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7. Ordination
7.1 Vorbemerkungen

Die Schule Braun-Blanquet kennt die Ordination als
Analysemethode nicht. Sie bedient sich direkter Schluss-
folgerungen im Felde und der sogenannten Tabellenarbeit (EL-
LENBERG 1956, MUELLER-DOMBOIS und ELLENBERG 1974). Letztere
ist ein Klassifikationsprozess innerhalb der Arten und in-
nerhalb der Aufnahmen. Die auf reinen Vegetationsdaten
beruhende Ordination ("indirekte Ordination", WHITTAKER
1967) wurde unseres Wissens durch GOODALL (1954) eingefiihrt.
Er bediente sich der Hauptkomponentenanalyse, einer fiir
damalige Verhdltnisse sehr aufwendigen Methode. BRAY und
CURTIS (1957) publizierten wenig spdter ein neu entwickeltes
Ordinationsverfahren, das in der Folge unter dem Namen Po-
lare Ordination weite Verbreitung fand. Zahlreiche
konzeptionelle Fehler fiihrten dazu, dass bald Revisionen
vorgeschlagen wurden, welche dessen grosste Schwachen behe-
ben sollten (ORLOCI 1966, SWAN et al. 1969, VAN DER MAAREL
1969). Leider ist jede dieser Verbesserungen auch mit einem
zusdtzlichen Rechenaufwand verbunden. Bei der Konzeption des
vorliegenden Kapitels wurde gepriift, ob sich die Methode
Bray und Curtis als grundlegendes, leicht diskutierbares
Ndherungsverfahren verwenden liesse. Zahl und Schwere der
dabei in Kauf zu nehmenden Fehler sind aber nicht akzepta-
bel, sodass davon Abstand genommen werden muss. Stattdessen
wird =zuerst die Hauptkomponentenanalyse erdrtert. Deren
Durchfiihrung ist auch bei kleineren Datensdtzen recheninten-
siv. Auf Beweisflihrungen filir die L&sungswege wird erneut
verzichtet und auf die einschldgige Literatur verwiesen. Der
Nachvollzug des Rechenganges und die Interpretation der Er-
gebnisse diirften es einem Pflanzendkologen ermdglichen,
Nutzen und Grenzen der Ordination unter den in der Vegeta-
tionskunde gegebenen Umstdnden zu erkennen.

Eine weitere Bemerkung gilt der Vielfalt der Methoden. Sie
ist, sofern man auf die publizierten Namen abstellt, recht
gross (ORLOCI 1978). Wie spidter zu zeigen ist, bleiben die
Funktionen aller Ordinationsmethoden stets dieselben: Es
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geht um die Abbildung einer vieldimensionalen Aehnlich-
keitsstruktur in mdglichst wenig Dimensionen. Im Gegensatz
etwa zu den Gruppierungsverfahren findet man, dass
Ordinationsmethoden, welche sich nur durch das verwendete
Aehnlichkeitsmass unterscheiden, 6fters unterschiedliche Na-
men tragen.

Gute Ordinationsmethoden sind mit einem hohen Rechenaufwand
verbunden. Wohl bei keiner andern Gruppe von Methoden
erscheinen in der pflanzensoziologischen Literatur so viele
Arbeiten, welche sich anhand echter oder konstruierter Daten
dem Vergleich und der Bewertung verschiedener Algorithmen
annehmen (DEL MORAL 1980, GAUCH 1982). Dabei wird das Resul-
tat in der Regel an den Erwartungen des Experimentators
gemessen. Diese sind 1leider oft unrealistisch, wie z.B.
FEOLI und FEOLI-CHIAPELLA (1980) treffend nachweisen.

Schliesslich muss betont werden, dass gute Ordinationen mehr
leisten als nur eine grafische Darstellung von Beziehungen
zwischen Arten oder Aufnahmen. Eines der fundamentalsten
Probleme der Analyse o6kologischer Daten besteht darin, dass
zahlreiche gleichzeitig messbare Faktoren in wunterschiedli-
chem Masse miteinander korreliert sind. Damit ist ihre
separate Interpretation nicht sinnvoll. Methoden, wie 2z.B.
die Hauptkomponentenanalyse, liefern eine L&sung zur Entkop-
pelung simultan wirkender Faktoren. Eine pflanzendkologische
Analyse, die diesen Schritt umgeht, ist deshalb kaum denk-
bar.

In der pflanzendkologischen Literatur wird zwischen direkter
und indirekter Ordination wunterschieden (WHITTAKER 1967,
GAUCH 1982). Bei der direkten Ordination geht es darum, Auf-
nahmen in einem zweidimensionalen Koordinatensystem so dar-
zustellen, dass ihre Aehnlichkeiten bezliglich zweier Stand-
ortsfaktoren ersichtlich werden. Als Achsen dienen deshalb
Messwerte wie HBhenlage, pH, Bodenfeuchte usw. Auch ein
Oekogramm ist in diesem Sinne eine Ordination (vgl. ELLEN-
BERG 1978), worin statt einzelner Aufnahmen die Stand-
ortsbereiche ganzer Pflanzengesellschaften aufgezeichnet
werden. Das vorliegende Kapitel beschdftigt sich jedoch
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ausschliesslich mit der indirekten Ordination. Deren Prinzip
wird im folgenden erldutert.

7.2 Prinzip der Ordinationsmethoden

Das Prinzip der Ordination kann an einem Beispiel ver-
anschaulicht werden, das einen Vegetationsgradienten dar-
stellt. Abb. 7.1, A, zeigt zundchst die konstruierten Daten
als Vegetationstabelle, der Einfachheit halber mit nur zwei
Arten. Nehmen wir an, dass die Aufnahmen in gleichen
Abstdnden entlang eines Transsektes erhoben wurden, so
lassen sich die Ergebnisse wie in Abb. 7.1, B, darstellen.
Daraus wird klar ersichtlich, dass es sich um einen ein-
fachen, unverzweigten Vegetationsgradienten handelt. Eine
solche Gradientenstruktur eignet sich naturgemdss gut zur
Darstellung als Ordination. Letztere ist in Abb. 7.1, C, =zu
sehen. Als Achsen werden die beiden Pflanzenarten, als Koor-
dinaten deren Artmdchtigkeiten verwendet. Dabei zeigt es
sich, dass die Abfolge der Aufnahmen genau derjenigen im
Felde entspricht, die Anordnung jedoch fast kreisfdrmig ist.
Dieses Muster ist fir Vegetationsgradienten typisch (FEOLI
und FEOLI-CHIAPELLA 1980). Es muss betont werden, dass Abb.
7.1, €, sich durch einfache Darstellung der Daten in Abb.
7.1, A, und ohne Umrechnung ergibt. Oval- und Kkreisformige
Aehnlichkeitsmuster werden fdlschlicherweise immer wieder
als durch die Hauptkomponentenanalyse verursacht gedeutet.
Letztere ist deshalb - zu unrecht - vielerorts wenig beliebt
(VAN DER MAAREL 1980, GAUCH 1982). Dass sie die
Aehnlichkeitsverhdltnisse perfekt abzubilden erlaubt, wurde
jedoch mehrfach nachgewiesen und wird auch im folgenden an
einem Beispiel gezeigt.

Die Ordination in Abb. 7.1 ist 1leicht interpretierbar und
bedarf fir praktische Anwendungen kaum weiterer Bearbeitung.
Geht man jedoch bei komplizierten Daten genau gleich vor, so
ergeben sich zwei Probleme, fiir welche z.B. die Hauptkom-
ponentenanalyse eine Losung bietet. Das erste Problem ergibt
sich aus der Anzahl der Dimensionen. Eine unverzerrte Dar-
stellung der Aehnlichkeitsverhdltnisse setzt voraus, dass
ebensoviele Achsen berilicksichtigt werden, wie der Datensatz
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Abb. 7.1 Ein Vegetationsgradient a bis f, der von zwei Arten
gebildet wird. Er ist dargestellt als Vegetationstabelle
(A), als Transsekte (B) und als Ordination (C).
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Arten enthdlt. Da aber mehr als drei Dimensionen grafisch
nur schwer gleichzeitig darstellbar sind, ergibt sich die
Forderung nach einer Verminderung der Achsen. Es ist klar,
dass nicht jede Art gleichermassen guten Einblick in die
Datenstruktur gewdhrt. Die meisten Ordinationsverfahren be-
stimmen die Achsen so, dass die Aehnlichkeitsverhdltnisse
mdglichst unverdndert wiedergegeben werden. Dabei fallen op-
timale Achsen selten genau mit einer einzelnen Art zusammen,
sondern liegen irgendwo zwischen mehreren, aussagekraftigen
Arten.

Das zweite Problem 1liegt in der Beziehung zwischen den
Achsen., Die Punkte in Abb. 7.1, C sind deutlich korreliert.
Die zweidimensionale, rechtwinklige Darstellung ist einiger-
massen irrefihrend. Art 2 enthdlt teilweise die gleiche In-
formation wie Art 1 und ist somit als unabhdngige Dimension
ungeeignet. Die Hauptkomponentenverfahren bestimmen z.B. die
Achsen so, dass sie vdllig wunkorreliert sind. Die resul-
tierenden Koordinaten eignen sich daher besser zur Konstruk-
tion rechtwinkliger Ordinationen.

7.3 Die Hauptkomponentenanalyse

Die Aehnlichkeitsverhdltnisse zwischen Aufnahmen sind durch
die Daten, eventuelle Transformationen und das verwendete
Aehnlichkeitsmass abschliessend festgelegt. Aufgabe der
Hauptkomponentenanalyse ist es, von den urspriinglichen Vari-
ablen (Arten) ausgehend neue, unkorrelierte Achsen =zu fin-
den. Der Weg dazu filihrt ausschliesslich liber eine Koordina-
tentransformation, die einigen speziellen Bedingungen zu
geniigen hat.

Zum besseren Verstdndnis der Vorgdnge betrachten wir im fol-
genden zuerst das Ergebnis einer Koordinatentransformation.
Davon ausgehend wird der LOsungsweg erdrtert. In Abb. 7.2
ist das allgemeine geometrische Problem dargestellt.

Das urspriingliche, rechtwinklige System (mit '"Achsen") ist
um einen bestimmten Winkel, ¢, gekippt. Ein gegebener Punkt
P soll seine Lage im Raum nicht verdndern. Im alten System
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hat er die Koordinaten X1pr X2p- Diese sind im neuen System
(mit "Faktoren'") nicht mehr gliltig, sondern sind durch Yip+
Yo zu ersetzen. In Abb. 7.2, A ist dargestellt, wie die
neuen Koordinaten aus den alten hergeleitet werden. Die
Berechnung von y1p zeigt Abb. 7.2, A:

cos sin
v + sz ¥

Yip T Tap

Die neue Koordinate setzt sich also aus zwei Teilstrecken
(Summanden) zusammen. Dabei spielt natiirlich auch der
Drehwinkel ¢ eine Rolle. Um Y1p interpretieren zu koénnen,
muss die Bedeutung von cos ¢ und sin ¢ verstanden werden. In
Abb. 7.2, A sind diese mit « 1 und « bezeichnet. o,
erreicht den Maximalwert 1, wenn Achse 1 und Faktor 1
zusammenfallen. Der Minimalwert von 0 ergibt sich, wenn
Achse 1 und Faktor 1 rechtwinklig zueinander stehen, also
unabhdngig sind. Die Vermutung, dass « ein Korrela-
tionskoeffizient ist, 1ldsst sich trigonometrisch leicht
nachweisen (BATSCHELET 1982). Es ist auch leicht einzusehen,
dass « die Korrelation von Achse 1 mit Faktor 2 ist. Die
Berechnung der neuen Koordinate y1p ldsst sich deshalb fol-
gendermassen formulieren:

Y, = x, *(Korrelation 1. Faktor mit 1. Achse)
P ng*(Korrelation 2. Faktor mit 1. Achse)
Analog gestaltet sich nun die Berechnung der zweiten Koordi-
naten (Abb. 7.2, B). In obiger Schreibweise ergibt sich

y2p = X p*(Korrelation 1. Faktor mit 2. Achse)
xzp*(xorrelation 2. Faktor mit 2. Achse)
Die a-Werte spielen bei der Interpretation der Hauptkom-
ponentenanalyse eine zentrale Rolle. Im Falle vegetations-
kundlicher Daten entsprechen die urspriinglichen Achsen den
Pflanzenarten. Die Matrix «, Matrix der Faktorenladungen
genannt, hat folgenden Aufbau:
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Faktor 1 Faktor 2 Faktor 3... Faktor p
(4 a s

exL. *11 12 %3 “p

Art 2 o o (43 o e o
Art 3 a21 22 o23 2p
31 32 33 °°° 9%3p

Art o o s e O
B pl p2 p3 pp

Darin ist z.B. « die Korrelation der Art 3 mit der neuen
Ordinationsachse 2. Es geht nun darum, die a-Matrix zu
berechnen. Der Rechengang soll anhand des Beispiels in Abb.
7.1 nachvollzogen werden. Dieses umfasst 6 Aufnahmen und nur
2 Arten, sodass der Arbeitsaufwand bescheiden bleibt. Wird
dagegen mit drei, vier oder mehr Dimensionen gearbeitet, so
empfiehlt sich die Verwendung eines Computerprogrammes.

Gegeben ist also die Vegetationstabelle A:

Aufnahme
Art 1 2 3 4 5 6 Zx X
1 1 2 2.5 2.5 1 0.5 |9.5 1.58
2 0 1 2 4 3 1 11 1.83

Diese Daten miissen fiir eine normale Hauptkomponentenanalyse
beziiglich der Arten =zentriert werden (Es gibt auch eine
Variante der Hauptkomponentenanalyse, die auf die Zentrie-
rung verzichtet!). Dazu ist von jeder Artmdchtigkeit der
Mittelwert des jeweiligen Artvektors zu subtrahieren. Die
neue Tabelle, X, sieht wie folgt aus:

Aufnahme

Art ’ 1 2 3 4 5 6 sz X
1 I -0.58 0.42 0.92 0.92 -0.58 -1.08 ] 3.71 |0
3 -1.83 -0.83 0.17 2.17 1.17 -0.83 10.831 0

Abb. 7.3 A,B, vergleicht die Ordinationen der Vegeta-
tionsabellen A und X. Es ergibt sich wie erwartet nur eine
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Abb. 7.3 Ordination von 6 Aufnahmen mit den Ausgangsdaten
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Hauptkomponentenanalyse (C).
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Verschiebung des Achsenkreuzes, ohne dass an den Aehnlich-
keitsverhdltnissen irgend etwas verandert wiirde. Als
ndchstes wird die Aehnlichkeitsmatrix der Arten der Vegeta-
tionstabelle A berechnet. Als Aehnlichkeitsmass dient das
Skalarprodukt, doch kénnten ebensogut die Kovarianz oder der
Korrelationskoeffizient verwendet werden. Wir erhalten

S11 812 3.71 3.08
S21 822 3.08 10.80 .

Darin ist 3.71 das Skalarprodukt (die n-1 fache Varianz) der
Art 1, 10.8 dasjenige der Art 2. Die beiden Arten besitzen
auch einen deutlich positiven Zusammenhang von 3.08.

Flir die weiteren Betrachtungen machen wir einen Sprung und
studieren zundchst die Streuungsverhdltnisse des Endresul-
tates. Nach Beendigung der Hauptkomponentenanalyse werden
die Arten durch Faktoren ersetzt sein. Die neue Tabelle Y
wird so aussehen:

Aufnahme
Faktor I 1 2 3 4 5 6
1 ‘ -1.92 -0.635 0.476 2.35 0.889 -1.16
2 -0-09 -0068 -0-800 “0.10 0-95 0-72

In Abb. 7.3, C, ist die daraus konstruierbare Ordination
dargestellt. Beim genauen Vergleich mit Abb. 7.3, A und B
ergibt sich, dass die Beziehungen 2zwischen den Aufnahmen
gleich geblieben sind. Es ist nur eine Verdnderung fest-
zustellen: Das Achsensystem wurde gedreht (oder, was
dasselbe ist, der Punkteschwarm wurde gedreht). Zweck dieser
Drehung ist es, die Achse 1 (Faktor 1) so zu legen, dass sie
den Punkteschwarm mdglichst gut auflost. Ferner sind jetzt
die Achsen 1 und 2 unkorreliert, was sich in der
Vegetationstabelle Y leicht nachrechnen ldsst. Die Faktoren-
ladungen, welche zu diesem Resultat filihrten, sollen nun
berechnet werden. Die LOsung erfolgt in zwei Schritten:
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) Berechnung der Skalarprodukte der neuen Koordinaten Y
(Eigenwertbestimmung).

2, Berechnung der Faktorenladungen a« (Eigenvektorbestim-
mung) .

Aufgrund der Zielsetzung der Hauptkomponentenanalyse kann

schon jetzt gesagt werden, dass die Aehnlichkeitsmatrix der

neuen Ordinationskoordinaten wie folgt aussieht:

Darin steht A_ fir das Skalarprodukt der ersten Achse, A

flir dasjenige aller Werte der zweiten Achse. A, wird als er-
ster, A_ als zweiter Eigenwert bezeichnet (als Symbol dafir
wird in der Literatur meist das griechische Lambda verwen-
det). A, soll dabei so gross wie mdglich sein, um die
Aufldésung des 1. Faktors maximal zu halten. Alle Elemente
ausserhalb der Diagonalen sind gleich null, weil ja die Fak-
toren unkorreliert sein milissen. Eine weitere Einsicht hilft
bei der Bestimmung der X -Werte (Eigenwerte): Da die
Aehnlichkeitsstruktur unverdndert bleibt, dndert sich auch
die Summe der Skalarprodukte nicht. Es gilt also

A, + A. =8 + = 3.71 + 10.8 = 14,51

1 2 = %19 * Paa
Um die gesuchten Werte flir A zu erhalten, bedient man sich
der Differentialrechnung (vgl. BATSCHELET 1982). Man findet,
dass die sogenannte Determinante der Aehnlichkeitsmatrix
null wird, wenn von jedem Diagonalelement die gesuchten
Eigenwerte subtrahiert werden:

3.71-A 3.08

3.08 10.8-A
Der Vollstandigkeit halber sei auch noch die Matrix-
schreibweise dieser Gleichung angefiihrt. Sie erscheint in

allen einschldgigen Lehrbichern und lautet S - A I = 0. Da-
rin ist I eine Einheitsmatrix, d.h. eine Matrix, deren Dia-
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gonale mit 1, die lUbrigen Positionen mit 0 besetzt sind.
Diese Gleichung ist nun nach A zu losen. Nach den Regeln der
Matrizenrechnung kann sie wie folgt ausmultipliziert werden
(BATSCHELET 1982):

(3.71-M)(10.8-7) - (3.08)(3.08)

12 - 6.2 X + 9.2 =0

0 oder

Die quadratische Gleichung wird nach bekannter Vorschrift

1/2]

A= [-bt (b2-4ac) /2a

gelost. Wir erhalten

A
1

A

11.95

(14.51+(14.51§—(4)(30.58))1/2)/2
2.56

(14.51=(14.51 -(4)(30.58))1/2)/2

Es kann gezeigt werden, dass 11.95 tatsdchlich  der maximal
mégliche Wert fiir das Skalarprodukt des ersten Faktors ist,
wahrend A, das Skalarprodukt des zweiten Faktors darstellt
(BATSCHELET 1982). Auch ergibt sich mit R1+h2 = 14.51 das
Skalarprodukt der Ausgangsmatrix S.

"Nun schreiten wir zur Bestimmung der Faktorenladungen a, Wir
beginnen mit dem ersten Faktor und suchen « und a__. Diese
sind aus der alten und der neuen Kovarianzmatrix direkt be-
stimmbar (BATSCHELET 1982). Es gilt n3mlich folgende Be-
ziehung:

S11 812 a11 a11

S21 822 a21 a21 .

Setzen wir die schon bekannten Werte ein, so erhalten wir:

3.71 3.08 « o

3.08 10.8 a o "
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Nach den Regeln der Matrixrechnung ausmultipliziert ergeben

sich zwei Gleichungen mit den Unbekannten @, und a21:

3.71 a11 + 3.08 a21 11.95 a11

3.08 a11 + 10.8 %y, 11.95 a21

Die Aufldsung ist nicht ganz trivial. Zundchst finden wir:

-8.24 « + 3.08 « =
11 21
3.08 @iq - 1.15 a21 =0

Durch Addition der Gleichungen ergibt sich

-5.16 a11 + 1.93 a21 =0 .

Daraus berechnet sich das Verhdltnis von a11 zZu a21:

1.93
a11 = a21 = 0.374 a21
5.16
Substituiert man z.B. « in einer der obigen Gleichungen,
so erhdlt man nur die triviale LO6sung « =@ = 0. Aus
unendlich vielen Mo6glichkeiten wdhlen wir eine aus, welche
die Bedingung « = 0.374 . erfiillt. Wir setzen kurzerhand

und willkurlich

%y =1
1.93 1.93
i 5.16 21 5.16

Die a-Werte haben die besondere Eigenschaft, dass ihre abso-
lute Grosse gar nicht eindeutig zu bestimmen ist. Festgelegt
ist nur das Grdssenverhdltnis a11/a21. Es ist {iblich, den
Vektor
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0.374
%11

a21 1.0

zu normalisieren. Dazu ist, wie frilher gezeigt, jedes Ele-
ment durch die euklidsche Lange des Vektors zu dividieren:

r T
0.374 e 1
TR
1
________________ 0.937
L((0'374)2+12)1/2 L }

Nun setzt man die Gleichungen flir die Bestimmung von « und

12
a :
22 auf
11 i+ 200 03 = 2015
- 12 - 22~ T 22

Es bleibt dem Leser iiberlassen, die Rechnung durchzufiihren.
Die normalisierten Ergebnisse lauten:

0.937
0.350

«
a12

22
Nachdem nun alle Faktorenladungen bekannt sind, schreiten

wir zur Berechnung der neuen Koordinaten Y. Sie folgt der
bereits untersuchten Regel

Yip ® %1p %11 * *2p %21

Die aktuellen Werte sind:

Fig = (-0.58)(0.35)+(-1.83)(0.937) = -1.92
Yo = (0.42)(0.35)+(-0.83)(0.937) = -0.63
Yi3 = (0.92)(0.35)+( 0.17)(0.937) = 0.48

usw.
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Damit ist die Hauptkomponentenanalyse abgeschlossen. Fir
die Interpretation fassen wir die Resultate zusammen. Wir
erhalten folgende Eigenwerte:

= 11.95

A 82 %
A= 2.56 = 18 %
7\1+?\2 = 14.51 = 100%

Die aus den neuen Koordinaten zu konstruierende Ordination
(Abb. 7.3) weist entlang der 1. Achse 82 % der Unter-

schiedlichkeiten (Varianz) der Aufnahme aus, die 2. Achse
nur 18 %.

Die Faktorenladungen sehen wie folgt aus:

Art 1 2
Faktor

1 0.35 0.937

2 -0.937 0.35

Der neue Faktor 1 steht mit einem Korrelationskoeffizienten
von 0.937 der alten Art 2 nahe. Entsprechend liegt Faktor 2
in der Nahe der alten Art 1, ist aber gegenldufig zu dieser
(-0.937).

Schliesslich erhielten wir die neuen Faktorenwerte:

Aufnahme
Faktor ‘ 1 2 3 4 5 6

1 . -1.92 -0.635 0.476 2.35 0.889 -1.16
2 -0.09 -0.68 -0.80 -0.10 0.95 0.72

Ohne die Ordination zu konsultieren, kdnnen aus der Tabelle
Aufnahmen herausgesucht werden, die besonders &hnlich sind.
Dies ist dann der Fall, wenn alle Faktorenwerte (vor allem
aber die ersten) etwa gleiche Grdsse besitzen. In unserem
Beispiel liegen jedoch alle Punkte deutlich auseinander, wie
wir aus der bereits gezeichneten Ordination wissen (Abb.
7.3).
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Eine Besonderheit pflanzensoziologischer Anwendungen der
Hauptkomponentenanalyse ist, dass mit sehr wvielen Variablen
(Arten) gerechnet wird. Selbst nach einer Datenreduktion
bleiben noch 50, 100 oder mehr Eigenwerte zu bestimmen. Es
sind daher lange Rechenzeiten zu erwarten. Fiir die Interpre-
tation stellt sich die Frage, wie viele Dimensionen
Uberhaupt betrachtet werden sollen. Dazu gibt es Regeln, die
fir pflanzensoziologische Tabellen erfahrungsgemidss
unzweckmdssig sind (UEBERLA 1971). Im allgemeinen =zeigt es
sich, dass bei Tabellen der Grdssenordnung 100 mal 100 min-
destens 4, hochstens 6 bis 8 Dimensionen interpretiert wer-
den sollten. Die damit erklarte Varianz kann um 15 bis 30%
liegen. Mit diesem doch bescheidenen Anteil wird es aber
meist méglich sein, einen guten Einblick in die Aehnlich-
keitsstruktur der Aufnahmen zu erhalten. Der Rest geht auf
Konto "Rauschen".

7.4 Q- und D-Technik

Die bereits gezeigte Hauptkomponentenanalyse wird auch als
R-Analyse (R-Technik) bezeichnet. Der Begriff Technik
besagt, dass es sich nicht eigentlich um verschiedene Metho-
den handelt, sondern lediglich um einen andere Wege zum sel-
ben Resultat.

Im vorigen Kapitel berechneten wir mit Hilfe der R- Technik
Koordinaten flir 6 Aufnahmen. Dazu benilitzten wir eine zweidi-
mensionale Aehnlichkeitsmatrix der Arten. Stellen wir uns
nun die Aufgabe, eine Ordination der Arten zu berechnen, so
muss bei der R-Technik die sechsdimensionale Aehnlich-
keitsmatrix der Aufnahmen analysiert werden., Das ist recht
aufwendig, da insgesamt 6 Eigenwerte und 6 Eigenvektoren =zu
berechnen sind. Tun wir das anhand unseres Beispiels mit
Hilfe eines Computerprogrammes, so sehen wir, dass fiinf Ei-
genwerte gleich null sind: Die Aehnlichkeitsverhdltnisse
zweier Arten lassen sich ndmlich zwangslos auf einer einzi-
gén Achse darstellen. Der Rechenaufwand zur Bestimmung des
einzigen brauchbaren Eigenwertes widre also libermdssig hoch.
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Die Q-Technik bietet in diesem Fall die M&glichkeit, die
Koordinaten der Arten direkt aus einer zweidimensionalen
Artmatrix zu bestimmen. Identische Ergebnisse sind aber im-
mer auch liber eine R-Analyse zu erzielen.

Die Q-Technik wird so begonnen, als ob eine R-Aehnlich-
keitsmatrix der Aufnahmen erstellt werden musste. Dazu sind

letztere zu zentrieren. Erinnern wir uns der Rohdaten A:

Aufn. | 1 2 3 4 5 6

Art 1
Art 2

Die Mittelwerte der Aufnahmen ;i' betragen
(0.5 1.5 2.25 3.25 2 0.75)
Nun wird von jeder Artmachtigkeit der Mittelwert der

jeweiligen Aufnahme subtrahiert und es resultiert die zen-
trierte Tabelle B:

Aufn. | 1 2 3 4 5 6
Art 1 0.5 0.5 -0.25 -0.75 -1 -0.25
Art 2 -0.5 -0.5 0.25 0.75 1 0.25

Obwohl nun also die Aufnahmen zentriert sind, wird das
Skalarprodukt der Arten berechnet, die sogenannte Q- Matrix.
Wir erhalten flir die ersten beiden Elemente:

2 2 2 2 2 2

qyq = 0.5 + 0.5 -0.25 - 0.75 -1 - 0.25 = 2.1875
q,, = (0.5)(-0.5)+(0.5)(-0.5)+(-0.25)+(0.75)(0.75)
+(-1)(1)+(-0.25)(0.25) = -2.1875

Die gesamte Matrix ergibt
2.1875 -2.1875

-2.1875 2.1875
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Nun bestimmt man die Eigenwerte wie bei der R-Technik. Fiir
die ausgeschriebene Determinante erhdlt man:

(2.1875-1)(2.1875-2)-(-2.1875)(-2.1875) = 0
Nach den Multiplikationen ergibt sich
AZ - 4,3750 = 0

Wir dividieren durch A und erhalten die einzige von null
verschiedene L&sung

h1 = 4,375

Die Eigenvektoren sind unter diesen Umstdnden rasch zu bes-

timmen. Zu losen ist die Gleichung

2.1875 -2.1875 LI %

- o o
2.1875 2.1875 21 21

Daraus ergeben sich die zwei Gleichungen

2.1875a - 2.1875 a21 = 4.375 a11

- @ o - a = -

2.1875 11 * 2.1875 21 4,375 %
Setzt man a11 = 1 und 16st die obere Gleichung nach a21 auf,
so ergibt sich

-2.1875 L i 2;1875

“ai T

Auch mit A_ = 0 kann ein Eigenvektor bestimmt werden. Es ist
wiederum zweckmdssig, « = 1 zu setzen. Fir « erhdlt man

dann -1. Zusammengefasst ergibt sich fiir die Faktorenla-
dungen
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Normalisiert betragen sie
0.707 0.707
-0.707 -0.707
Im Gegensatz zur R-Technik ist nun noch jeder Vektor der
Grosse des Eigenwertes anzupassen:
2 2
= A = 4,
11t %o 1 = 4375

1/2
Wir multiplizieren alle aktuellen Werte mit A / und erhal-
ten die gesuchten Koordinaten

11 1.479

o

y11

a! = y21

1.4
21 79

Fir die zweite Achse betragen die Koordinaten

Yy = 0.

123 ™ T3z
Das Beispiel hat deutlich gemacht, dass sich mit der Q-
Technik unter Umstdnden der Rechenaufwand betradchtlich
reduzieren lasst. Gelegentlich kommt es auch vor, dass statt
einer Q-Matrix bereits eine Distanzmatrix verfligbar ist. OR-
LOCI (1973, 1978) hat gezeigt, dass sich aus dieser, nach
entsprechender Transformation, dieselben Eigenwerte und
Eigenvektoren extrahieren lassen. Auch unser Beispiel eignet
sich fir die D-Technik. Ob die Ausgangsdaten zentriert sind
oder nicht, spielt dabei keine Rolle. Wir erhalten:

2 0 8.75
D =
-8.75 0
; 2 ; ) 2 ; :
Die d -Distanzen sind nun 1in -0.5d - Aehnlichkeits-

koeffizienten umzuwandeln:
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in spezifischer Weise transformiert. Schliesslich wird eine
kombinierte R- und Q-Hauptkomponentenanalyse durchgefihrt.
Aus grundsdtzlichen Ueberlegungen heraus dlirften streng
genommen nur Zdhldaten (Frequenzen) in dieser Weise analy-
siert werden. Dass trotzdem Messdaten verwendet werden, ist
in der Praxis die Regel.

Der Rechengang konnte nun ohne weiteres am Beispiel des
vorigen Kapitels gezeigt werden. Dies wdre mit Nachteilen
verbunden, wie in Kapitel 7.6 noch 2zu sehen sein wird.
Deshalb bedienen wir uns eines Datensatzes mit 4 Aufnahmen
und 3 Arten, der trotz seiner Kleinheit filir Vegetationsauf-
nahmen typisch ist.

Diese Vegetationstabelle (Tabelle 7.1) wird als Kon-
tingenztafel aufgefasst. Wir verwenden Notierungen, wie sie
in Tab. 7.1, A, dargestellt sind. f steht z.B. filr die

Summe aller Artmichtigkeiten der "Aufnahme 2, f fur die
Summe innerhalb der Art 3, usw. Die Rohdaten, in° Tabelle
7.1, B, dargestellt, werden nun schrittweise transformiert,
und zwar zundchst zu relativen Hiufigkeiten beziiglich der
Gesamtsumme f :

= f f
Hyg = £ 1 E
Im Zahlenbeispiel erhdlt man dadurch eine neue Matrix P, wie
sie aus Tab. 7.2, A, ersichtlich ist.

Nun wird die Annahme getroffen, dass die Randsummen f j wund
£;. bzw. P . und pj_ filir den gesamten Datensatz charakteris-
tisch sind.” Jede Artmachtigkeit ist deshalb nur bedeutsam,
wenn sie von der charakteristischen (d.h. zu erwartenden)
Hiaufigkeit abweicht. Es sind also Erwartungswerte zZu
berechnen. Diese ergeben sich aus der relativen Haufigkeit
einer Art (beziliglich des Gesamtdatensatzes) und der rela-

tiven Haufigkeit der Individuen innerhalb einer Aufnahme:

eij = (p.j)(pi.)

Flir die erste Artmdchtigkeit erhalten wir
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0 -4.375
-OOSD

-4,375 0
Die Eigenwerte-berechnen sich nach bewdhrtem Schema:

(0-X) (0-7) - 4.375°

=0
12 = 4.3752
A = 4.375

Das Ergebnis ist identisch mit demjenigen der Q-Analyse.
Fiihrt man die Analyse weiter, ergeben sich auch gleiche
Eigenvektoren und schliesslich die gewlinschten Koordinaten.

In der Praxis spielt die Q-Technik eine untergeordnete
Rolle, denn es gibt Algorithmen, die nur die grossten
Eigenwerte extrahieren und daher auch in unglinstigen Fallen
einigermassen effizient arbeiten. Die D-Technik erweist sich
als interessante Alternative, wenn die {iibrigen Unter-
suchungen ohnehin auf einer Distanzmatrix basieren.

7.5 Korrespondenzanalyse

Die Korrespondenzanalyse ist ein Hauptkomponentenver-
fahren, das sich bei Pflanzendkologen grosser Beliebtheit
erfreut. Insbesondere im franzdsischen Sprachbereich hat sie
sich als Standardmethode eingebiirgert (BENZECRI 1969, PIELOU
1977). Die angelsi3chsische Welt ist durch die Arbeiten von
HILL (1974, 1979a) auf ihre Niutzlichkeit aufmerksam gewor-
den. Wahrend bei der gewohnlichen Hauptkomponentenanalyse
zwei Rechengdnge erforderlich sind um Aufnahmen und Arten zu
ordinieren, tut die Korrespondenzanalyse beides gleich-
zeitig. Mehr noch: Die beiden Koordinatensidtze sind gleich
skaliert, sodass sie {Ubereinander projiziert gemeinsam
interpretiert werden dlirfen. Der Zusammenhang zwischen Arten
und Aufnahmen ist so besonders leicht erkennbar.

Formal unterscheidet sich die Korrespondenzanalyse nur wenig
von den Hauptkomponentenanalysen: Zundchst werden die Daten
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e11 = (0.143)(0.286) = 0.041
Zusammengefasst ergeben sich die Erwartungswerte in Tab.
7.2, B. Die hochsten Erwartungswerte erzielt Aufnahme 2, die
ja auch die reichhaltigste ist. Schliesslich ist die Ab-
weichung der effektiven Haufigkeiten pi' von den erwarteten
e,. zu berechnen: J

1]
93 7 Piy T iy

FUr das erste Element erhalten wir

d11 = 0.143 - 0.041 = 0.102

Die vollstidndige D-Matrix ist in Tab. 7.2, C dargestellt.
Auf Grund dieser Abweichungen von den erwarteten, relativen
Hiaufigkeiten wird nun weitergerechnet. Es f&dllt sofort auf,
dass sowohl die Artvektoren wie auch die Aufnahmen den Mit-
telwert null besitzen, d.h. dass sie bereits zentriert sind.
Erinnern wir uns der Hauptkomponentenanalyse, so kénnte so-
gleich die R- oder die Q-Technik angewandt werden. In der
Tat werden beide gleichzeitig durchgefihrt. Wir beginnen mit
der Matrix der Skalarprodukte der Arten (mir der Matrix der
Aufnahmen ergdbe sich genau dasselbe Resultat!). Wir er-
halten fur den Vergleich der Arten 1 und 2

S, = (0.102)(-0.061)+(0.020)(-0.041)+(-0.081)(0.020)
+ (-0.041)(0.082) = 0.012

Die gesamte Matrix lautet:

0.0192 -0.0121 -0.0071
-0.0121 0.0125 -0.0004
-0.0071 -0.0004 0.0075

n
]

Wie bei der Hauptkomponentenanalyse werden die Eigenwerte
aus der Determinantengleichung bestimmt:
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Tabelle 7.1

Vegetationstabelle, die mit Hilfe der Korrespondenzanalyse
untersucht werden soll. Formale Darstellung als Kon-
tingenztafel (A) und Zahlenbeispiel (B).

A Art/Aufn. j=1 J=2 j=3 j=4 z
- f
o i“; §11 212 .13 §14 §1.
- 1:3 21 fzz f23 f24 fz.
- 31 32 33 34 3.
T
f.1 f.z f.3 f.4 f..
B Art/Aufn. 1 2 3 4 Z Arten
1 1 1 2
2 1 1 1 3
3 1 1 2
2 Aufn. 1 3 2 1 Total = 7
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Tabelle 7.2

Abgeleitete Tabellen des Zahlenbeispiels in Tab. 7.1, B.
Relative Haufigkeiten (A), Erwartungswerte (B), Abweichungen
von den Erwartungswerten (C).

A Art |Aufn. 1 2 3 4 p>
1 0.143 0.143 0.0 0.0 0.286
P = 2 0.0 0.143 0.143 0.143 0.429
3 0.0 0.143 0.143 0.0 0.286
z 0.143 0.429 0.286 0.143 1.0
B Art |Aufn. 1 2 3 4 z
1 0.041 0.123 0.081 0.041 0.286
E = 2 0.061 0.184 0.123 0.061 0.429
3 0.041 0.123 0.081 0.041 0.286
) 0.143 0.429 0.286 0.143 1.0
[o} Art |Aufn. 1 2 3 4 >
1 0.102 0.020 -0.081 -0.041 0
D = 2 -0.061 -0.041 0.020 0.082 0
3 -0.041 0.020 0.061 -0.041 0
> 0 0 0 0 0
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0.0192-A -0.0121 -0.0071
-0.0071 -0.0004 0.0075-x

Multipliziert man diese Determinante aus, so erhdlt man eine
kubische Gleichung dritten Grades. Schneller geht es mit
einem Computerprogramm und wir finden

l1 = 0.0297
A2 = 0.0094
A =

3 0

Nun ist flir jeden Eigenwert ein Eigenvektor « (Fak-
torenladungen) zu finden. Das Gleichungssystem

0.0192 -0.0121 -0.0071 a a
-0.0121 0.0125 -0.0004 “21 = 0.0297 “21
-0.0071 -0.0004 0.0075 a31 a31

ist zu ldsen. Normalisiert lauten die Ergebnisse

a11 = -0.79670
a21 = 0.55311
Xyy = 0.24359
Analoge Berechnungen fir 12 = 0.0094 ergeben
a, ., = 0.17871
a22 = 0.60061
(¢4 = -0.
32 0.77931

Die Ermittlung des dritten Eigenvektors ist auch méglich:

a13 = 0.57735
a23 = 0.57735
o = &

33 0.57735

Nun geht es um die Bestimmung der neuen Aufnahmekoordinaten.
Es gilt hier zu beachten, dass die alten Koordinaten nicht
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unsere Rohwerte sind, sondern die transformierten Daten, die
wir in der D-Matrix finden (Tab. 7.2, C):

Aufnahme
Art 1 2 3 4
1 0.102 0.020 -0.081 -0.041 d11 d12 d13 d14
2 -0.061 -0.041 0.020 0.082 = d21 29 953 95y
3 -0.041 0.020 0.067 -0.041 d d

31 32 33 34

Das bewdhrte Rezept flir die neuen Koordinaten Y lautet:

Y1 .achse,1.aufn. - 311 *11¥9pq %p9%93y ¥3q7dyq @y
= (0.102)(-0.79670)+(-0.061)(0.55311)+(-0.041)(0.24359)
= -0.12510
= [
Y1 .Achse,2.aufn. - S12 %11%922 %1%93;5 %3979, %y,

= (0.020)(-0.79670)+(-0.041)(0.55311)+(0.020)(0.24359)
= -0.03386
usw.

Flir alle Aufnahmen und Achsen ergibt sich

Aufnahme
Achse 1 2 3 4
1 -0.12510 -0.03386 0.09124 0.06773
2 0.01327 -0.03677 -0.05004 0.07354
3 0.0 0.0 0.0 0.0

Der letzte Schritt der Korrespondenzanalyse ist die
Ableitung der Koordinaten der Arten, die wir Z nennen wol-
len. Auch dieses Vorgehen ist nicht neu. Wir brauchen
nadmlich die Faktorenladungen « wie in der Q- Technik der

Hauptkomponentenanalyse bloss mit den Eigenwerten A zu
skalieren:
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W
-0.7967 h11/2 0.17871 Rz / -0.577 k31/2
1/2 1/2
Z = 0.5531 R11/2 0.60061 Rz / -0.577 XB /
172 1
0.2436 R11/2 -0.77931 RZ / -0.577 13 2
Ausmultipliziert finden wir
-0.13732 0.01736 0.0
Z = 0.09534 0.05836 0.0
0.04198 -0.07572 0.0

Somit ist die Korrespondenzanalyse abgeschlossen. Die Y-und
Z-Werte dienen der Ordination der Aufnahmen und Arten (Abb.
7.4). In unserem sehr einfachen Beispiel stehen sich ver-
schiedene Punkte sehr nahe, was leicht zu interpretieren
ist. Wir finden:

- FuUr Aufnahme 1 ist Art 1 typisch.
- Fir Aufnahme 3 ist Art 3 typisch.
- Fir Aufnahme 4 ist Art 2 typisch.

Das Resultat leuchtet sofort ein, wenn man es anhand der
Rohdaten {berpriift. Man findet, dass die Aufnahmen 1 bis 3
einen floristischen Gradienten reprasentieren, in den sich
Aufnahme 4 nicht zwangslos einpassen lasst (Pfeil in Abb.
7.4). Es bestdtigt sich, dass Aufnahme 2 nicht durch eine
einzelne Art differenziert werden kann. Der Erklarungsgrad
der beiden Ordinationsachsen ist ebenfalls klar:

Eki = 0.0297+0.0094 = 0.0391 = 100%
A, 7= 75.8%

= 24.2
N, = 24.2%

Die x-Achse erkldrt also 75.8% der Varianz zwischen den Or-
dinationspunkten, die y-Achse 24.2%. Die gesamte Punktekon-
figuration ist in zwei Dimensionen verlustfrei darstellbar.

Die doppelte Zentrierung der Daten bringt es mit sich, dass
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Abb. 7.4 Ordination als Resultat einer Korrespondenzanalyse.
Mit A bezeichnete Punkte stehen flir Aufnahmen, mit S
bezeichnete fiir Arten.
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die Aehnlichkeitsverhdltnisse, mit denen die Korrespondenz-
analyse operiert, deutlich wvon denjenigen der Rohdaten
abweichen. Ein durchschnittlicher floristischer Gradient
etwa pridsentiert sich als Ordination nach einer Hauptkom-
ponentenanalyse meist schlaufen- oder (dreidimensional)
schraubenfdrmig (vgl. Abb. 7.3). Aus der Korrespondenz-
analyse resultieren dagegen sanft bogenformige Punktewolken,
weshalb auch von einem Hufeiseneffekt gesprochen wird. HILL
(1979a) entwickelte mit seiner Detrended Correspondence
Analysis (DCA) ein Verfahren, das leicht gekrimmte Struk-
turen auf eine Achse projiziert. In vielen Fdllen erzielt er
damit eine lineare Darstellung eines Vegetationsgradienten.

7.6 Varianten der Hauptkomponentenanalyse

Mit dem bisher Behandelten sind die Hauptkomponenten-
verfahren bei weitem nicht erschopft. Die Vorschlige fiir
Aenderungen lassen sich unterteilen nach dem Analyseschritt,
in welchem sie von der Hauptkomponentenanalyse abweichen:

Eine erste Gruppe von Verfahren bedient sich ausschliesslich
einer besonderen Transformation der Rohdaten. Dem praktisch
arbeitenden Pflanzendkologen bietet sich damit ein Spektrum
leicht durchschaubarer, echter Alternativen. Wir werden im
Folgenden zwei typische Beispiele genauer untersuchen.

Eine zweite Gruppe setzt bei den Aehnlichkeitsmassen an.
Statt Skalarprodukt, Varianz oder Korrelationskoeffizient
wird z.B. ein halb- oder nichtmetrisches Mass verwendet. Wir
betrachten im folgenden den Effekt von VAN DER MAARELS
(1979) similarity ratio. GOWER (1966,1967) zeigt dagegen
einen Weg, wie ein beliebiges, nicht metrisches Mass fur
eine metrisch einwandfreie Ordination verwendet wird. Seine
"Principle Coordinate Analysis" ist z.B. bei PIELOU (1977)
im Detail beschrieben. Kennt man dagegen nur die
Vegetationstypen der Aufnahmen und will ohne Berick-
sichtigung des Artenspektrums eine Ordination herleiten, so
bietet sich die "Principle Axis Analysis" an (GOWER 1966,
ORLOCI 1978).
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Eine dritte Gruppe schliesslich versucht, die Nachteile der
Linearitdt gewdhnlicher Hauptkomponentenanalysen zu umgehen.
KRUSKAL (1964) erlaubt bei seiner "nichtmetrischen multidi-
mensionalen Skalierung" die Verwendung beliebiger Aehnlich-
keitsmasse und die Ordination versucht bloss, die relativen
Positionen der Aufnahmen zu reproduzieren. Die Methode soll
hier nicht weiter diskutiert werden.

In Anbetracht der Besonderheiten vegetationskundlicher Daten
lohnt es sich, den Einflussmdglichkeiten mittels ver-
schiedener Transformationen besondere Beachtung zu schenken.
Bei der Hauptkomponentenanalyse sehen wir, dass Ordinationen
typischer Vegetationsgradienten zu schlaufen-, kreis- oder
spiralfdrmigen Strukturen filihren kdnnen (Abb. 7.5 A). Dies
dndert die frither besprochene Einheitsladngentransformation
der Aufnahmen. Ausgehend von den Rohdaten bestimmen wir die
euklidsche Lidnge der Aufnahmevektoren:

Aufnahme j
Art i 1 2 3 4 5 6
1 1 2 245 2.5 1 0.5
2 0 1 2 4 3 1
2.1/2
lj = [Zaj] / 1 2.24 3.20 4.72 3.16 1.12

i
Durch Division jeder Artmdchtigkeit mit der Linge des Auf-
nahmevektors erhalten wir die transformierten Werte a':

Dies ergibt die neue Tabelle:

Aufnahme
Art I 1 2 3 4 5 6
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Abb. 7.5 Ordination als Resultat eines verschieden transfor-
mierten Datensatzes. A: Rohdaten. B: Aufnahmen auf
Einheitslange transformiert. C: Hauptkomponentenanalyse der
auf FEinheitsldnge transformierten Aufnahmen. D: Transforma-
tion fiir eine Korrespondenzanalyse. E: Hauptkomponen-
tenanalyse mit van der Maarels similarity ratio.
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Aus diesen Werten ist die in Abb. 7.5, B gezeigte Ordination
konstruiert. Die Einheitslangentransformation hat alle Auf-
nahmen auf ein Kreissegment projiziert! Die
Aehnlichkeitsverhdltnisse haben sich gegeniiber den Rohdaten
deutlich verdndert. In der neuen Ordination sind nur noch
die relativen Anteile der Arten einer Aufnahme fiir Ver-
gleiche massgebend. Die Aufnahmen 4, 5 und 6 sind sich
deshalb sehr nahe gekommen - sie besitzen alle hohe Werte
bezliglich Art 2 und niedrige Werte beziliglich Art 1.

Aus Abbildung 7.5, A wird erneut klar, dass sich die
Rohdaten nicht sinnvoll auf nur einer linearen Ordina-
tionsachse darstellen lassen. Mit Abb. 7.5, B kommen wir
einer solchen Moglichkeit schon ndher. Unterziehen wir
deshalb die transformierten Daten einer Hauptkompo-
nentenanalyse. Wir erhalten

Aufnahme
Faktor ‘ 1 2 3 4 5 6

1 I -0.706 -0.283 -0.073 0.256 0.463 0.342
2 0.098 -0.081 -0.095 -0.025 0.088 0.015

Das Resultat ist in Abb. 7.5, C als Ordination dargestellt.
Der Kreisbogen ist nun so gedreht, dass er in Richtung der
ersten Achse verlduft. Die zweite Achse ist filir die Dif-
ferenzierung der Aufnahmen kaum von Bedeutung. Diese
Tatsache ldasst sich auch an den Eigenwerten ablesen. Man
findet namlich

A

1
A2

0.981
0.034

96.7%
3.3%

Eine je nach Datenstruktur noch tiefergreifendere Transfor-
mation haben wir bereits kennengelernt. Es sind die
Abweichungen von den Erwartungswerten, welche in die
Korrespondenzanalyse eingehen. Wie dort gezeigt, beginnen’
wir mit der Bildung der Randsummen der Aufnahmen und der Ar-
ten:
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Aufnahme
Art 1 2 3 4 5 6 2ZArten
1 1 2 2.5 2.5 1 0.5 9.5
2 0 1 2 4 3 1 11
ZAufn. 1 3 4.5 6.5 4 1.5 ¥ = 20.5

Wir vollziehen nun alle bei der Korrespondenzanalyse
gezeigten Operationen und erhalten

Aufnahme
Art l 1 2 3 4 5 6
1 ‘ 0.026 0.030 0.020 -0.025 -0.041 -0.010
2 -0.026 -0.030 -0.020 0.025 0.047 o0.010

Abb. 7.5, D =zeigt die entsprechende Ordination. Die
Transformation hat die Aufnahmen auf eine Gerade projiziert.
Generell reduziert namlich die Korrespondenzanalyse die
Dimensionalitdt um 1. Im Kapitel 7.5 musste aus diesem
Grunde ein dreidimensionales Beispiel gewdhlt werden, sodass
als Resultat zumindest noch eine zweidimensionale Ordination
mdglich war. Zu beachten ist die Reihenfolge der Aufnahmen
auf der Ordinationsgerade. Sie dokumentiert, dass sich die
Aehnlichkeitsverhdltnisse grundlegend von denjenigen in den
Rohdaten unterscheiden.

Im Kapitel Aehnlichkeitsmasse wurde gezeigt, dass Jjene
ofters versteckt Transformationen beinhalten. Verwenden wir
z.B. van der Maarels Koeffizient anstelle des Ska-
larproduktes, so werden die Daten bezliglich ihrer Aehn-
lichkeit anders beurteilt. Der Versuch ist in Abb. 7.5, E
dargestellt. Wie 1leicht zu sehen ist, bleiben hier die
Aehnlichkeitsverhdltnisse der Rohdaten erhalten, doch liegen
die Achsen anders als bei der normalen Hauptkomponen-
tenanalyse. Van der Maarels similarity ratio ist 3ja kein
metrisches Aehnlichkeitsmass. Die Hauptkomponentenanalyse
interpretiert es jedoch metrisch. Man fihrt also formal
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gesehen einen nicht kontrollierbaren, die Analyse meist
nicht weiter stdrenden Fehler ein, der zu einem anderen
Resultat fihrt. Ob ein solches Vorgehen akzeptabel ist,
bleibe dem Urteil des Anwenders iliberlassen.
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