U
0 5 10 15 20 25 m/s

Einzelhalm Nr. 5

Fig. 3.8. Luftwiderstandsbeiwerte c;in Funktion der Windgeschwindigkeit, bestimmt aus
den Windkanalversuchen vom 17. 10. 79.
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Fig.3.9. Luftwiderstandsbeiwerte c, in Funktion der Windgeschwindigkeit fiir einen Ver-
band von 10 bzw. 3 Schilfthalmen (vgl. Fig. 3.5), bestimmt aus den Windkanalversuchen vom
17.10. bzw. 11.10. 79.
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Fig. 3.10. Vergleich der Luftwiderstandsbeiwerte ¢;in Funktion der Windgeschwindigkeit
fiir den Verband von 10 Halmen, 3 Halme hintereinander und den Mittelwert der 5 Einzel-
halme (bei den hoheren Geschwindigkeiten nur 4 bzw. 3 Halme beriicksichtigt; vgl. Text).
Oben: crWerte berechnet mit Gl. (31.8).

Unten: clf-Wcrte berechnet mit Gl. (31.11).
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3.2. DIE BELASTUNG DURCH DIE WELLEN

Die in diesem Kapitel dargestellten Verfahren und Theorien zur Berechnung
bzw. Abschidtzung der Wellenwirkung sind zum Teil schon lange bekannt und
zum Allgemeingut der Kiistenschutz- und Meeresbaupraxis geworden. Das
Zitieren der Erstautoren erscheint daher in den wenigsten Fillen zweckmi-
Big. Niitzlicher diirfte der Hinweis auf einige Lehr- und Standardwerke des
Meerwasserbaus sein. Dort wird das ganze Gebiet systematisch behandelt und
dargestellt, wihrend hier nur die im Rahmen dieser Arbeit notwendigen Me-
thoden und Theorien vorgestellt werden. Herleitungen werden auf das zum
Verstindnis notwendige Maf} beschrinkt. In allen der unten angegebenen
Werke finden sich auch Angaben zu weiterfithrender Literatur und zum Teil
auf entsprechende Erstpublikationen.

Die umfassendsten Standardwerke sind in englischer Sprache erschienen; WiE-
GEL (1964), "Oceanographical Engineering" und SILVESTER (1974), "Coastal
Engineering". An deutschsprachiger Literatur ist PRESS (1962), "Seewasser-
stralen und Seehédfen" anzufithren. Mehr Gewicht auf die theoretischen Zu-
sammenhinge und Ableitungen legen PRESS und SCHRODER (1966), "Hydrody-
namik im Wasserbau". Auch auf das "Handbuch der Wellen, Meere und Ozea-
ne" (BRuUNS 1955) sei hingewiesen.

Ubersichten der gebriuchlichen Wellentheorien finden sich auBerdem in Spe-
zialpublikationen von DieTzE (1964), HARTMANN (1969), SCHOTTRUMPF (1973)
u.a.m.

3.2.1. Definition und Wirkung der Wellen

3.2.1.1. Definition der Wellen, Wellenkenngrifien, Energie

Eine Fliissigkeit befindet sich nur dann in Ruhe, wenn ihre Oberfliche mit ei-
ner (stationdren) Potentialfliche des sie beeinflussenden Kraftfeldes zusam-
menfillt. Ein natiirliches Gewisser wird in nennenswertem Mafe nur von der
Schwerkraft beeinfluflt, seine Oberfldche ist deshalb im Zustand der Ruhe ge-
nau waagrecht. Die darin enthaltene Energie ist minimal (potentielle oder La-
geenergie; wegen des Ruhezustandes ist die kinetische oder Bewegungsenergie
gleich Null). Wird die waagrechte Oberfliche durch einen duBleren Einflufl
(z.B. einen hineinfallenden Stein) gestort, so bringt die eingetragene Energie
die Wasserteilchen in Bewegung, und zwar entsteht der gleiche Effekt wie bei
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dem aus seiner Gleichgewichtslage gebrachten Pendel: Die Wasserteilchen ge-
raten in eine um die Ruhelage schwingende Bewegung. Damit bleibt aber die
Wasseroberfliche nicht mehr waagrecht, was zu einem Druckgefille fiihrt.
Dadurch wiederum werden auch die benachbarten Wasserteilchen beeinfluf3t:
sie werden in Richtung des Druckgefilles beschleunigt, die urspriinglich
punktformige Storung der Wasseroberfldche breitet sich nach allen Seiten
aus. Diese sich fortpflanzende Stérung der urspriinglich ruhenden Wasser-
masse ist es, was wir als Welle beobachten. Wichtig ist dabei, die zwei ver-
schiedenen Bewegungen zu unterscheiden: einerseits die Bewegung der Form
der Waserfldche (d.h. der eigentlichen Welle), andererseits die (meist schwin-
gende) Bewegung der Wasserteilchen selbst. Anschaulicher ist der ganz
analoge Vorgang bei dem an einem Ende auf- und abbewegten Seil: man sieht
die gegen das freie Ende laufenden Wellen, wihrend jeder Teil des Seiles
selbst nur in einem auf die Bewegung der Nachbarteile abgestimmten Rhyth-
mus auf- und abschwingt.

Da beim Ausbreiten der Storung immer neue, vorher ruhende Wasserteilchen
in Bewegung gesetzt werden, wird sichtbar, daf3 die Welle die durch die Sto-
rung in die Fliissigkeit eingetragene Energie mit sich transportiert und
ausbreitet.

Eine punktférmige Storung, wie sie eben beschrieben wurde, ist als Elemen-
tarstorung, und die daraus resultierende, kreisformige Welle, als Elemen-
tarwelle aufzufassen. Wirkt die Storung iiber eine groBere Fliche (z.B.
Wind), so kann man die daraus entstehenden Wellen als Uberlagerung unend-
lich vieler Elementarwellen auffassen (vgl. Fig. 3.11.), wobei durch die Art
der Stérung und der Uberlagerung zumeist eine oder zwei Richtungen ausge-
zeichnet sind (z.B. bei Windwellen die Windrichtung). Auf diese Weise ent-
stehen auf gréBeren Wasserflidchen durch Wind oder Schiffe Ziige von paral-
lelkimmigen Wellenbergen und -tidlern, deren Fortpflanzung den gleichen
Gesetzen gehorcht wie ein Lichtstrahl (Brechung [Refraktion] und Beugung
[Reflexion]). Da auf den Seen der Wind stindig wechselt und weil die Wellen
am Ufer reflektiert werden und sich mit den Windwellen iiberlagern, entsteht
schlieBlich das bekannte, mehr oder weniger zuféllig wirkende Bild einer be-
wegten Seeoberfliche.

Die Bewegung des Wassers in den uns interessierenden grofleren Wasserwel-
len auf den Seen wird aufler durch duflere Einfliisse (Storungen) praktisch
ausschlieBlich durch die Schwerkraft (Druckunterschiede) bestimmt. Solche
Wellen werden deshalb Schwerewellen genannt. Im Gegensatz dazu wird
bei den kleinen und kleinsten Wellen der Einflufl der Oberflichenspannung



- 83 -

des Wassers malgebend, dann handelt es sich um Kapillarwellen.

Die hier betrachteten Wasserwellen duflern sich stets in einer Bewegung der

Wasseroberfliche und werden daher auch Oberflichenwellen genannt, im

Gegensatz zu internen Wellen, die sich lings innerer Grenzfldchen (z.B. zwi-

schen einer warmen und einer kalten Wasserschicht) fortpflanzen.

Form und GroBe der Wellen werden durch bestimmte Parameter, die soge-

nannten WellenkenngréB3en, charakterisiert. Die wichtigsten sind (Fig.

3.12)

- Wellenperiode T: Zeitdauer [s] zwischen dem Durchgang zweier auf-
einanderfolgender Wellenscheitel durch einen festen Punkt. Die Periode
einer Welle ist unverinderlich.
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Fig. 3.11. Uberlagerungsbild von je sieben Elementarwellen aus 15 punktférmigen (St5-
rungs-)Quellen. Die Kreise stellen die Kdimme der Elementarwellen dar. Durch die Uberla-
gerung bilden sich parallele Fronten, welche sich nach links und rechts fortpflanzen.
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- Wellenhohe H: Senkrechter Abstand [m oder cm] zwischen einem Wel-
lental und dem darauffolgenden Wellenscheitel. Die in der (élteren) Lite-
ratur gelegentlich anzutreffende Definition der Wellenhthe als Abstand
zwischen dem Ruhewasserspiegel und dem Wellenscheitel und daraus fol-
gend die Bezeichnung des Abstandes zwischen Wellenscheitel und Wellen-
tal als 2H ist unzweckmiBig, weil sie nur bei den auf Seen kaum anzutref-
fenden, rein sinusférmigen (symmetrischen) Wellen einen Sinn hat.

- Wellenldange L: Waagrechter Abstand [m] zwischen zwei aufeinander-
folgenden Wellenscheiteln. Die Linge einer Welle ist im tiefen Wasser eine
Funktion der Periode, im flacheren Wassser ist sie auBerdem noch abhin-
gig von der Wassertiefe und ggf. der Wellenhéhe.

Ebenfalls eine sehr wichtige GroBe ist die aus den obigen Parametern ableit-

bare Fortpflanzungsgeschwindigkeit C [m/s] der Welle, sie ist gleich

dem Quotienten aus Wellenldnge und -periode.

Von sehr groBer Bedeutung fiir die Charakterisierung der Wellen ist die (lo-

kale) Wassertiefe d [m]. Mallgebend ist nicht der Absolutwert, sondemn das

Verhiltnis der Wassertiefe zur Wellenldnge (relative Wassertiefe d/L). Die-

ser Wert bestimmt die Unterteilung in Tief- oder Flachwasserverhiltnisse. Es

ist namlich die Bewegung der Wasserteilchen infolge des Wellenganges nur
bis etwa eine halbe Wellenldnge unterhalb des Wasserspiegels merklich (vgl.

Kap. 3.2.3.). Ist die Wassertiefe groBer als die halbe Wellenldnge (d/L > 0,5),

so hat der Seegrund keinen Einflufl auf die Wasserbewegung, und wir spre-

Fig. 3.12. Die wichtigsten Abmessungen einer Welle.
Wellenlidnge z(x1) = Abstand der Wasseroberfliche vom Seegrund

L
H

= Wellenhthe {(x,) = Abstand der Wasseroberfliche vom
d = Wassertiefe Ruhewasserspiegel
x,z = Koordinaten
t = Zeit



- 85 -

chen von Tiefwasserwellen. Die effektive Wassertiefe spielt in diesem Fall
keine Rolle, die Wellenldnge flacher Wellen ist proportional zum Quadrat der
Periode. Betrdgt andererseits die Wassertiefe weniger als etwa 1/25 der
Wellenldnge (d/L < 0,04), so bringt die Welle die ganze Wassermasse bis
auf den Grund in eine fast gleichmifige Bewegung. In diesem Fall haben wir
Seicht- oder Flachwasserwellen, deren Lénge proportional zur Periode
und zur Quadratwurzel aus der absoluten Wassertiefe ist. Zwischen den bei-
den angegebenen Grenzen liegt der Ubergangsbereich, hier ist die Wasser-
bewegung bis hinunter auf den Seegrund noch merklich, nimmt jedoch von
oben nach unten stark ab. Die Beziehung zwischen Wellenperiode und —ldnge
146t sich nicht als einfache, explizite Funktion anschreiben.

Es sei nochmals darauf hingewiesen, daf3 die Begriffe Tief- und Flachwasser
in bezug auf Wellen relativ aufzufassen sind: Da z.B. bei Felsstiirzen oder See-
beben Wellen von mehreren hundert bis tausend Metern Lange entstehen kon-
nen, ist es durchaus méglich, auch in (limnologisch gesehen) tiefem Wasser
Seichtwasserwellen anzutreffen; andererseits sind kurze Wellen von vielleicht
einem Meter Lénge fiir die Wellenmechanik auch noch im knietiefen Wasser
"Tiefwasserwellen".

Die in einer Welle enthaltene Energie setzt sich zusammen aus der potentiel-
len und der kinetischen Energie der Wasserteilchen. Die potentielle Ener-
gie E,,, eines solchen ist gleich dem (skalaren) Produkt aus dessen Gewicht
und der Verschiebung beziiglich eines angenommenen Ausganszustandes. Fiir
das Koordinatensystem der Fig. 3.12. fromuliert heif3t das:

dEyy = pygrdV [Nm]bzw.[J] (32.1)
Schwerkraftsvektor
dE ... Potentielle Energie [N m]

pot . 3
p,, --- Dichte des Wassers [kg/m”]

g ... Erdbeschleunigungsvektor (0,0,-g); g = 9,806 m/s?
(p,, & = spezifisches Gewicht des Wassers [N/ m?]
dV ... Volumen des Wasserteilchens [m?] = dx dy dz

r ... Verschiebungsvektor des Wasserteilchens [m,m,m]
=(X-Xp ¥ - Yp 2 2)
X, ¥,z ... Koordinaten des Wasserteilchens nach der Verschiebung
Xy, ¥g» 29 ... Koordinaten des Bezugs- oder Ausgangspunktes

In Komponenten geschrieben, lautet Gl. (32.1):
dE = p,0,0,-8)(x-xp ¥y-p 2z-2p dxdyd:z

pot

= -p,8(z-2y dxdyd:z (32.2)
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Wihlen wir den Seegrund als Bezugslinie so wird z, = 0 und

dE,,, = -p,8zdxdyad:z (32.3)

Um die in einer Welle enthaltene Energie zu berechnen, muf} die Energie aller
Wasserteilchen des entsprechenden Wasservolumens aufsummiert (integriert)
werden. Davon muf} die potentielle Energie desselben Wasservolumens im
Ruhezustand subtrahiert werden. Bei langkdmmigen Wellen spielen sich alle
Bewegungen in einerVertikalebene ab, die bei richtiger Wahl des Koordina-
tensystems mit der x-z-Ebene oder einer zu ihr parallelen zusammenfillt. In
diesem Fall kann also die y-Koordinate vernachlédssigt werden. Das zu be-
trachtende Wasservolumen besteht dann aus einem Streifen der Linge L in
x-Richtung, einer willkiirlich wahlbaren Breite b in y-Richtung und der
durch den Seegrund und die Wasseroberfliche definierten (variablen) Hohe.
Die potentielle Energie der Welle kann dann wie folgt angeschrieben werden:

L b oz L b d

E,, =-pwg_([{{zdxdydz-(-pwg{b[_o[zdxdydz) (32.4)

Die Integrale iiber x und y konnen ohne weiteres aufgeldst werden, und es
ergibt sich:
£

Eo = Pulygh( Of 2 2dx - d*L) (32.5)

Wird die Auslenkung des Wasserspiegels z, gegeniiber dem Ruhewasserspie-
gel mit { = z_ - d bezeichnet, so kann, unter Beriicksichtigung der Tatsache,
daB der Ruhewasserspiegel gleich dem mittleren Wasserspiegel angenommen
werden kann, die obige Gleichung noch weiter vereinfacht werden:

L L L L
Je2ax = [(cvdpar =[x v24 [rde +d*L (326)
0 0 0 0
=0
und
L
Ep = “Pulygh Of 2y (32.7)

Die Energie pro Flicheneinheit des Seespiegels ergibt sich aus der Division
des obigen Ausdrucks durch die Fldche b-L:
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Pve sz 2
Ep = o7 04‘ dx [Nm/m“] (32.8)
Der Term L
1L [ ¢%x
0

ist nichts anderes als die Varianz crg2 der senkrechten Abweichungen der
Wasseroberfliche von der Ruhelage. Die potentielle Energie ist also abgese-
hen vom Faktor p, g gleich der halben Varianz der {-Koordinate oder (was
auf dasselbe herauskommt) der z-Koordinate des Wasserspiegels und damit
der lokalen Wassertiefe. Das Minuszeichen bedeutet, daB diese Energie auf-
gewendet werden muf, um das prismatische Wasservolumen in die Form
der Welle zu bringen, das gewellte Wasser enthilt also um so viel mehr poten-
tielle Energie als das ruhende. Da es im folgenden stets um den Energieinhalt
der Welle geht, wird nur noch mit dem Betrag (also ohne das Minuszeichen)
gerechnet.

Die kinetische Energie E,;, eines Wasserteilchens ist gleich

dE,,, = Pw2w?dV = Pu2 wdxdydz [Nm] (32.9)
dE,;,, ... Kinetische Energie eines Wasserteilchens [N m]
w ... Betrag der Geschwindigkeit des Wasserteilchens [m/s]
dV ... Volumen des Wasserteilchens [ m’]
=dx dy dz

p, ... Dichte des Wassers [kg/m’]

Die Berechnung der kinetischen Energie der ganzen Welle ist nicht so einfach
wie fiir die potentielle Energie, da sie abhiingig ist vom Zusammenhang der
Oberflichenform und der Wasserteilchengeschwindigkeit mit den Wellen-
kenngroBen (Wellentheorie, vgl. Kapitel 3.2.3.) und damit von den je nach
Verhiltnissen zu treffenden, vereinfachenden Annahmen. Fiir den Fall fla-
cher Wellen (d.h. die Wellenhohe ist klein verglichen mit der Wellenldnge
und der Wassertiefe), deren Oberflichenform angenéhert einer Sinuslinie
entspricht, kann gezeigt werden (s. z.B. PRESS und SCHRODER 1966), daB die
kinetische Energie einer solchen Welle gleich der potentiellen ist. Die Gesam-
tenergie ist deshalb gleich der totalen Varianz der Wasserspiegelhshe. Fiir
eine Sinuslinie ist die Varianz ng gleich dem halben Amplitudenquadrat
A?/2 und mithin gleich H?2/8, da die Wellenhthe bei einer sinusférmigen
Welle gleich der doppelten Amplitude (2A) ist.
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Die Gesamtenergie einer derartigen Welle wird somit
- - _ 2
Ey, = Epy+Ey, =2E,=p,80

tot

E, = 1/8p,gH? [N m/m?] (32.10)

Obschon dieser Ausdruck streng nur fiir flache, sinusférmige Wellen gilt, ist
er doch eine sehr brauchbare Ndherung zur Abschitzung des Energieinhaltes
von Wellen. Es ist ferner zu beachten, dall grundsitzlich jede Wellenform als
Uberlagerung entsprechender Sinuswellen dargestellt werden kann (s.u.). Fiir
unsere weiteren Betrachtungen ist vor allem wichtig, dafl die Energie einer
Welle proportional zum Quadrat ihrer Hohe ist.

3.2.1.2. Beschreibung des Seeganges

Die bisherigen Uberlegungen bezogen sich auf eine einzelne Welle oder einen
Wellenzug aus lauter gleichartigen Wellen. Die Beobachtung eines Sees zeigt
aber ein unregelmiBiges Bild langer und kurzer, hoher und niedriger Wellen.
Um rechnen zu konnen, ist eine vereinfachende Beschreibung der Wellengan-
ges notwendig, wofiir gegenwirtig zwei Methoden im Vordergrund stehen,
nimlich die Bestimmung von kennzeichnenden GroBen des Seeganges
(nach bestimmten Kriterien festgelegte Wellenkenngrofen) und die Erfassung
des Wellenganges mit dem Energiespektrum.

1. Kennzeichnende Grofien. Sie konnen durch die Auswertung von Pegel-
beobachtungen (Fig. 3.13.) bestimmt oder durch mehr oder weniger empiri-
sche Formeln aus anderen GréBlen (Windgeschwindigkeit, Grofe der Wasser-
fliche u.a.m.) abgeleitet werden (vgl. Kap. 3.2.2.). Im ersten Fall beziehen sie
sich auf beobachtete Wellen, im zweiten auf den unter den angenommenen
Verhiltnissen zu erwartenden Seegang.

Da die Wasserspiegelbewegungen sehr unregelmiBig sind, entstehen bei der
Auswertung von Pegelbeobachtungen Schwierigkeiten bei der Abgrenzung
der einzelnen Wellen. Zwei Méglichkeiten, dieses Problem zu l6sen, zeigt Fi-
gur 3.13.: Beim Wellenkammverfahren (crest to crest) wird jede Welle durch
zwei aufeinanderfolgende Wellenkdimme begrenzt, beim Nulldurchgangsver-
fahren (zero-crossing) wird eine Welle durch zwei aufeinanderfolgende,
gleichsinnige Uberquerungen des Pegelnullpunktes (= Ruhewasserspiegel) de-
finiert. Beim Wellenkammverfahren kann die Wellenhéhe auch (abweichend
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von Fig. 3.13.) als arithmetisches Mittel der senkrechten Abstéinde eines Wel-
lentales zu den beiden benachbarten Wellenkdmmen bestimmt werden.

Wird nach irgend einemVerfahren eine Pegelbeobachtung in n einzelne Wel-
len unterteilt und je deren Hohe H; bestimmt, so konnen folgende Hohenpara-
meter definiert werden:

- Mittlere Wellenhshe H,, (arithmetisches Mittel aller Wellenhohen):

by - 2

- Aquivalente Wellenhohe Haqu (arithmetisches Mittel der Quadrate der

Wellenhshen: Daraus kann die Energie des Wellenzuges berechnet wer-
den):

SH?
e ]

Ruhewasser-
spiegel
A~ 4

x—‘ leit

Nulldurchgangsverfahren

Ruhewasser- H5
spiegel A Ho
SV r\\JI IA

Hihe

- [eit

Fig. 3.13. Beispiel einer Pegelaufzeichnung eines Wellenzuges und Abgrenzung der ein-
zelnen Wellen nach dem Wellenkammverfahren (oben) und dem Nulldurchgangsverfahren
(unten) (aus SCHUTTRUMPF 1973).
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- Signifikante Wellenhthe

H,;; = arithmetisches Mittel der n/3 hochsten Wellen des beo-
bachteten Wellenzuges.

- Maximale Wellenhohe

H, . = grolite beobachtete Wellenhohe oder maximal zu erwar-
tende Wellenhohe innerhalb eines bestimmten Zeitraums.

Analog konnen Wellenperioden definiert werden:
- Mittlere Wellenperiode T, (arithmetisches Mittel aller Wellenperioden):

= ZT’

L n

T

- Signifikante Wellenperiode:

Ty,; = arithmetisches Mittel der Perioden der n/3 hochsten
Wellen des beobachteten Wellenzuges (nicht: der n/3
lingsten Wellen)

= zu H;,; gehorende Wellenperiode

- Maximale Wellenperiode

T,,. = lidngste beobachtete Wellenperiode oder maximal zu er-
wartende Wellenperiode innerhalb eines bestimmten
Zeitraums (nicht zu verwechseln mit T, ., der Periode
derhochsten Welle)

Von diesen GréBen haben die signifikante Wellenhohe H,; und die signifi-
kante Wellenperiode T, ; die groBte Bedeutung, denn H ; entspricht der
von einem geilibten Beobachter geschiitzten Wellenhdhe, da die groBen Wellen
stirker ins Auge fallen. AuBerdem transportieren die Wellen dieser Hohe den
groBten Teil der Energie eines Wellenzuges. Deshalb werden im folgenden
H,;und Ty, als kennzeichnende Wellenhohe und -periode im enge-
ren Sinne bezeichnet.

2. Spektrale Darstellung. Diese geht von der Tatsache aus, daB sich jede
stetige Zeit- oder Ortsfunktion (also insbesondere die Form einer gewellten
Wasseroberfliche) als Uberlagerung von sinusformigen Komponenten dar-
stellen 148t. Die Zusammenstellung der "GroBe" dieser Komponenten (Ampli-
tude) in Funktion der zugehorigen Frequenzen oder Perioden ist das Spek-
trum der Ausgangsfunktion. Die mathematische Operation zur Gewinnung
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des Spektrums heiflt Spektralanalyse, die sinusformigen Komponenten wer-
den als spektrale Komponenten bezeichnet.

Da in der Literatur iiber den Meerwasserbau die im Zusammenhang mit der
Beschreibung des Seegangs verwendeten Begriffe und Zusammenhinge nur
knapp und teilweise ungenau beschrieben sind, folgt hier eine etwas ausfiihrli-
chere Darstellung.

Einen Einblick in das Wesen der Spektralanalyse liefert die Tatsache, daf das
menschliche Ohr eine Art natiirlicher Spektralanalysator ist: Die Teil- oder
Oberttne, die man aus bestimmten Klidngen heraushoéren kann, sind nichts an-
deres als die stirksten spektralen Komponenten dieser Klidnge. Die Spektral-
analyse wurde denn auch zuerst im Gebiet der Nachrichtentechnik entwickelt,
im Zusammenhang mit der Umwandlung akustischer in elektromagnetische
Signale. Aus diesem Gebiet stammen auch viele der verwendeten Begriffe.
Zwischen Schall- und Wasserwellen besteht eine weitgehende Analogie, auler
dal} sich die Schallwellen rdumlich ausbreiten (Wasserwellen nur entlang der
Oberflidche) und die Luftteilchen dabei in der Fortpflanzungsrichtung der
Welle schwingen (Longitudinalwelle im Gegensatz zur Transversalwelle, wo
die Teilchen quer zur Fortpflanzungsrichtung schwingen; bei den Wasserwel-
len kommen beide Schwingungsarten vermischt vor). Auch haben die (horba-
ren) Schallwellen um mehrere Zehnerpotenzen kiirzere Perioden, weshalb
man meist mit deren Kehrwert, der Frequenz f= 1/T, rechnet. Die Hin-
und Herbewegung &(x,r) der Luftteilchen um ihre Ruhelage entspricht der

Auf- und Abbewegung {(x,») eines Punktes auf der Wasseroberflidche (nicht
zu verwechseln mit der oben erwidhnten Bewegung der eigentlichen Wasser-
teilchen).
Wenn bei einer Schwingung von deren "Form" gesprochen wird, so bezieht
sich das immer auf die Kurve der Bewegung in Funktion der Zeit. — Eine si-
nusformige Schwingung hat folgende Gleichung:
Eobzw. {(n = acos2rft)+ bsinnfi)
= Acos[2rf(t - 7)] (32.11)

mit

A = Va*+b) und 7T = Arctan(b/a) (32.12)
Die Schwingungsweite A ist die Amplitude und entspricht bei einer rein si-
nusformigen Welle der halben Wellenhohe H. 7 ist die Phasenverschiebung.
Eine periodische Schwingung (Klang) setzt sich notwendigerweise aus Kompo-
nenten (Teiltonen) zusammen, deren Frequenzen ganzzahlige Vielfache der
Grundfrequenz sind, denn sonst wiirde sich der Vorgang nach Ablauf der



- 02 -

Grundperiode nicht wiederholen und wire somit nicht periodisch. Eine peri-
odische Schwingung kann deshalb als Fourier-Reihe dargestellt werden:

o u;-l‘L + % ajcos2mjf ) + Fz: b; sin(2m j ;1)
j=0 '

A -
= —2—0— + X A cos[2mjfy(t - T)] (32.13)
j=0
Das (Amplituden-)Spektrum dieser Schwingung ist die Zusammenstellung der
a;und b;oder der A; und 7; in Funktion der zugehdrigen Frequenzen jf;.

j
Die Berechnung erfolgt mit den Gleichungen:

T

2
a = —T—{ £ cosm j f, )dt (32.14)
T
2
b = — | Lo sin@njf, Hdr (32.15)
J T o
mit 1
T = Y = Periode der Grundschwingung
1

Gesamtamplitude A;und Phase 7, ergeben sich nach (31.12). Fig. 3.2.1.4. il-
lustriert den Sachverhalt anhand eines Beispiels mit drei Komponenten (Teil-
tonen).

Der Seegang ist nun allerdings kein periodischer Vorgang, denn die Bewe-
gungen wiederholen sich wegen der fortlaufend wechselnden dufleren Bedin-
gungen und der Vielzahl der Einfliisse nie. Die analoge akustische Erschie-
nung ist das Gerdusch oder Rauschen. Auch diese Form kann als Uberlage-
rung von Sinusschwingungen gedeutet werden. Der Unterschied zur periodi-
schen Schwingung besteht darin, daB hier Komponenten (Teilténe) aller Fre-
quenzen berticksichtigt werden miissen (also nicht nur die ganzzahligen Viel-
fachen der Grundfrequenz). Allenfalls kann der Bereich der vorkommenden
Frequenzen durch einen Maximal- und Minimalwert begrenzt sein, das soge-
nannte (Frequenz-)Band. Dies wird deutlich, wenn man den aperiodischen
Vorgang als periodischen Vorgang mit unendlich langer Periode T = o deu-
tet. Beim Grenziibergang T — o, bzw. f| - 0 riicken die Frequenzen j.f, der
einzelnen Komponenten immer niher zueinander und die zugehoérigen Ampli-
tuden streben gegen 0 (vgl. 32.14 und 32.15 sowie Fig. 3.14.). Anstelle der
Amplitude tritt daher die spektrale Dichte S, mit der Dimension
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S
A&
A(f):SA(f)df
T—+m
A‘l Az A5 @
L A
i T ~f
0 fa=1/1 f=1/T,  £3=1/T, @ 0 "H"
—i J[* 1 df -0
af=1/17 af af

Fig. 3.14. Spektrum der periodischen und der unperiodischen Schwingung.
Links: Zusammensetzung einer periodischen Schwingung aus drei Teilschwingungen und
spektrale Darstellung (ohne Beriicksichtigung der Phasenverschiebung).
1+3 Erste bis dritte Teilschwingung
4 Gesamtschwingung als Uberlagerung der drei Teilschwingungen
5 Amplitudenspektrum
Rechts: Unperiodische Schwingung und spektrale Darstellung
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[Amplitude-Frequenz'!] bzw. [Amplitude-Periode™!]. Sie entspricht der auf
ein Frequenzinkrement df (gegen O strebender, kleiner Bereich) bezogenen
Amplitude der betreffenden Teilschwingung:

= 3 An(]fl)
Su(f) = }11210 T
Aus den diskreten Werten der Teilschwingungsamplituden im Falle einer pe-
riodischen Schwingung (Klang) wird die stetige Kurve der spektralen Dichte
bei der unperiodischen Schwingung (Geridusch). Soll in diesem Fall die zu ei-
ner bestimmten Frequenz gehorige Amplitude angegeben werden, so muf} da-
zu das Frequenzinkrement df willkiirlich gewihlt werden:

A(f) = SuNdf (32.17)

Was hier iiber die Darstellung zeitlicher Bewegungsvorginge (Schwingun-
gen) gesagt wurde, gilt analog auch fiir rdumliche Erscheinungen, wobei ein-
fach die Zeit ¢ durch die Raumkoordinate (z.B. x) ersetzt wird. Die geome-
trische Beschaffenheit des Wasserspiegels lings einer Axe zu einem bestimm-
ten Zeitpunkt kann daher auf dieselbe Weise beschrieben werden, wie die Be-
wegung des Wasserspiegels im Laufe der Zeit an einem festen Ort (vgl. auch
S, 152).

Die notwendigen Umformungen der Gleichungen (32.13 - 15) fiir den Grenz-
iibergang T — oo kann aus Platzgriinden hier nicht dargestellt werden, ver-
wiesen sei auf die Lehrbiicher von MARKO (1982) und RAYNER (1971). Dort
wird ferner gezeigt, wie durch die Rechnung auch mit negativen Frequenzen
die Phasenverschiebung beriicksichtigt werden kann, ebenso wird deutlich,
dafl die Rechnung mit komplexen Zahlen (Ausdriicke, in denen die imaginére
Einheit i = v-1 vorkommt) die Darstellung wesentlich vereinfacht. Dabei
wird die Definition der trigonometrischen Funktionen durch die Euler'sche
Formel

F=jfr,J=1""00) (32.16)

elft = cos(fr)+i sin(fr) (32.18)

bzw. ihre Umkehrungen
cos(ft) = %—(eiff+ eifh (32.19)
sin(ft) = %(eif'- eifh) (32.20)

verwendet (Analogie zu den hyperbolischen Funktionen cosh und sinh).
Die Bewegung der Wasseroberfliche bei Wellengang kann dann mit der
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folgenden Gleichung beschrieben werden:

() = [ Syupeimidr (32.21)

das Spektrum des Seegangs wird berechnet mit

S, = [ et (32.22)

(Fourier-Transformation).

In der Praxis wird allerdings nie mit dem Amplitudenspektrum nach (32.22)
gerechnet, sondern mit dem Energiespektrum. Sachlich ist dies gerechtfer-
tigt, weil die im Zusammenhang mit dem Seegang interessierenden Probleme
{iberwiegend Phinomene der Energieiibertragung sind (z.B. Wellenentste-
hung, Wirkung der Wellen auf Bauwerke). Zudem wird dadurch die Rech-
nung erleichtert. Wie bereits in der Herleitung von (32.10) festgestellt wurde,
ist bei flachen, sinusformigen Wellen die Energie pro Flicheneinheit direkt
proportional zur Varianz cs'g2 der Wasserspiegelbewegung, der Proportiona-
litidtsfaktor ist gleich dem spezifischen Gewicht p,-g des Wassers. Da in der
spektralen Darstellung der Seegang als Uberlagerung von unendlich vielen,
unendlich flachen Sinuswellen beschrieben wird, sind beide Voraussetzungen
fiir die Gleichung (32.10) erfiillt. Deshalb wird in der Literatur oft die Va-
rianz (also die durch p g dividierte, physikalische Energie der Wellen) als
"Energie" oder auch "spektrale Energie", mit der Dimension [m?], bezeich-
net. Zwar wurde in (32.8) zur Definition der Varianz die quadratische Ab-
weichung {2 des Wasserspiegels lings der x-Axe iiber eine Periode (= Wel-
lenlidnge L) gemittelt, doch es wurde bereits gesagt, dal Raum- und Zeitkoor-
dinate bei sinusformigen Wellen austauschbar sind, Da fiir den natiirlichen
Seegang die Periode T der Grundschwingung als unendlich lang angenom-
men werden muf}, lautet die Definition der Varianz:

+T/2
2 = lim — 20y dr .
0f = lim — _T/f2 £20) (32.23)
Die Varianz ist iibrigens ein Spezialfall der (Auto-)Kovarianzfunktion
+T2
Ryt = lim T-nfz L Cavo di (32.24)

(7= Phasenverschiebung), denn, wie aus (32.23) leicht ersichtlich, ist
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2 =
oS = R“(O) (32.25)

Unterwirft man die Kovarianzfunktion einer Fouriertransformation nach
(32.22), d.h.

S, ) = / R (o €2 s (32.26)

so ist das Resultat das Spektrum der Varianz, denn umgekehrt gilt nach
(32.21)

Ry = [ Sy e iiar (32.27)
und fir 7=0
oo
Ry =of = [Spndf . (32.28)

Mithin ist der Beitrag eines Frequenzinkrementes df zur Varianz fiir eine be-
stimmte Frequenz f gleich

&y =
o, = Sy df (32.29)

(vgl. mit 32.17). Nach dem Faltungssatz der Fouriertransformation (n4heres
dazu s. z.B. in Marko 1982 und RAYNER 1971) ist andererseits die Fourier-
Transformation der Kovarianzfunktion gleich dem Quadrat des Betrags des
Amplitudenspektrums, némlich

S () = Su0) S4 (N df = | SuHPdf (32.30)

Dabei ist S,"(f) die zu S,(f) konjugiert komplexe Zahl, d.h. die beiden
Werte unterscheiden sich nur im Vorzeichen des Imaginirteiles. Das Ampli-
tudenspektrum ist in der Regel eine komplexe GroBe; im Gegensatz dazu ist
das Spektrum der Varianz immer reell. Dies kann folgendermallen veran-
schaulicht werden: Durch das Spektrum werden die einzelnen Teilschwingun-
gen in der Art der Gleichung (32.11) als Sinus- und Cosinusfunktion darge-
stellt, wobei der Realteil dem Cosinus- und der Imaginirteil dem Sinusglied
entspricht. Wie aus der erwidhnten Gleichung und (32.12) hervorgeht,
entspricht dies der Charakterisierung dieser Teilschwingungen durch Ampli-
tude und Phasenverschiebung. Bei der Varianz hingegen spielen die Phasen-
verschiebungen der einzelnen Teilschwingungen keine Rolle, sie wird nur
durch deren Amplitude bestimmt. Die Amplitude ist gleich dem Betrag jener
komplexen Zahl, welche die Teilschwingung charakterisiert. Es sei noch ein-



- 97 -

mal darauf hingewiesen, dal in diesem Zusammenhang unter "Amplitude"
immer die mit dem Frequenzinkrement df multiplizierte spektrale Dichte zu
verstehen ist. Gleichung (32.30) scheint im Widerspruch mit der Tatsache zu
stehen, daB die Varianz einer sinusférmigen Schwingung gleich dem halben
Quadrat ihrer Amplitude ist. Dies riihrt daher, daB in (32.21) (Zusammenset-
zung der Schwingung aus den Teilschwingungen) sowohl iiber die positiven,
wie auch iiber die negativen Frequenzen integriert wird. Die zu den betrags-
gleichen positiven bzw. negativen Frequenzen gehorigen spektralen Dichten
sind jeweils zueinander konjugiert komplex. In unserem Beispiel des Ener-
giespektrums, wo nur reelle GroBen vorkommen, sind sie demnach sogar
gleich. Damit konnen (32.21) und (32.28) umgeformt werden zu

to = 2[5, el igr (32.31)
0
— 2 _
R,© =02 = 2 Ofs“(f) & . (32.32)
Mit
5, = 25, B 4D = 25,0 (32.33)
wird
to = [ e 2fir (32.34)
0
of = 0f s Ndf (32.35)
bzw.
R = [ g ety 32.36
@D = J Fln e df (32.36)

Die Beziehung zwischen den beiden Spektren lautet dann nach (32.30):
8,40 = 285,40 = 21 8NP =17218,(H 1 df (32.37)

In der Praxis wird meist mit den Ausdriicken nach (32.35) und (32.36) ge-
rechnet (nur positive Frequenzen berlicksichtigt = einseitiges Spektrum).

Die Fliche unter der Kurve § CC( f) ist dann nach (32.35) gleich der Varianz,
mithin bis auf den Faktor p g gleich der Gesamtenergie des Wellenganges.
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In nicht ganz korrekter Weise wird in (vorwiegend é&lterer) Literatur
manchmal auch mit einem aus Amplitudenmessungen abgeleiteten, sogenann-
ten "Energiespektrum” gerechnet, wobei nicht die spektrale Dichte der Va-
rianz, sondern des Amplitudenquadrates dargestellt wird. Die Werte sind
nach den obigen Bemerkungen deshalb doppelt so groB:

SN = 28,40 (32.38)

Dieses Spektrum iiber den positiven Frequenzbereich integriert ergibt

B

o= JSandr=2l8pnd =207
0 0
2F
Py-8)

E  wird manchmal in der Literatur ebenfalls als "Energie" bezeichnet. Nach
LoNGUET-HIGGINS (1952) ist dieser Wert (abgesehen vom Faktor p, -g) gleich
dem Energieinhalt einer Welle mit der signifikanten WellenhShe H 5

E, = 1/8H,,2 (32.40)

(32.39)

bzw.
H; = VBE) = 2,832E, (32.41)

Von den hiufiger gebrauchten Seegangsspektren wird das sogenannte "Spek-
trum von Neumann" (NEUMANN 1953, PIERSON et al. 1955) meist noch in der
obigen Form dargestellt; es gibt aber auch Autoren, die es bereits in ein Va-
rianzspektrum nach (32.35) bzw. (32.36) umrechnen. Leider wird nicht im-
mer darauf hingewiesen, welche Form des Spektrums gebraucht wird, was
das Studium dieser Literatur erschwert.

3.2.1.3. Direkte Wirkung der Wellen auf den Halm

Die unmittelbare Wirkung der Wellen auf das Schilf ist grundsitzlich gleich
wie jene des Windes: Die freie Bewegung der Wasserteilchen wird durch den
Schilfhalm behindert. Dabei entsteht auf der Luv-Seite ein Uberdruck, an der
Lee-Seite durch die Wirbelbildung ein starker Druckabfall ("Sog"). Diese
zwei Krifte wirken gleichsinnig und konnen deshalb fiir unsere Zwecke zu ei-
ner einzigen zusammengefaBt werden, denn fiir die Zerstorung des Schilfes
durch Wellenschlag ist nicht die unmittelbare Krafteinleitung an der Halm-
oberfliche maBgebend, sondern die durch die Gesamtbelastung bewirkte Bie-
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Fig. 3.15. Definitionsskizze zu den Gleichungen (32.42) und (32.43).

gung des Halmes. Es ist hier nicht die Rede von der meist viel stiirkeren, indi-

rekten Belastung durch das von den Wellen in Bewegung gesetzte Treibzeug,

was in Kap. 3.3. behandelt wird.

Der Einfachheit halber nennen wir im folgenden die aus der Bewegung des

Wassers entstehende Kraftwirkung auf den Halm "Wasserdruck"”, obwohl der

Anteil des Unterdruckes auf der Leeseite eigentlich iiberwiegt. Die Berech-

nung des Wasserdruckes erfolgt mit dem gleichen Ansatz wie fiir den Wind-

druck (Gleichungen 31.1 bzw. 31.2). Folgende Anpassungen sind notwendig:

- Anstelle der Dichte p; ist die Dichte p,, des Wassers zu setzen.

- Der Luftwiderstandsbeiwert c; ist durch den Wasserwiderstandsbeiwert
¢, Zu ersetzen.

- Zusitzlich zur waagrechten Geschwindigkeit u der Wasserteilchen wird
auch die senkrechte Komponente v beriicksichtigt, da deren Anteil bei
groBerer Halmneigung wesentlich werden kann.

- Weil unter Wasser die Blitter des Schilfes abgestorben sind, kann die Rei-
bung lings des Halmes vernachliBigt werden.

Die Berechnungsgleichung fiir den Wasserdruck sieht dann wie folgt aus (vgl.

Fig. 3.15.):

q,dl = ¢, Pulyw, w, D dl [N] (32.42)
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q, ... Wasserdruck auf den Halmes (pro Lingeneinheit) [N/m]
dl ... Lidnge des betrachteten Halmelementes [m]

c. ... Widerstandsbeiwert fiir den Wasserdruck auf den Halm [-]
p, .. Dichte des Wassers = 1000 kg/m3

w, ... Relative Geschwindigkeit der Wasserteilchen L Halm [m/s]
D . Durchmesser des Halmes [m]

Die Relativgeschwindigkeit w, der Wasserteilchen senkrecht zum Halm ist
gleich der algebraischen Summe der auf die Halmnormale projizierten waag-
rechten und senkrechten Komponenten (x -x*) und (v - z') der Teilchenge-
schwindigkeit. Dabei muf} bei der gewihlten Vorzeichenkonvention der Be-
trag der vertikalen Komponente negativ eingesetzt werden (vgl. Fig. 3.15.):

w, = (u-x)cos@-(v-z)sing [m/s] (32.43)
u ... Horizontale Geschwindigkeitskomponente des Wassers [m/s]
v ... Vertikale Geschwindigkeitskomponente des Wassers [my/s]
x ... Waagrechte Lagekoordinate des Halmes [m]
z ... Senkrechte Lagekoordinate des Halmes [m]

x' . Geschwindigkeit des Halmelementes in x-Richtung = dx/dt [m/s]
z° ... Geschwindigkeit des Halmelementes in z-Richtung = dz/dt [m/s]
¢ ... Neigungswinkel des Halmelementes [rad]
Der unter Wasser liegende Teil des Stengels wird also einer verteilten Bela-
stung von

4, = ¢, Pwly[(u-x)cosp-(v-2)sing]-
A(u -x") cosp - (v-2z") sinp| D [N/m] (32.44)

unterworfen. Die Ausdriicke auf der rechten Seite dieser Gleichung werden

wie folgt bestimmit:

- Die Lagekoordinaten x, z und ¢ sowie deren Ableitungen (Geschwindig-
keiten des Halmelementes x°,z°, ¢") werden durch das mathematische
Modell laufend berechnet.

- Die Dichte des p, Wassers kann zu 1000 kg/m? eingesetzt werden.

- Die Berechnung der Wasserteilchengeschwindigkeit (u, v) aus den Wel-
lenkenngrofen mit Hilfe der Wellentheorien ist Gegenstand des Kapitels
3.2.3., die Abschidtzung der Wellenkenngréflen als Funktion der Seegeo-
metrie und der Windgeschwindigkeit behandelt Kap. 3.2.2..

- Der Wasserwiderstandskoefizient ¢, mufl experimentell bestimmt werden
(vgl. folgendes Kapitel).
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3.2.1.4. Bestimmung des Wasserwiderstandskoeffizienten

Die Beanspruchung des Schilfhalmes durch die Wellen kann etwas vereinfacht
als "Kraftwirkung von Wellen auf feste Kreiszylinder bzw. Pfahle" betrachtet
werden. Dieses Problem wurde wegen der groen Bedeutung von Bauten im
Kiistenbereich der Ozeane (Bohrplattformen, Hafenanlagen) schon von ver-
schiedenen Institutionen untersucht. Eine Ubersicht einiger Ergebnisse bietet
BURKHARDT (1967). Die Ergebnisse der verschiedenen Forscher differieren
stark: die Werte der Widerstandskoeffizienten c,, nach Gleichung (32.42)
liegen zwischen 0,36 und 2,04. Von den in diesen Forschungsarbeiten unter-
suchten Strukturen unterscheidet sich der Schilfhalm allerdings betréchtlich
durch seine groBere Flexibilitdt: Er macht die Bewegungen des Wassers zu
einem hohen Grad mit. Aus naheliegenden Griinden sind derart bewegliche
Strukturen fiir Bauwerke ungeeignet und wurden deshalb nicht untersucht.
Die groBe Streuungsbreite der ¢ -Werte wird zum Teil damit erklirt, daB,
wie beim Luftwiderstand, auch hier die Reynolds'sche Zahl Re eine Rolle
spielt (s. Kap. 3.1.1., Gl. 31.3). Nimmt man als charakteristische Linge z.B.
einen maximalen Halmdurchmesser D von 1,5 cm und eine Stromungsge-
schwindigkeit u des Wassers von 2,5 m/s, so wird bei einer Zihigkeit v,, des
Wassers von 10 m?/s die Reynolds'sche Zahl Re = 37'500. Aus Fig. 3.3. mit
dem Widerstandsbeiwert eines Kreiszylinders in einer stationdren Stromung
geht hervor, dal dieser Wert noch weit unterhalb des kritischen Bereichs Re
~ 5-10° liegt, wo der Widerstandsbeiwert stark abnimmt. Beriicksichtigt man
in der Aufstellung von BURKHARDT (1967) nur jene Autoren, welche eine peri-
odische Wellentheorie verwenden und die Ergebnisse ausdriicklich fiir
Reynolds'sche Zahlen < 5-10° angeben, so bleiben von den urspriinglich 18
noch deren 9. Davon schlagen vier einen c,,-Wert von 1,2 vor, drei rechnen
mit dem Wert fiir die stationdre Stromung (was nach Fig. 3.3. fiir Re = 500
bis = 3-10° einem Wertebereich fiir c¢,,von 1,0 bis 1,2 entspricht). Die beiden
librigen Autoren geben 1,6 bzw. 2,04 an, wobei der letzte Wert als Summe
von Mittelwert (1,626) und Standardabweichung (0,414) der Versuchsergeb-
nisse erhalten wurde.

Um Aufschluf dariiber zu erhalten, ob die oben angegebenen c,-Werte auch
fiir Schilfhalme einigermaBen zutreffen, machten wir in der Wellenrinne der
Versuchsanstalt fiir Wasserbau an der ETH (VAW) einen Modellversuch mit
Kunststoffstiben von 1 cm Durchmesser (Beschreibung der Versuchs-
anordnung in Kap. 3.3.4.). Diese Stiibe hatten eine Biegesteifigkeit von
15'690 N cm?, was ziemlich genau einem Schilfhalm der gleichen Dicke ent-
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spricht (vgl. Teil III, Tabellen zu Kap. 3.4). Die Wassertiefe d betrug 50 cm,
die Wellenperiode T 0,9 s. Untersucht wurden Wellenhéhen H von 12 cm
(11 - 13 cm) und 16 cm (15 - 17 cm). Die entsprechende Wellenldnge L war
gleich 130 cm. Das Ausmal} der Bewegung der Stibe wurde mit lange belich-
teten Photos (Belichtungszeit 1 s, d.h. etwas lidnger als eine Wellenperiode)
festgehalten. Die gleiche Situation wurde mit dem mathematischen Modell fiir
verschiedene c,, simuliert. Die berechneten Bewegungen der Stibe wurden
mit den Photographien verglichen. Bei der kleineren Wellenhéhe (12 cm)
war die Bewegung so klein, dal nur der gesamte Ausschlag (also Vor- und
Riickschwung zusammen) mit einiger Genauigkeit aus dem Bild gemessen
werden konnte. Bei H = 16 cm war es moglich, auch den Vorschwung fiir
sich allein zu bestimmen. Die gemessenen und gerechneten Bewegungen sind
in Fig. 3.16. dargestellt.

Bei der totalen Bewegung zeigt sich eine qualitativ gute bis sehr gute Uberein-
stimmung im Verlauf der gerechneten und gemessenen Kurven; fiir die Wel-
lenhohe von 12 cm liegt die gemessene Linie zwischen jenen fiir ¢, = 1,0 und
1,5 (entsprechend etwa einem Wert ¢, von 1,2), bei 16 cm hohen Wellen
folgt die gemessene Linie fast genau jener fiir ¢, = 2,0 (entsprechend etwa c,,
= 1,9). Wird nur der Vorschwung betrachtet, so liegt die gemessene Linie
ebenfalls in der Nihe der Kurve fiir ¢, = 2,0 (da die Bewegung des untersten
MeBpunktes, 25 cm iiber Grund, fiir eine genaue Messung zu klein ist, wurde
in der Figur nur der obere Teil der gemessenen Linie eingezeichnet).

Die GroBenordnungen der auf diese Weise ermittelten c ,-Werte liegt also
durchaus im Bereich der Literaturangaben fiir den festen Pfahl. DaB der gro-
Beren Wellenhohe ein hoherer c,,-Wert entspricht, 148t sich nicht ohne weite-
res erkldren. Vermutlich beschreibt die hier anzuwendende, lineare Wellen-
theorie (S. 124 - 130 und 154 - 157) die Bewegung der Wasserteilchen nur un-
zurcichend: Hohe, Linge und Wassertiefe sowie der daraus resultierende
Ursell-Parameter (vgl. S. 123, Gl. 32.85) U = 1,6 bzw. 2,2 verlangen zwar
eindeutig die lineare Theorie (auch eine Nachrechnung mit der Theorie drit-
ter Ordnung ergab kaum Unterschiede), doch die von der Wellenmaschine er-
zeugten Wellen weichen von der in den Theorien vorausgesetzten Form er-
heblich ab, da die Kraftiibertragung vom Motor zur Schaufel (vgl. Fig. 3.45.)
iiber eine Transmission erfolgte, welche besonders bei groBeren Amplituden
etwas Schlupf aufwies. Dadurch wurde die Bewegung unregelmiBig, was zu
Wellen mit relativ hoheren und steileren Wellenbergen und relativ flacheren
und lingeren Wellentilern fiihrte. So war die Eneregie der Wellen zum gro-
Beren Teil im Wellenberg konzentriert. Die Beanspruchung der Stébe erhielt
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h 1,5 2,5
€ =

75 ¢

50 b

.
25 Wellenhthe = 12cm
0 . i—e=Totale
0 5 10 cm
h . - 1,8 B85
A W 2 3
75 F .
50 B +
25 Wellenhdhe = 16 cm
OI L I ] 1 A A A 1
0 5 10 cm

Totale BRewegung

h = Hthe iiber Grund cm
Bewegung
h . = 1,5 2,5
7% T
50 ———
25 Wellenhdhe = 16 cm
0 + A ek 1 A A A A '
0 5 10 cm

Vorschwung

Fig. 3.16. Vergleich von gerechneten und gemessenen Ausschligen eines Kunststoffhal-
mes von 1 cm Durchmesser unter dem Einflul von Wellen mit einer Héhe von 12 cm
(oben) bzw. 16 cm (unten). Totale Bewegung = Vorschwung + Riickschwung.

Gemessen

Gerechnet fiir verschiedene Widerstandskoeffizienten c,,.
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damit einen mehr schlagartigen Charakter, was zu groBeren Ausschligen
fiihrt als eine zwar schwichere, jedoch wihrend ldngerer Zeit wirkende Bela-
stung (wie sie im Modell simuliert wird). Da der Schlupf bei den 16 cm-Wel-
len deutlich stdrker war (dies waren die groften, die sich mit dieser Maschine
iiberhaupt erzeugen lieBen), konnen wir annehmen, da} der c-Wert bei die-
ser Wellenhohe nur scheinbar so hoch ist.

Auch die Nachgiebigkeit der nicht ganz starren Halterung fiir die Stdbe liefl
sich in der Rechnung nicht beriicksichtigen, was sich ebenfalls bei der hoheren
Belastung stédrker auswirkt.

Aus all diesen Griinden schien es gerechtfertigt, fiir Schilfhalme auch mit dem
von vielen Autoren (vgl. BURKHARDT 1967) empfohlenen c -Wert stationir
umstromter Zylinder zu rechnen. Da, wie eingangs dieses Kapitels erwéhnt,
die Reynolds'schen Zahlen in der GroBenordnung von 10 liegen, setzten wir
den Wasserwiderstandsbeiwert

c, = 1,2 (32.45)

w

in die Berechnungen mit dem mathematischen Modell.

Es bleibt noch darauf hinzuweisen, da3 der ¢, -Wert nur eine relativ geringe
Bedeutung hat, denn die Hauptbeanspruchung des Schilfes entsteht nicht durch
die unmittelbare Wellenwirkung, sondern durch das von den Wellen bewegte
Treibzeug. Ubrigens bewirkt eine Erhohung des c,-Wertes bei vorhandenem
Treibzeug nicht unbedingt auch eine verstirkte Belastung: Je nach dem Ver-
hiltnis der Eigenfrequenz des Systems Halm-Treibzeug zur Wellenfrequenz
wirkt ein hoherer Widerstandsbeiwert als Dampfer. Um den Einflufl des Wi-
derstandsbeiwertes auf die Halmbeanspruchung abzuschitzen, berechneten
wir mit dem mathematischen Modell einen praxisnahen Fall eines Schilfstand-
ortes, der einer Windgeschwindigkeit von u; = 7 m/s und einem Treibholz
mit einer Masse von 6 kg pro laufenden Meter Uferlinie unterworfen ist. Es
wurden verschiedene Wellenh6hen zwischen 10 und 30 cm und —perioden
von 1,25 bis 3,3 s untersucht, wobei einmal mit ¢,= 1,2 und einmal mit ¢ =
1,7 gerechnet wurde. Die mittlere Beanspruchung, ausgedriickt als Standard-
abweichung des positiven Biegemomentes am HalmfuB}, unterschied sich um
maximal 7 %, fiir den Maximalwert des Biegemomentes am Halmful} betrug
die groBte Differenz 8 %, wobei die groBere Beanspruchung in diesem Fall
aus dem kleineren c , resultierte. Angesichts des verhéltnismiBig geringen
Einflusses des Wasserwiderstandskoeffizienten c,, auf die Gesamtbeanspru-
chung erschienen umfangreichere Experimente fiir eine exaktere c -Bestim-
mung nicht gerechtfertigt.
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3.2.2. Ermittlung der Wellenkenngrofien

Zum Zwecke der Schiffahrt, zur Dimensionierung von Hafen- und anderen
Kiistenbauten wurden schon friih (seit iiber hundert Jahren) Verfahren ge-
sucht, um die GroéBe der Wellen vorhersagen zu konnen. Da die Wellen durch
den Wind entstehen, suchte man zuerst Beziehungen zwischen der Wellenhche
H und der Windgeschwindigkeit u; (wobei je nach Beobachter die beiden
Ausdriicke auf verschiedene Weise definiert wurden). Einen ebenso bestim-
menden EinfluB haben aber die Streichlinge F (engl.: fetch), die Breite
und Form des Windfeldes (auch Streichfliche genannt) sowie die
Winddauer ¢,,. Unter der Streichlinge versteht man die entgegen der Wind-
richtung gemessene Ausdehnung der Wasserflache vom interessierenden Ort
aus, die Streichfliache ist die vom Wind iiberstrichene Wasserfldche im Luv
des betreffenden Ortes. Die Begrenzung ist meist durch die Kiiste gegeben,
bei sehr groBen Wasserflichen oder mehr lokalen Windereignissen auch
durch die Gebiete mit geringer Windgeschwindigkeit. Bei beschridnkter Brei-
te des Windfeldes muB3 der Wert fiir die Streichlinge entsprechend abgemin-
dert werden. Dies geschieht hier mit dem auch theoretisch begriindeten Ver-
fahren von Li1ANG (1973). Eine dhnliche Methode beschreiben BRUSCHIN und
FALVEY (1975/76).

Eine ausfiihrliche Ubersicht iiber die bekannteren empirischen und halbempi-
rischen Formeln gibt SCHUTTRUMPF (1973). BruscHIN und FALVEY (1975/76)
beschreiben im Hinblick auf den Genfersee eine Methode, welche sowohl mit
der signifikanten oder kennzeichnenden Wellenhdhe H, ;, als auch mit dem
Spektrum nach NEUMANN (1953) arbeitet. In neuerer Zeit wurden auch mathe-
matische Seegangsmodelle zur detaillierten Erfassung der Energieiibertra-
gung zwischen Wind und Wellen entwickelt. Diese liefern fiir jeden Punkt ei-
nes gewihlten Netzes ein nach Richtung differenziertes Energiespektrum des
Wellenganges. Der Gebrauch solcher Modelle ist aber aufwendig, weil ent-
sprechend der Feinheit des Netzes die Windverhiltnisse liber der ganzen Was-
serfliche bekannt sein oder berechnet werden miissen. REsIo und VINCENT
(1978) beschreiben die Anwendung zweier in den USA entwickelter mathe-
matischer Seegangsmodelle auf den Lake Superior.

In den folgenden Kapiteln werden am Beispiel des Versuchsfeldes in Alten-
rhein am Bodensee-Obersee die Verfahren von BRETSCHNEIDER (1957) sowie
von BruscHIN und FALVEY (1975/76) vorgestellt.
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3.2.2.1. Bestimmung der Streichlingen

Wie zu Beginn des Kapitels 3.2.1. bemerkt wurde, breiten sich die durch eine
punktférmige Storung verursachten Wellen kreisformig iiber die Wasserfla-
che aus. In einem bestimmten Punkt A (Fig. 3.17.) treffen deshalb nicht nur
Wellen aus dem Gebiet entlang der Windrichtung (der Streichlidnge), sondern
auch aus den seitlichen Regionen ein. Durch Uberlagerung all dieser Wellen
entsteht schlieBlich der in A beobachtete Wellengang. Deshalb hat gerade bei
den Binnenseen (die in diesem Zusammenhang "kleinfldchig" sind) die Breite
und Form der Streichfliche einen entscheidenden Einfluff auf die zu erwar-
tenden WellengroBen.

v,
p;
166
¢,
9

Fig. 3.17. Definitionsskizze zur Bestimmung der wirksamen Streichlinge fiir den
PunktA.

f; Linge des Richtungsvektors (freie Wasserfliche)

B; = Winkel zwischen der Windrichtung und dem Richtungsvektor

Nach dem Modell von LianG (1973) geschieht die Energieiibertragung vom
Wind auf die Wasserfliche punktweise unabhingig, das heif3t, in jedem Punkt
des Windfeldes entstehen Elementarwellen, die sich kreisformig ausbreiten
(vgl. S. 82f) und sich dabei gegenseitig iiberlagern. Die Rechtfertigung dieser
Annahme sieht LIANG in der Tatsache, da3 durch die stindigen ortlichen und
zeitlichen Schwankungen der lokalen Windbewegung (Turbulenz) nur kurz-
kdammige und iiberall etwas verschiedene Wellen entstehen. Entsprechend
versteht er unter einem "Punkt” eine Fliche deren Ausdehnung etwa einer
Wellenldnge entspricht. Bezogen auf das ganze Windfeld kann eine solche Fli-
che ohne weiteres als Punkt betrachtet werden.

Die Ausbreitung der Elementarwellen geschieht bei wehendem Wind nicht
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gleichmiBig entlang des ganzen Kreisumfanges, denn die Luftstrémung be-
wirkt auf der Luvseite einen Druckanstieg (ap,, ap;; vgl. Fig. 3.18), auf der
Leeseite dagegen einen Druckabfall ("Sog"; ap,, ap,), die sich beide zu einer
Kraft in Richtung des wehenden Windes summieren. Daduch wird der mit
dem Wind laufende Teil der Elementarwelle verstirkt, d.h. diesem wird stédn-
dig neue Energie zugefiihrt, wihrend der gegen den Wind laufende Teil ge-
bremst wird: diesem wird Energie entzogen. Damit wird die durch den Wind
in die Elementarwelle eingebrachte Energie in einen bestimmten Bereich um
die Windrichtung konzentriert. Die Form dieser Konzentration (Verteilung
der Energie lings des Kreisumfangs) findet LiIANG mit folgender Uberlegung:
Da die Energie durch den Luftdruck iibertragen wird, nimmt er an, sie sei
proportional zum Luftdruck verteilt. Der Druck auf eine schief angeblasene
Fldche in Funktion des Winkels f3 ist mit den Bezeichnungen der Fig. 3.19.
gleich

ul Windrichtung

+ Ap3

r

Fig. 3.18. Ausbreitung einer (gedachten) Elementarwelle bei wehendem Wind. Der von
links nach rechts blasende Wind verursacht auf der linken Seite (Luv) eine Druckanstieg
(+4p ), auf der rechten (Lee) einen Druckabfall (-4p ).

C = Fortpflanzungsgeschwindigkeit der Welle

u;, = Windgeschwindigkeit
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P(O) cos
pp = —fﬁ = p() cos’f . (32.46)

cosp

Entsprechend kann fiir die Energie
E@ = E©)cos’B -2 < B +7/2 (32.47)

gesetzt werden, wobei unter £ die innerhalb eines infinitesimalen Kreisseg-
mentes dff enthaltene Wellenenergie zu verstehen ist. Durch Modellversuche
konnte LiaNG diese Richtungsverteilung einigermallen bestitigen. Die Ent-
wicklung seines Ansatzes fiihrte ihn dazu, anstelle der iiblicherweise ge-
brauchten Streichlinge F eine Art Streichfliche FF mit der Dimension
[Ldnge-rad] zu verwenden. Fiir eine konstante Windgeschwindigkeit iiber
dem ganzen Windfeld 146t sich diese Streichfldche als

-2
FF= [f cos?Bdp [km-rad] (32.48)
+7f2
anschreiben. Dabei ist f die Linge der freien Wasserfliche entlang der Rich-
tung B (vgl. Fig. 3.17.). Auch fiir verschiedene Windgeschwindigkeiten y,
und -richtungen tiber einer Wasserfldche 148t sich nach LianG die zugehérige
wirksame Streichflidche berechnen. Dazu mufl man eine Bezugsrichtung (z.B.

Wind
— et
N cosh
dl o a1
po #1 cosB
pB -
cosh

Fig. 3.19. Winddruck auf eine schief angeblasene Fliche.
Po = Staudruck des Windes

Pg = Winddruck auf die Fliche, die mit dem Winkel g auf der Senkrechten zur Windrich-

tung steht
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Bezugsrichtung

(z.8.

Fig. 3.20. Einteilung des Windfeldes in Zonen gleicher Windgeschwindigkeit und —rich-
tung zur Berechnung der wirksamen Streichlidnge nach Gl. (32.49).

Wind

eff unwirksam

Fig. 3.21. Abminderung der Linge eines Richtungsvektors um den unwirksamen Teil bei
Gelédndeneigungen von mehr als 10° am gegeniiberliegenden Ufer.
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die Nordrichtung) auswihlen und den Winkel 8 zwischen dieser Bezugsrich-
tung und dem Richtungsvektor einfiihren (Fig. 3.20.). Bezeichnet man die lau-
fende Koordinate entlang des Richtungsvektors mit r, seine Linge mit f(9),

so wird

70
1
FF o= — éfof ur.6) R(B(r-) dr do (32.49)
mit
fie)
[ [arae
U= 2" (32.50)
B f® '
 Jugreydrde
60
2 <
Rovey = {5 A0D | FaBi g (32.51)

Der Integrationsbereich fiir 8 ist dabei so zu wihlen, daB alle Teile des Wind-
feldes, fiir welche der Winkel B zwischen -nt/2 und +m/2 liegt, beriicksichtigt
werden.

Bei steilen Ufern ist die Lénge f(¢) der entsprechenden Richtungsvektoren
nach einem Vorschlag von BruscHIN und FALVEY (1975/76) gemiB der Fig.
3.21. abzumindern, da der Wind dem Terrain nur bei Neigungen von weniger
als etwa 10° ohne Ablosung folgt.

Fiir die praktische Berechnung werden die Integrale durch entsprechende
Summierungen ersetzt (vgl. das folgende Beispiel).

Beispiel: Windfeld Altenrhein (s. Fig. 3.22.)

Aufgabe: Es werde die Streichfliche FF fiir das Schilfgebiet in Alten-
rhein (bei der Miindung des Alten Rheines in den Bodensee)
bestimmt, und zwar fiir Winde aus W, NW und N, mit kon-
stanter Windgeschwindigkeit auf dem ganzen See.

Vorgehen: ~ Wahl eines Punktes A vor dem Ufer, so dafl die Wassertiefe
ungefihr die Hilfte der zu erwartenden Wellenlidnge betrigt
(Tiefwassergrenze). Unter der (durch die Resultate zu iiber-
priifenden) Annahme einer maximalen Wellenldnge von rund
20 m ist dafiir eine Tiefe von rund 10 m ausreichend, d.h. ein
Abstand von etwa 1 - 2 km vom Ufer.
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AnschlieBend wird das Winkelinkrement af fiir die Summie-
rung (willkiirlich) gewdhlt: a8 = 5° =0,0873 [rad]. Nun
konnen die Richtungsvektoren in die Karte gezeichnet und
herausgemessen werden. Die Auswertung geschieht am besten
in einer Tabelle (Tab.3.2.).

Bemerkung: Fiir keine der gewéhlten Windrichtungen wird mit den ange-
gebenen Richtungsvektoren der ganze Bereich 5 = —t/2 bis
+7t/2 abgedeckt, die Begrenzung wird hier durch den Verlauf
des Ufers bestimmt.

Friedrichshafen

Fig. 3.22. Richtungsvektoren zur Berechnung der Streichlidnge fiir das Versuchsfeld Al-
tenrhein. Bezugsrichtung ist Nord, d.h. der Winkel §; ist gleich dem Azimut des Richtungs-
vektors 1.
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Tab. 3.2. Richtungsvektoren fiir das Windfeld vor dem Versuchsfeld in Altenrhein.

Nr. Richtung |f BL°] fiir Wind aus:
6[°] [km] | W NW [N

1 -147,5 | 2,8 | 575

2 -142,5 | 3,1 | 525

3 -137,5 | 3,4 | 415

4 132,5 | 3,9 | 425 |875

5 1275 | 4,3 | 375 |825

6 -122,5 | 4,7 | 32,5 |77.5

7 1175 | 51 | 27,5 |725

8 -112,5 | 53 | 22,5 | 67,5

9 -107,5 | 5.2 | 17,5 | 625

10 1025 | 5.5 | 12,8 |57.8

11 975 | 60 | 7,5 |525

12 925 | 7,1 | 2,5 |475

13 -87,5 | 81 | 2,5 |42,5 | 875
14 -825 | 79 | 7.5 |37.5 | 825
15 77,5 | 9.2 | 125 32,5 | 77.5
16 72,5 | 10,7 | 17,5 |27,5 | 72,5
17 67,5 | 12,9 | 22,5 [225 | 67,5
18 -62,5 | 13,9 | 27,5 |17,5 | 62,5
19 -57,5 | 31,8 | 32,5 |12,5 | 57,5
20 -52,5 |354 | 3715 | 1,5 | 52,5
21 -47,5 | 41,9 | 425 | 2,5 | 475
22 42,5 239 | 47,5 | 2,5 | 425
23 37,5 | 22,2 | 522 | 71,5 | 315
24 -32,5 | 21,4 | 57,5 |12,5 | 325
25 27,5 | 19,0 | 62,5 |17,5 | 21,5
26 22,5 | 174 | 67,5 |22,5 | 225
27 -17,5 | 17,1 | 72,5 |27.5 | 11,5
28 -12,5 | 157 | 77,5 32,5 | 125
29 7,5 | 11,2 | 82,5 |37,5 | 7.5
30 2,5 | 10,4 | 87,5 |42,5 | 25
31 +2,5 | 9,6 47,5 | 2.5
32 +7,5 | 9.5 525 | 7.5
33 +12,5 | 9,6 57,5 | 12,5
34 +17,5 | 10,0 62,5 | 17,5
35 +22,5 | 10,4 67,5 | 22,5
36 +27,5 | 9,6 72,5 | 27,5
37 +32,5 | 9,3 77,5 | 32,5

37
_Z;ficoszﬂi = 201,55 315,08| 231,92

Mit Af = 5°= 0,0873 wird
7
FF = Xfcos?gaB = 17,6 27,5 202  [kmerad]
i=1

W-Wind NW-Wind N-Wind (32.52)
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3.2.2.2. Berechnung der Kenngrofien

3.2.2.2.1. Im Tiefwasser

Aus eigenen und fremden MeBreihen entwickelte BRETSCHNEIDER in mehreren
Ansitzen (vgl. SCHUTTRUMPF 1973) Diagramme mit Beziehungen zwischen
Wellenhthe, Windgeschwindigkeit und Streichlidnge. Auf den neuesten Stand-
gebracht und fiir den praktischen Gebrauch veréffentlicht wurden sie (u.a.)
im Handbuch des U.S. ARMY COASTAL ENGINEERING RESEARCH CENTER (1966).
Fiir den Bereich

10 < £°7 <104 (32.53)

lassen sich die Funktionen von BRETSCHNEIDER (1957) durch folgende dimen-
sionslose Gleichungen annihern:

H
£7I8 - 0,0024(2— £FF yie (32.54)
% uf
T FF
¢ =L g ,092( g ) 172 (32.55)
u? 27y up
mit g ... Erdbeschleunigung = 9,81 m/s2

FF ... Steichlinge nach LIANG (1973) [m]
u; ... Windgschwindigkeit [m/s]
H,; ... Signifikante Wellenhohe (s. S. 90) [m]
Ty,3 ... Signifikante Wellenperiode (s. S. 90) [s]
C ... Fortpflanzungsgeschwindigkeit der signifikanten Welle im Tief-
wasser [m/s]

Den in (32.53) gegebenen Giiltigkeitsgrenzen entsprechen fiir Windgeschwin-
digkeiten von 3 m/s (= 11 km/h = Windstirke 2, "leichte Brise") bzw. 30 m/s
(= 108 km/h = Windstérke 11, "orkanartiger Sturm") Streichlidngen von

2

FF = (10+ 104)-;‘—’ 32.56)

9,17 +9174 m rd. 10 m bis 10 km (u, = 3 m/s)
917 +917'430 m  rd. 1 km bis 1000 km (u, = 30 m/s)

Mit diesen Groflen werden die bei den schweizerischen Binnenseen anzutref-
fenden Verhiltnisse in genligendem MaBe abgedeckt; eigentliche Kleingewis-
ser mit ihren speziellen Problemen sind nicht Gegenstand dieser Arbeit.
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Aus (32.55) leitete BRETSCHNEIDER (1952) einen Ausdruck her fiir jene Min-
destwinddauer, die zur Ausbildung der nach (32.54) berechneten Wellen not-
wendig ist:

FF FF FF
f dFF f dFF 4r dFF )
t, = =2 = — [s] (32.57
e ¢ C, s C 8¢ Thus
C g Gruppengeschwindigkeit der Wellen = Geschwindigkeit, mit der

sich eine Gruppe nicht ganz gleichlanger Wellen fortpflanzt = C/2
bei flachen Tiefwasserwellen [m/s] (Zur Beziehung zwischen der
Fortpflanzungsgeschwindigkeit C der Wellen und ihrer Periode T
s. Kap. 3.2.3.

t, ... Mindestwinddauer zur Ausbildung der nach (32.54) berechneten
Wellen [s]

Wird T}, ; mit dem aus (32.55) gewonnenen Ausdruck (32.61) in diese Glei-
chung eingesetzt, so wird

FF

2 f dFF 8 FF3# "
t = = S
w 0,092 (g u12)1/4 o FFV4 0,276 (g ul2)1/4
(32.58)
oder, als Verhiltnis auf FF bezogen
£ 0,0345 Vg u? FF) [m/s] (32.59)

w

Mit der Auflosung der Gleichungen (32.54) und (32.55) nach H,;bzw. Ty,
konnen die notwendigen Formeln zur Berechnung der benétigten Wellenkenn-

groBBen aus Windgeschwindigkeit, Streichlinge und Winddauer zusammenge-
stellt werden:

2
Hy = 0,0024V[2 kil [m] (32.60)
2
Tyys = 0,578 V[u’gF] [s] (32.61)
FE 00345V u2FF) (m/s] (32.59)

Diese Gleichungen sind dimensionsrein und kdnnen deshalb mit jedem konsi-
stenten Maf3system gebraucht werden.
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Fiir die Streichldnge FF kann der nach LiaNG (1973) berechnete Wert unter
Vernachlidssigung der Winkeldimension eingesetzt werden, wenn bei dessen
Berechnung die Winkel im BogenmaB [rad] eingesetzt worden sind.

Die Windgeschwindigkeit »; in den Bretschneider-Gleichungen bezieht sich
auf eine Hohe von 10 m iiber dem Wasserspiegel, wihrend bei neueren
ozeanographischen Untersuchungen iiblicherweise die Windgeschwindigkeit
19,5 m iiber der Wasseroberfliche gemessen wird.

Zur Umrechnung der Windgeschwindigkeiten auf eine andere Hohe benut-
zen BruUscHIN und FALVEY (1975/76) das Fliegesetz fiir eine turbulente
Strémung entlang einer festen Wand. Der Strémungsvorgang ist "hydrau-
lisch rauh"”, d.h. die laminare Unterschicht ist sehr diinn im Vergleich zu
den Unebenheiten der Fliche (=Wellen). Dann gilt folgende Geschwindig-
keitsverteilung in Abhéngigkeit von der Hohe (Niheres s. z.B. PRANDTL
1956 oder SCHLICHTING 1968):

u, = 2,5 u.In(®/z,) [m/s] (32.62)

u, ... Windgeschwindigkeit in der Hohe z iiber dem Wasserspiegel [m/s]
U, ... Schubspannungsgeschwindigkeit [m/s] = \/(folp,)
T, ... Schubspannung in der Grenzschicht [N/m?] bzw. [kg/(m s2)]
p; ... Dichteder Luft [kg/m’]
z ... Hohe liber der Wasseroberfldche [m]
zy ... Integrationskonstante (=Bezugshohe) [m]

Fiir die Integrationskonstante gibt CHARNOK (1955; zit. in BRUSCHIN und FAL-
VEY 1975/76) folgenden Ausdruck:

u,..z
z, = 0,011 7 [m] (32.63
Gleichung (32.63) in (32.62) eingesetzt liefert
z8
u, = 25uln (———) [m/s] (32.64)

0,011 u,2

Die Schubspannungsgeschwindigkeit u, ist proportional zu u_, d.h. zu der
von der Grenzfldche unbeeinfluten Windgeschwindigkeit. Da u_, aus einer
terrestrischen Messung nicht bekannt ist, mul} u. fiir die in der Hohe z ge-
messene Geschwindigkeit aus (32.64) bestimmt werden. Fiir z = 10 m er-
hilt man dann

10 m-
U = 2,5 s In ( 2

O_,Om [m/s] (32.65)
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Da (32.65) nicht explizite nach u, aufgeldst werden kann, rechnet man die
Werte am besten mit dem Nomogramm in der Figur 3.23. um, wo das Ver-
héltnis u,/u,, in Funktion der Hohe fiir verschiedene Windgeschwindigkei-
ten u,, herausgelesen werden kann. Auch so ist allerdings ein iteratives Vor-
gehen notig, da u, fiir die Wahl der richtigen Kurve in Fig. 3.2.2.7. zuerst
geschitzt werden muf.
In der Literatur wird auch eine einfache Potenzfunktion fiir das Verhiltnis
u,lu,, angegeben:
B0 _ (Z0y (32.66)
u, z
z,9 --- Referenzhdhe =10 m

Fiir den Exponenten »n finden sich in SCHUTTRUMPF (1973) Angaben von n =
1/4 fiir z < 15 m und n = 1/5 fiir z > 15 m. Fiir Stationen auf dem Land emp-
fehlen REs1o und VINCENT (1978) n = 1/7. Zum Vergleich sind auch diese
Kurven in Fig. 3.2.2.7. eingezeichnet. In der letztgenannten Arbeit sowie in
BruscHIN und FALVEY (1975/76) werden Methoden zur Ubertragung von
MeBwerten terrestrischer Stationen auf die Verhidltisse iiber einem See be-
schrieben.

Zum praktischen Gebrauch lassen sich die Bestimmungsgleichungen
(32.59) bis (32.61) der Wellenkenngroflen fiir das metrische System ver-
einfachen. Da sie dann nicht mehr dimensionsrein sind, miien die Windge-
schwindigkeit u; in m/s bzw. km/h, die Streichldnge FF in km, die Mindest-
winddauer ¢, in h, die Wellenhthe H,; in m und die Wellenperiode T, ; in
s eingesetzt werden:

H ;m] = 00242 v u; [m/s]? FF[km])
0,00673 V( i, [knvh]? FF[ke]) (32.67)

Tyysls] = 0,0586 V{ wfm/s? FF{kmi)
0,309 V( wkeh? FFml) = 3,77VH 5 [m]  (32.68)

i

FF
7 [km/h]

w

1,236 V( u[mys]? FFkm])

r
— [km/h]

tW

4 4
0,651 wlkm/h)? FF(km]) = 7,94 VH 13 [ml = 2,11 Ty s
(32.69)
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Fig. 3.23. Nomogramm zur Umrechnung von gemessenen Windgeschwindigkeiten auf
eine andere Hohe iiber Grund: Relative Windgeschwindigkeitsprofile, bezogen auf u,,in
der Hohe 10 m iiber Grund; Kurvenparameter = 4, (nach Gleichung 32.65).

Ebenfalls eingezeichnet sind Kurven des Potenzgesetzes (32.66) mit den im Text erwihnten
Exponenten.

———-n=1/4(z<15m),bzw. n=1/5(z> 15m)

. ST n= 1 /7
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Da die Wellenhohe sowohl durch die Streichlinge, als auch durch die Wind-
dauer begrenzt sein kann, muf3 zuerst mit Hilfe von Gleichung (32.59) bzw.
(32.69) das Verhiltnis dieser beiden GroBen fiir die gewihlte Windgeschwin-
digkeit berechnet werden. Ist die gegebene Winddauer kleiner als der nach
(32.69) berechnete Wert ¢,,, so muB} die Streichldnge entsprechend reduziert
werden. Dazu wird (32.59) bzw. (32.69) nach FF aufgelost:

FF' = 00112V g uft,?) (32.70)

bzw.

FF'[km] 1,327 um/s)? £ [h]4) = 0,565 4 u[ke/h]2e, [h]%)

(32.71)
(Kontrolle: Die so errechnete Streichlinge muB kleiner als die nach Kap.
3.2.2.1. auf Grund der Topographie bestimmte sein.)

BruscHIN und FALVEY (1975/76) schlagen fiir Windgeschwindigkeiten von 10
bis 40 m/s die folgenden Formeln zur Berechnung der Wellenkenngrofen
vor:
Hypml = (3,110% wim/sP + 0,016 um/s]) VF Flkem)
= (2,4-10° wkm/m]2 + 0,0044 ufkeh]) VFF(km]  (32.72)

by U 8 FF 0262
=35(—)" 32.73
= ( 7 ) (32.73)
Die zur Erzeugung des obigen Wellenganges notwendige Mindestwinddauer
kann aus (32.73) berechnet werden:

g-0,262 FF 0,738

= 35" o [s] (32.74)

Fiir ¢, in h, FF in km und u; in m/s bzw. km/h wird

FF[krn]O'738 FF[kIn]O,'BS
t [h] = 0,875 ———— = 1,61 32.75
w[ ] u,[m/S]O'“G ul[l(In/h]O'476 ( )

Gleichung (32.73), die im Gegensatz zu (32.72) dimensionsrein ist, kann
ebenfalls nach FF aufgelst werden:

FF’ = 0,00809 ¢, 1:335.440:645.90.355 | [m] (32.76)
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fir ¢, inh, FF in km und &, in m/s bzw. km/h:

FF'km] = 1,198 ¢, [h]'3%5.4[m/s]0645 = 0,525 £, [h]!:355.34[m/s]0.645

(32.77)
Die Ausdriicke in diesen Gleichungen sind die gleichen wie in den Bretschnei-
der-Formeln. Auch hier bezieht sich u; auf die 10 m iiber dem Wasserspiegel
gemessene Windgeschwindigkeit. Man beachte, da BRuscHIN und FALVEY kei-
ne Formel zur direkten Bestimmung von Ty, ; geben, da diese GroBe in ih-
rem Verfahren nicht gebraucht wird. Bevor der weitere Berechnungsgang
dargestellt wird, folge zuerst die Anwendung der gezeigten Gleichungen auf
das Beispiel des Versuchsgebietes Altenrhein.

Beispiel: Windfeld Altenrhein

Fiir den im vorigen Abschnitt gewihlten Punkt vor dem Schilffeld in Altenrhein am Boden-
see sollen die kennzeichnenden WellengroBen H, ;3 und T}, 5 (= signifikante WellenhShe
und —periode) bestimmt werden, und zwar a) fiir Wind aus NW mit einer Geschwindigkeit
von u; = 7,8 m/s (1 m liber dem Wasserspiegel) wihrend 1 1/2 h und b) fiir einen Sturm-
wind aus W mit u,, = 75 km/h (10 m iiber dem Wasserspiegel) von 7, = 2 h Dauer.

a) Fiir Wind aus NW betriigt nach (32.52) die wirksame topographische Streichlinge
EE = 27.5km (s.S.112).

Da die Windgeschwindigkeit 1 m liber der Wasserfliche gemessen wurde, muB uq mit
Hilfe der Fig. 3.23. berechnet werden:
Schitzung: u,, = 10 m/s

ufu g = 0,795 Ujp= L

0,795

Die Schiitzung war also geniigend genau, und es kann fiir die Windgeschwindigkeit der
Wert

= 9,8 m/s = 10 m/s

L{l = 9,8 m[§
eingesetzt werden.
Die Bretschneider-Gleichungen fiihren zu folgenden Resultaten:

(32.67): Hys = 0,0242-v(9,82:27,5) = 1,24m
(32.68): Ty = 3,77-V1,24 = 4,20
(32.69):  FFI1, = 2,11-4,20 = 8,87 km/
Daraus t, = 21,5887 = 3,10h>1122h

w

Die Wellenhohe wird also durch die Winddauer und nicht durch die (topographische)
Streichldnge begrenzt. Die einer Dauer von 1 1/2 h entsprechende, effektiv wirksame
Streichldnge FF' wird nach (32.71) berechnet:

FF' = 1,327 3(9,82.1,5% = 104 km
Hohe und Periode der signifikanten Welle werden damit:
(32.67): H,s = 0,0242-v(9,8%10,4) = 077m
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(32.68): Lys = 3,77-0,77 = 3305

Die dazu gehorige (Tiefwasser-)Wellenlidnge betrdgt (vgl. folgenden Abschnitt, S. 128,

GL. 32.90): \ ,
£ T 9,81.3,3

Lip = 2n - 2n - =
Mit den Formeln von BRUSCHIN und FALVEY (1975/76) erhalten wir:
R Hys = (3,1:10%9,82 + 0,016:9,8)V27,5 = 0,98 m
27,50,738

Wie zu erwarten, ist auch beim Gebrauch der Gleichungen von BRUSCHIN und FALVEY
der Seegang durch die Winddauer bestimmt, und es muf die effektiv wirksame Streich-
lange FF' nach (32.77) ermittelt werden:

(32.77): FE' = 1,198-1,51:355.9 80,645 = 9,1km
Die Hohe H, , der signifikanten Welle wird somit
(32.72): His = (3,1:10%9,82 + 0,016:9,8)-¥9,1 = 056 m

b) Fiir Wind aus W betriigt nach (32.52) die wirksame topographische Streichlinge
EF = 17,6 km (s.S.112).

Die Bretschneider-Gleichungen fiihren zu folgenden Resultaten (u; = u,, =75 km/h,
ty, =2h)

(32.67): H,, = 0,00673-U75%17,6) = 212m

(32.68): Tpys = 3,77-V2,12 = 55s
(32.69): FF/t,, =2,11-5,5 = 11,6 km
Daraus L, =17,6/11,6 = 15h<2h

In diesem Fall sind die KenngroBen durch die Streichlidnge und nicht durch die Wind-
dauer begrenzt, es kann also mit den obigen Werten gerechnet werden.
Die dazu gehorige (Tiefwasser-)Wellenlidnge betrigt (vgl. folgendes Kapitel, S.124f):

g T2 9,81.5,52

Ly = T = T = 472m
Die Formeln von BRUSCHIN und FALVEY (1975/76) liefern:
(32.72): Hys = (2,4-105.752 + 0,0044.75)V17,6 =195m
17.69.738
(32.75) by = L6l — e = 1L7h<2h

Auch hier ist die Streichlinge die maBgebliche Begrenzung, die obigen Werte kénnen
unmittelbar verwendet werden.

Nach BRUSCHIN und FALVEY (1975/76) sind die zu erwartenden Tiefwasserwellen um
rund 20 cm weniger hoch als nach den Bretschneider-Gleichungen, was im ersten Bei-
spiel einer Abweichung iiber 30% entspricht. In dieser Abweichung spiegeln sich die
Ungenauigkeiten wie sie bei halbempirischen Formeln immer zu erwarten sind. SchlieB-
lich ist zu bedenken, daBl diese Formeln nach Messungen auf dem Meer entstanden sind,
wo alle Abmessungen wesentlich groBer sind, wir befinden uns deshalb hier am unteren
Rand des Giiltigkeitsbereiches, besonders im Beispiel a), wo die effektiv wirksame
Streichldnge nur 9,1 km betrégt.
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3.2.2.2.2. Im Ubergangsbereich und Flachwasser

Liuft eine Welle aus tiefem Wasser in einen flacheren Bereich, so veridndert
sich ihre Form (Lange, Hohe), dagegen bleibt ihre Periode von der Wassertie-
fe unbeeinfluBt. Als Folge davon dndert sich auch die Richtung der Wellenk-
dimme (Beugung = Refraktion): sie verlaufen mit abnehmender Wassertiefe
mehr und mehr parallel zur Uferlinie (genauer gesagt: zu den Hohenkurven
der Uferbank). Ferner wird ab einer gewissen Steilheit des Ufers ein Teil der
Wellenenergie in Form einer vom Ufer weglaufenden Welle reflektiert (Re-
flexion), was bei rechtwinklig auf das Ufer laufendenen Wellen zur Bildung
von sogenannten stehenden Wellen (Bildung von Schwingungsknoten mit
sehr kleiner und von —bduchen mit sehr groBer Auf- und Abbewegung des
Wasserspiegels) fiihren kann. Da das Huygens-Fresnel'sche Prinzip der Wel-
lenausbreitung auch fiir Wasserwellen gilt, gehorchen Refraktion und Refle-
xion den daraus abgeleiteten, aus der Optik bekannten Gesetzen. Dabei ent-
spricht die von der Wassertiefe d abhingige Wellenfortpflanzungsge-
schwindigkeit C dem optischen Brechungsindex eines Mediums.

Im folgenden werden zuerst die Verhiltnisse bei einer senkrecht auf das Ufer
zu laufenden Welle beschrieben, danach folgen einige Bemerkungen zu Re-
fraktion und Reflexion.

1. Verinderung der WellenkenngrofSen beim Einlaufen in Flach-
wasser. Die Abhingigkeit der Wellenkenngro8en von der Wassertiefe ist eng
verkniipft mit der durch die Welle verursachten Bewegung der Wasserteil-
chen (die in Kapitel 3.2.3. behandelt wird). Seit dem letzten Jahrhundert wer-
den Wellen theoretisch untersucht. Allen daraus resultierenden Theorien ist
gemeinsam, daB} idealisierende Annahmen zu Grunde gelegt werden miissen:
Die einzelnen Wellen eines Wellenzuges sind periodisch (d.h. an einem be-
stimmten Ort verdndern sie ihren Charakter wihrend eines bestimmten Zeit-
abschnittes nicht) und langkdmmig. Aus der zweiten Annahme folgt, da3
sich alle Bewegungen der Wasserteilchen nur innerhalb der durch die Fort-
pflanzungsrichtung der Wellen und durch das Lot definierten (x,z)-Ebene
abspielen.

Die verschiedenen Theorien unterscheiden sich in den weiteren notwendigen
Annahmen und dem Grad der Approximation (Ordnung) bei der Reihenent-
wicklung der zu 16senden Gleichungen. Sie werden meist nach der resultie-
renden Form der Wasseroberfliche oder nach ihrem Autor benannt. Die be-
kanntesten und am hiufigsten gebrauchten sind:
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- Sinusoidale Theorie erster Ordnung nach Airy-Laplace, auch lineare
Theorie genannt.

- Sinusoidale Theorie hoherer Ordnung nach Stokes-Struik (vgl. STRUIK
1926), vor allem gebraucht werden die Approximationen zweiter und drit-
ter Ordnung (Stokes II und III).

- Cnoidale Theorie nach Korteveg und de Vries oder nach Keulegan und

Patterson.

Diese Theorie hat ihren Namen von der Jakobi'schen elliptischen Funktion cn(a,k?).
o ist das Argument k% der Modulus. Diese Funktion ist wie folgt definiert: Gilt fiir das
Argument o

@
de
= 32.7
= of V1 - k2 sinZe) (32.78)
dann ist
cn(a,k?) = cosp (32.79)

AuBer dieser, die Wasseroberfliche beschreibenden Funktion kommen in der cnoidalen
Theorie auch noch die Funktionen

sn(a,k?) = sing (32.80)
und

dn(a,k?) = W1 -k? sinZp) (32.79)
vOr.
Auch hier existieren Approximationen htherer Ordnung.

- Einzelwellentheorie nach McCowan oder Boussinesq. Die Einzelwellen-
theorie ist der Grenzfall der cnoidalen Theorie fiir Wellen mit unendlich
groBer Periode und Léinge. Im sehr flachen Bereich kann sie als gute Nihe-
rung auch fiir Wellen mit endlicher Periode gebraucht werden, besonders
fiir solche im letzten Stadium unmittelbar vor dem Brechen.

DieTzE (1964) umschreibt die Giiltigkeitsbereiche der von ihm aufgefiihrten

Theorien folgendermaBen:

- Wellen mit "kleiner" (streng genommen: mit unendlich kleiner) Amplitude
werden durch die lineare Theorie nach Airy zutreffend beschrieben. Sie
kann als gute Ndherung auch fiir Wellen mit "endlicher Amplitude” (finite
amplitude waves) gebraucht werden, wenn die Wellenhthe verglichen mit
Wassertiefe und Wellenldnge klein ist.

- Fiir Wellen mit endlicher Amplitude im Tiefwasser- und Ubergangsbe-
reich gilt die Theorie dritter Ordnung nach Stokes-Struik ( Stokes III).

- Auf Wellen mit endlicher Amplitude im Flachwasser kann die Einzelwel-
lentheorie nach McCowan angewandt werden.

- Zur Abgrenzung von Tiefwasser- Ubergangs- und Flachwasserbereich ist
das Verhiltnis von Wassertiefe d zur (lokalen) Wellenldnge L maf3gebend
(s. S. 84):
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Tiefwasser: d/L > 0,5 (32.82)
Ubergangsbereich: 0,04 < d/L <0,5 (32.83)
Flachwasserbereich: d/L < 0,04. (32.84)

Wird die Wassertiefe auf die nur von der Periode abhingige Tiefwasser-
wellenlidnge L, bezogen, so liegen die beiden Grenzen bei 0,5 bzw. 0,01.
Damit umgeht DieTzE die Anwendung der cnoidalen Theorie, die wegen ihrer
mathematisch anspruchsvollen Form (elliptische Integrale und Funktionen) in
der Praxis nicht einfach zu handhaben ist. Der Giiltigkeitsbereich der cnoida-
len Theorie liegt auf der flachen Seite des Ubergangsbereichs, d.h. sie vermit-
telt den Ubergang von der Stokes'schen Theorie dritter Ordnung zur Einzel-

wellentheorie.
Mit Hilfe des dimensionslosen Ursell-Stokes'schen Parameters U, definiert
als
H L2
d3
schlagen SKOVGAARD et al. (1974) und Huger (1976) folgende Abgrenzungen
im Ubergangs- und Flachwasserbereich vor:
Theorie erster Ordnung (Airy): U <15 (32.86)
Theorie dritter Ordnung ( Stokes II) U >15 und d/L, 20,1 (32.87)
d.h. dIL >=0,14
Cnoidale Theorie ' U >15 und d/L, <0,1 (32.88)

U = " [-] (32.85)

Mehr oder weniger ausfiihrliche Darstellungen der obigen Theorien finden
sich in den eingangs dieses Kapitels (S. 81) angegebenen Lehrbiichern. Die
vollstindigste Ubersicht vermittelt WIEGEL (1964) fiir die sinusoidalen Theo-
rien erster bis dritter Ordnung, die cnoidale Theorie und die Einzelwellen-
theorie. Die Anwendung wird durch zahlreiche Nomogramme erleichtert.
Auf knappstem Raum iibersichtlich zusammengestellt sind die notwendigen
Formeln fiir die lineare Theorie, fiir STokES III und fiir die Einzelwellentheo-
rie nach McCowan in DIeTZE (1964). In breiterem Rahmen und mit Herleitun-
gen behandeln Press und SCHRODER (1966) dieselben Theorien. Ubersichtli-
che Tabellen zur Bestimmung der wesentlichen Gré8en nach der linearen und
der cnoidalen Theorie samt kurzer, rezeptartiger Anleitung und Zusammen-
stellung der wichtigsten Formeln haben SKOVGAARD et al. (1974) herausgege-
ben. Zur Theorie STOKES III ist noch zu bemerken, da3 ihre Formeln je nach
Autor zum Teil in abweichender Form gebracht werden: "Die meisten der in
der Literatur angegebenen Beziehungsgleichungen fiir die WellenkenngréBen
der Theorie 3. Ordnung enthalten Unstimmigkeiten, auf die Chappelear in [8]
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hingewiesen hat.” (DIETzE 1964; [8] ist der Hinweis auf das Literaturzitat
CHAPPELEAR und BorRGMAN 1958). Nach der Erfahrung mit eigenen Berech-
nungen scheinen die von DIETZE (1964) und nach ihm von PrREss und SCHRODER
(1966) mitgeteilten Formeln fiir die Theorie dritter Ordnung (auf CHAPPE-
LEAR und BorGMAN 1958 zuriickgehend) bessere Resultate zu liefern als jene in
WIEGEL (1964).

Im Rahmen der vorliegenden Arbeit beschrinken wir uns auf den Gebrauch
der sinusoidalen Theorien erster und dritter Ordnung (Airy und Stokes III),
denn die hier interessierenden Vorginge in der Seeufervegetation spielen sich

vorwiegend im Ubergangsbereich ab.
Die Abgrenzungen nach SKOVGAARD et al. (1974) fiir Stokes III entsprechen z.B. bei einer
Wassertiefe von 1 m Wellenldngen von 2 m (d/L = 0,5) bis 7 m (d/L = 0,14).

Wenn auch in einzelnen Fillen Flachwasserverhiltnisse vorkommen konnen,
so erschien der Verzicht auf die cnoidale Theorie vertretbar fiir das mathema-
tische Modell eines dynamischen Vorgangs, wo die Funktionen bei jedem Re-
chenschritt neu berechnet werden miissen. Auflerdem handelt es sich nie um
extreme Flachwasserverhiltnisse, und die Resultate nach Stokes III fiir die Be-
wegung der Wasserteilchen sind eher zu groB, liegen also "auf der sicheren
Seite". Ferner ist zu bedenken, daB in der Natur nie die den Theorien zugrun-
de liegenden Wellen konstanter Periode und Hohe vorkommen, sondern stets
eine Uberlagerung zahlreicher Wellenziige verschiedenster GroBe, oft auch
mit verschiedener Fortpflanzungsrichtung. Die weiter unten zu besprechende
Anwendung des Wellenspektrums im Verfahren von BRUSCHIN und FALVEY
zur Berechnung des Wellenganges in Ufernéhe basiert auf der linearen Theo-
rie (Airy), denn die spektrale Darstellung falt ja die vorhandenen Wellen als
Uberlagerung sehr vieler, sehr flacher sinusformiger Komponenten auf,

In den folgenden Ausfiihrungen bezieht sich der Index , immer auf die Ver-
hiltnisse im Tiefwasser.

a) Lineare Theorie (Airy). Die von der Wassertiefe abhiingige Wellen-
ldnge erfiillt folgende Gleichung:
gT?
27

E = tanh(zniL) [m] (32.89)

Im Tiefwasser (d/L = 0,5) wird der Wert des hyperbolischen Tangens unge-
fahr gleich 1:

=1
tanh 3,14159...

T2 gT 2
tanh(2m-0,5) = T

g
L°=2n
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TZ
Ly = 5= [m] (32.90)

Im Tiefwasser ist also die Wellenlénge nur von der Periode T abhéngig. Im
metrischen System kann (32.90) fiir die numerische Rechnung vereinfacht
werden:

Lom] = 1,56 T(s)? (32.91)

Im Flachwasser (d/L < 0,04 = 1/25) wird der Wert des hyperbolischen Tan-
gens ungefihr gleich dem Argument, d.h.

gT? d
I = 2m e 32.92
27 T L ( )
Durch Kiirzen mit 27t und Auflosen nach L wird daraus
L = TVgd [m] (32.93)

Fiir den Tief- und Flachwasserbereich kann man somit die Wellenlinge L

einfach aus der Periode T und der Wassertiefe d nach (32.90) bzw. (32.93)

berechnen. Fiir den allgemeinen Fall (Ubergangsbereich) ist dies nicht mog-

lich, da sich (32.89) nicht nach L auflésen 146t. Durch Einsetzen von (32.90)

in (32.89) erhilt man nach entsprechender Umformung:

% = L tanh(2n ) [m] (32.94)

Daraus ist ersichtlich, dafl d/L eine eindeutige Funktion von d/L, ist, wel-

che sich als Tabelle (Tab. 3.3.) oder graphisch (Fig. 3.25.) darstellen 148t.

Praktisch geht man bei der Berechnung der Wellenlidnge wie folgt vor:

— Berechnung von L, aus (32.90) und daraus d/L,

— Ist d/L, 2 0,5 oder d/L < 0,01, wird L nach (32.90) bzw. (32.93) be-
rechnet. In den iibrigen Fillen Herauslesen von d/L aus der Tabelle 3.3.,
daraus Berechnung von L.

— Berechnung von U= H-L%d 3 (32.85). Ist U > 15, so ist die lineare Theo-
rie nicht anwendbar (Rechnung mit Stokes III oder der cnoidalen Theorie).

Fiir die Wellenfortpflanzungsgeschwindigkeit C gilt allgemein:
C =L/T , [m/s] (32.95)
was fiir den Tiefwasserbereich zu

R i 27
C =5 == [mys] (32.96)

und fiir den Flachwasserbereich zu
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Tab. 3.3. Funktionswerte zur Berechnung der Wellenparameter in Abhéngigkeit von der
Wassertiefe nach der linearen (sinusoidalen) Theorie. Nach SKOVGAARD et al. (1974).

d 2nd d 2nd .. 2nd 2rd H
L, tanh i3 I 7 sinh cosh I G ,
0,000 0,000 0,0000 | 0,000 0,000 1,00 1,000 oo
002 112 0179 112 113 01 0,992 | 2,12
004 158 0253 159 160 01 983 | 1,79
006 193 0311 195 197 02 975 62
008 222 0360 226 228 03 967 51
0,010 0,248 0,0403 | 0,253 0,256 1,03 0,958 | 1,43
015 302 0496 312 317 05 938 31
020 347 0576 362 370 07 018 23
025 386 0648 407 418 08 898 17
0,030 0420 0,0713 | 0,448 0,463 1,10 0878 | 1,13
035 452 0775 487 506 12 858 09
040 480 0833 523 548 14 838 06
045 507 0888 558 588 16 819 04
0,050 0,531 0,0942 | 0,592 0,627 1,18 0,800 | 1,02
055 554 0993 624 665 20 781 | 1,01
060 575 104 655 703 22 762 | 0,993
065 595 109 686 741 24 744 981
070 614 114 716 779 27 725 971
0,075 0,632 0,119 0,745 0,816 1,29 0,707 | 0,962
080 649 123 774 854 31 690 955
085 665 128 803 892 34 672 948
090 681 132 831 929 37 655 042
095 695 137 858 0,968 39 637 937
0,10 0,709 0,141 0,886 1,01 1,42 0,620 | 0,933
11 735 150 940 08 48 587 926
12 759 158 0,994 17 54 555 920
13 780 167 1,05 25 60 524 917
14 800 175 10 33 67 494 915
0,15 0,818 0,183 1,15 1,42 1,74 0,465 | 0,913
16 835 192 20 52 82 437 913
17 850 200 26 61 90 410 913
18 864 208 31 72 1,99 384 914
19 877 217 36 82 2,08 359 916
0,20 0,888 0,225 1,41 1,94 2,18 0,335 | 0,918
21 899 234 47 2,05 28 313 920
22 909 242 52 18 40 291 923
23 918 251 57 31 52 271 926
24 926 259 63 45 65 251 929
0,25 0,933 0,268 1,68 2,60 2,78 0,233 | 0,932
26 940 277 74 75 2,93 215 936
27 945 285 79 2,92 3,09 199 939
28 952 294 85 3,10 25 183 942
29 957 303 90 28 43 169 946
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Tab. 3.3. (Fortsetzung)

d 2nd d 2nd ., 2nd 2nd H
1: tanh i3 I T sinh i3 cosh T G Fo
0,30 0,961 0,312 1,96 3,48 3,62 0,155 | 0,949
31 965 321 2,02 69 3,83 143 952
32 969 330 08 3.92 4,05 131 955
33 972 339 13 4,16 28 120 958
34 975 349 19 41 53 110 961
0,35 0,978 0,358 2,25 4,68 4,79 | 0,100 | 0,964
36 980 367 31 4,97 5,07 091 967
37 983 377 37 5,28 37 083 969
38 984 386 43 61 5,70 076 972
39 986 395 48 5,96 6,04 069 974
0,40 0,988 0,405 2,54 6,33 6,41 0,063 | 0,976
41 989 415 60 6,72 6,80 057 978
42 990 424 66 7,15 71,22 052 980
43 991 434 73 7,60 7,66 047 982
44 992 443 79 8,07 8,14 042 983
0,45 0,993 0,453 2,85 8,59 8,64 | 0,038 [ 0,985
46 994 463 91 9,13 9,18 035 986
47 995 472 2,97 9,71 9,76 031 987
48 995 482 3,03 10,3 10,4 028 988
49 996 492 09 11,0 11,0 026 990
0,50 0,996 0,502 315 11,7 11,7 0,023 | 0,990
oo 1,000 oo oo oo oo 0,000 | 1,000
G L C
Ruhewassersplegel - = -
/\ 7\‘7 = /[:y,

77777777 7777777777777 7777777777777 77 77777777 777 77777777777 777 T 7 11 PP /17 7Y

Fig. 3.24. Wellengruppe (gestrichelte Linie) als Umhiillende der Uberlagerung zweier
Wellen mit dhnlicher Frequenz (ausgezogene Linie).

L = Linge der Einzelwellen
C = Fortpflanzungsgeschwindigkeit der Einzelwellen
C, = Fortpflanzungsgeschwindigkeit der Wellengruppe (Gruppengeschwindigkeit)

4
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fiihrt. Im Flachwasser ist also die Fortpflanzungsgeschwindigkeit nur noch
von der Wassertiefe abhingig. Im Ubergangsbereich kann (durch Einsetzen
von 32.95 in 32.94 und Auflésen nach C ) auch geschrieben werden:

C = C,tanh(2rd/L) [m/s] (32.98)

Ein weiterer wichtiger Begriff ist die sogenannte Gruppengeschwindig-
keit C - das ist diejenige Geschwindigkeit, mit welcher sich die Umhiillende
einer Gruppe von Wellen "benachbarter" Frequenzen fortpflanzt (vgl. Fig.
3.24); die entsprechende Erscheinung in der Akustik ist die bei der Uberlage-
rung zweier fast gleich hoher Tone entstehende Schwebung). Sie ist darum be-
deutsam, weil auch die Wellenenergie mit dieser Geschwindigkeit transpor-
tiert wird. Thre GroBe wird meist im Verhiltnis zur Wellenfortpflanzungsge-
schwindigkeit ausgedriickt:

C, 1 4w (d/L)

< = 7" d/L)] ) F G258
Der Klammerausdruck von (32.99) strebt fiir Tiefwasser gegen 1 (der hyper-
bolische Sinus strebt gegen unendlich) und fiir Flachwasser gegen 2 (der hy-
perbolische Sinus wird gleich seinem Argument). In diesen beiden Fillen
kann die Gruppengeschwindigkeit sehr einfach angegeben werden:

Cgo = 12 C, (Tiefwasser) (32.100)
bzw.
Cg = C (Flachwasser) (32.101)

Mit der Veridnderung der Gruppengeschwindigkeit in Funktion der Wasser-
tiefe und mit dem Energieerhaltungssatz, der besagt, daf} die mit der Welle
transportierte Energie bis auf die Reibungsverluste konstant bleibt, 148t sich
die Hohe der in flacheres Wasser einlaufenden Welle berechnen, sofern die
Energieverluste vernachlissigt werden. Es gilt:

E,C 0 = EC g = konstant [W/m=N-m/(m s)] (32.102)
E ... Wellenergie pro Flicheneinheit nach (31.10) [J/m? = N-m/m?]
E, ... dasselbe fiir Tiefwasser

C g Gruppengeschwindigkeit der Welle
& g0 e Gruppengeschwindigkeit der Welle im Tiefwasser

Da die Wellenenergie nach (31.10) proportional zum Quadrat der Hohe ist,
folgt aus (32.102):

Hoz—Cgo = HZ-Cg=konstant , (32.103)
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mit Beriicksichtigung von (32.100)
H02-1/2 C, = H2-Cg , (32.104)

woraus schlieBlich

C
H? = H} (32.105)
2C,
und
C, \/ Cs 1
H = HyV [ 1=H,V [ ]
2Cg C (1+ 4nd/L )

sinh(4r d/L)

(32.106)

Da C, eine eindeutige Funktion von d/L und damit von d/L ist, konnen so-
wohl C g/C , als auch H/H in Funktion von d/L tabelliert bzw. dargestellt
werden (vgl. Tab. 3.3. und Fig. 3.25.).

b) Theorie dritter Ordnung (Stokes IIT). Die Wellenldnge wird, unter
Benutzung der Wellenzahl

E = ZLi , [ml] (32.107)
mit Hilfe der dimensionslosen Parameter « und kI berechnet:
N i o?
L = o (1+ 7 m) tanh k/ [m] (32.108)
Darin ist
cosh 4kl + 2 cosh 2kl + 6
- -] (32.1
e cosh 24 - 1 -] (32.109)

Die Parameter ¢ und &/ miissen aus den folgenden zwei Gleichungen iterativ
bestimmt werden, wobei kI mit abnehmender Wellenh6he gegen k-d =
2nd/L strebt:

a2 < tanh bt [1+ % (sinh 200 + mid] (32.110)
gT 4
und -
2 n? H2 - S { 1+
gT coshkl
L [2m+ 2cosh6l+2cohal +3cosh2b+3 1)
8 2 (cosh 2kl - 1)2

(32.111)
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/ VLo 0,55 _0,45 ™
0,5 04 o35
' 0,3 0,25

0,2

0,15

0,15

0,10

0,1

0,05 0.05

]

0,05 0,10 0,15 0,20 0.25 0,30
’
[

0,05

d/l_(;= 0,1

1,04

kl= .
1,29 -

0,3

0,35

Beispiel:
HL = 0,09 dL = 0.2
-—r a =0,1525 Kk =129

Fig. 3.26. Nomogramm zur Bestimmung der Parameter « und k/ nach der sinusoidalen
Theorie dritter Ordnung (Stokes III), in Funktion der relativen Wassertiefe d/L,' und der
relativen Wellenhhe H/L,. (L,' = g T %/2m)
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Tab. 3.5. H/H in Funktion der relativen Wassertiefe d/L,' und der relativen Wellenho-
he H/Ly'. Ly = g T%/2n (aus SKOVGAARD et al. 1974).

d/LO' 0,005 0,006 0,007 0,008 0,009 0,010 0,015 0,020 0,025 0,030
HILy
,0002] 1,848 1,692 1,593 1,523 1471 1,428 1,288 1,201 1,139 1,092
412,072 1,837 1,684 1,580 1,506 1,451 1,291 1,202 1,14 1,092
612,261 1,975 1,782 1,648 1,553 1,483 1,296 1,203 1,140 1,092
812,423 2,097 1,876 1,718 1,604 1,520 1,304 1,205 1,141 1,092
,0010( 2,564 2,207 1962 1,785 1,656 1,559 1,312 1,207 1,141 1,093
151 2,860 2,149 1,937 1,778 1,656 1,339 1,214 1,144 1,094
201 3,103 2,308 1,887 1,746 1,371 1,224 1,147 1,095
25 2,804 2,447 1,985 1,829 1,404 1,236 1,151 1,096
30 2,572 2,074 1,906 1,438 1,249 1,155 1,098
35 2,385 2,156 1,976 1,472 1,263 1,161 1,100
,0040 2,232 2,042 1,505 1,278 1,167 1,102
50 2,162 1,569 1,309 1,181 1,108
60 2,271 1,628 1,341 1,196 1,115
70 2,370 1,684 1,373 1,212 1,122
80 2,461 1,736( 1,404 1,229 1,131
90 1,786 1,434 1,247 1,140
,0100 1,833( 1,464 1,264 1,149
120 1,921 1,520 1,299 1,170
140 1,573 1,334 1,191
160 Unterhalb der diinnen Linie wird 1,623 1,368 | 1,213
180 1,400 1,234
,0200 H/d > 0,78 (Welle bricht) 1,432 1,256
220 1,278
240 1,299
260
280
0300
320
340
360
380
0400
500
600
700
800
900
,1000
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0,035 0,040 0,045 0,050 0,060 0,070 0,080 0,090 0,100 |d/L,
HIL,
1,054 1,023 0997 0975 0939 0,912 0,892 0,877 0,868 | ,0002
1,054 1,023 0997 0975 0939 0912 0,892 0,877 0,868 4
1,054 1,023 00997 0975 0939 0912 0,892 0,877 0,868 6
1,054 1,023 0997 0975 0939 0912 0,892 0,877 0,868 8
1,054 1,023 0997 0975 0939 0912 0,892 0,877 0,868 | ,0010
1,055 1,023 0997 0,975 0,939 0912 0,892 0,877 0,868 15
1,055 1,024 0997 0975 0939 0912 0892 0,877 0,868 20
1,056 1,024 0997 0,975 0939 0912 0891 0,877 0,868 25
1,057 1,024 0,997 0,975 0939 0,912 0,891 0,877 0,868 30
1,057 1,024 00997 00975 0939 0912 0,891 0,877 0,868 35
1,058 1,025 0998 00975 0939 0912 0,891 0,877 0,868 | ,0040
1,061 1,026 00998 0975 0939 0912 0891 0,877 0,868 50
1,063 1,027 00998 0975 0939 0912 0891 0,876 0,868 60
1,067 1,028 00999 0,975 0939 0911 0891 0,876 0,867 70
1,071 1,030 1,000 0,975 0938 0911 0,891 0,876 0,867 80
1,075 1,032 1,000 0,976 0938 0911 0891 0,876 0,867 90
1,080 1,034 1,001 0976 0938 0911 0,890 0,876 0,867 | ,0100
1,000 1,039 1,003 0977 0938 0910 0,890 0,875 0,866 | 120
1,102 1,045 1,005 0978 0938 00910 0,889 0,875 0,866 | 140
1,115 1,052 1,009 0,979 00937 0,909 0,889 0,874 0.865 | 160
1,128 1,059 1,013 00980 0937 0,908 0,888 0,874 0,865 | 180
1,143 1,068 1,017 0982 0937 0,908 0,887 0,873 0,864 | ,0200
1,157 1,077 1,022 00985 0937 0907 0886 0,872 0863 | ~ 220
1,172 1,086 1,028 0,987 0937 0906 0886 0,871 0862 | 240
1,186 | 1,096 1,034 0,990 0937 0906 0,885 0,870 0.862 | 260
1,201 | 1,106 1,040 0,994 0937 0,905 0,884 0,869 0,861 | 280
1,215 1,116 | 1,046 0,998 0,938 0,904 0,883 0,868 0,860 | ,0300
1,216 | 1,053 1,002 0939 0904 0882 0,867 0.859 | ~ 320
1,136 1,060 | 1,006 0,940 0,903 0,881 0.866 0,858 | 340
1,067 | 1,011 0,941 0,903 0,880 0,865 0,856 | 360
1,075 1,016 0942 0,902 0,879 0,864 0,855 | 380
1,082 1,021]0,944 0902 0,878 0,863 0,854 | ,0400
1,048 500
1,077 600
700
800
900
0,843 0,822 | ,1000
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Die Fortpflanzungsgeschwindigkeit C kann nach der allgemeingiiltigen Glei-
chung (32.95) aus (32.108) abgeleitet werden zu
L gT o?

C = T Tox 1+ 1 m) tanh &/ [m/s] (32.112)

Zur Erleichterung der Berechnungen wurden (32.110) und 32.111) in einem

Nomogramm (Fig. 3.26.) graphisch ausgewertet und, zusammen mit weiteren

fiir diese Theorie wichtigen Grofen, tabelliert (Tabelle 3.4. im Anhang zu

diesem Teil). Als Eingangsparameter werden die vorausgesetzte Wassertiefe

d, Wellenperiode T und Wellenhshe H benétigt, dazu die aus der Periode T

mit Gleichung (32.90) bzw. (32.91) nach der linearen Theorie berechnete

Tiefwasserwellenlidnge L' (entsprechend einer Welle mit kleiner Amplitude)

und die zugehorige Fortpflanzungsgeschwindigkeit C,y' (Gleichung 32.95).

Fiir die Gruppengeschwindigkeit C, (und damit die Wellenhohe) finden sich

in der Literatur keine niheren Angaben. Die Wellenhthe wird in geniigender

Niherung nach der Theorie erster Ordnung (lineare Theorie) bestimmt. Fiir

den Flachwasserbereich konnen auch die mit der cnoidalen Theorie errechne-

ten Wellenhshen der Tabelle 3.5. (nach SKOVGAARD et al. 1974) verwendet
werden.

Praktisches Vorgehen:

— Berechnung von L' = g T 2/2x (fiir L [m]: = 1,56-T(s]?) (32.90/91)

— Mit d/L,' und H;, Berechnung von H nach (32.106) bzw. Tab. 3.3. oder
Fig. 3.25., fiir Flachwasserverhiltnisse nach Tab. 3.5.

— Mit d/L' und H/d aus der Tabelle 3.4. C/Cj'und d/L herauslesen und
C = (C/Cy)-Ly/T sowie L = C-T oder d/(d/L) berechnen. Es kon-
nen auch die Werte a und k! aus dem Nomogramm Fig. 3.26 entnommen
werden, worauf L mit (32.108) und (32.109) berechnet werden kann. Ist
der Wert H/d bzw. H/L, fiir die Tabelle bzw. das Nomogramm zu groB,
so bedeutet dies, daB die Welle instabil wird (bricht, wenn H/d>0,78 oder
H/L>1/7). Fiir kleine Werte H/L," oder H/d wird einfacher mit der li-
nearen Theorie gerechnet.

¢) Umrechnung mit Hilfe des Wellenspektrums (nach BRUSCHIN und
FaLvEY 1975/76). Die Idee des Verfahrens besteht darin, den durch die be-
rechneten signifikanten TiefwasserwellenkenngroBen (H; | usw.) charakte-
risierten Wellenzug mit Hilfe eines dquivalenten Spektrums in eine Anzahl si-
nusformiger Komponenten mit geringer Amplitude zu zerlegen, deren Kenn-
groflen mittels der linearen Theorie auf die gewiinschte Wassertiefe umzu-
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rechnen und wieder zu einem Spektrum zusammenzusetzen. Aus diesem
Spektrum kann dann bei Bedarf wiederum H,; am gesuchten Ort bestimmt
werden. Andererseits kann auch die Wasserteilchengeschwindigkeit aus der
Uberlagerung der entsprechenden Geschwindigkeiten der einzelnen Kompo-
nenten berechnet werden.

Zwischen der signifikanten Wellenhohe und dem gesamten Energieinhalt des
Seegangs besteht (vgl. Gl. 32.39 - 41) eine einfache empirische Beziehung (bei
der Varianz ¢? wird im folgenden der Index ¢ weggelassen):

2FE
e E =18H,,* =20? [m2] (32.113)
E_ ...Energiezahl nach NEUMANN [m’]
o? ... Varianz des Wasserspiegels (z-Richtung) [m?]

Andererseits gilt nach NEUMANN (1953):

E =20.2=182(=—)° [m?] (32.114)

wmax

u; ... Windgeschwindigkeit 10 m iiber der Wasseroberfléche [m/s]

Dabei entspricht E_ ., dem Energieinhalt der signifikanten Welle bei voll-
ausgereiftem Seegang (fully arisen sea = FAS).

Wenn sich der Seegang bei wehendem Wind entwickelt, so entstehen zuerst
kiirzere (hoherfrequente), dann immer lidngere (niederfrequente) Wellen.
Zeichnet man die dazugehdrigen Spektra auf (Fig. 3.27.), so kann man sagen,
daB} das Spektrum des voll ausgereiften Seegangs gleichsam "von rechts her"”
aufgefiillt wird. Kann sich der Seegang nicht vollstindig entwickeln, weil die
Streichldnge zu klein und/oder die Winddauer zu kurz ist, so kommt der Pro-
zel} mit einer bestimmten erreichten minimalen Frequenz f, zum Stillstand.
Da die Flache unter der Kurve der Energie des Wellenganges entspricht, folgt
aus Figur 3.27., daB f, eine Funktion vom Verhéltnis der aktuellen Energie
des Seegangs zur Energie des voll ausgereiften Seegangs ist (Verhéltnis der
schraffierten Fldche in der Figur zur Gesamtfliche). Das Spektrum nach NEu-
MANN kann derart in eine dimensionslose Form umgewandelt werden, daf3 die-
se Funktion unabhéngig von der Windgeschwindigkeit wird. Dazu ist die Fre-
quenz f zu ersetzen durch

e fuy
8
und die spektrale Dichte der Varianz durch

X = [-] (32.115)
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28 128 ¢
o 2B IBED g
Ly (—=L)s 2 (ZLy6
(55’ s (D)
B ... Konstante = 3,05 m?%/s’
5 CC(X) ... Spektrale Dichte der Varianz in Funktion von X = § CC(X)-dﬂdX

Dann kann das entsprechende X, aus der Tabelle 3.6. bzw. der Figur 3.28. als

Funktion des Verhiltisses ¢%/0,,,> =E_/E .., entnommen und f, be-
rechnet werden:
X
fo = 8 Xk [Hz] = [s] (32.117)
Ty,

In Wirklichkeit ist allerdings das Spektrum nicht so scharf begrenzt, sondern
etwa gemil der gestrichelten Linie in Fig. 3.27. (unteres Bild). Es ist fiir un-
sere Zwecke geniigend genau, wenn wir nach einem bei SCHUTTRUMPF (1973)
mitgeteilten Vorschlag mit

Tmin = 085 f; (32.118)

rechnen. Im Bereich f < f, wird die spektrale Dichte so gewihlt, dal die Ge-
samtfliche unter der Kurve gleich der nach (32.113) berechneten Varianz o?
wird (strichpunktierte Linie in Fig. 3.27.).
Die Gleichung des dimensionslosen Spektrums nach NEUMANN lautet:
-1
1 2x2
Y =—¢ [-] (32.119)
X6

¢ ... Basis der natiirlichen Logarithmen =2,781828

Praktisches Vorgehen (vgl. Beispiel S. 144ff):

— Berechnung von 6y%/0,,,2 =E_o/E n.x aus Hy,; mit den Gleichungen
(32.113) und (32.114).

— Herauslesen von f, aus Tab. 3.6. oder Fig. 3.28 und Berechnung von
Fmin= 0,85 f, (32.118) und f,,,, = 3 f; (die an sich moglichen hoheren
Frequenzen werden vernachléssigt, da ihr Beitrag verschwindend klein ist).

— Unterteilung des Intervalls f, . + f,, .. in Schritte der Breite af = 0,15,
bzw. nach (32.115) aX = af -u)/g = 0,15 nf,-u,/g . Fir f>2f,
kann die Schrittweite verdoppelt werden.

— Fiir jeden Schritt i:

- Berechnung der mittleren Frequenz f;=f; ,+ af , wobeif, =f,,, +
Af/2. Daraus X; = n:f;u/g bzw. X, ; + aX und die mittleren Perio-
denT;=1/f;.
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1;C¢(f) ﬁﬁ-g

Spektrum des vollausgereiften Seegangs (FAS)

Spektrum des bis zur Frequenz f
entwickelten Seegangs

Y f h/ﬂ

N

== == wirkliches Spektrum

=+m-—. fiir die Berechnung angenommen

f 1/s

Fig. 3.27. Zusammenhang zwischen dem Spektrum des vollausgereiften Seegangs und je-
nem des entstehenden (kleine Figur oben), bzw. wegen begrenzter Streichlinge oder Wind-
dauer nur teilweise entwickelten Seegangs (unten).
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- Berechnung von Y; nach (32.119) und daraus die spektrale Dichte der
Varianz nach (32.116): 8,,() = B-n>-(u)/g)5-Y;/128. 8,(f,) wird so
gewihlt, daB die gesamte Varianz des so berechneten Spektrums die Glei-
chung (32.113) erfiillt:

2(8,0) 4 =1/2-X A, = 65> = 1/8 Hy, 57 (vgl. S. 145 ff).

- Berechnung der Amplituden A,; der einzelnen Komponenten aus
A= 2‘8'(:{(}’[.)- Af (gemiB 32.37 und 32.17). Die Wellenhshen der
(sinusférmigen) Komponenten sind H; = 2 A,;, die Tiefwasserwel-
lenldngen nach (32.90 bzw. 91) L;; = g-T,-Zl(Zn) [bzw. = 1,56-T[s)].

- Umrechnen der KenngréBen H,;und L; der Tiefwasserwellen auf die
gewiinschte Wassertiefe (H;und L;) mit Hilfe der linearen Theorie (s. S.
124 ff), ev. Beriicksichtigung von Refraktion und Reflexion (s.u.).

— Berechnung der Energie des gesamten Spektrums E/(p,-g) = J(A2/2) =

J(H?/8) (folgt aus den Gleichungen 32.37, 32.17 und 32.10).

— Berechnung des definitiven H,, nach (32.113): H,; = 4-V[E/(p,8)] =

4-V[Z(A22)] .

Tab. 3.6.X, fiir den teilweise entwickelten Seegang in Funktion von vorhandener Wel-
lenenergie zur Energie des vollentwickelten Seegangs (02/‘::"““2 =E [E )

®' @ max’’
ozlcmax2=Em/Ewmx Ol/dmaxz Xtc c’z‘/"'mtlx(2 Xk
1,0 1,000 0,0 | 0,00599 1,5
0.6 \\ 1,000 1 | 0,00442 6
0.4 - 0,9999 2 | 0,00331 7
\ 0,9508 3 | 0,00252 8
0.2 \\ 0,7171 4 | 0,00152 2,0
0,1 0,4506 0,5 | 0,000535 | 2,5
0.06 X 0,2658 6 | 0,000211 | 3,0
0.04 - 0,1565 7 | 0,0000510| 4,0
\ 0,09426 8 | 0,0000169| 5,0
0,02 . 0,05849 915,32.107 | 10,0
0,01 A\ 0,03744 1,0 | 7,05-10-8 | 15,0
006 0,02469 11]1,71-10% | 20,0
. N -9
004 N 0,01673 2 | 2,42-10 30,0
< 0,01162 3 12,96-10°1°| 50,0
,002 0,00826 4
,001 X,
0 1,0 2,0

Fig. 3.28.Nomogramm zur Bestimmung der minimalen Frequenz f, des teilweise ent-
wicktelten Seegangs. f, = g X/(r-u)
(Nach KINSMANN 1965, aus BRUSCHIN und FALVEY 1975/76)
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2. Refraktion. Bezeichnet man mit & den Winkel zwischen der Fortpflan-
zungsrichtung der Wellen (= Orthogonale auf die Wellenscheitel) und den
Senkrechten auf die Hohenlinien des Untergrundes, so kann das Snellius'sche
Brechungsgesetz wie folgt formuliert werden:
s A (32.120)
sin L, G,

L,,L, ... Wellenldinge bei Wassertiefe 1 und 2 [m]
C,, C, ... Wellenfortpflanzungsgeschwindigkeit bei Wassertiefe 1 und 2 [m/s]

Die Erklidrung dieser Gleichung folgt unmittelbar aus der Figur 3.29., wo die
Situation mit einer plotzlichen Anderung der Wassertiefe dargestellt ist. Er-
folgt der Wechsel nicht plotzlich, sondem stetig, so geschieht auch die Winke-
landerung allméhlich, die Wellenscheitel und die Orthogonalen sind dann
nicht mehr geknickt, sondern stetig gekriimmte Kurven (Fig. 3.30.).

Sind die Hohenlinien (einigermafen) parallel, so kann fiir den Einfallswinkel
a, der entsprechende Winkel () beim Beginn des Ubergangsbereiches
(d/Ly = 0,5) gesetzt werden. Die Richtung der Orthogonalen kann dann fiir
jeden Punkt sofort angegeben werden:

i L
Mo (32.121)
sin o, L,

Wellenscheitel

Orthogonale —

-

Fig. 3.29. Verinderung der Wellenform und -richtung bei einer plotzlichen Anderung der
Wassertiefe d.
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Sind die Hohenlinien nicht parallel, so muB die Richtung jeder Orthogonalen
schrittweise bestimmt werden (Fig. 3.31.). Mit den Bezeichnungen dieser Fi-
gur ist a; durch

o = o +6,-6 (32.122)

zu ersetzen und entsprechend in (32.120) zu verwenden.

Die Wellenldngen L und damit das Verhiltnis L/L, bestimmt man meist mit
der linearen Theorie; bei sehr hohen Wellen und groBer geforderter Genau-
igkeit sind die so erhaltenen Wellenléingen mit einer entsprechenden Theorie
hoherer Ordnung zu iiberpriifen.

Der EinfluB der Refraktion auf die Wellenhohe H kann mit folgender Uber-
legung erfalt werden: Die durch einen bestimmten Querschnitt senkrecht zu
den Orthogonalen transportierte Energie bleibt konstant. Wegen der Rich-
tungsénderungen der Orthogonalen verindert sich deren Abstand untereinan-
der (vgl. Fig. 3.29.). Hat ein betrachteter Querschnitt vor der Refraktion die
Breite b, so betrigt diese danach b,. Die Gleichung (32.103) kann nun er-
weitert werden zu

Urthogonale\ Wellen-
} scheitel
d>d, =% \
2
oo
X

O

.S

Fig. 3.30. Refraktion der Wellen bei stetig abnehmender Wassertiefe d (Hohenlinien par-
allel).
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H22'Cg2‘b2 = HIZ'Cgl'bl (32.123)

Ist H,; die Wellenhthe nach (32.103) bzw. (32.105) ohne Bertiicksichtigung
der Refraktion, so wird aus (32.123):

C..b C,C b,b b
1*1
H? = H2 & 1 -pg2-078 21 _py2 20 (32124)
C,.5; 210,; 0,5 By by b,
bzw.
y L,
A d>d°:7 "
v L
Orthogonale im \'\.“"’e/'
Tiefwasser \\‘G“P'“/'
A =
Q
— \
Tangente an die o i L. o
Hohenlinie 0 Winkelhalbierendes
in A : :

H(jhe ‘

nlin.

Tangente an die ""'-1-.1_’”5' 7 ’

Hohenlinie 1 D 94."“'-..,______

in 8 — B d
. ™ 1

Winkelhalbierende

\‘
Tangente an die T '
Hohenlinie 2 "' a \
e . 0(2 \
H.-
Ohenjff?ir.:"'g'--.. H’
:-x.\"""--._ ‘ ;' -0, +®,-6.)
a
N3 r
~\:'
~

'dz

Fig. 3.31. Schrittweise Konstruktion einer Orthogonalen zu den Wellenscheiteln bei nicht
parallelen Hohenkurven des Untergrundes (die Wellenscheitel selbst sind wegen der Uber-
sichtlichkeit nicht gezeichnet).

Die Richtung im Tiefwasser (a) ist durch duBlere Gegebenheiten (Windrichtung) bestimmt.
Dargestellt ist der Konstruktionsschritt zwischen der Hohenlinie 1 und der Hohenlinie 2.
(Nach SILVESTER 1974)
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b
H, = H, w/(?") = H/K, (32.125)

Der Wert Kj ist der Refraktionskoeffizient (dimensionslos). Da, wie
oben bemerkt, bei parallelen Hohenlinien des Seegrundes die Richtung der
Wellenkdmme und der Orthogonalen fiir jeden Punkt unmittelbar angegeben
werden kann, ist auch das Verhiltnis by/b, einfach zu bestimmen, denn nach
Fig. 3.29. gilt (wenn fiir die Werte mit dem Index ; die entsprechenden Werte
fiir die Grenze des Tiefwasserbereichs gesetzt werden):

by =ccosegy, by = ccosa, (32.126)

Damit 148t sich aus (32.124) und (32.125) fiir den Refraktionskoeffizienten
K eine geschlossene Formel herleiten:

k.2 = by _cosop  cosy
Rl = —

= = 32.124
b, cosa, W1 -sin’a,) ‘ )

was mit Berticksichtigung von (32.121)

k. =V i 32.128
§ { 1 - (L/L, sino)?] ! ( )

ergibt. Sind die Hohenlinien des Seegrundes nicht parallel, so muf} das Ver-
hiltnis b, /b, aus den gezeichneten Orthogonalen herausgemessen werden.

3. Reflexion. Da rohrichtbestandene Seeufer im allgemeinen flach sind, ist
der EinfluB der Reflexion meist untergeordnet, denn der groBte Teil der
Energie der einlaufenden Wellen wird durch die Bodenreibung und das Bre-
chen aufgezehrt. Ahnlich wie fiir die Refraktion, wird auch die Reflexion
meist mit einem Koeffizienten (Reflexionskoeffizient R) erfal3t:

H, = RH; , (32.129)

wobei Hy die Hohe der zuriickgeworfenen (reflektierten) Welle, H,' die Ho-
he der einlaufenden Welle (allenfalls mit Beriicksichtigung der Refraktion)
bedeutet. Die Richtung der reflektierten Linie entspricht der Spiegelung der
Orthogonalen an der Senkrechten zur Uferlinie (Einfallswinkel = Ausfalls-
winkel). Da sich die reflektierten Wellen mit den einlaufenden iiberlagern,
entstehen kurzkdmmige Wellen, denn die Wasserbewegung wird dort ver-
stirkt, wo zwei Wellenberge oder —tiler sich treffen und abgeschwicht, wo
sich Wellenberg und —tal iiberlagern. So entsteht das bewegte Bild eines Sees
bei Windstille oder wenig Wind, da sich dann nur x-Mal reflektierte Wellen



- 143 -

unterschiedlicher Herkunft auf dem See "tummeln"; weht ein stirkerer Wind,
so dominieren die Windwellen, da an flachen Ufern die Reflexion nur gering
ist (R = 0). Ganz anders wird die Situation natiirlich, wenn das Ufer steil
oder gar durch eine Mauer verbaut ist: Dann wird ein sehr grofer Teil der
Wellenenergie reflektiert ( R — 1).

In der Literatur (z.B. auch bei BRUSCHIN und FALVEY 1975/76) wird die durch
die Reflexion bewirkte, resultierende Wellenhohe meist als lineare Uberlage-
rung der einlaufenden und der reflektierten Welle ausgedriickt:

H = H/+Hy=H;(1+R) . (32.130)

Dies gilt genau aber nur bei monochromatischen Wellenziigen (d.h. bei sol-
chen, die nur aus Wellen einer Frequenz bestehen), was in der Natur jedoch
nicht zutrifft. Wir rechnen deshalb eher mit einer Summierung der Energien
der einlaufenden und der reflektierten Welle, was

H? = H2+H2=H?2(1+R? (32.131)

bzw.

H

H; V(1 +R? (32.132)

ergibt. Im Falle einer Ufermauer und senkrecht einlaufender Wellen wire al-
lerdings vorsichtigerweise doch besser mit (32.130) zu rechnen.

Der Reflexionskoeffizient R kann fiir ein natiirliches Seeufer unméglich ge-
nau bestimmt werden, da sowohl die Form der Unterwasserboschung, wie
auch deren Rauhigkeit und die Art und Richtung der Wellen zu beriicksichti-
gen wiren. Die in der Literatur zu findenden Werte wurden aus Modellversu-
chen mit ebenen Boschungen und senkrecht auflaufenden Wellen ermittelt und
konnen deshalb nur als erste Ndherung gelten. WIEGEL (1964) bringt eine von
MicHE im Jahre 1953 hergeleitete Formel fiir R:

R =pR (32.133)
mit
2 sin? [°] 5 sin?y[°]
.\/[ Y Y V[ Y ] I
R' = m_ % N @ <1 (32.134)
Hy Hy
Ly L,
Hy, L, ... TiefwasserwellenhShe bzw. —linge [m]
7, Y(°]1 ... Boschungsneigung, von der Waagrechten aus gemessen, in [rad]

bzw. [°]
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Fiir p empfiehlt MICHE:

- Qlatte, undurchldssige Boschungen: p=08

- Abgestufte Boschungen: p = 0,33

- RegelmiBige Boschungen aus Blocken: p=0,3+0,6
(32.135)

4. Beispiel. Gegeben seien die Tiefwasserkenngréfen nach Bretschneider
des Beispiels a) von S. 119 f:

Hyyp =0,77m
Ty =338
Lo =17.0m

Wie groB sind diese Werte bei einer Wassertiefe d = 1 m?

Da das fragliche Ufer ziemlich genau westexponiert ist, kann fiir die Refrak-
tion mit einem Einfallswinkel o, = 45° gerechnet werden. Die Uferbank ist
sehr flach, deshalb werde die Reflexion vernachléssigt.

a) Berechnung mit der linearen Theorie

d/L, = 1/17,0 = 0,059
Die Fig. 3.5. oder die Tabelle 3.3. liefert dazu:

dL = 0,103 — Ly, = 1/0,103 =97m

"

Der Refraktionskoeffizient berechnet sich nach (32.128). Mit L/L; = 0,059/0,103 (bzw.
9,7/17,0) = 0,573 wird

[+]
B2 cos45 =0,773 und
R V1 - (0,573 sind5°)?]
K, = 0,88
So wird
Mg = ¥g-Bpgn™ 03801 b Al

Zur Kontrolle wird nun der Ursell-Stokes'sche Parameter U berechnet (Gleichung 32.85):

0,68-9,72
3

U = = 64,0

Da U > 15, folgt noch

b) Die Berechnung mit der Stokes'schen Theorie dritter Ordnung

d/Ly' = 1/17,0 = 0,059
Nach dem Ergebnis der obigen Rechnung ist zu erwarten, daBB die Wellenhohe fast aus-
schlieBlich durch die Refraktion beeinflult wird, wir setzen deshalb als Ndherung

H/Ly' = 0,68/17,0 = 0,040
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Aus dem Nomogramm Fig. 3.26. bzw. der Tabelle 3.4. kann durch entsprechende Interpo-
lation

a =0215
und
kI = 0,56

entnommen werden. Damit kann die Wellenlidnge berechnet werden:

cosh(4-0,56) + 2 cosh(2:0,56) + 6

(32.109): coSh(30.56) - 1 = 20,33
\ 0,215?

(32.108): LiLy =1+ —5 -20,33) tanh0,56 = 0,627

Ly, = 0627:17,0 = 10,7 m

Die Tabelle 3.5. liefert fiir /L, = 0,059 und Hy/L, = 0,77/17,0 = 0,045 den Wert
H/Hy, =0958 — H;,, = 09580,77 = 074m

Die signifikante Wellenhthe mit Beriicksichtigung der Refraktion erhalten wir mit dem nach
der linearen Theorie berechneten Refraktionskoeffizienten (L/Ly=L/L,' = 10,7/17,0 =
0,629):

Kp? = A 790 Do,
V1 - (0,629- sind5°)?]
Kp = 089
So wird

Die Abweichung von dem eingangs als Ndherung geschitzten Wert (H = 0,68 m) ist so
klein, dal die Rechnung nicht wiederholt zu werden braucht (erst bei der Berechnung der
Oberflichenform in Kap. 3.2.3. wird der der richtigen Wellenhthe entsprechende Parame-
ter « gebraucht, damit die erhaltene Gleichung fiir den Wasserspiegel taséchlich einer Wel-
lenhéhe von 0,66 m entspricht). Bei der Wellenldnge ist der Unterschied groBer, nach
Stokes III sind die Wellen um rund 10% lénger. Wir rechnen im folgenden mit diesem Wert,
da U > 15.

¢) Berechnung mit Hilfe des Wellenspektrums

DieWindgeschwindigkeit betrdgt u; = 9,8 m/s (vgl. S. 119), somit wird die Energiezahl
nach NEUMANN (= die doppelte Varianz)

9,8
@Gu114):  E, = 20,7 = 182 (2—_9’8—1)5 = 0,5659 m*
Andererseits wird
(32.113): E =20¢?%=1/80,77% = 0,07411 m?

w

und somit das Verhdltnis von vorhandener zu maximaler Energie gleich

c? _ 007411
o 05659

= 0,131
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Dazu liefert Figur 3.28., bzw. die Tabelle 3.6.

X, = 0739 ,
woraus
. _ 9810739 _

(32.117): fi = 708 = (0,2356 Hz

und

(32.118): Jmin = 0,85-0,2356 = (0,2003 Hz
Snax = 30,2356 = (0,7Hz
Af = 0,15-0,2356 = 0,0353 Hz
AX = 0,15-0,739 = 0,111

Die weitere Berechnung erfolgt am besten mit einer Tabelle (Tab. 3.7.). Von der ersten Zeile
(f =Fpin S f; = 0,2179 Hz) konnen vorerst nur die Kolonnen 1 bis 6, 12 bis 14 und
16 berechnet werden. Die spektrale Dichte der Varianz, bzw. das Amplitudenquadrat (Ko-
lonne 8) fiir f; des Tiefwasserspektrums erfolgt aus der Bedingung, daB die Summe aller
Amplitudenquadrate gleich der doppelten Varianz 26% =0,07411 m? ist. Da die Summe der
Amplitudenquadrate fiir f > j;c gleich YA, = 0,0695 m? ist (Kolonne 11), wird A,,2 =
0,07411 - 0,0695 = 0,0046 m~.

Die ganze Rechnung 148t sich einfach mit Hilfe eines programmierbaren Taschenrechners,
ohne Hilfe von Nomogrammen und Tabellen, durchfiihren. Tabelle 3.7. wurde auf einem
SHARP PC-1401 mit dem folgenden BASIC-Programm gerechnet, welches fiir jeden Fre-
quenzschritt die Werte der Kolonnen 4 bis 20 ausdruckt:

1. INPUT"D,F"; Z, X: Z=2Z/F: X=X/F
(Z = 4f; X = Anfangsfrequenz = f, [!] oder die Frequenz bei einem Wechsel der
Schrittweite; die erste Zeile mit f,;,, wird erst am SchluBl gerechnet (s. oben, Erkldrung
zu Tab. 3.7.)

2: Y = X*6"EXP(-.5/X"2): T = 1/(X*F): L = G*T*2: PRINT T,L: PRINT X,Y:

R=B"Y:A=2R*F*Z:PRINTRA:H=2VA:E=E + A

(R=Kg§(f);A=A0‘.2; H=H,; E=zx4,%
3: PRINTH,E: X= X+Z:M=D/L.:L=M
(M = d/Ly)

4: N=L:L=MHTN(2*z*N): IF ABS(L - N)/N > 0.0001 THEN 4
(L =d/L = d/[Lytanh{2nd/L}]; iterative Berechnung)

5: PRINT M, L: N = 4*7*L: M= M/L: J = V(1/(M*(1+N/HSN N))): PRINT D/L J:
(M=d/Ly, L=d/L; M=L/Ly=C/CyJ =H/Hy)

H = H*J: PRINT H: K = V(CAN(1-Q"M"2)): H = K*H
(H=H; K = Kg; H=K,H)

6: PRINT K,H: A=H"2/4: S = S+A: PRINT A,S: GOTO 2
(A =A,'2; S =2A,'2)
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Vor Beginn der Rechnung sind einzugeben:

G =g/2n) = 9,81/(2-r) S =0 oder Anfangswert % Ai2

B = g-n2(u,/g)%/128 = 3,05-n2-(u,/9,81)¢/128

F =X =g/(mu) = 9,81/(n-u) C = cosgq (fiir Refraktion)
E = 0 oder Anfangswert ¥ A, Q = sin%q,

D = d (Wassertiefe)

Da die Rechnung mit der zweiten Zeile beginnt und mit der ersten beendet wird, sind die
Summen in Kolonne 20 zunichst um den Betrag des ersten Elementes zu klein, jedoch
stimmt die Gesamtsumme am SchluB}, und die iibrigen Glieder kénnen korrigiert werden.

Die drei Methoden ergeben fiir die Wellenhohe H,; fast libereinstimmende
Werte (0,68 , 0,66 bzw. 0,69 m). Die Wellenldnge wird nach der linearen
Theorie etwas geringer (9,7 m) als nach Stokes III (10,7 m). Aus dem Spek-
trum folgt zwar keine eindeutige Wellenlinge (wegen der Uberlagerung vari-
iert diese stindig), doch die den grofSten Komponenten zugehorigen Lingen
von 11,84 bzw. 10,25 m lassen erwarten, dal bei Wellen mit der signifikanten
Hohe auch etwa mit der Linge nach Stokes III zu rechnen ist.

Im mathematischen Modell zur Berechnung der Schilfhalmbeanspruchung
kann mit einer Variante auch ein in spektrale Komponenten zerlegter Wellen-
zug eingegeben werden, so daB in diesem Fall Lange und Hohe der signifikan-
ten Welle nicht explizite benétigt werden.
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Tab. 3.7. Umrechnung eines Tiefwasserwellenspektrums auf begrenzte Wassertiefe

f
1

%

T,

i

4

Ly; X,

1 1

5 6

B'C & A 01'2 H 0i

8 9 10

Z“A()iz

11

0,2003
0,2356
0,2709
0,3063
0,3416
0,3770
0,4123

0,4653

0,5360
0,6067
0,6774
0,7481

0,8187
0,8894

0,2179

4,59

32,880,6839

-1 0,0046 | 0,1356

et B WY, T SR U S ]

8
9
10

11

12
13

0,2533
0,2886
0,3239
0,3593
0,3946
0,4300

0,5006
0,5713
0,6420

07127

0,7834
0,8540

3,95
3,47
3,09
2,78
2,53
2,33

Ab hier Schrittweite Af verdoppelt

2,00
J Wy &
1,56

1,40

1,28
1,17

24,341 0,7948
18,74 0,9057
14,88 1,0188
12,09] 1,1275
10,03 |1,2385
8,45(1,3494

6,2311,5712
4,7811,7930
3,79(2,0148

3,07|2,2366

2,54|2,4585
2,1412,6803

1,7970
0,9844
0,5582
0,3283
0,2000
0,1258

0,0542
0,0257
0,0132
0,0072

Hier konnte die Rechnung abgebrochen werden. Die folgen
zur Demonstration der Gré8ermordnung der mitf,,

0,0041
0,0025

0,4200| 0,0296 | 0,3446
0,2301| 0,0162 | 0,2550
0,1304| 0,0092 | 0,1920
0,0767| 0,0054 | 0,1472
0,0467| 0,0033 | 0,1149
0,0294| 0,0020 | 0,0911

0,0126 0,0017 | 0,0846
0,0060( 0,0008 | 0,0583
0,0030| 0,0004 | 0,0417
0,0016| 0,0002 | 0,0309

0,0005 | 0,0000| 0,0182

0,0296
0,0459
0,0551
0,0605
0,0639
0,0659

0,0677
0,0686
0,0690
0,0693

den Werte dienen
=3 f, vernachlissigten Einfliisse.
0,0009 | 0,0001 | 0,0234 | 0,0694

0.0695

Pt ok

R0 e N gy U Reanbd ae

Grenze der Frequenzbereiche [Hz]
Zihler
Mittlere Frequenz des Bereichs [Hz]
Periode T [s] = 1/f
Tiefwasserwellenlinge [m] nach (32.90)
X =nfu/g [-]
Dimensionsloses Spektrum nach (32 119)
Spektrale Dichte der Vananz [m -s] nach (32.118)
Amplitudenquadrat A2 [m?] =2 §
Wellenhhe H=2 A
Summe der Amplitudenquadrate ab Zeile 2 (vgl. Text)

%
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Tab. 3.7. (Fortsetzung).
I | d/Ly; diL; L, |HH, | H; | K | H, A2 ZA2
2 12 13 14 15 16 17 18 19 20
10,0304 | 0,0718 |13,91 | 1,12 0,152 | 0,86 | 0,131 | 0,0043 | 0,0043
2 10,0410 | 0,0844 |11,84 | 1,06 0,365 | 0,87 | 0,316 | 0,0251 | 0,0293
3 10,0533 | 0,0975 (10,25 | 1,01 0,258 | 0,88 | 0,226 | 0,0128 | 0,0422
4 10,0672 | 0,1113 | 8,98 | 0,977 | 0,188 | 0,88 | 0,166 | 0,0069 | 0,0491
50,0827 | 0,1257 | 7,96 | 0,951 | 0,140 | 0,89 | 0,125 | 0,0039 | 0,0530
6 | 0,0997 | 0,1407 | 7,10 | 0,933 | 0,107 | 0,90 | 0,097 | 0,0023 | 0,0553
7 10,1183 | 0,1566 | 6,38 | 0,921 | 0,084 | 0,91 | 0,077 | 0,0015 | 0,0568
8 10,1605 | 0,1920 | 5,21 | 0,913 | 0,077 | 0,94 | 0,072 | 0,0013 | 0,0581
9 10,2092 | 0,2328 | 4,29 | 0,920 | 0,054 | 0,96 | 0,052 | 0,0007 | 0,0588
10 | 0,2638 | 0,2799 | 3,57 | 0,937 | 0,039 | 0,97 | 0,038 | 0,0004 | 0,0591
11 | 0,3257 | 0,3355 | 2,98 | 0,957 | 0,030 | 0,99 | 0,030 | 0,0002 | 0,0593
12 | 0,3937 | 0,3989 | 2,51 | 0,975 | 0,023 | 0,99 | 0,023 | 0,0001 | 0,0595
13 | 0,4672 | 0,4698 | 2,13 | 0,987 | 0,018 | 1,00 | 0,018 | 0,0000 | 0.0595
12: Wassertiefed=1m
13: Aus Fig. 3.2.2.8. oder Tab. 3.2.2.1. bzw. iterative Auflésung von (32.94)
14: L; = 1/(Kol.13)
15: Aus Fig. 3.2.2.8. oder Tab. 3.2.2.1. bzw. nach (32.106)
16: Wellenhohe ohne Beriicksichtigung der Refraktion H}; = (Kol.9)-(Kol.14)
17: Refraktionskoeffizient K nach (32.128) mit o = 45°
18: Wellenhéhe mit Berucks1cht1gung der Refraktion H; = (Kol.16)-(Kol.17)
19: Amplitudenquadrat bei Wassertiefe d = Im. A2 = (H /2)? = (Kol.18)%/4
20: Summe aller Amplitudenquadrate ergibt die doppelte Varianz bei d = 1m. Werte mit

Beriicksichtigung des ersten Elementes korrigiert.
Daraus H, , = V[8:(2 ¢?)] = ¥[8.0,0595?] =0,69 m
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3.2.3. Berechnung der Wasserteilchengeschwindigkeit

Wie in Kap. 3.2.1.3. gezeigt, ist es die Geschwindigkeit der Wasserteilchen,
welche den EinfluB der Wellen auf andere Objekte bewirkt. Eine eher an-
schaulich gehaltene Darstellung der Wasserbewegungen in den Wellen findet
sich in BINz (1980), weshalb wir uns hier kiirzer fassen konnen. Entscheidend
ist die Tatsache, daB es sich bei Wellen nicht um wandernde Wassermassen
handelt. Nur die Form der Wasseroberfliche ist es, welche diesen Eindruck
hervorruft. Die einzelnen Wasserteilchen bewegen sich in Wirklichkeit auf
mehr oder weniger geschlossenen Bahnen, den Orbitalbahnen. Thre Ge-
schwindigkeit hei3t dementsprechend auch Orbitalgeschwindigkeit (Fig.
3.32.). Eine Ausnahme bilden die brechenden Wellen: Wenn die Welle in-
stabil wird (bricht), gerit die ganze Wassermasse des Wellenberges in Bewe-
gung, was den Brechern eine enorme Zerstorungskraft verleiht. Die Ursachen
fiir das Brechen sind einerseits zu geringe Wassertiefe (EinfluB der Bodenrei-
bung) und andererseits zu groe Hohe im Verhéltnis zur Linge (Steilheit),
z.B. unter starkem WindeinfluB8.

Die Form der Orbitalbahnen héngt von der relativen Wassertiefe d/L und
von der Steilheit H/L der Wellen ab (Fig. 3.33 -3.35.). Sind die Wellen flach

Wanderung der Welle Wasserteilchen

J‘ — .l zur feit t2 t1
> 4 s .
3

Welle zur Zeit t2
L/2

gedachte Kreise, worauf

Abnahme ~—1 I sich die Wasserteilchen
der Kreis- bewegen

durchmes-
ser

Fig. 3.32. Die Bewegung der Wasserteilchen, dargestellt am Beispiel einer flachen Welle
im Tiefwasser. Sie ist in zwei Phasen dargestellt, zu einem Zeitpunkt ¢, und zu einem etwas
spiteren Zeitpunkt £, (z.B. eine halbe Sekunde spiter). Die Bahnkurven (Orbitalbahnen) der
Wasserteilchen sind hier geschlossene Kreise. Der dick ausgezogene Teil der Kreise stellt
die Bewegung einiger Wasserteilchen zwischen den beiden Zeitpunkten dar.

(Bemerkung: Die Zeichnung ist nicht maBstéiblich, Wellenh6he und Druchmesser der Orbi-
talbahnen sind im Verhiltnis zur Wellenldnge zu groB. Dies gilt auch fiir die folgenden Figu-
ren 3.33. -3.35..) (Aus BINZ 1980)
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(Giiltigkeitsbereich der linearen Theorie), so sind die Orbitalbahnen geschlos-
sene Ellipsen oder Kreise. Bei steilen Wellen kommen die Wasserteilchen
nach einem Umlauf nicht mehr genau an den Ausgangspunkt zuriick, d.h. es
findet ein gewisser Massentransport statt (Windverfrachtung).

Die Form der Wasseroberfliache entsteht durch die Orbitalbewegungen der
Wasserteilchen. Dadurch, daB die einander lings einer Linie folgenden Was-

o i S

Ruhewasser-
spiegel

d| kleiner
als L/2

—ﬂ

FTITTFr7TT T 777777777777

Fig. 3.33. Welle im Ubergangsbereich (Wassertiefe kleiner als die halbe Wellenlinge). Statt
auf einer Kreisbahn bewegen sich die Wasserteilchen auf Ellipsen bzw. am Seegrund hin
und her.

klefner
als L/25

Fig. 3.34. Welle im Flachwasserbereich (Wassertiefe kleiner als 1/25 der Wellenlidnge). Die
Ellipsen sind flacher, die waagrechte Bewegung der Wasserteilchen ist iiber die ganze Was-
sertiefe ungefihr gleich groB.

LI7TT7 PP TrTrrr i rrrrr iy irirrirr7irrrrrisrrsiririrrrrrrs

Fig. 3.35. Bei vergleichsweise kiirzeren und hoheren (=steileren) Wellen, wie sie in der
Uferzone vorherrschen, sind die Bahnen der Wasserteilchen nicht mehr ganz geschlossen.

Fig. 3.33. - 3.35. Schematische Darstellung der Wasserteilchenbewegung in einer Wel-
le.
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serteilchen die gleiche Bewegung ein wenig phasenverschoben mitmachen,
entsteht die Form der wandernden Welle. Die zur mdoglichst guten, nihe-
rungsweisen Beschreibung der verschiedenen Oberfldchenformen geeigneten
mathematischen Funktionen haben den im Kapitel 3.2.2.2.2. (S. 122) aufge-
fiihrten Wellentheorien den Namen gegeben.

Im folgenden werden die Formeln fiir die Wasseroberflidche, die Orbitalge-
schwindigkeiten und die lokalen Beschleunigungen der Wasserteilchen nach
der linearen Theorie und nach Stokes III zusammengestellt. Bei der spektralen
Darstellung der Wellen werden die Bewegungen der Wasserteilchen fiir die
einzelnen (sinusoidalen) Komponenten nach der linearen Theorie bestimmt
und anschlieBend iiberlagert.

Die von den verschiedenen Theorien (mit Ausnahme der hier nicht weiter
verfolgten Einzelwellentheorie nach Mc Cowan oder Boussinesq; vgl. S. 122)
behandelten Wellenarten sind alle periodische Vorginge, die sich im Raum
mit einer bestimmten Geschwindigkeit C fortpflanzen. Ein (gedachter) Be-
obachter, der sich mit der gleichen Geschwindigkeit auf einer solchen Welle
fortbewegt, wird deshalb stindig das gleiche Bild wahrnehmen, fiir ihn be-
wegt sich die Wasseroberfldche nicht. Der Zustand (Lage des Wasserspiegels,
Teilchengeschwindigkeit) hingt nur von der Entfernung x - x; vom Be-
obachter ab ( xz bezeichne den Ort des Beobachters). Beginnt der Beobachter
seine Reise am Ort x = 0 zur Zeit £ = 0, so gilt

xg = Ct (32.136)
der Zustand der Welle zur Zeit ¢ ist somit durch den Ausdruck
xx = x-xg = x-Ct (32.137)

eindeutig bestimmt (vgl. Fig. 3.36.). Bei Wellen dieser Art entspricht also je-
der Verschiebung im Raum eine bestimmte Anderung der Zeit und umge-
kehrt, d.h. die Raum- und die Zeitkoordinate sind in gewissem Malle aus-
tauschbar. Machen wir dieselben Uberlegungen wie oben statt fiir den Ort x
fiir die Zeit ¢, so gilt

tg = vl (32.138)
und analog ist der Zustand der Welle am Ort x bestimmt durch
X
= tp-t= —=-t. 32.139
B C ( )

Da die trigonometrischen Ausdriicke in den hier behandelten Wellentheorien
2n-periodisch sind, rechnet man zweckméBigerweise statt mit xx oder ## mit
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_ 22
e = [ X = ot [rad] (32.140)

L ... Wellenlinge [m]
T ... Wellenperiode [s]

Der Ausdruck @ heifit Phasenwinkel (oder kurz: Phase), wihrend der Wert

® = % s oder Hz] (32.141)

Kreisfrequenz genannt wird. Die Wellenzahl k wurde bereits in (32.107)
definiert (k = 2r/L). Mit Hilfe der Definitionsgleichung (32.95) der Wellen-

zs(x,O) =z24(x)

zs(x,t) =z.(x)
»=X- XB

Fig. 3.36. Situation eines gedachten, auf der Welle im Punkt B mitwandernden Beobach-

ters. Die Wahl des Punktes B ist natiirlich frei, zur Verdeutlichung wurde hier ein Wellen-
scheitel gewihlt.
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fortpflanzungsgeschwindigkeit C konnen sowohl Ort, als auch Zeit im Pha-
senwinkel @ berlicksichtigt werden:

= X A
® = 2n (L T [rad] (32.142)

a) Form der Wasseroberfliche und Geschwindigkeit der Wasser-
teilchen nach der linearen Theorie.

Mit den Bezeichnungen der Fig. 3.12. (S. 84) gelten folgende Beziehungen:

- Form der Wasseroberfliche:

¢ =2 coso [m] (32.143)
¢ ... Vertikale Abweichung des Wasserspiegels von der Ruhelage [m]

H ... Wellenhhe [m]

6 ... Phasenwinkel = 2n-(x/L - ¢/T)

L ... Wellenldnge [m]

T ... Wellenperieode [s]

- Orbitalgeschwindigkeiten:
tH cosh(kz)

(&) 32.144
T sinh(kd) [m/s] (32.144)
t H sinh(kz) .
e 32.145
O e [m/s] (32.145)
u ... Waagrechte Orbitalgeschwindigkeit der Wasserteilchen [m/s]
v ... Senkrechte Orbitalgeschwindigkeit der Wasserteilchen [m/s]
k ... Wellenzahl 2r/L)
z ... Senkrechte Koordinate = Entfernung vom Seegrund [m]
d ... Wassertiefe (bis zum Ruhewasserspiegel) [m]
- Lokale Beschleunigungen:
du 2 w2H cosh(kz) . 5
= e 32.146
Jt T2 sinh(kd) Lo € )
v 2 w2H sinh(kz) 5
St = ® 32.147
T T2 sinh(kd) /] (32.147)

2 ... Partielle Ableitung nach der Zeit, ergibt lokale Beschleunigung der
ot Wasserteilchen in waagrechter () und senkrechter (v) Richtung

Die graphische Darstellung einer sinusoidalen Welle mit den Kenngréen des
Beispiels aus Kapitel 3.2.2. (S.144ff) zeigt Fig. 3.37..
Im Giiltigkeitsbereich der linearen Theorie konnen die Bahnkoordinaten der
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Wasserteilchen durch einfache Integration tiber die Zeit von (32.144) und
(32.145) erhalten werden, wobei fiir x und z die Koordinaten der Ruhelage
des betreffenden Wasserteilchens (x,, z,) in die Formeln eingesetzt werden.
Diese Niherung ist geniigend genau, solange die Durchmesser der Orbitalbah-
nen klein sind gegeniiber der Wellenldnge L (waagrechter Durchmeser) bzw.
der Wassertiefe d (senkrechter Durchmesser). Die Bestimmungsgleichugnen
fiir die Bahnkoordinaten der Wasserteilchen lauten dann:

_ H cosh(kz,) a

X - X > sinh(kd) in@ [m] (32.148)
H sinh(kz;)
z-zy = +2—-S—in-h@9)—‘ cos@ [m] (32.149)

Dies sind Gleichungen fiir eine Ellipse mit den Halbachsen

r, = 2 POMMUezy) [m] (32.150)
2 sinh(kd)
_ _ H_sinh(kz)

: 2 sinh(kd)

[m] (32.151)

An der Wasseroberfliche vereinfachen sich diese Ausdriicke zu

r, = 2L cot(kd) [m] (32.152)
re= o2 [m] (32.153)

Fiir d/L = 0,5 (Grenze des Tiefwasserbereichs) wird k-d = 2m-0,5 = 3,14...
wofiir der hyperbolische Cotangens = 1,004 (also praktisch gleich 1) wird. In
diesem Fall werden die Orbitalbahnen zu Kreisen, deren Radius an der Was-
seroberfliche gleich der halben Wellenhthe (der Durchmesser also gleich der
Wellenhohe) ist. Da der hyperbolische Cotangens fiir kleine Argumente (d.h.
im Flachwasserbereich) grof8 wird, zeigt sich aus den obigen Gleichungen,
daB im Seichtwasser die waagrechte Bewegung der Wasserteilchen die senk-
rechte bei weitem tibertrifft.

Am Seegrund (z, = 0) werden die Bahnradien

_H 1
e S [m] (32.154)

ro=0 [m] (32.155)
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Gleichung (32.154) kann die Frage beantworten, von welcher Tiefe (bezogen
auf die Wellenlinge) an auch die waagrechte Bewegung der Wasserteilchen
am Seegrund praktisch verschwindet. Nehmen wir die bereits wiederholt er-
wiahnte Grenze von d/L = 0,5, so wird der hyperbolische Sinus von k-d
gleich sinh(3,14...) = 11,5 , das heilt, die Gesamtbewegung ist eine halbe
Wellenlidnge unter dem Seespiegel etwas weniger als ein Zehntel so gro wie
die Wellenhohe.

Die Gleichungen (32.152) (waagrechte Bewegung an der Oberfldche) und
(32.154) (waagrechte Bewegung am Seegrund) unterscheiden sich um den
Faktor cosh(k-d); fiir d/L = 0,04 (Seichtwasserwellen) wird dieser gleich
1,03: die waagrechte Bewegung der Wasserteilchen ist somit im Flachwasser
liber die gesamte Wasserteife fast gleich grof3.

b) Form der Wasseroberfliche und Geschwindigkeit der Wasser-
teilchen nach der Theorie dritter Ordnung (Stokes III).

Die im folgenden verwendeten Parameter & und k! wurden bereits im vori-
gen Kapitel eingefiihrt (32.107 - 32.112).

- Form der Wasseroberfliche:
§ = § cos@+ §, cos(20) + §; cos(360) [m] (32.156)
mit

2 . . .
6 = La { sinh(kl) + a* 9 sinh(5kl) + 15 sinh(3k!) + 6 sinh(k/) }
2 64 cosh(2kl) - 1

[m] (32.157)

L o® sinh(4ki) + 4 sinh(2k)) [m] (32.158)

16x cosh(2kl) - 1

&

L o 3 sinh(7kl) + 15 sinh(5kl) + 27 sinh(3k{) + 39 sinh(k/)
256w [ cosh(2kl) - 112

&

[m] (32.159)
- Orbitalgeschwindigkeiten:

u = u, cosh(kz) cos® + u, cosh(2kz) cos(26) +
+ uy cosh(3kz) cos(36) [m/s] (32.160)

v = u, sinh(kz)-sin® + u, sinh(2kz) sin(26) +
+ uy sinh(3kz) sin(36) [m/s] (32.161)

mit
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u, === [m] (32.162)

Lo 1
2 T T cosh(@k) - 1 bl {32163}

3L o? 2 cosh(2kl) - 11
16 T [ cosh(2kl) - 112

[m] (32.164)

- Lokale Beschleunigungen:

gti‘— = %ul cosh(kz) sin® + —"‘T—"‘-u2 cosh(2kz) sin(26) +
6m . 2
+ i cosh(3kz) sin(36) [m/s*] (32.165)
gt_"_ - -%—ul sinh(kz) cos@ - -4T£u2 sinh(2kz)cos(26) -
} %% sinh(3kz) cos(36) [m/s?] (32.166)

Die Bahnkoordinaten kénnen bei Wellen mit gréBerer Amplitude nicht mehr
in geschlossener Form (wie 32.118 und 32.119) angegeben werden, da fiir x
und z in den Gleichungen der Orbitalgeschwindigkeit auch nicht ndherungs-
weise die Ruhekoordinaten x,; und z; eingesetzt werden diirfen. Wie in Fig.
3.37. sichtbar ist, nimmt die Teilchengeschwindigkeit gegen den Scheitel stark
zu ("Konzentration der Geschwindigkeit im Wellenberg"). Im eigentlichen
Seichtwasser verstirkt sich diese Erscheinung und kann nur durch die cnoida-
le und schlieBlich die Einzelwellentheorie zutreffend beschrieben werden.
Kurz bevor die Welle bricht, wird die Teilchengeschwindigkeit # im Wellen-
scheitel gleich der Fortpflanzungsgeschwindigkeit C der Welle.

Die obigen Festellungen stehen in einem scheinbaren Widerspruch zu den
Uberlegungen zur Gleichung (32.154); diese gelten jedoch nur fiir Wellen mit
kleiner Hohe gegeniiber der Wassertiefe. Doch ist auch bei Wellen groBerer
Amplitude im Seichtwasserbereich die Teilchengeschwindigkeit unterhalb
des Ruhewasserspiegels bis zum Seegrund von gleicher GroBenordnung.

Die in Fig. 3.37. dargestellte Welle mit dem Geschwindigkeitsprofil unter
dem Wellenscheitel ist dieselbe, die im Zahlenbeispiel zum vorigen Kapitel
berechnet wurde:

T =33s; H=0,66 m
kl =0,56
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o =0,213 Dieser Wert stimmt nicht mit dem auf S. 145 erhaltenen
iiberein, denn dort wurde mit H = 0,68 m gerechnet.
Wenn wir bei der Darstellung der Oberlfdchenform die ex-
akte Wellenhohe von 0,66 m erhalten wollen, miissen wir
o aus (32.111) iterativ berechnen oder durch Interpolation
aus der Tabelle 3.4. bestimmen. Mit dem neuen o wird
die Wellenlinge L = 10,6 m statt wie im Beispiel ange-
nommen 10,7 m: der Unterschied ist unbedeutend und
durfte bei der Bestimmung nur der Kenngré8en vernach-
lassigt werden.

L =10,6m
C =L/T=10,6/3,3=3,21 m/s

(32.157: ¢ =2080213 fiihos6+

2n
. 0,2132 9 sinh(5-0,56)+15 sinh(3-0,56)+6 sinh0,56}
64 cosh(2-0,56)-1
= 0,255 m
; 2 & s 4 sinh(2-
(32.158): ¢, = 10,6:0,2132 sinh(4-0,56)+4 sinh(2-0,56)
16x cosh(2-0,56)-1
= 0,140 m
(32.159): ¢, = 10,6-0,2_.133 3sinh(7-,56)+15sinh(5-,56)+27sinh(3-,56)+39sinh0,56
256w [cosh(2-0,56)-1]2
= 0,077 m

Die Gleichung der Wasseroberfliche lautet damit:
(32.156): ¢ =0,255 cos® + 0,140 cos(20) + 0,077 cos(36)
Fiir den Wellenberg (® =0, 2x, 4x, ...) wird

o) =0,255+ 0,140 + 0,077 = 0472 m
und fiir das Wellental (@ = =, 3&, 5~, ...)
{(my =-0,255+ 0,140 - 0,077 =-0,192m .

Die betragsmiBige Summe der Verschiebungen des Wasserspiegels im Wel-
lenberg und im Wellental ergibt die Wellenhdhe:

H =0472+0,192 = 0,664 m ,

was mit dem angenommenen Wert iibereinstimmt und die Richtigkeit der obi-
gen Rechnung bestitigt.

Das Profil der waagrechten Komponente der Orbitalgeschwindigkeit kann
mit
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10,6-0,213

(32.162):  wy = —— = 0,685 my/s
3 . 2
(32.163):  u, = —>10.60213 = 0,315 m/s
2-3,3-[cosh(2-0,56)-1]
! : 2 . -
(32.164): uy = 3.10,6-0,213< 2 cosh(2-0,56)-11 = 0,092 m/s

16:3,3 [cosh(2:0,56)-1]?

angeschrieben werden als:

(32.160): u =0,685 cosh(%,%)cos@ + 0,315 cosh(—%—%)cos(Z@) +
+0,092 cosh(-75 )c0s(36)

Die senkrechten Komponenten folgen aus

(32.161): v =0,685 smh( 10, 6)sm@+ 0,315 sinh( 1326) sin(2@) +
+ 0,092 sinh( ?gzﬁ)sm@ o) .

c) Bereiche der anwendbaren Theorie.
Die Wasserteilchengeschwindigkeit in den Wellen war schon seit langem Ge-
genstand theoretischer und experimenteller Forschung. Aus der Fiille der ent-
sprechendne Literatur seien hier die Untersuchungen von LE MEHAUTE et al.
(1968), IwaGgaki und Sakail (1970) sowie TsucHiYAa und YAMAGuUCHI (1972)
herausgegriffen.
Fiir den Giiltigkeitsbereich der linearen Theorie kann im Ubergangs- und
Flachwasserbereich die schon bei der Berechnung der Wellenkenngréf8en
verwendete Grenze (32.86)

v = 2L

<15,

angewandt werden. Zur Berechnung der Teilchengeschwindigkeit am See-
grund ist die lineare Theorie auch bei Wellen groferer Amplituden geeignet
(BuscHING 1974, dies geht auch aus den obgenannten Arbeiten hervor).

Fiir die unmittelbare Wirkung der Wellen auf den Schilfhalm ist allerdings
die Geschwindigkeit am Seegrund unbedeutend, da das vom Wasser verur-
sachte Biegemoment proportional zum Abstand vom Einspannort (= See-
grund) ist. Fiir die noch stirkere, indirekte Wirkung durch das von den Wel-
len bewegte, schwimmende Treibzeug ist natiirlich die Teilchengeschwindig-
keit an der Wasseroberfliche magebend. Wie bereits auf S. 158, festgestellt
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wurde, beschreibt die Stokes'sche Theorie dritter Ordnung bei flachem Was-
ser die starke Zunahme der Orbitalgeschwindigkeit oberhalb des Ruhewasser-
spiegels nur unvollkommen. Die so berechneten Geschwindigkeiten sind so-

mit am Seegrund tendenziell zu groB, an der Oberfliche tendenziell zu klein.
Da nicht alle der genannten Arbeiten die Theorie Stokes III beriicksichtigen, wurden wo né-
tig die entsprechenden Werte mit den in dieser Arbeit zitierten Formeln (zuriickgehend auf
CHAPPELEAR und BORGMAN 1958) nachgerechnet. Einige stichprobenweise Kontrollen zeig-
ten ferner, daB diese Formeln (im Sinne der Experimente) eher bessere Resultate liefern als
die in einigen der obigen Untersuchungen angewandten (vgl. S. 123f).

Unter Beriicksichtigung dieser Aspekte lassen sich aus den obgenannten Ar-
beiten folgende Schliisse ziehen:

Nach IwAGAKI und Sakar (1970) ergibt die Stokes'sche Theorie dritter Ord-
nung im Bereich des Ruhewasserspiegels fiir alle untersuchten Fille befriedi-
gende Resultate, das heiBt bis d/L = 0,06 (entsprechend d/L,' = 0,02; dabei
ist Ly' = gT?/2n = entsprechende Tiefwasserwellenlinge bei kleiner Ampli-
tude). Die relative Wellenhohe betrug bei diesen Versuchen ungefihr H/d =
0,24 + 0,3 . Betrachtet man das ganze Geschwindigkeitsprofil, so sollte die
Grenze etwa bei d/L 2 0,1 (entsprechend d/L,’ = 0,06) gezogen werden.
Die Wellensteilheit sollte nicht mehr als H/L = H/d- d/L = 0,24-0,1 =
0,024 (entsprechend H/L,' = 0,015) betragen. Da die Geschwindigkeiten
nach Stokes III auf der Hohe des Ruhewasserspiegels mit den experimentellen
Werten iibereinstimmen, sind sie demnach oberhalb des Ruhewasserspiegels
im flachen Bereich nicht nur tendenziell, sondern absolut zu klein.

Dagegen zeigen die Versuche von LE MEHAUTE et al. (1968) ein etwas anderes
Bild: Dort stimmen zum Teil Theorie und Experiment fiir den Flachwasser-
bereich unmittelbar unter dem Wellenscheitel iiberein, wo nicht, sind die the-
oretischen Werte generell zu gro8. Da LE MEHAUTE und seine Mitarbeiter re-
lative Wellenhshen von H/d = 0,4 und H/d = 0,5 untersuchten, kann nach
ihren Ergebnissen die Begrenzung fiir die Anwendung von Stokes III in Ab-
hingigkeit von der Wellensteilheit H/L differenziert werden: Fiir Wellen
mit H/L = 0,02 (entsprechend H/Ly = 0,0045) liefert die Theorie Stokes III
befriedigende Resultate im ganzen Ubergangsbereich, das heiit bis d/L >
0,04 (entsprechend d/L, = 0,010). Betrdgt die Wellensteilheit H/L = 0,025
(entsprechend H/L,' = 0,009), so liegt die Begrenzung bei d/L = 0,06 (ent-
sprechend d/L,' 2 0,022). Bei noch steileren Wellen mit H/L = 0,030 (ent-
sprechend H/L,' = 0,012) kann nur noch bis etwa d/L 2 0,10 (entsprechend
d/Ly = 0,058) mit Stokes III gerechnet werden.

Der GrofBteil der von TsucHiYA und YAaMaGucHI (1972) gezeigten MefBresulta-
te wurden 71% bzw. 86% der Wassertiefe iiber dem Seegrund erhoben, wo
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sich die lineare Theorie am besten den Daten anpalit. Fiir vier Fille wird in
dieser Arbeit auch noch ein ganzes Geschwindigkeitsprofil gezeigt, wobei fiir
d/L = 0,128 bzw. 0,122 mit H/L = 0,04 bzw. 0,068 (entsprechend d/L, =
0,089 mit H/Ly = 0,028 bzw. 0,050) die MeBwerte gut mit Stokes III iiber-
einstimmten, wihrend fiir d/L = 0,051 bzw. 0,052 mit H/L = 0,023 bzw.
0,032 (entsprechend d/L, = 0,020 mit H/L,' = 0,0089 bzw. 0,0124) die
Werte der Theorie im Bereich des Ruhewasserspiegels um 30 - 50% zu groB
werden. Im Gegensatz dazu hatten LE MEHAUTE et al. (1968) bei einer Steil-
heit H/L = 0,06 bereits fiir eine Wassertiefe d/L = 0,125 keine gute Uber-
einstimmung zwischen Theorie und Experiment mehr festgestellt.

DaB die MeBwerte teils iiber (Iwacaki und SAka1 1970), teils unter (LE MEHAU-
TE et al. 1968 sowie TsucHiYA und YamacucHr 1970) den theoretischen liegen,
erklart sich wahrscheinlich durch die verschiedenen Methoden der Geschwin-
digkeitsmessungen (Wasserstoffblasen, bzw. suspendierte "Nitrile rubber"-
Wiirfelchen bzw. Doppler-Stromungsmesser). Es ist darum anzunehmen, daf
die Messungen zwar den relativen Verlauf der Orbitalgeschwindigkeiten rich-
tig erfassen, wihrend offen bleiben muf}, ob und allenfalls mit welcher Me-
thode auch absolut zutreffendste Werte erhalten werden.

Was fiir Folgerungen lassen sich aus diesen Ergebnissen fiir die vorliegende
Arbeit ziehen? Das im Kapitel 3.2.2. durchgerechnete Beispiel des Schilffel-
des in Altenrhein ergab unter den vorausgesetzten Annahmen (Windstirke
und -dauer) eine relative Wassertiefe d/L =1/10,7 = 0,1 und H/L =
0,66/10,7 = 0,06, was zumindest nach den Resultaten von TsucHiYA und Y AMA-
GUcHI (1972) gerade noch im Giiltigkeitsbereich der Stokes'schen Theorie
dritter Ordnung liegt. Bei schweren Stiirmen sind zwar durchaus auch grofe-
re Wellen moglich, dann ist allerdings in zunehmendem MaBe (sobald die
Wellenhohe groBer als = 0,784 = 0,8 m wird) mit brechenden Wellen zu
rechnen, welche sich der theoretischen Erfassung ohnehin praktisch vollstdn-
dig entziehen. Der Schilfbestand von Altenrhein ist einer der exponiertesten
der Schweiz, er liegt am schmalen Ufer einer ungefihr parallel zu einer
Hauptwindrichtung liegenden, groBen Wasserfliche. Fiir die meisten anderen
ist daher auch bei starkem Wind mit z.T. wesentlich kleineren Wellen zu rech-
nen. Es erscheint daher gerechtfertigt, im Rahmen dieser Arbeit die Orbital-
geschwindigkeiten mit der linearen Theorie zu berechnen, bzw. bei groBeren
Wellenhshen (U > 15) mit Stokes III.
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3.3. DIE BELASTUNG DURCH DAS TREIBZEUG
3.3.1. Allgemeines

Von allen duBleren Belastungen natiirlicher Schilfbestinde ist das auf dem
Wasser schwimmende Treibzeug bei weitem die gefdhrlichste. Nur ge-
schwichte Bestinde (z.B. durch sehr starke Uberdiingung oder toxische Ein-
fliisse) konnen bereits durch die reine Wind- und Wellenbelastung "norma-
len" AusmalBes geschddigt werden (HORLIMANN 1951): Andernfalls hitten sich
an den Seeufern gar keine umfangreichen und langlebigen Schilfbestinde ent-

wickeln kénnen.

Bei sehr starken Stiirmen ist es durchaus moglich, daB ein Teil der oberirdischen Organe des
Schilfes nur durch die unmittelbare Einwirkung von Wellen und Wind zerstért wird, ein ge-
sunder Bestand wird jedoch durch ein solch auBergewdhnliches Ereignis nicht nachhaltig
geschidigt, da er sich in den ruhigen Zwischenphasen geniigend erholen kann.

Verschiedene Faktoren haben in den letzten Jahrzehnten zu einer starken Zu-

nahme des Treibzeugs gefiihrt:

- Natiirlicherweise anfallendes Treibholz wird von der anséBigen Bevolke-
rung nicht mehr genutzt und bleibt deshalb im See.

- Durch gedankenloses Handeln gelangen Unmengen von Zivilisationsabfil-
len unmittelbar oder durch die einmiindenden Béche und Fliisse in den See.
Durch Stromung und Windverfrachtung gelangen sie friiher oder spiter an
irgendein Ufer. Dabei handelt es sich um alle nur denkbaren Produkte, die
leichter als Wasser sind (vgl. Teil I, Kapitel 2.3. und MoreT 1980, 1981).

- Erreicht der Gehalt des Wassers an Néhrstoffen einen bestimmten Wert, so
entwickeln sich in der warmen Jahreszeit Fadenalgen (Cladophora spp.).
Diese bilden méchtige, schwimmende Watten, welche sich unter Umstén-
den zu einem groBfldchigen, dichten Teppich vereinigen. Entsteht ein sol-
cher Teppich inerhalb eines Schilfbestandes, so ist eine Schédigung schon
bei kleinerem Wellengang unausweichlich. Auch ein einzelnes Algenpaket,
welches sich um einen Schilfhalm legt, wirkt auf dieselbe schédigende Art.
Es wird im iibrigen vermutet (SCHRODER 1979, 1987, HENNING und KoOHL
1981), daB die in einem Schilfbestand verbleibenden Algenwatten bei ih-
rem Abbau Giftstoffe freisetzen, welche das durch die mechanischen Ein-
wirkungen bereits geschiddigte Schilf noch zusitzlich belasten.
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3.3.2. Wirkungsmechanismus

Vereinfachend lassen sich zwei Wirkungsweisen feststellen, die sich allerdings

in der Natur nicht immer sauber trennen lassen:

- Das Treibzeug ist eine mehr oder weniger feste, einigermaflen kompakte
Masse, die sich unabhingig vom Schilfthalm bewegt (Fig. 3.38.), oder

- das Treibgut besteht aus einer wenig festen Masse, die sich um den Halm
legt und sich mehr oder weniger stark mit ihm verbindet (Algenwatten,
Fig. 3.39.)

Fig. 3.38. Schwimmendes, festes Treibzeug (Treibholz und abgebrochene Schilfhalme) in
einem Schilfbestand (Photo F. K16tzli).
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Treibzeug der ersten Art (Holzstiicke, abgebrochene Halme usw.), welches
eine bestimmte Ausdehnung iiberschreitet, sammelt sich vor der Bestandes-
front an, wenn diese einigermaBen geschlossen ist (Fig. 3.40.). Die Wellen be-
wegen dieses Treibzeug stdndig hin und her, es wird von jeder Welle gegen
das Schilf getrieben. Die Halme biegen sich unter dieser Last; entsprechend

Fig. 3.39. Algenwatten in Schilfbestinden.

Oben: Zusammenhingender Algenteppich in einem Schilfbestand bei Kiisnacht ZH.
(Photo Amit fiir Gewisserschutz des Kantons Ziirich)

Unten: Bei sinkendem Wasserstand durch das Gewicht der Algen niedergedriickte Schilf-
halme in Altenrhein. Wegen des tiefen Wasserstandes auf diesem Winterbild sind
auch die Uberreste abgebrochener Halme deutlich sichtbar.
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der Halmsteifigkeit entsteht dabei eine Riickstellkraft Fp, welche zusammen
mit dem riickstromenden Wasser des Wellentales den Halm zuriickfedern 1463t
und das Treibzeug wieder zurickstoBt (Fig. 3.41.).

Sind die Wellen klein, so iiberwiegt die Riickstellkraft, und es braucht mehre-
re Wellen, bis das zuriickgeworfene Treibzeug wieder mit dem Halm in Be-
riihrung kommt; hort der Wellengang auf, so steht der Halm (bei Windstille)
wieder senkrecht.

Nimmt die GroBe der Wellen zu, so wird irgendwann ein Punkt erreicht, wo
sich die Verhiltnisse rapid verschlechtern: Durch die starke Schriglage be-
dingt, wirkt nur noch eine reduzierte Komponente der Riickstellkraft weg-
schiebend auf das Treibzeug. Als weiteres Hemmnis tritt die Reibungskraft
zwischen Halm und Treibzeug in Erscheinung. Wegen dem nun groeren Ab-
stand zwischen dem FuBSpunkt des Halmes und dem Beriihrungspunkt mit dem
Treibzeug werden die Hebelverhiltnisse fiir den Schilfhalm ungiinstiger, au-
Berdem werden so auch die ohnehin weniger steifen, oberen Halmpartien mit
einbezogen, was die Riickstellkraft noch weiter verringert. Kritische Verhilt-
nisse sind dann erreicht, wenn der Halm wihrend des Wellentals das Treib-
zeug nicht mehr "abschiitteln” kann. Es wird dann von jeder Welle noch ein
Stiick weiter auf dem Halm nach oben geschoben, der Halm wird richtigge-
hend iiberrollt. Ist der Wasserstand hoch, so ist der Halm wegen des lingeren
Hebelarmes fiir den Angriffspunkt des Treibzeugs beweglicher, die ausgeiib-
ten Krifte sind generell kleiner, und der Halm wird deshalb eher iiberrollt als
bei niedrigem Seestand. Andererseits sind in diesem Falle die Beanspruchun-
gen (und damit die Schiden) fiir das Schilf kleiner, da ein verhiltnismaBig
groBerer Teil des Halmes schon unter Wasser liegt und die Spitze des Halmes
schon mit relativ kleiner Kriimmung des Stengels auf die Wasseroberflidche
gedriickt werden kann und so dem Treibgut erlaubt, dariiber hinweg zu glei-
ten. Wegen der geringeren Kraft ist bei hohem Seestand auch die Gefahr, daf
sich das Treibgut in den Blittern verfingt, weniger groB3. Bei normalen Ver-
hiltnissen ist meist der iiber dem Wasser liegende Teil des Halmes so gro8,
daB das Uberrolen nicht glatt vor sich geht; der Halm wird geschwicht, ein
Teil der Blitter wird zerfetzt und die Grenzbeanspruchung im Stengel (vgl.
Teil III, Kap. 1.2., S. 346) wird fast immer iiberschritten, so daB sich der
Halm nicht mehr vollstindig wieder aufrichtet.

Ob der Halm iiberrollt wird ist deshalb (abgesehen von den belastenden Fak-
toren) eine Frage seiner Steifigkeit (Widerstand gegen Verkriimmung), ob
und wie er diesen Fall iiberlebt dagegen eine Frage seiner Festigkeit (maxi-
mal ertragbare Beanspruchung).
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Fig. 3.40. Schematische Darstellung eines durch Treibzeug belasteten Schilfbestandes
(seeseitige Front) (aus BINZ 1978).
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Fig. 3.41. Einzelne Phasen beim Uberrollen eines Halmes durch festes Treibgut (Schema;
wegen der Ubersichtlichkeit wurde nur ein Halm gezeichnet). In Wirklichkeit lassen sich
die einzelnen Phasen nicht eindeutig gegeneinander abgrenzen, sondern gehen allmiéhlich in-
einander iiber.
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Nimmt beim Uberrollvorgang die Wellenbewegung ab oder verschwindet
ganz, so bleibt das Treibzeug auf dem Halm liegen (Fig. 3.41. d) und driickt
ihn (teilweise) unter Wasser. Schilfblitter konnen unter Wasser nicht assimi-
lieren (HURLIMANN 1951), sie sterben nach einiger Zeit ab und verfaulen.
Bleibt bei ungiinstigen Verhiltnissen der ganze Halm wihrend lingerer Zeit
unter den Wasserspiegel, so stirbt er ganz ab. Wenn sich Halm und Treibzeug
auf ungliickliche Weise verklemmen, kann die dem Stengel aufgezwungene
Bewegung so groB8 werden, daB} er bricht. Da die Bruchstelle fast immer unter
Wasser liegt, gelangt Wasser durch den Halmstumpf bis ins Rhizomsystem
hinunter. Dies beeintrichtigt den Sauerstofftransport zwischen den verschie-
denen Organen der Pflanze und fiihrt in schweren Fillen zum fortschreiten-
den Absterben einzelner Partien oder ganzer Bestinde ("Schilfsterben"). Das
gleiche geschieht, wenn Halme unter Wasser verfaulen (KLotzL1 1971, Sukopp
et al. 1975). '

Wird der Halm nur teilweise ins Wasser gedriickt, so kann er sich bis zu einem
gewissen Grad an die neue Situation anpassen: Durch asymmetrische Wachs-
tum in den Knoten (HORLIMANN 1951) richtet sich der obere Teil des Halmes
mit der Zeit wieder auf, die Pflanze wird ~-férmig, in seltenen Fillen beginnt
der Halm in der Horizontalen weiter zu wachsen (Leghalme; vgl. Teil I, Kap.
1.1., S. 21). Wurde der Halm durch das Treibzeug verletzt, so bilden sich in
einem oder mehreren Knoten neue Austriebe. Diese Tochtersprosse erreichen
aber nie auch nur annihernd die urspriingliche GroBe des Primirtriebes. So
wird trotz dieser Anpassungsmechanismen der Halm durch Wellen und Treib-
zeug geschwicht, was sich auf langere Sicht fatal auswirken kann: Die redu-
zierte Blattfliiche produziert weniger Sauerstoff und Assimilate, dazu mobili-
siert die Bildung der Tochtersprosse Stoffe und Krifte, die normalerweise im
Rhizom fiir den Neuaustrieb der néchsten Halmgeneration gespeichert wer-
den. Wassereinbriiche bringen Teile des Rhizoms zum Absterben. Durch all
diese Umstinde ist die Halmgeneration des néchsten Jahres bereits von vorne-
herein benachteiligt, sie wird daher der Belastung noch weniger Widerstand
leisten konnen als die letzte.

Wihrend die soeben beschriebene erste Art von Treibzeug (nur) bei bestimm-
ten Ereignissen (starker Wind, Sturm) zur Schéddigung des Schilfbestandes
fiihrt, wirkt die zweite Art (Algenwatten) auch bei schwachem Seegang nach-
teilig. Bei starkem Wellengang ist die Wirkung dhnlich wie bei festem
Treibgut, nur daB das filzige Gewebe der Algen beim Uberrollen des Schilf-
halmes in jedem Fall den groBten Teil der Blitter zerfetzt.
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Der Wellenberg hebt die Algenwatte an (Fig. 3.42.), was ohne grofen Wider-
stand geschieht, da das schwimmende Algenpaket sehr locker um den Halm
liegt. Beim folgenden Wellental gelangt das Algenpaket an die Luft und legt
sich, weil nicht mehr durch das Wasser getragen, sehr eng um den Halm. Die
dadurch entstehende Reibung verhindert, dafl die Algen dem Wasserspiegel
folgend nach unten rutschen, das Paket klebt ungefihr in der Hohe des Wel-
lenscheitels am Schilfhalm. Es ist klar, dal durch Knoten und Blitter die Rei-
bung noch zusitzlich verstdrkt wird. Da der Halm durch die Welle in die
Schrige gedriickt wird, verursacht das Gewicht der am Halm klebenden Al-
gen ein umkippendes (Dreh-)Moment, welches verhindert, daB sich der Halm
wieder vollstindig aufrichtet, wenn dieses Moment groBer ist als das Riick-
stellmoment des gekriimmten Stengels. Folgt nun eine groBere Welle, so
bringt sie das ganze Algenpaket erneut zum Schwimmen und schiebt es wieder
ein Stiickchen dem Halm entlang nach oben, wodurch wegen dem nun lidnge-
ren Hebelarm das umkippende Moment noch gréBer wird, was den Halm in
eine noch stirkere Schriglage driickt, was wiederum den Hebelarm des Al-
genpakets verlidngert. Dieser ProzeB fiithrt nur darum nicht zum sofortigen
Bruch des Stengels, weil beim Kippen des Halmes das Algenpaket wieder auf
die Wasseroberfliche gelangt und schwimmt, so daB sein Gewicht nun stéindig
vom Wasser getragen wird. Auch in diesem Fall beginnt sich die Spitze des
niedergedriickten Halmes durch entsprechendes Wachstum aufzurichten, der
Halm wird ~-formig, der Stengel bleibt auch ohne duBeres Biegemoment ge-
kriimmt. Eine Riickstellkraft entsteht somit erst wieder bei einer zusétzlichen
Verformung. Da die Anzahl der wihrend eines Tages gegen das Ufer laufen-
den Wellen in der GroBenordnung von vielen Tausenden liegt, sieht man
leicht, daB eine starke Schidigung des Schilfes unausweichlich ist, wenn auch
nur jede hundertste Welle das Algenpaket ein wenig weiter schiebt.

Fiir die Halmschidigung spielt somit das Gewicht des Algenpaketes eine grofle
Rolle. Die Algen selbst sind zwar nicht schwer, wegen ihrer wattigen Struktur
vermdogen sie aber wie ein Schwamm grof8e Mengen von Wasser aufzusaugen
und (eine zeitlang) festzuhalten, wodurch das Algenpaket ein betréchtliches
Gewicht erhilt. Bis es durch Abtropfen und Austrocknen wieder so leicht ge-
worden ist, daf} es fiir den Halm keine Gefahr mehr darstellt, hat sich dieser je
nach Situation meist langst an seine neue Form angepaBt. AuBBerdem kann das
Algenpaket durch Regen, eine besonders hohe Welle oder Gischt wieder er-
neut Wasser aufnehmen.

Bei dieser zweiten Art von Treibzeug ist vor allem die Menge des um den
Halm schwimmenden Treibzeugs fiir den Schaden ausschlaggebend, wihrend
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Fig. 3.42. Einzelne Phasen der Halmzerstorung durch ein Algenpaket (Schema). Je nach
vorhandenem Wellenklima kénnen zwischen den einzelnen Phasen lingere Ruhepausen lie-
gen. Hat der Halm eine bestimmte Schriiglage erreicht, so wirkt sich sinkender Wasserstand
in dhnlicher Weise aus (vgl. Fig. 3.39.).



- 171 -

die kritische GréBe der Wellen so klein ist, daB sie an einem See mit Sicherheit
immer wieder iiberschritten wird. Bemiihungen zur Erhaltung des Schilfes
miissen sich daher in erster Linie darauf richten, den Bestand so weit wie
moglich von schwimmenden Algenwatten frei zu halten. Der Versuch, die na-
tiirliche Wellenbelastung zu verringern, erscheint wenig erfolgreich. Daf3
dies, wenn auch mit etwas anderen Akzenten, ebenso fiir das feste Treibzeug
(erste Art) gilt, zeigte sich als Ergebnis der Arbeiten am und mit dem mathe-
matischen Modell.

Die obigen Darlegungen zeigen, dal bei Algenbehang im Prinzip die Anzahl
der Wellen auch eine entscheidende Rolle spielt. Bei solchen Schilfbestinden
sollte deshalb darauf geachtet werden, daB8 diese Zahl nicht noch aus kiinstli-
chen Quellen (Boote, Schiffe) vermehrt wird, so daB sich das Schilf wenig-
stens wihrend der Perioden der Windstille etwas erholen kann.

3.3.3. Bewegungsdifferentialgleichung fiir das Treibzeug

Um eine Berechnung iiberhaupt moglich zu machen, muf} das Treibzeug idea-
lisiert werden. Wir behandeln hier das Getreibsel als starren, schwimmenden,
"langen", prismatischen Korper, der von den Wellen auf eine geschlossene,
gerade Bestandesfront geworfen wird (Fig. 3.40.). Diesen Annahmen
entspricht in der Natur z.B. ein vor dem Réhrichtgiirtel schwimmendes Rund-
oder Kantholz. Die Voraussetzung der "Linge" des Treibzeugs hat den glei-
chen Grund wie die Annahme langkdmmiger Wellen: Alle Vorginge spielen
sich in der x-z-Ebene ab (Fig. 3.43.). Die Betrachtung erstreckt sich auf einen
Streifen dessen Breite quer zur Uferlinie gleich "1" ist.

Es ist naheliegend, bei der Formulierung der auf das Treibgut wirkenden
Krifte von einem dhnlichen Ansatz auszugehen, wie er fiir den Wasser- und
Winddruck auf den Halm verwendet wird (vgl. Kap. 3.2.1.3. und 3.1.3.):
Auch das Treibzeug ist ein vom Wasser umstromter Korper, der in seiner
freien Bewegung behindert ist, und zwar einerseits durch die Schilfhalme und
andererseits durch seine eigene Trigheit (Masse). Alles, was iiber die direkte
Belastung des Halmes durch die Wellen gesagt wurde, gilt deshalb zumindest
qualitativ hier genauso. Im einzelnen sind gewisse Anderungen zu beachten, so
ist das Treibzeug weder fest am Boden verankert, noch reicht es bis auf den
Seegrund hinunter. Ein weiterer Faktor, der in die Rechnung einbezogen wer-
den muB, sind (wie bereits angedeutet) die Massen des Treibzeugs und des von
ihm verdridngten Wassers. Im Gegensatz zum leichten Halm mit seinen gerin-
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gen Abmessungen konnen ndmlich im Fall des Treibzeugs die beiden obge-
nannten Massen betridchtliche Werte annehmen, so daB sie nicht mehr ver-
nachlissigt werden diirfen; sie sind nicht um Gréenordnungen kleiner als et-
wa das als Bezugsgrofe zu wihlende Volumen eines kleineren Wellenberges.
Die zur Formulierung des Belastungsansatzes herbeigezogene Gleichung
(32.42) muB also um einen die erwihnten Massen beriicksichtigenden Term
erweitert werden, man spricht vom Uberlagerungsverfahren (BURKHARDT
1967). Der Anschaulichkeit wegen ist es besser, die Belastungsgleichung als
Bewegungsdifferentialgleichung fiir das Treibzeug zu formulieren (das Pro-
dukt aus Masse und Beschleunigung des Treibzeugs ist gleich der Summe al-
ler wirkenden Krifte). Trotzdem sind die aus (32.42) stammenden Ausdriicke
ohne weiteres zu erkennen.

Treibzeug

frei schwim- in Beriihrung
mend mit dem Halm

J
K

Fig. 3.43. Definitionsskizze zu den Bewegungsdifferentialgleichungen (33.1ff) des Treib-
zeugs.
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Fiir die horizontalen Komponenten lautet die Gleichung (mit den Bezeichnun-
gen der Figur 3.43.):

M+M)x = M+M)YU +G,Puf2A; (u-x)lu-x1-F,

IN] (33.1)
M ... (Verdringte) Masse des Treibzeugs [kg]
M’ ... Wassermasse, die physikalisch dem Treibzeug zuzuordnen ist (s.u.)
x” ... Beschleunigung des Treibzeugs in x—R1chtung [m/s?]
u ... Beschleunigung der Wassserteilchen in x-Richtung [m/s?]
G

4 --- Wasserwiderstandskoeffizient des Treibzeugs, entspricht dem c,,
des Halmes [-]
p, ... Dichte des Wassers [kg/m3]
Ay ... Benetzte Fliche des Treibzeugs = Eintauchtiefe-1 [m%/m']
u ... Geschwindigkeit der Wasserteilchen in x-Richtung [m/s]
x" ... Geschwindigkeit des Treibzeugs in x-Richtung [m/s]
F, ... x-Komponente der vom Halm auf das Treibzeug (und umgekehrt)
ausgelibten Kraft [N]

x ... Lagekoordinate des Treibzeugs (s. Fig. 3.43.) [m]

Die linke Seite von (33.1), das Produkt von Masse und Beschleunigung, kann
in entgegengesetzter Richtung auch als sogenannte Tridgheitskraft des
Treibzeugs interpretiert werden; diese Trigheitskraft steht mit den duBeren
Kriften im Gleichgewicht.

Der erste Term auf der rechten Seite ist die aus dem Druckgradienten (er-
sichtlich am Wasserspiegelgefille) resultierende hydrostatische Kraft, der
zweite ist die hydordynamische Kraft als Folge der Geschwindigkeitsdiffe-
renz zwischen Wasser und Treibzeug.

Der Betrag der hydrostatischen Kraft wird mit folgender Uberlegung gefun-
den: Das Treibzeug verdringt ein Wasservolumen mit derselben Masse; denkt
man sich anstelle des Treibzeugs dieses Wasservolumen, so erfihrt dieses
durch den Druckgradienten die Beschleunigung «’, genauso wie die Wasser-
teilchen der Umgebung. Die gesamte hydrostatische Kraft auf das betrachtete
Volumen ist daher gleich dem Produkt von dessen Masse mal Beschleunigung.
Wird das betrachtete Wasservolumen durch einen festen Korper (Treibzeug)
eingenommen, so wirkt auf diesen natiirlich die genau gleiche hydrostatische
Kraft. Da nun allerdings der freie FluB des Wassers gestort ist, muf3 das um-
gebende Wasser ausweichen, bestimmte Wasserteilchen miissen deshalb mehr
beschleunigt werden als in einer ungestérten Welle. Dieser Effekt wird be-
riicksichtigt, indem der Masse M des Treibzeugs noch eine Zusatzmasse M’
zugezdhlt wird, anders gesagt, ein Teil des Umgebungswasser wird als zum
Treibzeug gehorig mitgerechnet. Die Gesamtmasse (M + M") wird als vir-
tuelle Masse bezeichnet, im Gegensatz zur effektiven Masse des Treibzeugs,
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welche gleich der von diesem verdringten Masse ist. Die GroBe der Zu-
satzmasse M’ (und damit die GroBe der gesamten virtuellen Masse) ist abhin-
gig von der Form des Treibzeugs und vom Strémungszustand, sie kann des-
halb nicht theoretisch bestimmt weden. Es wird angenommen, daB} sie propor-
tional zur verdriangten Masse sei. Das Verhiltnis zwischen den beiden kann
dann durch einen Strémungsbeschleunigungsbeiwert oder kiirzer: Mas-
senkoeffizient (inertial coefficient, mass coefficient)

G, = M ;4 M)
ausgedriickt werden.

Der Wasserwiderstandsbeiwert, den wir schon bei der direkten Wirkung der
Wellen auf den Halm angetroffen haben (Gl. 32.42ff und Kap. 3.2.1.4.), wird
hier mit G, bezeichnet um ihn von dem fiir den zylindrischen Schilfhalm gel-
tenden ¢, zu unterscheiden. In Analogie zum Massenkoeffizienten spricht
man bei der Anwendung des Uberlagerungsverfahrens hier auch vom Schub-
koeffizienten (drag coefficient). Sowohl der Massen-, wie auch der Schubko-
effizient miissen experimentell bestimmt werden (vgl. Kap. 3.3.4.). Mit die-
sen beiden Koeffizienten kann (33.1) umgeschrieben und vereinfacht werden
zu

] (33.2)

G, Mx" = Gm-M-u'+Gd’;—WAT(u ) %1 - F, (33.3)

Dieser Ansatz entspricht in seiner Form genau der Gleichung, die RAICHLEN
(1965) zur Beschreibung der Bewegung verankerter Boote verwendete. Der
einzige Unterschied besteht darin, da8 Halm und Treibzeug nicht fest mitein-
ander verbunden sind, wihrend die von RAICHLEN untersuchten Boote durch
die Verankerung festgehalten werden. In unserem Fall kann daher die Kraft
F_ nur eine Druckkraft oder dann gleich O sein.

Eine Komplikation bedeutet die Tatsache, dafl das Treibzeug bald vollstindig
oder teilweise untergetaucht ist, bald vollstindig aus dem Wasser herausgeho-
ben ist. So wie die Bewegungsdifferentialgleichung fiir das Treibzeug oben
formuliert wurde, gilt sie fiir die normale Schwimmlage, d. h., die Masse des
Treibzeug ist gleich der von ihm verdringten Wassermasse. In allen anderen
Fillen miissen auf der rechten und linken Seite der Gleichung andere Massen
eingesetzt werden: Fiir die Trédgheit (linke Seite) bestimmend ist die effektive
Masse des Treibzeugs plus die Zusatzmasse. Fiir die hydrostatische Kraft darf
nur das untergetauchte Volumen plus die entsprechende Zusatzmasse beriick-
sichtigt werde, das Treibzeug wird hier also nur mit der von ihm effektiv ver-
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driangten Masse beriicksichtigt (analog wird fiir die hydrodynamische Kraft
die momentane effektive Eintauchtiefe beriicksichtigt). Um die Rechnung
nicht noch mehr zu komplizieren, nehmen wir an, da sowohl die vom Treib-
zeug effektiv verdringte Wassermasse, wie auch die Zusatzmasse, direkt pro-
portional zur Eintauchtiefe des Treibzeugs seien (vgl. Fig. 3.44.):

M = f-M; kg] (33.4)

M ... Effektiv verdriingte Masse des Treibzeugs [kg]
My ... Masse des Treibzeugs [kg]
f"J ... Proportionalititsfaktor [-]

und (vgl. GL 33.2):
M = f(G,-1)My . kgl (33.5)

Wie aus (33.4) und dem oben gesagten hervorgeht, ist der Proportionalitits-
faktor f, so angesetzt, daB er in der Ruhe-Schwimmlage des Treibzeugs den
Wert 1 annimmt. Fiir die iibrigen Lagen gilt:

Fig. 3.44. Definitionsskizze zu den GroBen im Zusammenhang mit der momentanen Ein-
tauchtiefe des Treibzeugs. (Um die MaBlinien iibersichtlicher zeichnen zu kénnen, wurde
hier der Wasserspiegel vereinfachend als waagrechte Linie gezeichnet.)
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Zgp-2Z
0 < f=—L2u o B (33.6)
Ar Pr
z ... Hohe des Wasserspiegels am Ort des Treibzeugs (Fig. 3.3.7.) [m]
z, ... Hohenlage der Unterkante des Treibzeugs [m]

A; ... Eintauchtiefe des Treibzeu ;s in der Ruheschwimmlage [m]
p, ... Dichte des Wassers [kg/m-]
pr ... Dichte des Treibzeugs

Die obere Begrenzung entspricht dem vollstindig untergetauchten Treibzeug,
die von ihm verdringte Wassermasse ist dann um das Verhiltnis der beiden
Dichten groer (da das Treibzeug schwimmt, ist seine Dichte kleiner als jene
des Wassers) als die Masse des Treibzeugs. Der Wert 0 wird erreicht, wenn
das Treibzeug vollstindig aus dem Wasser gehoben ist. Gehen wir mit diesen
Annahmen in Gleichung (33.1) so wird diese

Mr+f)G, - DM x" = [[yMp+f,(G,-1) M]u +
+G, D foAr u-xVu-x1-F,,  (337)

mit Ausklammerung

[1+£Gy - VIMpx" =£,[G,, My + G, g—“’AT (u-x)u-x1]-F,

(33.8)
und schlieBlich
F
Mrx" = fp— [Gm Mru +Gy p—wAT-(u -x))u -x'I] g —=
fm 2 fm
mit (33.9)
fun = 15510, -1) (33.10)

Dabei wurde stillschweigend angenommen, da3 auch die Schubkraft propor-
tional zur Eintauchtiefe sei. Verliert das Treibzeug den Kontakt mit dem
Halm, so wird die &uBlere Kraft F, = 0.

Fiir die Berechnung der vertikalen Bewegungen des Treibzeugs beriicksichti-
gen wir in erster Linie die Schwerkraft (Gewicht und Auftrieb des Treib-
zeugs):
Gewicht = Mg [N] (33.11)
Auftrieb = f, .My g [N] (33.12)
g ... Erdbeschleunigung (= 9,81 m/s2)
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In der Ruheschwimmlage (f, = 1) sind Gewicht und Auftrieb einander natiir-
lich gleich. In allen anderen Fillen entsteht eine nach oben (f, > 1) oder nach
unten (f, < 1) gerichtete, antreibende Kraft. Der Wasserwiderstand bei der
senkrechten Bewegung des Treibzeugs (bzw. die antreibende hydrodynami-
sche Kraft, wenn die Geschwindigkeit v der Wasserteilchen grofer ist als die
Geschwindigkeit des Treibzeugs) mufl mangels besserer Kenntnisse analog
wie bei der waagrechten Bewegung angenommen werden:

W, = Gd%AT v-2)v-z] N] (33.13)
W, ... Wasserwiderstand (hydrodynamischer Druck) (positiv in z-
Richtung)
2" ... Geschwindigkeit des Treibzeugs in z-Richtung [m/s]

v ... Senkrechte Geschwindigkeit der Wasserteilchen [m/s]

Da die senkrechte Bewegung des Treibzeugs praktisch rechtwinklig zum Was-
serspiegel geht, wird fiir den Wasserwiderstand die Eintauchtiefe nicht spe-
ziell beriicksichtigt, das heit wir nehmen an, der Wasserwiderstand (bzw.
—antrieb) sei immer voll wirksam. Sobald sich das Treibzeug vollstindig au-
Berhalb des Wassers befindet, iibt das Wasser natiirlich keinerlei Kraft mehr
auf das Treibzeug aus. Da der exakten Erfassung der senkrechten Bewegung
des Treibzeugs geringere Bedeutung zukommt und angesichts der iibrigen
Unsicherheiten, sind diese Vereinfachungen gerechtfertigt.

Die Bewegungsdifferentialgleichung fiir die z-Komponente erhilt damit die
folgende Form:

fMpz® = Auftrieb - Gewicht + W, + F, [N] (33.14)
F, ... z-Komponente der vom Halm auf das Treibzeug ausgeiibten Kraft
bzw. mit Beriicksichtigung von (33.11 - 33.13):
1
Fu
£,, nach (33.10) (33.15)

Mpz = —[Mpg (f,-1)-G, %”—Ar(v-z')lv-z'HFz]

Die Berechnung von F, und F, erfolgt in Kap. 4.2.2.1. (S. 218).
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3.3.4. Untersuchungen zur Bestimmung der Koeffizienten G,
und G,

3.3.4.1. Versuchseinrichtung

Zur Durchfithrung der Versuche mit Wellen stand an der Versuchsanstalt fiir
Wasserbau, Hydrologie und Glaziologie an der ETH (VAW) eine in einer ent-
sprechenden Rinne montierte Wellenmaschine zur Verfiigung (Fig. 3.45.).
Eine oszillierende Metallschaufel erzeugte die Wellen. Sie wurde mittels
zweier Pleuelstangen durch einen stufenlos regulierbaren Elektromotor in
Bewegung gesetzt. Die Exzentrizitit der Pleuelstangen, und damit die Ampli-
tude der Bewegung, lieB sich verstellen. Damit konnte die Wellenhohe regu-
liert werden. Wie bereits in Kap. 3.1.4. erwihnt, erfolgte die Kraftiibertra-
gung zwischen dem Motorengetriebe und der Exzenterachse durch zwei Rie-
mentransmissionen, welche die maximal iibertragbare Leistung begrenzten
(Schlupf). Die groBtmogliche mittlere Wellenhohe betrug 16 cm (15 bis 17
cm). Der Bereich méglicher Wellenperioden war von Seiten der Maschine auf
0,4 - 1,5 s begrenzt.

Die Male der Rinne (Fig. 3.46.) betrugen: Lénge rund 10 m, Breite 1,0 m und
Tiefe 1,25 m.

Zur Vermeidung von Wellenreflexionen war das riickwirtige Ende der Rinne
als Schotterbéschung mit einer Neigung von 1:2 ausgebildet. Ein Glasfenster
im Bereich der zu untersuchenden Einbauten erlaubte die Beobachtung und
vor allem das photographische Festhalten der Bewegungen.

Da im urspriinglichen Konzept auch (hier nicht besprochene) Versuche mit
lebenden Halmen vorgesehen waren, entschlossen wir uns, trotz der relativ
geringen Abmessungen der Rinne und der erzeugten Wellen, die Versuche im
MaBstab 1:1 durchzufiihm. Dies hatte einerseits den zusitzlichen Vorteil, daB
die komplexen Ahnlichkeitsprobleme (hydraulische, statische und dynamische
Ahnlichkeit hitte beriicksichtigt werden miissen) umgangen werden konnten,
andererseits den Nachteil, dal von der Wellenmaschine nur der oberste Lei-
stungsbereich ausgenutzt werden konnte. Dadurch war der Spielraum fiir die
veridnderlichen Parameter stark eingeschrénkt.

Wegen des kleinen Durchmessers der verwendeten Stibe war es mit vertret-
barem Aufwand nicht moglich, die Beanspruchungen unmittelbar zu messen.
Stattdessen registrierten wir die Verformungen und berechneten daraus die
Beanspruchungen. Dazu photographierten wir die Einbauten wihrend der Be-
lastung genau von der Seite, und zwar mit einer Belichtungsdauer, die etwas
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grofer als die Wellenperiode war. Dadurch waren der maximale und der mi-
nimale Ausschlag in jeder Hohe im Rahmen der Bildgenauigkeit bestimmbar.
Ein verschiebbares Gitternetz mit 5 cm Maschenweite diente als "Koordina-
tennetz" und erlaubte das Ausmessen der Ausschlidge. Da auch das mathemati-
sche Modell die Resultate in erster Linie als Verformungen liefert, war der
Vergleich mit den Modellversuchen einfach. Aus den durch die Ausschlidge in

Fig. 3.45. Wellenmaschine an der VAW. Die durch Leitbleche ausgesteifte Schaufel
(oben) erzeugt durch ihre Hin- und Herbewegung die Wellen. Der Antrieb erfolgt durch ei-
nen Elektromotor (unten) mit Ubersetzungsgetriebe und zwei Transmissionsriemen auf eine
Achse mit zwei Exzenterscheiben, die durch Pleuelstangen mit der Schaufel verbunden sind.
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verschiedenen Hohen definierten Kriimmungen lieB sich bei Bedarf das Bie-
gemoment berechnen. Dazu ist allerdings die genaue Kenntnis der Biegestei-
figkeit in jedem Punkt des untersuchten Stabes notwendig. Deshalb verwende-
ten wir zur Bestimmung der Widerstandskoeffizienten nicht lebende Halme,
sondern Kunststoffstiibe mit einem Durchmesser D von 1 cm und einer Bie-
gesteifigkeit E-J von 15689 N-cm?, die spezifische Masse (Dichte-Quer-
schnitt) betrug 1,14 g/cm. Durchmesser und Biegesteifigkeit entsprechen ei-
nem mittleren bis kleineren Schilfhalm, dagegen ist die spezifische Masse er-
heblich groBer (ungefidhr um den Faktor 2).

Die Stidbe wurden in zwei Punkten befestigt (Fig. 3.47.): das (untere) Ende
steckte in etwa 1 cm tiefen, passenden Léchern, die wir in ein am Boden befe-
stigtes Holzbrett gebohrt hatten. Die zweite Halterung bestand aus einer
gelochten Kunststoffschiene in einer Hohe von 25 cm oberhalb des Rinnenbo-
dens. Damit erstrebten wir eine ungefahr den natiirlichen Verhiltnissen ent-
sprechende, elastische Einspannung der Stébe. Entsprechend wurde auch der
Grund der Rinne vor den Einbauten durch verputzte Zementsteine um 25 cm
angehoben (die nutzbare Tiefe der Rinne betrug damit noch 1 m). In die be-
schriebene Halterung montierten wir sechs Stibe in einem Abstand von je
14 cm. Zur besseren Erkennung auf den Photos firbten wir jeden zweiten da-
von weil} (die ibrigen waren rot).

Als Treibzeug (Fig. 3.48.) verwendeten wir Kanthoélzer von 12 cm Seitenlén-
ge, deren eine Ecke in einem 45°-Winkel abgeschnitten und unterhalb des
Schnittes wieder befestigt wurde, so daB die Schnittfliche des abgeschnittenen
Stiickes auf der urspriinglichen vorderen Fliche lag. Dadurch beriihrte das
Treibholz die Stibe nur in einem, wohldefinierten Punkt. Einige Leitschau-
feln aus Sperrholz dienten zur Stabilisierung. Dies war nétig, da in den beeng-
ten Verhiltnissen der Rinne das Treibzeug selbst Reflexionen der Wellen ver-
ursachte, welche das Treibholz gegen die Langsrichtung der Rinne abdrehten.
Die beiden verwendeten Holzer hatten gleiche AulenmaBe, aber wegen ver-
schiedener Dichte des Holzes unterschiedliche Massen von 4,90 bzw. 5,99 kg.
Die fiir diese Versuche erzeugten Wellen hatten eine Héhe H von 12 cm (11 -
13 cm) bzw. 16 cm (15 - 17 ¢cm) und eine Periode T von 0,92 s, was einer
Wellenlidnge L von 130 cm entspricht (vgl. Kap. 3.2.2.2.). Das Wasser war
50 cm tief, die relative Wassertiefe d/L demnach gleich 50/130 = 0,385. Da-
mit befanden wir uns im Ubergangsbereich zwischen Tief- und Flachwasser.
Der Ursell-Parameter U (s. Gl. 32.85) fiir die beiden Wellenhohen ergab
U= 12-130%/50° bzw.16-130%/50% und legte somit die Verwendung der linea-
ren Wellentheorie (Airy) nahe.
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Fig. 3.47. Halterung der Plastikstibe in der Wellenrinne der VAW.
Oben: Draufsicht und Léngsschnitt. Unten: Blick durch die seitlichen Beobachtungsfenster.
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Fig. 3.48. Modelltreibzeug.
Oben: Querschnitt und Draufsicht. Unten: Aufnahme durch das Beobachtungsfenster.



- 184 -

Fig. 3.49. Laufende Versuche mit Kunststoffstiben in der Wellenrinne.

Oben:

Unten:

Momentaufnahme eines Versuchs ohne Holzstiick (vgl. Kap. 3.2.1.4.). Um auf
den Bildern die Bewegungen besser sichtbar zu machen, ist jeder zweite Stab weif3
gefirbt.

Belichtungsdauer 1 s (Wellenperiode 0,92 s). Da die Kamera auf der Hohe des Ru-
hewasserspiegels montiert ist, sind die oberen Enden der drei weilen Stibe deutlich
sichtbar.
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Eine Aufnahme bei laufendem Versuch zeigt Fig. 3.49. Daraus ist ersichtlich,
daB die Bewegungen keineswegs ganz regelmiBig verliefen, sondern daf} in-
folge der oben erwihnten Reflexionen die Ausschlidge bald auf der einen, bald
auf der andern Seite groBer waren. Indem wir verschiedene Phasen dieses
Vorgangs festhielten, suchten wir einen annehmbaren Mittelwert fiir die Ver-
formungen zu erhalten.

3.3.4.2. Ergebnisse

Es muB hier gleich vorweggenommen werden, daf die Versuche nicht die ge-
wiinschten Resultate in dem Sinne lieferten, daB nun fiir das Treibzeug Werte
von G, und G, eindeutig definiert wéren. Die Griinde dafiir und die daraus
zu ziehenden SchluBfolgerungen werden weiter unten erortert.

Es ist nicht moglich die beiden gesuchten Koeffizienten unmittelbar aus den
Halmbewegungen zu berechnen (wie etwa den Luftwiderstandsbeiwert c; aus
den Windkanalversuchen), denn die Situation des zeitweise freischwimmen-
den, zeitweise auf die Stibe driickenden Treibzeugs ist nicht vergleichbar mit
dem festeingespannten, quasi starren Pfahl, der in der Literatur schon ausgie-
big behandelt wurde. Deshalb blieb nichts anderes iibrig, als mit dem mathe-
matischen Modell Laufe fiir unterschiedlich angenommene Wertepaare (G,
G,,) durchzurechnen und die Resultate (Ausschlidge) mit den photographier-
ten Bildern zu vergleichen. Dabei nahmen wir an, daB jene ‘Kombination von
G,und G, welche in allen drei Féllen mit den Bildern einigermaBen iiber-
einstimmende Werte lieferte, die "richtige” sei.

Die Laufe wurden fiir eine Dauer von 25 s gerechnet, wobei zur Beurteilung
der Resulate die ersten 3,2 s (entsprechend 3 1/2 Wellenperioden) nicht be-
riicksichtigt wurden. Damit sollte der EinfluBl der notwendigerweise willkiir-
lich gewidhlten Anfangsbedingungen ausgeschaltet werden. Die Ergebnisse
der Berechnungen sind in den Figuren 3.50 - 3.52 (S. 189+191) fiir die drei
untersuchten Fille wiedergegeben. Dargestellt sind die berechneten Auslen-
kungen in positiver Richtung fiir den obersten Stabpunkt, und zwar je der Ma-
ximalwert und Mittelwert innerhalb der letzten 3 1/2 Wellenperioden sowie
der Maximalwert eines ganzen Laufes. Zur Berechnung des Mittelwertes
wurden nur jene Schwingungen berticksichtigt, wo das Treibzeug in Kontakt
mit den Stiben war. Bei einigen Kombinationen von G, und G,, kam es vor,
daf jede zweite Schwingung viel kleiner war; in diesen Fillen rechneten wir
zwei Mittelwerte aus, namlich einen fiir alle Ausschldge und einen nur fiir die
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"groen” (in den Figuren durch eine senkrechte Linie miteinadner verbun-
den).

Aus den aufgenommenen Bildern (je drei pro Fall) mafen wir folgende Aus-
schwiinge des obersten Stabendes (Tabelle 3.8.):

Tab. 3.8. Gemessene Ausschlige in cm der oberen Stabenden bei den Versuchen mit
Treibzeug (Mittelwert und, soweit unterscheidbar, Einzelwerte der 3 weillen Stibe).

Masse des Treibholzes M = 5,99 kg, Wellenh6he H = 16 cm (Fall 1)

Bild Nr. Mittelwert [cm] Einzelwerte [cm]

1 2 3
1.1 22,8 26,6 22,0 19,7
1.2 24,3 30,2 24,1 18,7
1.3 20.2 20,3 20,1 19,7

Masse des Treibholzes M. = 5,99 kg, Wellenhthe H = 12cm (Fall 2)

Bild Nr. Mittelwert [cm] Einzelwerte [cm)]

1 2 3
2.1 14,7 26,1 14,1 3.8
2.2 12.0 12,5 114
2.3 11,0 4,2 11,3 174

Masse des Treibholzes My = 4,90 kg, Wellenhdhe H = 12 cm (Fall 3)

Bild Nr. Mittelwert [cm] Einzelwerte [cm]

1 2 3
3.1 11.7 13,1 12,6 94
3.2 12,7 16,0 9,3
3.3 9,4 54 9,5 13,3

Man ersieht aus den zum Teil stark verschiedenen Einzelwerten, daB das Holz-
stiick bisweilen in eine starke Schréiglage gedriickt wurde. In diesen Momen-
ten konzentrierte sich fast die ganze Last auf einen oder zwei der Stibe, wih-
rend die anderen praktisch unbelastet blieben. Aus diesem Grund wihlten wir
als Vergleichswert nicht einfach den Mittelwert oder Median aus den drei Bil-
dern jedes Falles, sondern den in der Tabelle unterstrichenen Wert jenes Bil-
des, wo die Differenz zwischen den Auslenkungen der drei sichtbaren Stibe
minimal war. Diese Werte sind auch in den Figuren 3.50. - 3.52. als Linien
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zum Vergleich eingezeichnet. AuBler im ersten Fall (M, = 5,99 kg, H =
16 cm) sind dies gleichzeitig die Medianwerte.

Man kann sich fragen, womit man diese MeBwerte vergleichen soll. Da wir
beim Photographieren darauf achteten, eher groBe Ausschlige zu "erwi-
schen", erscheint es naheliegend, den Bereich Mittelwert-Maximum der letz-
ten 3 1/2 Wellenperioden zu wihlen (in den Figuren durch o [Mittel] bzw. x
[Maximum] dargestellt). Sucht man nun G, -G, -Kombinationen, bei welchen
in allen drei Féllen die oben erwidhnte Linie durch den verlangten Bereich
geht, so findet man nur

G,=20 G,=125 und

G,=1]75 G, =125
Man kann somit fiir ein Treibzeug in der Form eines Kantholzes mit Koeffi-
zienten von

G, = 1,25 [[]1 (33.16)

m

und
G, =1,75+20 -] (33.17)

rechnen. Beziiglich des Schubkoeffizienten G; gilt sinngeméB auch das, was
in Kap. 3.2.1.4. iiber den Wasserwiderstandskoeffizienten c,, gesagt wurde,
es diirfte deshalb auch hier eher der niedrigere Wert der Wirklichkeit ent-
sprechen. Verglichen mit den bei BURKHARDT (1967) und DIETZE (1964) ange-
gebenen Werten fiir den Massenkoeffizienten G,, liegen unsere Versuchs-
ergebnisse wesentlich niedriger: Die meisten der von den verschiedenen Au-
toren angegebenen Werte bewegen sich in der Nihe der fiir Potentialstrémun-
gen theoretisch ableitbaren GroBle von G, = 2,0. Da aber die Strémung um
ein von Wellen bewegtes Treibholz alles andere als eine Potentialstrémung ist,
gibt es keinen Grund, von dem aus den Versuchen ermittelten G,, = 1,25 ab-
zusehen. Es ist librigens anzunehmen, daB in einer hin- und hergehenden Stro-
mung die Wassermasse, welche physikalisch dem festen Kérper zuzuordnen
ist, weniger groB ist als in einer stetigen Stromung, denn dieser von der iibri-
gen Stromung umflossene Wasserkdrper muB ja bei jedem Richtungswechsel
neu aufgebaut werden. Noch wichtiger ist wahrscheinlich der Umstand, daf3
das Treibzeug meist nur teilweise im Wasser liegt und deshalb nicht wie die in
der Literatur behandelten Strukturen allseitig umstromt wird.

Aus den Figuren 3.50. - 3.52. geht hervor, dafl die GroBe der Ausschlige
nicht in einfacher Weise von den Koeffizienten G,undG,, abhingt (wie etwa
der Wasserwiderstandskoeffizient ¢, des Halmes im Falle ohne Treibzeug,
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wo die Bewegung mit wachsendem c,, stetig zunimmt; vgl. Fig. 3.16.). Diese
Erscheinung 148t sich auch bei der Variation anderer Parameter beobachten
(z.B. der Wellenhthe, aber auch beim eben erwihnen ¢, im Falle von vor-
handenem Treibzeug). Der Grund liegt darin, daB es sich beim Zusammen-
wirken von Wellen, Halm und Treibzeug um ein schwingendes System meh-
rer Teile handelt, die je unterschiedliche Eigenfrequenzen haben. Stetige,
grofe Ausschléige sind daher die Folge von Resonanzerscheinungen. Eine Er-
hohung des G, -Wertes, eigentlich eine Erhohung der Masse des Treibzeugs,
vergroBlert dessen Trigheit und erniedrigt damit seine Eigenfrequenz. Ande-
rerseits wird dadurch die Wucht des Aufpralls auf den Halm stirker, was zu
groBeren Ausschligen fiihrt. Dies wiederum hat eine hohe Riickstellkraft in
den Stdben zur Folge. Dadurch wird das Treibzeug, sobald der Wellenberg
voriibergezogen ist, mit groBBer Kraft nach riickwirts gestolen und dadurch
unter Umstéinden so weit von den Stiben entfernt, dal es mehrerer Wellen-
berge bedarf, bis das Treibgut erneut mit den Halmen in Beriihrung kommt.
Hohe Massenbeiwerte fiihren deshalb zu seltenen, aber umso heftigeren Zu-
sammenstoBen. Dagegen bewirkt eine Erhhung des Schubkoeffizienten G,
eher eine regelméBige Bewegung: Die Stromungskraft des Wassers auf das
Treibzeug ist groBer, deshalb folgt dieses stidrker der Bewegung der Wasser-
teilchen. Da beim Treibzeug der Seen wegen der unterschiedlichen Beschaf-
fenheit der einzelnen Objekte die effektiven G ;- und G, -Werte erheblich
streuen, da ferner Frequenz und Hohe der natiirlichen Wellen stindig wech-
seln, ist eine genaue Voraussage der zu erwartenden Beanspruchung kaum
moglich. Eine kleine Verinderung eines der obgenannten Parameter (vgl. die
Ergebnisse der Modellrechnungen in den Figuren 3.50. - 3.52. und in Kap.
4.4) kann ohne weiteres zu 50% grofleren oder kleineren Ausschlidgen fiihren.
Daraus 148t sich der SchluB ziehen, daB fiir das Uberleben des Schilfes in er-
ster Linie die Frage "Treibzeug vorhanden oder nicht?" entscheidend ist. Die
Wellenhdhen scheinen daneben zwar nicht bedeutungslos, aber doch erst in
zweiter Linie magebend zu sein.

Fig. 3.50. - 3.52. (5.189 - 191) Berechnete Ausschlige von Plastikstiben in positiver
Richtung unter der Einwirkung von Wellen und Treibholz (gleiche Situation wie in den Mo-
dellversuchen), in Abhiingigkeit von den Schub- und Massenkoeffizienten G,und G,

A Maximum wihrend der ganzen Rechnungsdauer (23,5 s)

O Maximum wihrend der letzten 3 1/2 Wellenperioden (3,3 s)

o Mittelwert und Anzahl der dabei beriicksichtigten Ausschlige wihrend der letzten 3,3 s.
« Rechnung instabil (bedeutet, daB das Treibholz iiber die Stibe geworfen wird).
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Fig. 3.50. Wellenperiode T = 0,92 s, Wellenhdhe H = 16 cm, Masse des Treibzeugs
M, =599 kg (generelle Legende s. S. 188).
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Fig. 3.51. Wellenperiode T = 0,92 s, Wellenhdhe H = 12 cm, Masse des Treibzeugs
M = 5,99 kg (generelle Legende s. S. 188).
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Fig. 3.52. Wellenperiode T = 0,92 s, Wellenhéhe H = 12 cm, Masse des Treibzeugs
My = 4,90 kg (generelle Legende s. S. 188).



	Teil II. Die mechanische Beanspruchung des Schilfes : Belastungen

