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3. Skalierung und Transformation

In der Pflanzendkologie will man biologische Fakten mit
abiotischen Umweltverhidltnissen in Beziehung setzen. Es
mussen also Daten sehr unterschiedlicher Form auf Zu-
sammenhdnge hin untersucht werden. Auf biologischer Seite
fallen Informationen an iber die artmdssige Zusammensetzung
von Aufnahmen, {iber Gruppenstrukturen, Unterschiede bezlig-
lich Lebensformen, physiologischer Verhaltensweisen usw. Bei
den Standortsfaktoren geht es um Temperatur-, Licht-,
Wasserhaushalts- und Ndahrstoffmessungen, aber auch um quali-
tative Grodssen wie Gesteinsart, Bodentyp usw. Man mag sich
nun wundern, dass derart objektiv gewonnene Daten durch eine
doch willkiirlich gewdhlte Transformation verdndert werden
sollen. Dass aber solche Bedenken unbegriindet sind, ist
leicht zu =zeigen. Jedes Messresultat ist bekanntlich wvom
verwendeten Messinstrument und dessen Skala abhdngig. Ver-
schiedene Temperaturskalen sind nur ein Beispiel:

Celsiusskala, zc: 0, 10, 20
Kelvinskala, K: 273, 283, 293

Unter Verzicht auf statistische Ueberlegungen kann also
festgestellt werden, dass Skalierungen und Transformationen
vorzunehmen sind, um Daten miteinander vergleichbar zu
machen. Das gilt immer dann, wenn unterschiedliche Methoden
oder voneinander abweichende Skalen zur Erfassung der Merk-
male verwendet wurden. In der Pflanzensoziologie ergibt sich
diesbeziiglich eine spezielle Situation. Die verschiedenen
Pflanzenarten werden in der Regel mit der gleichen Schatz-
oder Messskala quantifiziert. Deshalb sind sie als Merkmale
in erster N&dherung auch ohne Transformation durchaus ver-
gleichbar. Von dieser Annahme wird je nach Unter-
suchungsgegenstand und -ziel graduell abgewichen. So sind in
manchen Fdllen hdufige und seltene Arten durch Transforma-
tion vergleichbar =zu machen. Noch allgemeiner betrachtet
geht es darum, Quantitaten ihrer pflanzensoziologischen
Bedeutung entsprechend zu gewichten.
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3.1 Datentypen

Es bewahrt sich, verschiedene Datentypen zu unterscheiden.
Zahlreiche der spdter zu besprechenden Analysemethoden eig-
nen sich nur fiir einen bestimmten Datentyp. Letzterer
schridnkt daher die Auswertemdglichkeiten ein. Das hat Konse-
quenzen, denn pflanzensoziologische Daten koénnen je nach
Auffassung verschiedenen Typen zugreordnet werden. Wir hal-
ten uns nachfolgend an die verhdltnismdssig einfache
Gliederung von BAHRENBERG und GIESE (1975):

3.1.1 Nominaldaten

Nominaldaten sind rein qualitative, oft auch als kategoriell
bezeichnete Daten. Beispiel ist der Standortsfaktor "Boden-
typ", Tb. Er kann die Werte [ (Podzol), (Braunerde),
(Pseudogley)] annehmen. Echte Nominaldaten lassen nicht alle
Operationen zu. Erlaubt sind die Aussagen:

Tb, = Tb_ (Aufnahmen 1 und 2 besitzen
1 2 ;
gleichen Bodentyp)

Tb1 # sz (Aufnahmen 1 und 2 besitzen
verschiedenen Bodentyp)

Nicht erlaubt sind:

Tb, > sz
Tb T

1 < Thy
Diese beiden Operationen sind auch nicht statthaft, wenn
z.B. Tb eine bessere Bodenentwicklung aufweist als Tb,.
Will man einen solchen Sachverhalt ausdriicken, so ist fir Tb
ein anderer Datentyp zu postulieren (s. unten). Unerlaubt
sind natiirlich auch alle arithmetischen Grundoperationen,
also
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Tb, + Tb
Tb: - sz
Tb1 * Tb2
Tb1 / sz

Ist man sich liber die Art des Datentyps im unklaren, so kann
sicherheitshalber davon ausgegangen werden, dass Nominal-
daten vorliegen. Ein solch kritisches Beispiel sind die
Himmelsrichtungen. Die Operationen "=" und "#" sind dabei
zuldssig, formal auch "<" und ">". Dabei besteht jedoch
Mehrdeutigkeit bei 0o und 3600. Die Wahl des Ursprunges und
die Messrichtung sind biologisch gesehen v6llig willkiirlich.
Bei vielen Anwendungen ist es daher sinnvoller, das Merkmal
zu diskretisieren und die sich ergebenden Klassen [N,E,S,W]
nominal zu behandeln.

3.1.2 Ordinaldaten (Rangdaten)

Wie der Name andeutet, gibt es bei Ordinaldaten unter den
Ausprdgungen eines Merkmals eine Rangordnung. Ein Beispiel
wdaren Grundwasserstidnde, Tg, welche charakterisiert werden
durch die Werte [(tief), (mittel), (hoch)]. Erlaubt sind da-
bei Operationen wie

Tg1 = ng (Gleiche Grundwasserstandskategorie

fir Aufnahme 1 und 2)

Tg, # Tg

Tg1 > ng >Tg, ... usw.

3

Meist werden zur Bezeichnung der Merkmalsauspragungen nicht
Buchstaben, sondern Rangzahlen verwendet, statt [A,B,C] also
[1,2,3]. Trotzdem sind die arithmetischen Grundoperationen
streng genommen nicht erlaubt. Gerade in der Pflanzenso-
ziologie wird aber oft bewusst gegen diese Regel verstossen,
um die Daten einem noch weiteren Spektrum von Methoden
zuganglich zu machen. Dabei ist natiirlich zu {iberlegen, ob
die so eingefiihrten Fehler toleriert werden kénnen. Das
Grundwasserbeispiel zeigt die Problematik. Es gelte:



-46-

Grundwasserstands-
kategorie A B C

Bereich in cm unter
Bodenoberfliche >100 20-100 0-20

Tg1 15 = C (Rang 3)
ng = 200 = A (Rang 1)

Die Berechnung des Mittelwertes erfordert die Verwendung
arithmetrischer Grundoperationen:

Tg = 1/2(Tg1+T92) = 1/2(15+200) =107.5 (Typ A)
Mit den Rangzahlen wird ein falsches Resultat errechnet:
Tg = 1/2(1+3) = 2 (Typ B)

Diese Ueberlegungen gelten z.B. filir die Artmdchtigkeiten,
die 1in der Vegetationskunde am weitesten verbreiteten Ordi-
naldaten. Die Symbole der Schule Braun-Blanquet,
[r,+,1,2,3,4,5], lassen sich problemlos durch die Rangzahlen
(1,2,3,4,5,6,7] ersetzen. Weitergehende Transformationen
dieser Skala sollen in den folgenden Kapiteln behandelt wer-
den.

3.1.3 Metrische Daten

Metrische Daten sind Messdaten, die einen Ursprung
(Nullpunkt) besitzen. Grundsatzlich gilt, dass alle arith-
metischen Grundoperationen erlaubt sind. Es ist jedoch nicht
immer leicht, den Nachweis zu erbringen, dass tatsachlich
metrische Daten vorliegen. Schwierigkeiten ergeben sich
insbesondere bei abgeleiteten Grossen, z.B. bei den spater
zu behandelnden Aehnlichkeitsmassen. Bei diesen ist zu
priifen, ob die Dreiecksungleichung erfillt ist. Sind drei
Werte gegeben, welche die Abstinde dreier Punkte A, B, C im
Raum messen, so ist zu priifen, ob
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d(A,C) + d(B,C) > d(A,B)

Diese Formel besagt, dass die Summe der Abstande zweier
beliebiger Punkte gleich oder grdsser sein muss, als der
dritte Abstand. Wir betrachten zwei Beispiele:

Dreieck 1 2
d(a,B) 3 3
d(A,C) 2 1
d(B,C) 2 5

Die Priifung ergibt fiir Dreieck 1
2 +2 »> 3, 2+3 =2, 2+3 = 2.

Damit ist die Dreiecksungleichung erfillt. Bei Beispiel 2
hingegen ist dies nicht der Fall, denn 3 + 1 < 5! Es muss
aber betont werden, dass viele auf metrischen Daten
basierende Verfahren auch mit nicht metrischen durchfiihrbar
sind. Dabei muss ein 6fters schwer abschdtzbarer Fehler in
Kauf genommen werden. Die Ordinationsmethode nach BRAY und
CURTIS (1957) ist ein solches Beispiel.

3.2 Skalierung von Artm3dchtigkeiten

Genereller formuliert wird hier die Umwandlung von Daten-
typen behandelt. Die Substitution traditioneller
Artmdchtigkeitssymbole durch Zahlenwerte spielt in der
Pflanzensoziologie seit der Einfiihrung numerischer Methoden
eine sehr wichtige Rolle. Auf diese Weise wird es erst

mé&glich, mit traditionellen Methoden erhobene Vegeta-
tionsdaten durch metrisch arbeitende Verfahren zZu
analysieren.

Schon im vorhergehenden Kapitel wurde darauf hingewiesen,
dass die Dominanz- und Abundanzskalen trotz der
gleichzeitigen Verwendung von Buchstaben und Zahlen nichts
anderes sind als Rangskalen. Je nach Auffassung variieren
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darin die Anzahl der Klassen, sowie die Klassengrenzen. Ver-
schiedene Moéglichkeiten sind bei MUELLER-DOMBOIS und ELLEN-
BERG (1974) aufgefiihrt (Skalen von Domin Krajina, Braun-
Blanquet, Daubenmire usw.). Weite Verbreitung hat neuerdings
die Skala von LONDO (1975) erfahren.

Dem Problem des Ersatzes der verschiedenen Symbole durch
Zahlenwerte hat VAN DER MAAREL (1979) eine langere
Abhandlung gewidmet. Er stellt fest, dass sich viele
Vorschldge auf einige Grundsdtzliche Ldsungen reduzieren
lassen. Die einfachste LOsung besteht darin, statt des Codes
seinen jeweiligen Rang innerhalb der Skala zu verwenden (Tab
3.1). Damit liegen nun Ordinaldaten vor, welche aber noch
immer nicht allen numerischen Verfahren zugdnglich sind.
Echt metrische Daten waren eigentlich die urspriinglichen
Deckungswerte in Prozenten. Man kann also den Code durch den
Mittelwert seiner Deckungsklasse ersetzen. Tab. 3.1 zeigt
dies fir die erweiterte Skala von Braun-Blanquet. Bei
letzterer sind niedrige Deckungswerte gquantitativ nicht
genau definiert, sodass mit behelfsmdssigen Werten gear-
beitet werden muss.

Rein gefiihlsmd3ssig wird meist angenommen, dass die eigentli-
chen Deckungsprozente nicht ihrer okologischen Bedeutung
entsprechen. Ueberlegungen wie die folgende werden
angestellt: Ob eine Art mit recht grosser oder aber kleiner
Deckung auftritt ist weniger wichtig als die Frage, ob sie
liberhaupt vorkommt. Sollen Vegetationsdaten so ausgewertet
werden, dass die resultierenden Gruppen- und Gra-
dientenstrukturen standoértlichen Unterschieden entsprechen,
so muss fiir die Skalierung eine L&sung gefunden werden, die
einerseits der Prdsenz oder Absenz einer Art hohe Bedeutung
beimisst, andererseits aber auch die Deckungswerte nicht
ganz vernachldssigt. Dieser 1Idee entspringt die Skala von
Braun-Blanquet, die als transformierte Deckungsskala ver-
standen werden kann. VAN DER MAAREL (1979) hat gezeigt,
dass sich durch eine einfache Transformation der Rangzahlen
x viele praktisch verwendbare Gewichtungen erzielen lassen.
Die transformierten y-Werte ergeben sich nach der Formel
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Tabelle 3.1

Potenztransformation der Skala Braun-Blanquet nach VAN DER
MAAREL (1979).

Skala | Deck- |Ordinal- |Transformation y = xw
Braun4 ung, skala x
Bl. % w=0 w=0.25 w=0.5 w=1 w=2 w=4
leer 0.0 0 0.0 0.00 0.00 0 0 0
r () 1 1.0 1.00 1.00 1 1 1
+ 0.1 2 1.0 1.19 1.4 2 4 16
1 5.0 3 1.0 1.32 1.73 3 9 81
2m 4 1.0 1.41 2.00 4 16 256
2 2a [17.5 5 1.0 1.50 2.24 5 25 625
2b 6 1.0 1.57 2.45 6 36 1296
3 37.5 7 1.0 1.63 2.65 7 49 2401
4 62.5 8 1.0 1.68 2.83 8 64 4096
5 87.5 9 1.0 1.73 3.00 9 81 6561
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Der Exponent w kann je nach der angestrebten LOsung variiert
werden. Die Wirkung von w kann leicht aus Tab. 3.1 ersehen
werden. In Abweichung von der Skala Braun- Blangquet verwen-
det van der Maarel eine feinere Unterteilung der
Artmachtigkeit 2, sodass insgesamt 10 Klassen entstehen.

Tab. 3.1 beriicksichtigt einige praktisch wichtige Werte fur
den Exponenten w. Mit w = 0 erhdlt man eine Bindrskala, das
heisst reine Prasenz-Absenz Daten. Wohl die meisten Pflan-
zensoziologen interpretieren die Skala Braun-Blangquet so,
wie sie sich durch eine Transformation der Rangwerte mit
einem w von 0.25 bis 0.5 ergdbe. Mit w = 1 reproduziert man
die urspriingliche Rangskala. Bei w = 2 erhdlt man mit
geringfiligigen Abweichungen die urspriinglichen Deckungswerte
der Arten. Bei w <€ 2 erhalten hohe Deckungswerte noch mehr
Gewicht im Vergleich zu den niedrigen. Solcherart
durchgefiihrte Analysen berilicksichtigen speziell die dominan-
ten Arten.

An dieser Stelle ist anzumerken, dass geordnete Vegetations-
tabellen oft nach ihrem rein optischen Erscheinungsbild
beurteilt werden. Symbole einerseits und Leerstellen an-
dererseits sollten darin moglichst konzentriert auftreten.
Die Erfahrungen bestidtigen die Vermutung, dass sich solche
Ergebnisse am besten mit Pridsenz-Absenz Transformation er-
zielen lassen.

3.3 Transformationen
3.3.1 Transformation von Einzelwerten

Im vorhergehenden Kapitel wurde gezeigt, wie sich die ver-
schiedenen M6glichkeiten der Umwandlung von Artmdchtigkeiten
in Zahlenwerte auf unterschiedliche Transformation der Rang-
zahlen zurilickfiihren lassen. Bei der Analyse von Standorts-
faktoren tritt ein a&ahnliches Problem auf. Hier geht es
darum, die bei der Messung im Felde oder im Labor angewandte
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Skala den Erfordernissen der Problemstellung und der Analyse
anzupassen. Das ist immer dann angezeigt, wenn verschiedene
Standortsfaktoren untereinander sowie mit der Vegetation
korreliert werden sollen. Es kommt aber auch vor, dass mit
Skalen gemessen wird, die bereits zweckmdssig transformiert
sind. pH-Werte sind ein solches Beispiel. Die Mehrzahl
europaischer Pflanzengesellschaften kommt auf Substraten mit
dem pH-Bereich von etwa 3.5 bis 7.5 vor. Der Versuch, anhand
eines Beispiels fiir transformierte und untransformierte
Daten einen Mittelwert zu berechnen, ergibt folgendes Resul-
tat:

Aufnahme 1 2 3 4 Summe Mittel

4 -3 -4 -7 4

Konz. (H+) 10 = 10 10 10 2.101%10 .

5.25%10

Als Mittelwert der untransformierten H+—Konzentration erhdlt
man also 5.25*%10 -~ oder umgerechnet pH 4.28. Dieses Ergebnis
liegt nahe der unteren Grenze der in unserem Beispiel
angenommenen Werte. Transformiert ergibt sich aber pH 5.0,
was wohl eher als sinnvoll angenommen werden kann.

Ob eine Transformation angezeigt ist, ldsst sich auch auf
etwas formalerem Wege abkliren. Dazu betrachtet man die Ver-
teilung der Messwerte. Sind die Daten metrisch, so missen
sie zundachst in Klassen -eingeteilt werden. Der Wahl der
Klassengrenzen kommt dabei eine wesentliche Bedeutung zu.
Dieses Thema wird in vielen Lehrbilichern der Statistik
ausfiihrlich behandelt (vgl. =z.B. BARTEL 1974). Abb. 3.1
stellt anhand eines Beispiels zwei verschiedene Verteilungen
dar. Beide Diagramme entstanden aus 11 pH-Werten (hier nicht
gezeigt) mit den Klassengrenzen 3.5, 4.5, 5.5, 6.5, 7.5 und
8.5. Im Diagramm links liegt eine fast symmetrische Vertei-
lung vor. Der Median (hdufigster Wert) liegt bei pH 6.0, der
Mittelwert (arithmetisches Mittel) wie leicht nachzupriifen
ist bei pH 6.1. Der Mittelwert liefert also auch einen guten
Niherungswert flir den Median, was ebenfalls auf die gute
Symmetrie hinweist. Anders im schiefen Fall rechts. Hier
liegt der Median bei pH 5.0, das arithmetische Mittel bei pH
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5.64., Eine Transformation soll nun die Symmetrie wesentlich
verbessern.

Hiufig angewandte Transformationen sind die Wurzel-
transformation
: 1/2
X X

sowie die Logarithmustransformation

x' = log x, bzw. x' = log(x+1)

Die Wurzeltransformation zeigt eine deutlich schwdchere Wir-
kung als die Logarithmustransformation. Da die Wurzel nega-
tiver Messwerte imagindr ist, muss deren Auftreten durch
eine Verschiebung des Ursprunges vermieden werden. Dabei ist
jeder Messwert um einen konstanten Betrag derart zu erhdhen,
dass der kleinste auftretende Wert grdsser als Null ist.
Aehnlich liegen die Probleme bei der Logarithmustransforma-
tion. Logarithmen negativer Werte sind bekanntlich unde-
finiert, sodass nur positive Messungen bericksichtigt werden
kdnnen.

Um die Wirkung beider Transformationen zu demonstrieren, ist
das Sdulendiagramm der Abb. 3.1, rechts, mit wurzel- und lo-
garithmustransformierter x-Achse in Abb. 3.2 verdndert dar-
gestellt. Die Zwischenrdume der Klassen sind dabei ver-
schieden breit geworden. Aus der Wurzeltransformation re-
sultiert noch immer eine leicht schiefe Verteilung. Die Lo-
garithmustransformation hingegen ergibt ein fast perfektes
Bild der Symmetrie.

Der Zusammenhang vieler Standortsfaktoren ist nicht 1linear.
In den seltensten Fdllen linear ist gar derjenige zwischen
Vegetation und Standort. Die meisten =zur Zeit verfiligbaren
Analysemethoden beruhen jedoch auf der Annahme, dass die
Korrelationen anndhernd linear seien (vgl. z.B. FEWSTER und
ORLOCI 1983). Wo dies nicht zutrifft, kann nun versucht wer-
den, mit transformierten Messwerten zu arbeiten. Ob damit im
einzelnen Falle die gewlinschte Wirkung erzielt wird, kann
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Anzahl AI\nzahI
Messwerte Messwerte

44 /\ 44
1 - N
| I A |

4 5 6 7 8 pH 5 6 7 8 pH

Abb. 3.1 Beispiel einer angendhert symmetrischen Verteilung
eines Standortsfaktors (links), sowie einer schiefen Ver-
teilung (rechts).

| Anzahl § Anzahl
Messwerte Messwerte
44 \ 4
2 - /I I\ 2 -
oL 1=_. R
2 3 +pH 0,6 0,7

Abb., 3.2 Histogramme der transformierten Messwerte, welche
zur Konstruktion der Abb. 3.1, rechts verwendet wurden. His-

togramm links: Wurzeltransformation. Histogramm rechts: Lo-
garithmustransformation.

n

0.8 0.9 log pH
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grafisch leicht tiberpriift werden. Tab. 3.2 und Abb. 3.3 ge-
ben ein Beispiel. Innerhalb einer Aufnahmeserie entlang
eines Vegetationsgradienten seien die pH-Werte und der
Grundwasserstand x in cm unter der Bodenoberfldche gemessen
worden. Um den Zusammenhang zwischen den gemessenen Stand-
ortsfaktoren zu priifen, wurden die Wertepaare in Abb. 3.3 in
einem rechtwinkligen Koordinatensystem gegeneinander aufge-
tragen. Eine willkiirlich durch den Punkteschwarm gezogene
Linie weist auf den engen, jedoch nicht linearen Zusam-
menhang zwischen pH- Wert und Grundwasserstand hin. In Abb.
3.3; rechts, werden dagegen die Logarithmen der
Grundwasserstdnde verwendet. Sie weisen eine fast perfekte
lineare Korrelation mit den pH-Werten auf. Eine Mehrheit der
nachfolgend behandelten Methoden wiirde die Daten in sol-
cherart transformierter Form wirkungsvoller analysieren.

3.3.2 Vektortransformationen

Mit der Transformation der einzelnen Messwerte kann die
Haufigkeitsverteilung der Standortsfaktoren, der Arten und
eventuell auch der Aufnahmen verindert werden. Oft ist es
jedoch nétig, verschiedene Mess- und Z3hlskalen einander an-
zupassen. Man erreicht damit, dass Jjeder Wert einer
Vegetations- oder Standortstabelle beziliglich seiner Grdsse
und Streuung mit jedem andern direkt vergleichbar wird. Dazu
ist es unerldsslich, ganze Zeilen oder Spalten (Vektoren)
einer Vegetationstabelle zu transformieren.

Eine erste Mdglichkeit bietet die Bereichsanpassung. Zuerst
bestimmt man den grdssten und den kleinsten Wert eines Vek-
tors (d.h. einer Aufnahme, einer Art). Anschliessend wird
das so gefundene Minimum von jedem Einzelwert subtrahiert
und das Ergebnis durch die Differenz der Extremwerte dividi-
ert:

X, - min(x)
1

P -

max(x) - min(x)

fiir jedes Element i. Die transformierten Werte xi haben den
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Tabelle 3.2

Logarithmustransformation von Standortsfaktoren

Aufn. 1 2 3 4 5 6 7 8 9 10

pH 4.8 5.1 5.2 5.3 5.3 5.2 4.9 5.4 4,7 5.5

Grundwasser-

stand x 35 22 15 15 13 18 26 11 45 9

log x 1.54 1.34 1.18 1.18 1.11 1.26 1.41 1.04 1.65 0.95
pH | pH §

2 o 2
3 o 3 (]
5,04 5,01
o) 1 o) 1
7 9 7 9
~
4,5 L] L) L] L 4.5 ) L) T T T Ll 1
0 10 20 30 40 1,0 1,2 14 16
Grundwasserstand, cm Grundwasserstand, log (cm)

Abb. 3.3 Direkte Ordination der Aufnahmen in Tabelle 3.2.:

Untransformiert (links), transformiert (rechts).
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Bereich 0 bis 1. Tabelle 3.3 gibt ein Rechenbeispiel. Die
Aufnahmen 1 und 2 (Tab. 3.3, A) bilden die Ausgangsdaten, in
B bis E sind sie transformiert. Aus dem Beispiel (Tab. 3.3,
B) ist auch die grdsste Schwidche der Bereichsanpassung er-
kennbar, indem ein einziger sehr grosser oder sehr kleiner
Wert das Resultat entscheidend zu verandern vermag. Die 6 in
Aufnahme 2 ist ein solcher Fall. Sie bringt Art 2 auf den
transformierten Wert 0.2, wahrend Art 3 der Aufnahme 1 bei
gleichem Ausgangswert auf 0.5 kommt. Die Bereichsanpassung
ist daher eine mit Vorsicht zu verwendende Transformation.

Eine zweckmidssigere Loésung besteht in der Angleichung der
Summen der Vektorelemente. Dazu wird jeder Wert durch die
Vektorsumme dividiert:

x! =x, / Z x,
i i ; 1
Die Wirkung auf das bereits besprochene Beispiel ist in Ta-
belle 3.3, Teil C, ersichtlich. Eine solche Transformation
wurde zum Beispiel von WHITTAKER (1952) fiir Vegetationsdaten
vorgeschlagen. Er verwendet sie im Zusammenhang mit einem
speziellen Aehnlichkeitsmass, der Absolutwertfunktion (Kap.
4). In der Tat ist es sinnvoll, Vektortransformationen so zu
wahlen, dass sie dem Konzept spidter zu verwendender Aehn-
lichkeitsmasse entsprechen. Whittakers Mass ist nichts an-
deres als die Summe der Differenzen zwischen den
Artmachtigkeiten 2zweier Aufnahmen. Dementsprechend ist es
plausibel, die Transformation ebenfalls auf den arith-
metischen Operationen erster Ordnung beruhen zu lassen. In
Kapitel 4 wird zu zeigen sein, dass die Summe der Quadrate
der Elemente eine grdssere Bedeutung erlangt hat als die
Summe der nicht quadrierten Elemente. Die entsprechende
Transformation lautet dann
x! =x. / (Z X?)Uz.
i i ; &

Damit wird nicht die Summe, wohl aber die Liange der Vektoren
(Arten, Aufnahmen) vereinheitlicht - im Sinne des Satzes wvon
Pythagoras:
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Tabelle 3.3

Wirkung verschiedener Transformationen auf die Ausgangsdaten
A: Bereichsanpassung (B), Angleichung der Summen (C), Nor-
malisierung (D), Standardisierung (E).

A

Art | 1 2 3 4 5|xmin |xmax |xmax-xmin le2x2 hzx2]1/2
Aufn, 1 |3 121 3|1 3 l 2 ’10' 24 | 4.90
Aufn. 2 12116{1 6 5 111 431 6.48

B

Art l 1 2 3 4 8

Aufn. 1! 1.0 0 0.5 0 1.0

Aufn. 2 0 0.2 0 0 1.0

c

Art | 1 2 3 4 5

Aufn. 1! 0.33 0.10 0.20 0.10 0.33

Aufn. 2| 0.091 0.181 0.091 0.091 0.545
D

Art | 1 2 3 4 5

Aufn. 1| 0.612 0.204 0.408 0.204 0.612

Aufn. 2| 0.152 0.304 0.152 0.152 0.914
E

Art | 1 2 3 4 5
Aufn. 1| 1.118 -1.118 0.0 -1.118 1.118
Aufn. 2| -0.618 -0.103 -0.618 -0.618 1.959




~-58-

(Z x32)1/2
. i
i
Die Wirkung anhand unseres schon verwendeten Beispiels ist
wiederum in Tabelle 3.3 (Teil D) dargestellt. Betrachten wir
nun Art 4, welche in beiden Aufnahmen den Ausgangswert 1
aufweist. TIhr zufolge erfahren bei dieser Normalisierung
genannten Transformation alle Werte artenarmer Aufnahmen
eine ausgepragte Mehrgewichtung. Seltene Arten gewinnen da-
rin im Vergleich zu den Ursprungswerten ausgeprdgt an Bedeu-
tung.

= 1.

Die soweit erwdhnten Vektortransformationen haben eine An-
gleichung der Skalierungen zum Ziel. Gerade Stand-
ortsfaktoren unterscheiden sich nicht nur in ihrer
Masseinheit, sondern oft ganz erheblich in ihrer Streuung.
Trifft dies zu, so ist ein sinnvoller Vergleich zweier Vek-
toren nur nach einer Standardisierung méglich. Auf diese
greift man letztlich auch zurick, wenn man sich des weit
verbreiteten Korrelationskoeffizienten bedient (vgl. Kapitel
4). Standardisierte Vektoren zeichnen sich durch einen Mit-
telwert von 0 und eine Standardabweichung von 1 aus. Die
Formel lautet:

Jedes Element xi wird um den Mittelwert x vermindert und
durch die Streuung dividiert. Die Streuung s, bzw. deren
Quadrat s2 (die Varianz), ergibt sich aus der Summe der qua-
drierten Differenz jedes Elementes vom Mittelwert, dividiert
durch die Anzahl der Elemente n minus 1:

&= = 1/(n-1) T (x, - 2)2

i
Diese Formel ist zwar einfach, doch sie ist fiur die
Berechnung sehr wunrationell. Direkter geht das in der fol-
genden Art:
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Betrachten wir wieder Tabelle 3.3, so ergibt sich filir die
Aufnahmen 1 und 2

24 - 100 / 5

S = = 1.0 1.000

wn
]

—
-e
b

43 - 121 / 5

s = = 4.7 2.168

-e
n
1}

2.2

o]
]

Nun lassen sich die standardisierten Aufnahmen sehr 1leicht
errechnen (Tabelle 3.3, E). Die hauptsdchlichste Wirkung der
Standardisierung im Falle dieses Beispiels ist offensicht-
lich. Die wurspriinglich sehr unterschiedlichen Streuungen
sind identisch geworden. Damit wird auch klar, warum die
Standardisierung bei vegetationskundlichen Daten mit Vor-
sicht anzuwenden ist. Die Streuung einer Art ist eines ihrer
wesentlichen Charakteristika. Gerade dieses geht aber bei
der Standardisierung verloren.

Damit sind natiirlich die Transformationsm&glichkeiten noch
lange nicht erschépft. Einige weitere sind speziell im Hin-
blick auf bestimmte Analysemethoden entwickelt worden. Die
Transformationsmethode filir die Korrespondenzanalyse ist ein
Beispiel. Sie wird im Kapitel 8 erlidutert.
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3.4 Wirkung von Vektortransformationen auf Vegetationstabel-
len

Die Verdnderung, welche eine Vegetationstabelle durch
Transformationen erfdhrt, hdngt ausschliesslich von den Aus-
gangsdaten ab. Weil bei pflanzensoziologischen Aufnahmen
hiufig &hnliche Datenstrukturen auftreten, ist es mdglich,
uber die Wirkung der Transformationen generelle Aussagen zu
machen. In Abb. 3.4 (A) sind einige typische Phdnomene
beispielhaft vereinigt. So findet man denn immer wieder
besonders reichhaltige (Nr. 4), aber auch artenarme Aufnah-
men (Nr. 1, 2). Bei den Arten weisen einige grosse Streu-
ungen auf (Nr. 1), andere dagegen eine kleine (Nr. 2).

In den Diagrammen B und C der Abb. 3.4 ist die Auswirkung
der Normalisierung der Aufnahmen beziehungsweise der Arten
dargestellt. Es ist zu beachten, dass die Skalen filir die
grafischen Darstellungen willkiirlich gewahlt sind. Einer
Beurteilung zugdnglich sind also nur die Relationen zwischen
den Abundanzwerten innerhalb der einzelnen Diagramme. Wir
finden folgende, auch rein logisch ableitbare Regeln
bestdtigt:

1. Die Vektortransformation erbringt die geforderte An-
gleichung der 2Zeilen oder Spalten. Die schwach besetzten
werden verstidrkt (Aufn. 1 in B, Art 4 in CC), dominante
verlieren an Gewicht (Aufn. 4 in B, Art 1 in C).

2. Die Normalisierung der Aufnahmen fihrt =zu einer
verstarkten Gewichtung hdufiger Arten (Art 1 in B), Normali-
sierung der Arten zu einer weiteren Verstadrkung artenreicher
Aufnahmen (Aufn. 4 in C).

3. Die Normalisierung der Aufnahmen kann die Streu-
ungsverhdltnisse innerhalb der Arten vollstdndig verandern
(z.B. Art 2 in B). Dasselbe gilt sinngemdss fir die Normali-
sierung der Arten.

Schliesslich findet sich in Abb. 3.4 auch die Wirkung der
Standardisierung der Aufnahmen (D) und der Arten (E). Man
kann folgende Phanomene festhalten:

1. Die bei der Normalisierung festgestellten Tendenzen gel-
ten auch fiir die Standardisierung.
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Abb. 3.4 Grafische Darstellung der Wirkung verschiedener
Vektortransformationen auf eine Vegetationstabelle A. B:
Normalisierung der Aufnahmen, C: der Arten. D: Standardi-

sierung der Aufnahmen, E: der Arten. Die Skalierung der
Grafiken ist willkiurlich gewdhlt. Bei D und E treten auch
negative Werte auf. Die Pfeile markieren die Richtung der
Transformation.
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2. Die Daten verdndern sich noch stdrker als bei der
ersteren, wenn deutliche Streuungsunterschiede vorliegen,
die alsdann ausgeglichen werden. Aufnahme 4 in D ist ein
Beispiel.

Es ist offensichtlich, dass die gezeigten Vektortrans-
formationen bei pflanzensoziologischen Daten tiefgreifende
Verdnderungen der Aehnlichkeitsstruktur bewirken. Normali-
sierung und Standardisierung der Aufnahmen helfen, bei Ar-
tenarmut die doch vorhandenen gualitativen Unterschiede (oft
etwas zu ausgeprdgt) hervorzuheben. Werden die Artvektoren
in dieser Weise transformiert, so verdandern sich unter
durchschnittlichen Umstdnden die Aehnlichkeitsverhdltnisse
der Aufnahmen drastisch und seltene Arten pridgen die Ergeb-
nisse weitgehend (Beispiel E in Abb. 3.4).
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