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9. Zusammenhang zwischen Vegetation und Standort

9.1 Zielsetzung und Schwierigkeiten

Mit der Analyse des Zusammenhanges zwischen Vegetation und
Standort sind wir bei der schwierigsten und vielleicht
wichtigsten Aufgabe der Pflanzendkologie angelangt (vgl. z.B
POORE 1955, S. 246). Dabei werden Ldsungen gesucht auf
Fragen, welche gleichermassen von wissenschaftlichem und
umweltpolitischem Interesse sind. Unsere Umwelt ist heute
tiefgreifenden Verdnderungen und Stérungen ausgesetzt.
Eingriffe kénnen direkt auf die Vegetation erfolgen. Entwal-
dung, Schnitt, Weidegang oder die vollstidndige Entfernung
der Pflanzendecke sind Beispiele. Ebenso hdaufig aber wird
primdr der Standort verandert. Grossflachig erfolgt dies bei
landwirtschaftlicher Diliingung, bei der Eutrophierung der
Flusse und Seen durch Abwdsser oder durch saure Nieder-
schldge. In jedem Falle geht die Aufgabe der Pflanzen-
6kologie dahin, Verdnderungen und mithin zukiinftige Zustande
vorauszusagen. Je nach der Art des Eingriffes sollen Aus-
sagen nach folgenden Schemata gemacht werden:

1. Falls Standort A umgewandelt wird in Standort B, so
folgt, dass Vegetation C sich umwandelt in Vegetation
DI

2. Falls Vegetation C umgewandelt wird in Vegetation D, so
folgt, dass Standort A sich umwandelt in Standort B.

Als Spezialfall eines Standortfaktors soll die Zeit mit in
die Betrachtungen eingeschlossen sein. Voraussetzung fiur die
postulierten Voraussagen ist die formale, im statistischen
Sinne deskriptive Bestimmung des Zusammenhanges zwischen
Vegetation und Standort. Natiirlich kann man methodisch
erheblich weiter gehen und die dynamischen Prozesse numer-
isch nachzubilden versuchen. Davon soll hier abgesehen wer-
den.

Formal ergibt sich die Aufgabe, die durch mehrere Variablen
charakterisierte Vegetation mit mehreren Standortsvariablen



-194-

in Beziehung zu setzen. Gegeben sind also zwei multivariate
Datensidtze. Der Zusammenhang zwischen einem Vektor des
einen Satzes (z.B. einer Art) und einem Vektor des andern
Satzes (einem Standortsfaktor) kann durch eine normale
Korrelationsalanyse gefunden werden. Fir die multivariate
Fragestellung muss zur Kanonischen Korrelationsanalyse
gegriffen werden (PIELOU 1977). Deren Ergebnisse sind nicht
sehr einfach zu interpretieren. GITTINS (1985) hat ihr eine
umfassende Darstellung mit Anwendungsbeispielen gewidmet. Es
bleibt abzuwarten, ob sie sich damit in der Oekologie doch
noch durchsetzen kann. Zwei Haupthindernisse erschweren
ihren Einsatz in der Pflanzendkologie: Zum einen ist es die
grosse Zahl der Variablen (n3mlich Arten), die zur
Beschreibung der Vegetation ndtig sind. Zum andern ist es
die meist ausgepridgte Nichtlinearitdt in der Beziehung
zwischen den beiden Datensdtzen.

Zur Illustration des Linearitidtsproblemes verwenden wir die
Vegetationsdaten des Kapitels 7.3 und erganzen diese mit
einem Standortsfaktor, pH. Wir erhalten folgende Tabelle:

Aufn. A B C D E F
Art 1 1 2 2.5 2.5 1 0.5
Art 2 0 1 2 4 3 1

pH 4.0 4.2 4.3 4.8 5.2 8,7

Es wdre hier naheliegend, mittels der einfachen Korrela-
tionsanalyse den Zusammenhang der Arten 1 und 2 mit dem pH
zu untersuchen. In Abb. 9.1, A, sind die pH-Werte in Funk-
tion der Abundanzwerte von Art 1 aufgetragen. Es ist
offensichtlich, dass eine lineare Regression versagen muss:
Sowohl bei pH 4.0 als auch beim H6chstwert von 5.7 erreicht
Art 1 ein Minimum. Damit l3sst sich aus der Haufigkeit ihres
Auftretens innerhalb einer Probefldche nicht eindeutig ein
pH-Wert voraussagen. Ausserdem ist es wlinschenswert, nicht
eine einzige, sondern mehrere Arten gleichzeitig zu
berlicksichtigen. Man kdénnte also statt einer einzelnen Art
die Faktorenwerte einer Komponentenanalyse mit dem pH
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Abb. 9.1 Bestimmung der Beziehung =zwischen dem Standorts-
faktor pH und der Abundanz einer Pflanzenart (A), bzw. den
Achsen einer Ordination (B). Fette Pfeile zeigen Bereiche,
innerhalb welcher die Zusammenhidnge anndhernd linear sind.
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korrelieren. Ein solcher Versuch ist in Abb, 9.1, B, darge-
stellt. Doch die nichtlineare Aehnlichkeitsstruktur der
Aufnahmen l3sst die Regressionsanalyse auch hier scheitern.
Bei den ersten Punkten des Gradienten steigt der pH von
links nach rechts, in der zweiten H3lfte wvon rechts nach
links an. Die fett ausgezogenen Bereiche in Abb. 9.1, A und
B weisen auf eine mogliche Ldésung hin: Wird ausschliesslich
in einem engen o©&kologischen Bereich gearbeitet, so stellt
die lineare Regression tatsdchlich eine brauchbare
Ndherungsldsung dar. Leider tritt dieser Fall in der Praxis
eher selten auf.

Glinstiger stehen die Erfolgsaussichten einer Analyse, wenn
die Daten bereits gruppiert sind. Es braucht bloss gepriift
zu werden, ob die in der Vegetation gefundenen Gruppen sich
auch standértlich unterscheiden. Doch auch hier sind die
Resultate kritisch zu interpretieren. Analysiert wird ja
nicht die Struktur der Vegetation selbst, sondern das Resul-
tat einer Gruppierungsanalyse. Dieses kann wiederum unter-
schiedlich treffend sein, je nach gewdhlter Methode.

Ziel einer Gruppierungsanalyse ist das Erkennen von Vegeta-
tionseinheiten, welche Unmweltfaktoren méglichst genau
vorauszusagen erlauben. Man wird also stets versuchen, eine
geeignete Gruppierungsmethode 2zu finden (Kap. 5). Es kann
aber sein, dass eine gute Klassifikationsldsung unerwartet
schlecht mit dem Standort ilibereinstimmt. In Abb. 9.2 ist ein
solcher Fall dargestellt. Die beiden strukturell sauber
getrennten Gruppen iberlappen bezliglich pH deutlich. Eine
solche Situation wurde von FEOLI und FEOLI-CHIAPELLA (1980)
an reellen Daten nachgewiesen. Wir ersehen daraus, dass im-
mer auch die Kombination der angewandten Methoden, nicht nur
die einzelne Methode fiir sich kritisch auszuwdhlen ist.

9.2 Grafische Lo6sungen

Nicht immer muss auf eine rechnerische Ldésung zurilickge-
griffen werden. Man kann ein Strukturmodell (Ordination,
Dendrogramm) anhand standértlicher Messungen direkt inter-
pretieren. Im Prinzip wird in Abb. 9.1 so vorgegangen. Die
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1. Ordinationsachse

Abb. 9.2 Optimale Auftrennung einer Ordination in zwei Auf-
nahmegruppen auf Grund der Aehnlichkeiten der Aufnahmen (a)
und des pH-Wertes (b).

Tabelle 9.1
Versuchsdaten zur Untersuchung einer Zeitreihe.

1. Jahr 2. Jahr 3. Jahr

Aufnahme-
flache Nr. 1 2 3 1 2 3 1 2 3

Art 1 11 1 1 2
Art 2 1T 2 1 2 1 1 2 1 1
Art 3 1 2 2 2 1 3 3

Art 4 1 2 13
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dort gezeigte Ordination beruht ausschliesslich auf Vegeta-
tionsdaten (vgl. Kap. 8). Nachtridglich werden die Aufnahmen
mit gemessenen pH-Werten beschriftet. Damit l3dsst sich die
gefundene Datenstruktur auf einfachste Weise 6kologisch in-
terpretieren. Im allgemeinen ist die Zahl der Aufnahmen bei
pflanzendkologischen Untersuchungen so hoch, dass nicht mehr
jeder Punkt der Ordination einzeln beurteilt werden kann.
Dann ist es zweckmd3ssig, Punkteschwdrme innerhalb eines
Standortbereiches zu umfahren und zu beschriften (Abb. 9.3).
Dass sich die Bereiche meist liberschneiden, beeintridchtigt
die Uebersichtlichkeit kaum. Die Methode ist denn auch recht
beliebt und Beispiele finden sich vielerorts (vgl. GREEN
1979, S. 215, CLYMO 1980, KOMARKOVA 1980).

Die Zeit kann als Spezialfall eines Standortfaktors betrach-
tet werden. Alle Aufnahmen einer Zeitreihe werden dazu in
einem Datensatz vereinigt. In einer Ordination lassen sich
in der Folge nicht nur die standdrtlich bedingten Differen-
zierungen, sondern auch der zeitliche Trend darstellen. Das
folgende Beispiel 1lehnt sich der Arbeit VAN DER MAARELS
(1969) an. Wir gehen von Tabelle 9.1 aus. Die Population
besteht aus 9 gleichberechtigten Individuen (Aufnahmen). Um
die Analyse liberblickbar zu halten, sollen die Daten nicht
transformiert werden. Es wird eine Hauptkomponentenanalyse
gerechnet. Im vorliegenden Beispiel basiert sie auf van der
Maarels Koeffizient als Aehnlichkeitsmass. Man erhalt als
Eigenwerte A1 = 2.10, 12 = 1.25, A_ = 0.377, und A, = 0.277.
Bereits zwei Dimensionen reproduzieren 83.7% der gesamten
Varianz. Die Aufnahmen, welche derselben Probefliche
entstammen, werden in der Reihenfolge der Erhebungszeit-
punkte durch Pfeile verbunden. Bei der sehr einfachen Daten-
struktur in Abb. 9.4 erkennt man leicht Entwicklungen in
zwel verschiedene Richtungen. Sie werden durch die Aufnahmen
1 einerseits sowie 2 und 3 andererseits reprdsentiert.

Als Ordination dargestellt (Abb. 9.4) sind die Veridnderungen
rascher und unter komplexeren Verhdltnissen stets leichter
erkennbar als in einer Vegetationstabelle. Man erkennt, dass
sich die Aufnahmefldche 1 dem Anfangszustand der Fliche 2
anndhert. Flidche 2 entwickelt sich in Richtung Fliche 3 und
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Abb. 9.3 Standortliche Interpretation der Ordination aus
Abb. 9.1. Aufnahmen innerhalb festgelegter Standortsbereiche
werden umrandet und beschriftet.

A2 ® 3, 3. Jahr

3, 2. Jahr r

y ® 2 3. Jahr
3, 1. Jahr

: : % 4 = X
2, 2.Jahr ‘A
1, 1.Jahr 1
.~‘\5‘ e |2, 1 Jahr

1L2.dahr ~~faq 1, 3.Jahr

Abb. 9.4 Ordination der Daten einer Sukzessionsuntersuchung
iiber drei Jahre (Tab. 9.1). Die Pfeile =zeigen die
Entwicklungsrichtung der Aufnahmeflachen.
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erreicht als Endzustand etwa deren Zusammensetzung wahrend
des zweiten Jahres.

Aehnliche Moglichkeiten ergeben sich, wenn aus verschiedenen
Jahren stammende Aufnahmen gemischt und gruppiert werden.
Liegt eine deutliche Gruppenstruktur vor, so kann die
"Wanderung" jeder sich verdndernden Aufnahme durch ein Den-
drogramm durch grafisches Hervorheben desselben verdeutlicht
werden.

9.3 Korrelation von Ordination und Standort

Bereits in Abb. 9.1 wurde gezeigt, dass der Zusammenhang wvon
Ordinationsachsen und Standortsmessungen mit der linearen
Korrelationsanalyse nur in sehr einfachen F&3llen erfassbar
ist. Ordinationsverfahren wie die Hauptkomponenten- oder die
Korrespondenzanalyse flihren nur zum Ziel, wenn die Aehnlich-
keitsstrukturen einigermassen kontinuierlich und 1linear
sind. Wesentlich einfacher ist die Aufgabe, wenn die Indivi-
duen und die Merkmale zu Gruppen zusammengefasst werden
konnen, Dies ist in Abb. 8.2, Abschnitt 8.2 der Fall. Die
dort gezeigte Konzentrationsanalyse liefert auch Koordinaten
fir die Gruppen. Wir bilden also die Gruppenmittelwerte der
verschiedenen Standortsfaktoren (Tab. 9.2). Nun werden die
Standortsfaktoren mit der ersten Ordinationsachse korreliert
und man erhdlt

r(x,pH) = -0.977
r(x,Hdhe) = -0.991
r(x,Neigung) = 0.959

Die hohen Korrelationswerte weisen zundchst auf eine Ueber-
einstimmung zwischen der Gruppenstruktur und den Standorts-
faktoren hin. Rein deskriptiv betrachtet bestdtigen die
Korrelationskoeffizienten die Zusammenhdnge, die sich leicht
aus Abb. 8.2 herauslesen lassen. Sehr vertrauenswiirdig ist
die auf nur drei Referenzgruppen basierende Aussage nicht.
Einem Statistikbuch (BARTEL 1974) entnehmen wir, dass der
Zufalls-H6chstwert im obigen Beispiel bei einer Irrtumswahr-
scheinlichkeit von 5% ganze 0.997 betrdagt: Die soeben
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berechneten Korrelationen sind offenbar mit Vorsicht zu in-
terpretieren. Die Methode wird erst dann sinnvoll, wenn die
Zahl der Gruppen grdsser ist als drei. Natiirlich missten nun
auch die Korrelationen der Standortsmessungen mit der
zweiten und dritten Ordinationsachse iberpriift werden. Ob
bestehende Zusammenhdnge auf diese Weise gefunden werden,
bleibt ungewiss. Die Aehnlichkeitsstruktur der Aufnahme-
gruppen ist wie diejenige der ungruppierten Aufnahmen mehr
oder weniger nichtlinear!

Die Erkenntnis, dass Aufnahmen durch viele Ordinations-
methoden als Kreise oder Spiralen dargestellt werden,
machten sich FEOLI und FEOLI-CHIAPELLA (1980) zu Nutze.
Weiss man mit einiger Sicherheit, dass die Vegetations-
aufnahmen einem einfachen Gradienten entstammen, so 1ldsst
sich deren Position auf dem Ordinationskreis mit einem Win-
kelmass gut beschreiben. Solche Voraussetzungen sind im hier
verwendeten Beispiel in extremer Weise gegeben (Abb, 9.3,
9.5). Zundchst muss jedoch eine Ursprungsrichtung gefunden
werden, von welcher aus die Winkel zu messen sind. In un-
serem Beispiel (Abb. 9.5) liegt diese zwischen den Aufnahmen
6 und 1, also dem Anfangs- und dem Endpunkt des Gradienten.
Wir verwenden der Einfachheit halber die x-Achse als
Ursprungsrichtung und messen nun die Winkel im mathematisch
positiven Sinne. Man kann sie berechnen oder direkt Abb. 9.5
entnehmen und findet dann folgenden Zusammenhang:

Aufnahmen 1 2 3 4 5 6
Positionswinkel « 3 44 120 179 225 322
pH 4.0 4.2 4.3 4.8 5.2 5.7

Die Korrelation ergibt:
r(a,pH) = 0.979

Man kann sich auch hier fragen, ob dieser Wert iliber dem zu
erwartenden Zufallshdchstwert 1liegt. Die Zahl der Frei-
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Tabelle 9.2

Korrelation von Ordinationskoordinaten mit Standortsfaktoren
von Aufnahmegruppen.

Aufnahmegruppe 1 2 3
x-Koordinate aus
Konzentrationsanalyse 1.249 -0.481 -1.001
pH 4.75 5.60 6.23
Hohe liber Meer 475 493.3 503.3
Neigung in Grad 11.9 7.0 2.33
X2
6 5
g
. x Qs
| - ] 2 - X1
a; (+ ]
2 a3
3

Abb. 9.5 Bestimmung des Winkels zwischen der
richtung

dination.

Ursprungs-
U und den Aufnahmen in einer Zweidimensionalen Or-
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heitsgrade betragt im obigen Beispiel df = 5. Einem Statis-
tikbuch entnehmen wir den Zufallshochstwert bei einer Irr-
tumswahrscheinlichkeit von 5% (BARTEL 1972) und finden ein r
von 0.754. Unser r(e¢,pH) ist sogar noch signifikant von Null
verschieden bei einer Irrtumswahrscheinlichkeit von 1%, denn
der Zufallshdchstwert betridgt dann 0.874.

9.4 Die Diskriminanzanalyse

Zur Bestimmung des Zusammenhanges zwischen Vegeta-
tionseinheiten und Standortsfaktoren eignet sich die
Diskriminanzanalyse. Sie erfordert Ausgangsdaten in einer
Form, wie sie bei pflanzendkologischen Untersuchungen hdufig
anfallen. Von jeder Aufnahme ist die Gruppenzugehdrigkeit
vorzugeben. Man bedient sich 2zu deren Bestimmung bei-
spielsweise einer Gruppierungsanalyse, Die Standortsdaten
missen hingegen ordinal oder metrisch vorliegen. Geeignet
sind also pH-Werte, Konzentrationen, Temperaturen, die
Hohenlage usw. Das Resultat der Diskriminanzanalyse ist als
Ordination darstellbar. Deshalb kommen dem Anwender Er-
fahrungen aus der Interpretation von Hauptkomponen-
tenanalysen sehr zustatten. Die Niitzlichkeit der Dis-
kriminanzanalyse =zeigt sich auch an der wachsenden Zahl
praktischer Anwendungen (DEL MORAL 1975, WILDI 1977, FEOLI
1979). Darstellungen der Methode finden sich bei COOLEY und
LOHNES 1971, MORRISON 1976, PIELOU (1977), SUCHARD-FICHER et
al. (1982) und anderen. Aehnlich wie bei den Hauptkomponen-
tenanalysen weichen die Auffassungen beziiglich der
durchzufiihrenden Transformationen der Ausgangsdaten
voneinander ab. Im Falle pflanzendkologischer Daten muss da-
von ausgegeangen werden, dass Messwerte mit sehr unter-
schiedlichen Skalierungen vorliegen. Eine Normalisierung
oder Standardisierung der Standortsvektoren ist deshalb
stets angezeigt.

Wir fassen im folgenden die Diskriminanzanalyse als
geometrisches Verfahren auf. Wie bei der Hauptkomponen-
tenanalyse wird flir einen mehrdimensionalen Punkteschwarm
eine glinstige Projektion gesucht. Die Ausgangskoordinaten
sind die Standortsmessungen. Die neuen Diskriminanzachsen
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(meist Diskriminanzfunktionen genannt) sollen nun so zu
liegen kommen, dass die Aufnahmegruppen m&glichst klar
getrennt erscheinen. 1In Abb. 9.6 ist das in Kap. 1.3, Abb.
1.11 gezeigte Beispiel nochmals wiedergegeben. Es ist leicht
erkennbar, dass weder die x-Achse noch die y-Achse allein
die beiden Gruppen zu trennen vermag. Die erste (und ein-
zige) Diskriminanzfunktion hingegen erlaubt eine klare
Zuordnung aller Individuen aufgrund ihrer neuen Koordinaten.
Wo immer eine solcherart verdeckte Gruppenstruktur vorliegt,
hilft die Diskriminanzanalyse weiter. Abb. 9.6 zeigt ausser-
dem, dass die erste Achse der Hauptkomponentenanalyse hier
das erwiinschte Ergebnis nicht erbringen kann.

Anhand eines iibersichtlichen Beispiels sollen Rechengang und
Wirkungsweise dargestellt werden. Wie schon bei der
Hauptkomponentenanalyse verzichten wir auf Beweisfiihrungen
und verweisen auf statistische Fachliteratur (z.B. MORRISON
1976). In Abb. 9.7 ist ein Datenbeispiel dargestellt, bei
welchem die Diskriminanzanalyse ein aufschlussreiches Resul-
tat verspricht. Gegeben sind drei Gruppen von Aufnahmen,
welche im dreidimensionalen Raum liegen. Die Achsen sind mit
A1, A2 und A3 bezeichnet. Wir nehmen an, dass es sich dabei
um Standortsfaktoren handelt wie pH, Einstrahlungssumme oder
Jahresniederschlag. Die Individuen der Gruppen liegen je auf
einem Achsenkreuz, welches der Uebersichtlichkeit wegen in-
nerhalb eines Wirfels liegend dargestelt ist. Kein einziger
Sandortsfaktor x, y oder z ist geeignet, die Gruppen eindeu-
tig zu trennen. Auch in zwei Dimensionen (Abb. 9.8, A) ist
dies nicht mdglich. Hingegen erahnt man, dass bei einer
speziellen Blickrichtung schiefwinklig zu den drei Achsen
alle drei Gruppen getrennt erscheinen kénnten. In der Tat
liesse sich die Gesamtpopulation so projizieren wie in Abb.
9.8, B. Dies ist denn auch das im folgenden gesuchte End-
resultat.

Wie bei den Ordinationsmethoden dargestellt, bilden
Artmdachtigkeiten oder Standortsfaktoren den Ausgangspunkt
der Analysen. Sie sind mit Hilfe von Faktorenladungen so zu
transformieren, dass die gewilinschte Projektionsrichtung er-
zielt wird. Bei der Hauptkomponentenanalyse ging es darum,
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y-Achse, °C | X1

x-Achse, pH

z=f(pH,°C

Abb. 9.6 Diskriminanzfunktion z = f(pH, oC) fir zwei Gruppen
einer Stichprobe. Zum Vergleich sind die beiden Achsen

(x;,xé) einer Hauptkomponentenanalyse eingetragen.
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Abb. 9.7 Dreidimensionaler Punkteschwarm, bestehend aus drei
durch Achsenkreuze verbundene Punktegruppen. Aus dieser Per-
spektive iliberschneiden sich die Gruppen. Die Wiirfel sollen
die Lage der Punkte im Raum verdeutlichen.
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Ay

Y1

Y2

Abb. 9.8 Projektion des Punkteschwarmes in Abb. 9.7 1in den
Dimensionen a und a_ (A). Die Diskriminanzanalyse ist in
der Lage, zwei neue Achsen y_ und y_ so zu finden, dass sich
die drei Gruppen nicht iiberschneiden (B).
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die Varianz der neuen Koordinaten auf der ersten Achse zu
maximieren. Die Diskriminanzanalyse hingegen versucht, die
Varianz 2zwischen den Gruppen méglichst gross erscheinen zu
lassen. Das Problem der Trennung von Gruppen kennen wir
bereits von der Varianzanalyse her (Kap. 6.3). Dabei gilt ja

Totalvarianz Varianz Varianz
der Stichprobe = innerhalb der + =zwischen den
Gruppen Gruppen. -

Neu ist nur, dass bei der Diskriminanzanalyse mehrere Merk-
male gleichzeitig berlicksichtigt werden. Es sind somit stets
Varianz- Kovarianzmatrizen zu analysieren. Liest man aus
Abb. 9.7 alle Koordinaten heraus, so erhdlt man die Datenma-
trix A (Tabelle 9.3). Wie schon bei der Hauptkomponen-
tenanalyse, so sollen auch hier die Kolonnen zentriert wer-
den. Dazu ist von jeder Koordinate der Mittelwert zu sub-
trahieren:

X,, =a,, - a,
1) 1j J

Die neuen, transformierten Xi' - Werte finden sich ebenfalls
in Tabelle 9.3. Nun ist diejAehnlichkeitsstruktur der zen-
trierten Standortsfaktoren X1 1%y und X3 zu bestimmen. Als
Aehnlichkeitsmass wdhlen wir der Einfachheit halber das
Skalarprodukt. Wir bezeichnen die so entstehende Matrix mit
T (fir total). Bei zwei beliebigen Standortsfaktoren n und m
gilt:

N
t = X X. X.
nm im in
i=1

N ist die Gesamtzahl der Aufnahmen. Fiir das Element t er-
. , .. 12
halt man somit als Beispiel :

t12

(-6.33*%1.66)+(-3.33*4.66)+ ... + (4.66*%-1.333)
-58.33

Die gesamte Matrix ergibt



Tabelle 9.3

Datenmatrix flir das Rechenbeispiel in Abb. 9.6.
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Aufnahme | Gruppe Standortsfaktor Zentrierte Daten
A1 A2 A3 X1 X2 X3
1 1 1 9 9 -6.33 1.66 1.66
2 1 4 12 9 -3.33 4,66 1.66
3 1 4 9 6 -3.33 1.66 -1.33
4 1 4 9 9 -3.33 1.66 1.66
5 1 4 9 12 -3.33 1.66 4,66
6 1 4 6 9 -3.33 -3.33 1.66
7 1 7 9 9 -0.33 1.66 1.66
8 2 6 9 4 -1.33 1.66 -3.33
9 2 9 12 4 1.66 4,66 -3.33
10 2 9 9 1 1.66 1.66 -6.33
11 2 9 9 4 1.66 1.66 =3.33
12 2 9 9 7 1.66 1.66 -0.33
13 2 9 6 4 1.66 -1.33 -3.33
14 2 12 9 4 4.66 1.66 -3.33
15 3 6 4 9 -1.33 -3.33 1.66
16 3 9 7 9 1.66 -3.33 1.66
17 3 9 4 6 1.66 -3.33 -1.33
18 3 9 4 9 1.66 -3.33 1.66
19 3 9 4 12 1.66 -3.33 4.66
20 3 9 1 9 1.66 -6.33 1.66
21 3 12 4 9 4.66 -3.33 1.66
x= 7.33 7.33 7.33 0 0 0
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170.66 -58.33 -58.33
T = -58.33 170.66 -58.33
~58.33 -58.33 170.66

Die Gleichfdrmigkeit verschiedener Elemente ergibt sich aus
dem gewdhlten Beispiel: Alle Gruppen in Abb. 9.7 sind ja
gleich gross und haben die gleiche Form. Im folgenden
Schritt sind die Aehnlichkeitsverhdltnisse innerhalb der
einzelnen Gruppen 2zu bestimmen. Das Vorgehen ist genau
gleich wie fir die Gesamtstichprobe: Die Daten werden (in-
nerhalb der Gruppen!) zentriert und die Matrix der Skalar-
produkte W (fir "within") berechnet. Man erhidlt fir die
erste Gruppe:

18.0 0 0
W1 = 0 18.0 0
0 0 18.0

Es ist leicht einzusehen, dass die Resultate fir die Gruppen
2 und 3, also W2 und W3, identisch ausfallen miissen. Aus der
Summe der drei Matrizen ergeben sich schliesslich die to-
talen Abweichungsquadrate innerhalb der Gruppen:

54.0 0 0
W = W1+W +W_ = 0 54.0 0
0 0 54.0

Nun sollen also die neuen Koordinaten gesucht werden, welche
die Punktewolken optimal aufldsen. Der Weg fiihrt wie bei der
Hauptkomponentenanalyse liber ein Eigenwertproblem. Zunidchst
sind geeignete Eigenwerte Lambda (A) zu suchen. Sie ergeben
sich durch Aufl&sung der Determinantengleichung

(W (T-W) - AT ] =o0.

Das Problem unterscheidet sich von demjenigen der Hauptkom-
ponentenanalyse nur insofern, als zunichst der Ausdruck W
(T-W) zu berechnen ist. T-W soll mit A bezeichnet werden und
wir erhalten
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(170.66 -58.33 -58.33 54.0 0 0
A = T-W =(-58.33 170.66 -58.33| - [0 54.0 0
-58.33 -58.33 170.66 0 0 54.0

116.66 -58.33 -58.33
=|-58.33 116.66 -58.33
| -58.33 -58.33 116.66

W_1 ist die Inverse von W, d.h. die Loésung der Gleichung
WW =I. Die Bedeutung der Matrixinversion ist z.B. bei
BATSCHELET (1980) erklidrt. Dort findet sich auch ein
Losungsweg (S. 518-520). Folgt man den beschriebenen Rechen-
regeln, so scheitert man mit unserem Beispiel: Die Deter-
minante der Matrix W ist Null, die Inverse W-1 ist unde-
finiert. Glicklicherweise wurde von Mathematikern ein siche-
rer Weg zur Bestimmung der Eigenstruktur von w1 A gefunden.
Die einfachen, aber rechenintensiven Operationen findet man
bei COOLEY wund LOHNES (1971), S. 192 bis 194, zusammen mit
einem Computerprogramm. Wir verzichten deshalb auf die de-
taillierte Darstellung des Rechenganges. Filir unser Beispiel
lauten die Eigenwerte

A = 3.24 ; A_ = 3.
, =324 5, = 3.24

Die Eigenvektoren alpha (a) betragen

Diskriminanzachse
Alte Koordinate 1 2
1 -0.408 -0.707
2 -0.408 0.707
3 0.817 0.0

Die Interpretation der Eigenvektoren erfolgt genau gleich
wie bei der Hauptkomponentenanalyse. Demzufolge ist « =
-0.408 die Korrelation (der Cosinus) der alten Achse 1 mit
der Diskriminanzachse 1, Diese ist mit a1 = 0.817 dhnlich
orientiert wie die alte Achse 3. Die Disﬁriminanzachse 2
steht in 45O zu den alten Achsen 1 und 2 (Cosinus 45O =
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Tabelle 9.4

Koordinaten auf den Dikriminanzachsen

Aufnahme | Gruppe Koordinaten
Y1 Y2

1 1 3.266 5.657
2 1 0.817 5.657
3 1 -0.408 3.536
4 1 2.041 3.536
5 1 4,49 3.536
6 1 3.266 1.414
7 1 0.817 1.414
8 2 -2.858 2.121
9 2 -5.307 2.121
10 2 -6.532 0.000
11 2 -4.082 0.000
12 2 -1.633 0.000
13 2 -2.858 -2.121
14 2 -5.307 -2.121
15 3 3.266 -1.141
16 3 0.817 -1.141
17 3 -0.408 -3.536
18 3 2.041 -3.536
19 3 4.491 -3.536
20 3 3.266 -5.657
21 3 0.817 -5.657
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0.707). Zur Achse 3 steht sie rechtwinklig. Dass dem so ist,
zeigt auch Abb. 9.8, B. Nun sind noch die dort verwendeten
Koordinaten Y zu bestimmen. Dies geschieht wiederum wie bei
der Haupkomponentenanalyse. Fiir jede Dimension p gilt

= o
Yip T F1p %11 T Fop %21 Y T3p T3

Die aktuellen Werte (Tabelle 9.4) sind

(-0.408)(-6.33)+(-0.408)(1.667)+(0.817)(1.667)

y
11
3.26

(-0.707)(-6.33)+(0.707)(1.667)+(0.0)(1.667)
5.65

Y92

Alle weiteren Koordinatenwerte sind in Tabelle 9.4 wieder-
gegeben. Wie in Abb. 9.8, B, gezeigt, prdsentieren sich die
drei Punkteschwd@rme in zwei Dimensionen klar getrennt. Sind
die urspriinglichen Koordinaten Standortsfaktoren, so kdnnen
wir jetzt festhalten, dass diese die - aufgrund floris-
tischer Angaben - vorgegebenen Gruppen einzeln nicht zu un-
terscheiden erlauben. In Kombination charakterisieren sie
jedoch jede Gruppe eindeutig.
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