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3. Skalierung und Transformation

In der Pflanzenökologie will man biologische Fakten mit
abiotischen Umweltverhältnissen in Beziehung setzen. Es
müssen also Daten sehr unterschiedlicher Form auf
Zusammenhänge hin untersucht werden. Auf biologischer Seite
fallen Informationen an über die artmässige Zusammensetzung
von Aufnahmen, über Gruppenstrukturen, Unterschiede bezüglich

Lebensformen, physiologischer Verhaltensweisen usw. Bei
den Standortsfaktoren geht es um Temperatur-, Licht-,
Wasserhaushalts- und Nährstoffmessungen, aber auch um
qualitative Grössen wie Gesteinsart, Bodentyp usw. Man mag sich
nun wundern, dass derart objektiv gewonnene Daten durch eine
doch willkürlich gewählte Transformation verändert werden
sollen. Dass aber solche Bedenken unbegründet sind, ist
leicht zu zeigen. Jedes Messresultat ist bekanntlich vom
verwendeten Messinstrument und dessen Skala abhängig.
Verschiedene Temperaturskalen sind nur ein Beispiel:

Celsiusskala, C: 0, 10, 20

Kelvinskala, °K: 273, 283, 293

Unter Verzicht auf statistische Ueberlegungen kann also
festgestellt werden, dass Skalierungen und Transformationen
vorzunehmen sind, um Daten miteinander vergleichbar zu
machen. Das gilt immer dann, wenn unterschiedliche Methoden
oder voneinander abweichende Skalen zur Erfassung der Merkmale

verwendet wurden. In der Pflanzensoziologie ergibt sich
diesbezüglich eine spezielle Situation. Die verschiedenen
Pflanzenarten werden in der Regel mit der gleichen Schätzoder

Messskala quantifiziert. Deshalb sind sie als Merkmale
in erster Näherung auch ohne Transformation durchaus
vergleichbar. Von dieser Annahme wird je nach
Untersuchungsgegenstand und -ziel graduell abgewichen. So sind in
manchen Fällen häufige und seltene Arten durch Transformation

vergleichbar zu machen. Noch allgemeiner betrachtet
geht es darum, Quantitäten ihrer pflanzensoziologischen
Bedeutung entsprechend zu gewichten.
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3.1 Datentypen

Es bewährt sich, verschiedene Datentypen zu unterscheiden.
Zahlreiche der später zu besprechenden Analysemethoden eignen

sich nur für einen bestimmten Datentyp. Letzterer
schränkt daher die Auswertemöglichkeiten ein. Das hat
Konsequenzen, denn pflanzensoziologische Daten können je nach
Auffassung verschiedenen Typen zugreordnet werden. Wir halten

uns nachfolgend an die verhältnismässig einfache
Gliederung von BAHRENBERG und GIESE (1975):

3.1.1 Nominaldaten

Nominaldaten sind rein qualitative, oft auch als kategoriell
bezeichnete Daten. Beispiel ist der Standortsfaktor "Bodentyp",

Tb. Er kann die Werte [(Podzol), (Braunerde),
(Pseudogley)] annehmen. Echte Nominaldaten lassen nicht alle
Operationen zu. Erlaubt sind die Aussagen:

Tb Tb (Aufnahmen 1 und 2 besitzen
gleichen Bodentyp)

Tb 4 Tb (Aufnahmen 1 und 2 besitzen
verschiedenen Bodentyp)

Nicht erlaubt sind:

Tb, > Tb
1 2

Tb < Tb

Diese beiden Operationen sind auch nicht statthaft, wenn
z.B. Tb eine bessere Bodenentwicklung aufweist als Tb2»
Will man einen solchen Sachverhalt ausdrücken, so ist für Tb
ein anderer Datentyp zu postulieren (s. unten). Unerlaubt
sind natürlich auch alle arithmetischen Grundoperationen,
also
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Tb + Tb
Tb - Tb
Tb * Tb

Tb1 / Tb2

Ist man sich über die Art des Datentyps im unklaren, so kann
sicherheitshalber davon ausgegangen werden, dass Nominaldaten

vorliegen. Ein solch kritisches Beispiel sind die
Himmelsrichtungen. Die Operationen "=" und "4" sind dabei
zulässig, formal auch '<" und ">". Dabei besteht jedoch
Mehrdeutigkeit bei 0 und 360 Die Wahl des Ursprunges und
die Messrichtung sind biologisch gesehen völlig willkürlich.
Bei vielen Anwendungen ist es daher sinnvoller, das Merkmal
zu diskretisieren und die sich ergebenden Klassen [N,E,S,W]
nominal zu behandeln.

3.1.2 Ordinaldaten (Rangdaten)

Wie der Name andeutet, gibt es bei Ordinaldaten unter den
Ausprägungen eines Merkmals eine Rangordnung. Ein Beispiel
wären Grundwasserstände, Tg, welche charakterisiert werden
durch die Werte [(tief), (mittel), (hoch)]. Erlaubt sind
dabei Operationen wie

Tg Tg (Gleiche Grundwasserstandskategorie
für Aufnahme 1 und 2)

Tg.. 4 Tg2
Tg.. > Tg2 > Tg3 usw.

Meist werden zur Bezeichnung der Merkmalsausprägungen nicht
Buchstaben, sondern Rangzahlen verwendet, statt [A,B,CJ also
[1,2,3]. Trotzdem sind die arithmetischen Grundoperationen
streng genommen nicht erlaubt. Gerade in der Pflanzensoziologie

wird aber oft bewusst gegen diese Regel Verstössen,
um die Daten einem noch weiteren Spektrum von Methoden
zugänglich zu machen. Dabei ist natürlich zu überlegen, ob
die so eingeführten Fehler toleriert werden können. Das
Grundwasserbeispiel zeigt die Problematik. Es gelte:
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Grundwasserstands-
kategorie

Bereich in cm unter
Bodenoberfläche >100 20-100 0-20

Tg 15 C

Tg„ 200 A
2

(Rang 3)
(Rang 1)

Die Berechnung des Mittelwertes erfordert die Verwendung
arithmetrischer Grundoperationen:

Tg 1/2(Tg +Tg 1/2(15+200) =107.5 (Typ A)

Mit den Rangzahlen wird ein falsches Resultat errechnet:

Tg 1/2(1+3) 2 (Typ B)

Diese Ueberlegungen gelten z.B. für die Artmächtigkeiten,
die in der Vegetationskunde am weitesten verbreiteten
Ordinaldaten. Die Symbole der Schule Braun-Blanquet,
[r,+,1,2,3,4,5], lassen sich problemlos durch die Rangzahlen
[1,2,3,4,5,6,7] ersetzen. Weitergehende Transformationen
dieser Skala sollen in den folgenden Kapiteln behandelt werden.

3.1.3 Metrische Daten

Metrische Daten sind Messdaten, die einen Ursprung
(Nullpunkt) besitzen. Grundsätzlich gilt, dass alle
arithmetischen Grundoperationen erlaubt sind. Es ist jedoch nicht
immer leicht, den Nachweis zu erbringen, dass tatsächlich
metrische Daten vorliegen. Schwierigkeiten ergeben sich
insbesondere bei abgeleiteten Grössen, z.B. bei den später
zu behandelnden Aehnlichkeitsmassen. Bei diesen ist zu
prüfen, ob die Dreiecksungleichung erfüllt ist. Sind drei
Werte gegeben, welche die Abstände dreier Punkte A, B, C im
Raum messen, so ist zu prüfen, ob
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d(A,C) + d(B,C) > d(A,B)

Diese Formel besagt, dass die Summe der Abstände zweier
beliebiger Punkte gleich oder grösser sein muss, als der
dritte Abstand. Wir betrachten zwei Beispiele:

Dreieck 1 2

d(A,B) 3 3

d(A,C) 2 1

d(B,C) 2 5

Die Prüfung ergibt für Dreieck 1

2 + 2 > 3, 2 + 3 > 2, 2+3>2.
Damit ist die Dreiecksungleichung erfüllt. Bei Beispiel 2

hingegen ist dies nicht der Fall, denn 3 + 1 < 5! Es muss
aber betont werden, dass viele auf metrischen Daten
basierende Verfahren auch mit nicht metrischen durchführbar
sind. Dabei muss ein öfters schwer abschätzbarer Fehler in
Kauf genommen werden. Die Ordinationsmethode nach BRAY und
CURTIS (1957) ist ein solches Beispiel.

3.2 Skalierung von Artmächtigkeiten

Genereller formuliert wird hier die Umwandlung von Datentypen

behandelt. Die Substitution traditioneller
Artmächtigkeitssymbole durch Zahlenwerte spielt in der
Pflanzensoziologie seit der Einführung numerischer Methoden
eine sehr wichtige Rolle. Auf diese Weise wird es erst
möglich, mit traditionellen Methoden erhobene
Vegetationsdaten durch metrisch arbeitende Verfahren zu
analysieren.

Schon im vorhergehenden Kapitel wurde darauf hingewiesen,
dass die Dominanz- und Abundanzskalen trotz der
gleichzeitigen Verwendung von Buchstaben und Zahlen nichts
anderes sind als Rangskalen. Je nach Auffassung variieren
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darin die Anzahl der Klassen, sowie die Klassengrenzen.
Verschiedene Möglichkeiten sind bei MUELLER-DOMBOIS und ELLENBERG

(1974) aufgeführt (Skalen von Domin Krajina, Braun-
Blanquet, Daubenmire usw.). Weite Verbreitung hat neuerdings
die Skala von LONDO (1975) erfahren.

Dem Problem des Ersatzes der verschiedenen Symbole durch
Zahlenwerte hat VAN DER MAAREL (1979) eine längere
Abhandlung gewidmet. Er stellt fest, dass sich viele
Vorschläge auf einige Grundsätzliche Lösungen reduzieren
lassen. Die einfachste Lösung besteht darin, statt des Codes
seinen jeweiligen Rang innerhalb der Skala zu verwenden (Tab
3.1). Damit liegen nun Ordinaldaten vor, welche aber noch
immer nicht allen numerischen Verfahren zugänglich sind.
Echt metrische Daten wären eigentlich die ursprünglichen
Deckungswerte in Prozenten. Man kann also den Code durch den
Mittelwert seiner Deckungsklasse ersetzen. Tab. 3.1 zeigt
dies für die erweiterte Skala von Braun-Blanquet. Bei
letzterer sind niedrige Deckungswerte quantitativ nicht
genau definiert, sodass mit behelfsmässigen Werten
gearbeitet werden muss.

Rein gefühlsmässig wird meist angenommen, dass die eigentlichen
Deckungsprozente nicht ihrer ökologischen Bedeutung

entsprechen. Ueberlegungen wie die folgende werden
angestellt: Ob eine Art mit recht grosser oder aber kleiner
Deckung auftritt ist weniger wichtig als die Frage, ob sie
überhaupt vorkommt. Sollen Vegetationsdaten so ausgewertet
werden, dass die resultierenden Gruppen- und
Gradientenstrukturen standörtlichen Unterschieden entsprechen,
so muss für die Skalierung eine Lösung gefunden werden, die
einerseits der Präsenz oder Absenz einer Art hohe Bedeutung
beimisst, andererseits aber auch die Deckungswerte nicht
ganz vernachlässigt. Dieser Idee entspringt die Skala von
Braun-Blanquet, die als transformierte Deckungsskala
verstanden werden kann. VAN DER MAAREL (1979) hat gezeigt,
dass sich durch eine einfache Transformation der Rangzahlen
x viele praktisch verwendbare Gewichtungen erzielen lassen.
Die transformierten y-Werte ergeben sich nach der Formel
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Tabelle 3.1

Potenztransformation der Skala Braun-Blanquet nach VAN DER

MAAREL (1979).

Skala DeckOrdinal- Trans
wformation y x

Braun- ung, skala x
Bl. % w=0 w=0.25 w=0.5 w=1 w=2 w=4

leer 0.0 0 0.0 0.00 0.00 0 0 0

r 1 1.0 1.00 1.00 1 1 1

+ 0.1 2 1.0 1 .19 1 .41 2 4 16
1 5.0 3 1.0 1.32 1.73 3 9 81

2m 4 1.0 1 .41 2.00 4 16 256
2 2a 17.5 5 1.0 1.50 2.24 5 25 625

2b 6 1 .0 1 .57 2.45 6 36 1296
3 37.5 7 1 .0 1.63 2.65 7 49 2401
4 62.5 8 1 .0 1.68 2.83 8 64 4096
5 87.5 9 1 .0 1.73 3.00 9 81 6561
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w
y x

Der Exponent w kann je nach der angestrebten Lösung variiert
werden. Die Wirkung von w kann leicht aus Tab. 3.1 ersehen
werden. In Abweichung von der Skala Braun- Blanquet verwendet

van der Maarel eine feinere Unterteilung der
Artmächtigkeit 2, sodass insgesamt 10 Klassen entstehen.

Tab. 3.1 berücksichtigt einige praktisch wichtige Werte für
den Exponenten w. Mit w 0 erhält man eine Binärskala, das
heisst reine Präsenz-Absenz Daten. Wohl die meisten
Pflanzensoziologen interpretieren die Skala Braun-Blanquet so,
wie sie sich durch eine Transformation der Rangwerte mit
einem w von 0.25 bis 0.5 ergäbe. Mit w 1 reproduziert man

die ursprüngliche Rangskala. Bei w 2 erhält man mit
geringfügigen Abweichungen die ursprünglichen Deckungswerte
der Arten. Bei w < 2 erhalten hohe Deckungswerte noch mehr
Gewicht im Vergleich zu den niedrigen. Solcherart
durchgeführte Analysen berücksichtigen speziell die dominanten

Arten.

An dieser Stelle ist anzumerken, dass geordnete Vegetationstabellen

oft nach ihrem rein optischen Erscheinungsbild
beurteilt werden. Symbole einerseits und Leerstellen
andererseits sollten darin möglichst konzentriert auftreten.
Die Erfahrungen bestätigen die Vermutung, dass sich solche
Ergebnisse am besten mit Präsenz-Absenz Transformation
erzielen lassen.

3.3 Transformationen

3.3.1 Transformation von Einzelwerten

Im vorhergehenden Kapitel wurde gezeigt, wie sich die
verschiedenen Möglichkeiten der Umwandlung von Artmächtigkeiten
in Zahlenwerte auf unterschiedliche Transformation der
Rangzahlen zurückführen lassen. Bei der Analyse von Standortsfaktoren

tritt ein ähnliches Problem auf. Hier geht es
darum, die bei der Messung im Felde oder im Labor angewandte
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5.64. Eine Transformation soll nun die Symmetrie wesentlich
verbessern.

Häufig angewandte Transformationen sind die
Wurzeltransformation

1/2
x x

sowie die Logarithmustransformation

x' log x, bzw. x' log(x+1)

Die Wurzeltransformation zeigt eine deutlich schwächere
Wirkung als die Logarithmustransformation. Da die Wurzel
negativer Messwerte imaginär ist, muss deren Auftreten durch
eine Verschiebung des Ursprunges vermieden werden. Dabei ist
jeder Messwert um einen konstanten Betrag derart zu erhöhen,
dass der kleinste auftretende Wert grösser als Null ist.
Aehnlich liegen die Probleme bei der Logarithmustransformation.

Logarithmen negativer Werte sind bekanntlich
Undefiniert, sodass nur positive Messungen berücksichtigt werden
können.

Um die Wirkung beider Transformationen zu demonstrieren, ist
das Säulendiagramm der Abb. 3.1, rechts, mit wurzel- und
logarithmustransformierter x-Achse in Abb. 3.2 verändert
dargestellt. Die Zwischenräume der Klassen sind dabei
verschieden breit geworden. Aus der Wurzeltransformation
resultiert noch immer eine leicht schiefe Verteilung. Die
Logarithmustransformation hingegen ergibt ein fast perfektes
Bild der Symmetrie.

Der Zusammenhang vieler Standortsfaktoren ist nicht linear.
In den seltensten Fällen linear ist gar derjenige zwischen
Vegetation und Standort. Die meisten zur Zeit verfügbaren
Analysemethoden beruhen jedoch auf der Annahme, dass die
Korrelationen annähernd linear seien (vgl. z.B. FEWSTER und
ORLOCI 1983). Wo dies nicht zutrifft, kann nun versucht werden,

mit transformierten Messwerten zu arbeiten. Ob damit im
einzelnen Falle die gewünschte Wirkung erzielt wird, kann
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4-

Anzahl
Messwerte

* V
7 8 pH

Anzahl ^^Messwerte /W\
'¦ /Tkd y\ | | ri-,

4 5 6 7 8 pH

Abb. 3.1 Beispiel einer angenähert symmetrischen Verteilung
eines Standortsfaktors (links), sowie einer schiefen
Verteilung (rechts).

4-

Anzahl 1 Anzahl
Messwerte Messwerte^»«"-»«^

-l I Irr-,, oll—I—¦ /Vir
3 v/pH 0,6 0,7 0,8 0,9 log pH

Abb. 3.2 Histogramme der transformierten Messwerte, welche
zur Konstruktion der Abb. 3.1, rechts verwendet wurden.
Histogramm links: Wurzeltransformation. Histogramm rechts:
Logarithmustransformation.
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grafisch leicht überprüft werden. Tab. 3.2 und Abb. 3.3
geben ein Beispiel. Innerhalb einer Aufnahmeserie entlang
eines Vegetationsgradienten seien die pH-Werte und der
Grundwasserstand x in cm unter der Bodenoberfläche gemessen
worden. Um den Zusammenhang zwischen den gemessenen
Standortsfaktoren zu prüfen, wurden die Wertepaare in Abb. 3.3 in
einem rechtwinkligen Koordinatensystem gegeneinander
aufgetragen. Eine willkürlich durch den Punkteschwarm gezogene
Linie weist auf den engen, jedoch nicht linearen
Zusammenhang zwischen pH- Wert und Grundwasserstand hin. In Abb.
3.3, rechts, werden dagegen die Logarithmen der
Grundwasserstände verwendet. Sie weisen eine fast perfekte
lineare Korrelation mit den pH-Werten auf. Eine Mehrheit der
nachfolgend behandelten Methoden würde die Daten in
solcherart transformierter Form wirkungsvoller analysieren.

3.3.2 Vektortransformationen

Mit der Transformation der einzelnen Messwerte kann die
Häufigkeitsverteilung der Standortsfaktoren, der Arten und
eventuell auch der Aufnahmen verändert werden. Oft ist es
jedoch nötig, verschiedene Mess- und Zählskalen einander
anzupassen. Man erreicht damit, dass jeder Wert einer
Vegetations- oder Standortstabelle bezüglich seiner Grösse
und Streuung mit jedem andern direkt vergleichbar wird. Dazu
ist es unerlässlich, ganze Zeilen oder Spalten (Vektoren)
einer Vegetationstabelle zu transformieren.

Eine erste Möglichkeit bietet die Bereichsanpassung. Zuerst
bestimmt man den grössten und den kleinsten Wert eines Vektors

(d.h. einer Aufnahme, einer Art). Anschliessend wird
das so gefundene Minimum von jedem Einzelwert subtrahiert
und das Ergebnis durch die Differenz der Extremwerte dividiert:

x. - min(x)
x: —i

max(x) - min(x)

für jedes Element i. Die transformierten Werte x! haben deni
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Tabelle 3.2

Logarithmustransformation von Standortsfaktoren

Aufn. 1 2 3 4 5 6 7 8 9 10

pH 4.8 5.1 5.2 5.3 5.3 5.2 4.9 5.4 4.7 5.5
Grundwasserstand

X 35 22 15 15 13 18 26 11 45 9

log x 1.54 1.34 1.18 1 .18 1 .11 1 .26 1.41 1 .04 1.65 0.95

pH À

5,5'

5,0

4,5

pH i

\ 10^5,5

\A0

P 6OO 6

5,0

4.5 1 1 i i1 1 1 r-
0 10 20 30 40

Grundwasserstand, cm

1,0 1,2 1,4 1,6

Grundwasserstand, log (cm)

Abb. 3.3 Direkte Ordination der Aufnahmen in Tabelle 3.2.
Untransformiert (links), transformiert (rechts).
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Bereich 0 bis 1. Tabelle 3.3 gibt ein Rechenbeispiel. Die
Aufnahmen 1 und 2 (Tab. 3.3, A) bilden die Ausgangsdaten, in
B bis E sind sie transformiert. Aus dem Beispiel (Tab. 3.3,
B) ist auch die grösste Schwäche der Bereichsanpassung
erkennbar, indem ein einziger sehr grosser oder sehr kleiner
Wert das Resultat entscheidend zu verändern vermag. Die 6 in
Aufnahme 2 ist ein solcher Fall. Sie bringt Art 2 auf den
transformierten Wert 0.2, während Art 3 der Aufnahme 1 bei
gleichem Ausgangswert auf 0.5 kommt. Die Bereichsanpassung
ist daher eine mit Vorsicht zu verwendende Transformation.

Eine zweckmässigere Lösung besteht in der Angleichung der
Summen der Vektorelemente. Dazu wird jeder Wert durch die
Vektorsumme dividiert:

x! x. / 2 x.i i.iiDie Wirkung auf das bereits besprochene Beispiel ist in
Tabelle 3.3, Teil C, ersichtlich. Eine solche Transformation
wurde zum Beispiel von WHITTAKER (1952) für Vegetationsdaten
vorgeschlagen. Er verwendet sie im Zusammenhang mit einem
speziellen Aehnlichkeitsmass, der Absolutwertfunktion (Kap.
4). In der Tat ist es sinnvoll, Vektortransformationen so zu
wählen, dass sie dem Konzept später zu verwendender Aehn-
lichkeitsmasse entsprechen. Whittakers Mass ist nichts
anderes als die Summe der Differenzen zwischen den
Artmächtigkeiten zweier Aufnahmen. Dementsprechend ist es
plausibel, die Transformation ebenfalls auf den
arithmetischen Operationen erster Ordnung beruhen zu lassen. In
Kapitel 4 wird zu zeigen sein, dass die Summe der Quadrate
der Elemente eine grössere Bedeutung erlangt hat als die
Summe der nicht quadrierten Elemente. Die entsprechende
Transformation lautet dann

x! x. / (2 x2)1/2.
i i .ii

Damit wird nicht die Summe, wohl aber die Länge der Vektoren
(Arten, Aufnahmen) vereinheitlicht - im Sinne des Satzes von
Pythagoras:
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Tabelle 3.3

Wirkung verschiedener Transformationen auf die Ausgangsdaten
A: Bereichsanpassung (B), Angleichung der Summen (C),
Normalisierung (D), Standardisierung (E).

Art 12 3 4 5 xmin xmax xmax-xmin 2x Sx2 [ix2]

Aufn.
Aufn.

1

2

3 12 13
12 116

1

1

3

6

2

5

10
11

24
43

4.90
6.48

Art 1 2 3 4 5

Aufn.
Aufn.

1

2

1.0
0

0

0.2
0.5

0

0

0

1.0
1.0

Art 1 2 3 4 5

Aufn. 1

Aufn. 2

0.33
0.091

0.10
0.181

0.20
0.091

0.10
0.091

0.33
0.545

Art 1 2 3 4 5

Aufn. 1

Aufn. 2
0.612
0.152

0.204
0.304

0.408
0.152

0.204
0.152

0.612
0.914

Art 1 2 3 4 5

Aufn.
Aufn.

1

2

1 .118
-0.618

-1 .118
-0.103

0.0
-0.618

-1.118
-0.618

1.118
1.959
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<zx:2,1/2 i.ii
Die Wirkung anhand unseres schon verwendeten Beispiels ist
wiederum in Tabelle 3.3 (Teil D) dargestellt. Betrachten wir
nun Art 4, welche in beiden Aufnahmen den Ausgangswert 1

aufweist. Ihr zufolge erfahren bei dieser Normalisierung
genannten Transformation alle Werte artenarmer Aufnahmen
eine ausgeprägte Mehrgewichtung. Seltene Arten gewinnen
darin im Vergleich zu den Ursprungswerten ausgeprägt an Bedeutung.

Die soweit erwähnten Vektortransformationen haben eine An-
gleichung der Skalierungen zum Ziel. Gerade
Standortsfaktoren unterscheiden sich nicht nur in ihrer
Masseinheit, sondern oft ganz erheblich in ihrer Streuung.
Trifft dies zu, so ist ein sinnvoller Vergleich zweier
Vektoren nur nach einer Standardisierung möglich. Auf diese
greift man letztlich auch zurück, wenn man sich des weit
verbreiteten Korrelationskoeffizienten bedient (vgl. Kapitel
4). Standardisierte Vektoren zeichnen sich durch einen
Mittelwert von 0 und eine Standardabweichung von 1 aus. Die
Formel lautet:

x.
x: -i-i

Jedes Element x. wird um den Mittelwert x vermindert und
durch die Streuung dividiert. Die Streuung s, bzw. deren
Quadrat s^ (die Varianz), ergibt sich aus der Summe der
quadrierten Differenz jedes Elementes vom Mittelwert, dividiert
durch die Anzahl der Elemente n minus 1 :

s2 1/(n-1) 2 (x. - x)2
ii

Diese Formel ist zwar einfach, doch sie ist für die
Berechnung sehr unrationell. Direkter geht das in der
folgenden Art:
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2 2
X x - (Sx) / n

s
n-1

Betrachten wir wieder Tabelle 3.3, so ergibt sich für die
Aufnahmen 1 und 2

24-100/5
s 1.0 ; s 1.000

4

43-121/5
s„ 4.7 ; s„ 2.168

2 2

Als Mittelwerte erhält man

*1 =2

x2 2.2

Nun lassen sich die standardisierten Aufnahmen sehr leicht
errechnen (Tabelle 3.3, E). Die hauptsächlichste Wirkung der
Standardisierung im Falle dieses Beispiels ist offensichtlich.

Die ursprünglich sehr unterschiedlichen Streuungen
sind identisch geworden! Damit wird auch klar, warum die
Standardisierung bei vegetationskundlichen Daten mit
Vorsicht anzuwenden ist. Die Streuung einer Art ist eines ihrer
wesentlichen Charakteristika. Gerade dieses geht aber bei
der Standardisierung verloren.

Damit sind natürlich die Transformationsmöglichkeiten noch
lange nicht erschöpft. Einige weitere sind speziell im
Hinblick auf bestimmte Analysemethoden entwickelt worden. Die
Transformationsmethode für die Korrespondenzanalyse ist ein
Beispiel. Sie wird im Kapitel 8 erläutert.
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3.4 Wirkung von Vektortransformationen auf Vegetationstabellen

Die Veränderung, welche eine Vegetationstabelle durch
Transformationen erfährt, hängt ausschliesslich von den
Ausgangsdaten ab. Weil bei pflanzensoziologischen Aufnahmen
häufig ähnliche Datenstrukturen auftreten, ist es möglich,
über die Wirkung der Transformationen generelle Aussagen zu
machen. In Abb. 3.4 (A) sind einige typische Phänomene

beispielhaft vereinigt. So findet man denn immer wieder
besonders reichhaltige (Nr. 4), aber auch artenarme Aufnahmen

(Nr. 1, 2). Bei den Arten weisen einige grosse Streuungen

auf (Nr. 1), andere dagegen eine kleine (Nr. 2).

In den Diagrammen B und C der Abb. 3.4 ist die Auswirkung
der Normalisierung der Aufnahmen beziehungsweise der Arten
dargestellt. Es ist zu beachten, dass die Skalen für die
grafischen Darstellungen willkürlich gewählt sind. Einer
Beurteilung zugänglich sind also nur die Relationen zwischen
den Abundanzwerten innerhalb der einzelnen Diagramme. Wir
finden folgende, auch rein logisch ableitbare Regeln
bestätigt:

1. Die Vektortransformation erbringt die geforderte An-
gleichung der Zeilen oder Spalten. Die schwach besetzten
werden verstärkt (Aufn. 1 in B, Art 4 in C), dominante
verlieren an Gewicht (Aufn. 4 in B, Art 1 in C).

2. Die Normalisierung der Aufnahmen führt zu einer
verstärkten Gewichtung häufiger Arten (Art 1 in B), Normalisierung

der Arten zu einer weiteren Verstärkung artenreicher
Aufnahmen (Aufn. 4 in C).

3. Die Normalisierung der Aufnahmen kann die
Streuungsverhältnisse innerhalb der Arten vollständig verändern
(z.B. Art 2 in B). Dasselbe gilt sinngemäss für die Normalisierung

der Arten.

Schliesslich findet sich in Abb. 3.4 auch die Wirkung der
Standardisierung der Aufnahmen (D) und der Arten (E). Man
kann folgende Phänomene festhalten:

1. Die bei der Normalisierung festgestellten Tendenzen gelten

auch für die Standardisierung.
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A

\Aufnah-
\men 1 2 3 4

Arten N.

1 1 2 4 4

2 1 1 1 2

3 0 0 1 4

4 0 0 1 2
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Abb. 3.4 Grafische Darstellung der Wirkung verschiedener
Vektortransformationen auf eine Vegetationstabelle A. B:
Normalisierung der Aufnahmen, C: der Arten. D: Standardisierung

der Aufnahmen, E: der Arten. Die Skalierung der
Grafiken ist willkürlich gewählt. Bei D und E treten auch
negative Werte auf. Die Pfeile markieren die Richtung der
Transformation.



-62-

2. Die Daten verändern sich noch stärker als bei der
ersteren, wenn deutliche Streuungsunterschiede vorliegen,
die alsdann ausgeglichen werden. Aufnahme 4 in D ist ein
Beispiel.

Es ist offensichtlich, dass die gezeigten Vektortransformationen

bei pflanzensoziologischen Daten tiefgreifende
Veränderungen der Aehnlichkeitsstruktur bewirken. Normalisierung

und Standardisierung der Aufnahmen helfen, bei
Artenarmut die doch vorhandenen qualitativen Unterschiede (oft
etwas zu ausgeprägt) hervorzuheben. Werden die Artvektoren
in dieser Weise transformiert, so verändern sich unter
durchschnittlichen Umständen die Aehnlichkeitsverhaltnisse
der Aufnahmen drastisch und seltene Arten prägen die Ergebnisse

weitgehend (Beispiel E in Abb. 3.4).
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