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tersuchung gelöst werden:

1. Man macht einige Vegetationsaufnahmen im zukünftigen
Untersuchungsgebiet (z.B. 20).

2. Durch ein Rangierungs- oder Gewichtungsverfahren werden
die besten Zeigerarten innerhalb des Datensatzes bestimmt.

3. Es werden weitere Aufnahmen zugefügt (z.B. 10). Eine
erneute Rangierung ergibt wahrscheinlich einige Aenderungen in
der Gewichtung der Arten.

4. Die Erweiterung des Datensatzes ist so lange
durchzuführen, bis sich in der Gewichtung kaum noch
Verschiebungen ergeben. Die Arten hohen Gewichtes (Zeigerarten)
beschreiben die Aehnlichkeitsstruktur der gesamten zu
untersuchenden Vegetation hinreichend.

Wird nach Abschluss dieser Vorabklärung eine Kartierung in
Angriff genommen, so brauchen keine vollständigen Aufnahmen
mehr durchgeführt zu werden. Es kann unmittelbar mit der
flächendeckenden Erhebung auf Grund der gefundenen Zeigerarten

begonnen werden. Selbstverständlich kann dieses Vorgehen
nur dann zum Erfolg führen, wenn eine zweckmässige Auswahl
der Aufnahmeflächen getroffen wurde, sodass die Erhebung für
das Untersuchungsobjekt repräsentativ ist.
Man kann grundsätzlich zwei Typen von Gewichtungsverfahren
unterscheiden. Im einen Fall wird die Gesamtstichprobe
untersucht, ohne dass ihre Gruppenstruktur bereits bekannt
wäre. Dieser Weg führt in der Regel über die Analyse einer
Aehnlichkeitsmatrix. Anders liegen die Verhältnisse, wenn
von bekannten Pflanzengesellschaften ausgegangen wird. Hier
stellt sich die Frage, welche Arten die besten Zeiger für
eine vorgegebene Gruppenstruktur sind. Wir werden im folgenden

Vertreter beider Typen diskutieren.
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6.1 Feolis Methode

Diese einfache und leicht verständliche Methode soll
einführend dargestellt werden (vgl. FEOLI 1973).
Grundsätzlich basiert sie auf Präsenz und Absenz der Arten. Sie
kann auf folgende zwei Annahmen zurückgeführt werden:

1. Eine Art ist dann ein guter Zeiger, wenn die Aufnahmen,
in denen sie auftritt, möglichst ähnlich sind.
2. Aufnahmen, in denen sie vorkommt, sollen im Vergleich zu
solchen, in denen sie fehlt, möglichst verschieden sein.

Das Prinzip der Methode zeigt Tab. 6.1, A bis C. In Tab.
6.1, A, sind die Rohdaten des nachfolgenden Beispiels zu
finden. Zunächst muss eine Aehnlichkeitsmatrix S der Aufnahmen

verfügbar gemacht werden. In Tab. 6.1, B und C ist eine
solche dargestellt. Verwendet wird van der Maareis Koeffizient,

doch ist die Methode auch mit jedem anderen Mass zu
realisieren. Feoli bezeichnet nun die Aehnlichkeits-
koeffizienten zwischen Aufnahmen, in denen die zu
gewichtende Art vorkommt, mit SI. SZ werden jene genannt,
welche Aufnahmen mit und solche ohne die betreffende Art
vergleichen. Für die Berechnung des Gewichts der Art, SF,
sind die Mittelwerte massgebend:

SZ

SF 1 - —
SI

Tab. 6.1, B illustriert das Vorgehen für die Art 1. Diese
kommt nur in den Aufnahmen 1 und 2 vor, die eine Aehnli-
chkeit von 0.8 aufweisen. Für SZ berücksichtigt man alle
Koeffizienten, welche die Aufnahmen 1 und 2 mit 3, 4 und 5

vergleichen. Diese sind punktiert eingerahmt. Wir erhalten

(0.143+0.25)/6 0.066
SF 1 - 1 - 0.9175

0.8 0.8

Da Art 2 genau das gleiche Vorkommen hat, gilt dieses
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Tabelle 6.1

Feolis Artrangierung. Vegetationstabelle (A),
Aehnlichkeitsmatrix der Aufnahmen (B,C). Fall B illustriert die
Berechnung des Gewichtes für Art 1 oder 2, Fall C für die
Art 3.

Art Aufn. 1 2 3 4 5

1 2 1

2 1 1

3 1 1 1

4 1 1 1

5 1 2

Aufnahme 1 2 3 4 5

1 1 0. 8 IJ0.143 0

0

0.33
1

0

2

3

4

5

1 |_0.25
1

oj
0.17
0.75
1

Aufnahme 1 2 3 4 5

1 1 lp.8 0.143 io -T
0 I

2 l\-^0.25 !° 0

3 1^^ jo. 33 0.17J
4 1 0.75
5 1
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Gewicht auch für sie. Art 3 hingegen kommt in den Aufnahmen
1, 2 und 3 vor (Tab. 6.1, C). Wir erhalten

(0.33+0.17)/6 0.083
SF 1 - 1 - 0.79

(0.8+0.143+0.25)/3 0.397

Ihre Zeigereigenschaft ist somit deutlich schlechter als
jene der Arten 1 und 2.

Analog werden nun die Gewichte der Arten 4 und 5 berechnet.
Schliesslich erhält man folgende Rangordnung:

Art SF-Wert Rang

1 0.9175 1

2 0.9175 1

5 0.889 2

4 0.843 3

3 0.79 4

Anhand dieser Ergebnisse lässt sich leicht erkennen, welche
Arten beispielsweise für die Zusammenstellung eines
Vegetationsschlüssels gut geeignet sind (z.B. 1, 2 und 5).
Zur Datenreduktion eignet sich jedoch das Verfahren weniger.
Aus den Arten 1 und 2 wird deutlich, weshalb dem so ist.
Beide besitzen hohe SF-Werte. Wird auf eine von beiden
verzichtet, so bleibt die Differenzierung zwischen Aufnahmen
(1,2) und (3,4,5) dank der verbleibenden Art erhalten. Trotz
hohen SF-Wertes würde somit der Verzicht auf Art 2 die
Gruppenstruktur der Tabelle nicht zerstören. Will man den
Informationsverlust durch Weglassen von Arten untersuchen,
so bedarf es komplizierterer Verfahren.

6.2 Rangierung nach erklärter Varianz

Dieses von ORLOCI (1973) unter dem Namen RANK vorgeschlagene
Verfahren ist dann angezeigt, wenn ein äusserstes Minimum an
Zeigerarten gesucht wird. Die Analyse sehr grosser Tabellen
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gestaltet sich einfacher, falls es gelingt, die Anzahl Arten
auf einen Bruchteil zu reduzieren. Natürlich darf dabei die
ursprüngliche Aehnlichkeitsstruktur der Aufnahmen nicht
allzu sehr verändert werden. Eine erfolgreiche Anwendung
dieses Verfahrens zeigen FEOLI und LAGONEGRO (1982). Sie
revidierten die Klassifikation italienischer Buchenwälder
anhand von 602 Aufnahmen. Die ursprünglich 475 Arten wurden
mit Hilfe des RANK-Verfahrens vorgängig auf 108 reduziert,
was die Analyse entscheidend vereinfachte.

Im Gegensatz zu Feolis Verfahren geht Orlocis RANK

schrittweise vor. Das Prinzip ist folgendes (Tab. 6.2): Zu

Beginn jedes Schrittes wird eine provisorische Gewichtung
der Arten gesucht. Als Gewichtungskriterium sind
verschiedene Masse denkbar. Würde z.B. die Summe der Abun-
danzwerte verwendet, so erhielte Art 1 Rang 1 (dass das
RANK-Verfahren ein anderes Kriterium verwendet, ist aus Tab.
6.2 zu schliessen). Ausgehend von diesem Zwischenresultat
ist nun der Datensatz zu reduzieren. Dazu muss die gesamte
Information, welche die Art mit Rang 1 trägt, aus der
Tabelle entfernt werden. Die Information der Art 2 musste dabei

fast verschwinden, da sie mit derjenigen von Art 1

annähernd identisch ist. Der nächste Schritt besteht in
einer erneuten provisorischen Gewichtung der verbleibenden
Arten. Art 4 dürfte dabei den höchsten Wert erhalten und mit
dem definitiven Rang 2 ausgeschieden werden. Doch wenden wir
uns nun dem eigentlichen RANK-Algorithmus zu.

Das Verfahren beginnt mit der Berechnung einer
Aehnlichkeitsmatrix der Arten. Dabei kann ein beliebiges Mass
ausgewählt werden. Verwendet man den Korrelationskoeffizienten,

so erhält man für die p 4 Arten in Tab. 6.2

1.0 0.85 -0.91 -0.64
R 0.85 1.0 -0.71 -0.43

-0.91 -0.71 1.0 0.91
-0.64 -0.43 0.91 1.0

Wie erwartet, heben sich als mögliche Gruppen (1,2) und
(3,4) mit hohen Korrelationen von 0.85 und 0.91 ab. Nun wird
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Tabelle 6.2

Einfache Vegetationstabelle zur Rangierung der Arten. Die
Ränge ergeben sich aufgrund Orlocis RANK.

Aufnahme 1 2 3 4 Rang

Art 1 2 2 1 4.

Art 2 2 1 1 2.

Art 3 1 1 1.

Art 4 2 1 3.
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eine provisorische Rangordnung gesucht. Massgebend ist die
Summe der Korrelationen jeder Art mit allen andern, also

P
2

SS. =nr, ,/r,,1
h=1 hl X1

Darin ist SS. die Summe der total p quadrierten
Aehnlichkeitswerte, welche die Art i betreffen, r..ist der
Diagonalwert, der im Falle der Korrelationsmatrix t.O
beträgt und damit vernachlässigt werden kann. Für Art 1 finden
sich alle Aehnlichkeitswerte r in der ersten Zeile (oder
in der ersten Kolonne) von R. Somit ergibt sich für sie

SS ((1.0)2+(0.85)2+(-0.91)2+(-0.642) )/1 2.95

Entsprechend erhält man für die übrigen Arten

SS 2.41
SS 3.14
SS, 2.41

4

Die Art mit der höchsten Summe, Art 3, erhält den definitiven

Rang 1. Bevor die Bedeutung dieses Ergebnisses genauer
untersucht wird, soll aber der Algorithmus weiter verfolgt
werden. Zu diesem Zwecke ist der Einfluss der Art 3 auf die
Korrelationen zu eliminieren. Die Elemente der neuen,
reduzierten Matrix R berechnen sich nach der Regel

r ' r - y yhi hi hm im

Symbol m steht für die zu entfernende Art, hier also Art 3.
Die Formel gilt für die Korrelation jeder Art h und i. Bei
den y-Werten handelt es sich um Elemente der
Korrelationsmatrix, denn sie sind folgendermassen definiert:

y. r /(r sowie y. r. /(rnm nm mm im im mm

i_ ist in unserem Falle die Korrelation von Art 3 mit sichmm



1 - (-0.91 =0.17 (h=1,i=1)
0.85 -- (-0.71*-0.91) 0.20 (h=1,i=2)

-0.91 -- (1 .0*-0.91) 0 (h=1,i=3)
-0.64 -- (-0.91*+0.91) =0.19 (h=1,i=4)
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selbst, also 1.0. Mit dem ersten Element beginnend, ergibt
die Reduktion:

r'l1
ri2
ri3
r1

14

Diese Operation ist für alle r .-Werte vorzunehmen. Damit
verschwindet jener Anteil der Korrelation aus der Matrix,
der durch Art 3 verursacht wird. Zeile und Spalte 3 von R

müssen nun zwangsläufig mit Nullen besetzt sein:

0.17 0.20 0 0.19
R 0.20 0.50 0 0.21

0 0 0 0

0.19 0.21 0 0.17

Die erneute provisorische Rangordnung ergibt:

SS (0.172+0.202+0.192)/0.17 0.61
SS (0.202+0.50 +0.21 )/0.50 0.67
SS, (0.19 +0.21 +0.17 )/0.17 0.64

4

Art 2 erreicht nun den maximalen Wert und erhält den
endgültigen Rang 2. Die Aehnlichkeitsmatrix kann damit
weiter reduziert werden, wobei Zeile und Kolonne 2 und 3 mit
Nullen besetzt sind:

0.14 0 0 0.16
R' 0 0 0 0

0 0 0 0

0.16 0 0 0.14

Den Rangierungsprozess mit dieser Präzision weiterzuführen,
lohnt sich nicht, da nunmehr immer grössere Rundungsfehler
auftreten. Mit den Arten 3 und 2 sind aber offensichtlich
zwei typische Vertreter der Tabelle 6.2 gefunden worden. Die
Korrelationssummen SS bilden ausserdem ein Mass für deren
Güte als Zeigerwert. Dieser ist jedoch leichter zu interpre-
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tieren, wenn er am maximal möglichen Wert gemessen wird, wie
er bei einer absolut idealen Zeigerart auftreten würde.
Solche Maximalkorrelationen finden sich in der Diagonalen
der Matrix, wo jede Art mit sich selbst verglichen wird. Der
Maximalwert beträgt

P
2

SS X rmax lii 1

Symbol p steht für die Anzahl Arten. In unserem Beispiel ist
SS =4.maxKorrelation:
SS =4. Damit ergeben sich folgende Anteile erklärter

max.

3.14
Art 3: * 100 78.5%

4.0

0.67
Art 2: * 100 17%

4.0

Die Artkombination (Art 3, Art 2) erklärt damit 78.5% + 17%

95.5% der gesamten Korrelation. Dies bestätigt die oft
gemachte Erfahrung, dass schon sehr wenige Arten die Struktur

einer Vegetationstabelle weitgehend darzustellen
vermögen (vgl. WILDI 1979).

Rechnet man RANK mit grösserer Genauigkeit für alle Arten,
so erhält man

Rang Art Erklär te Varianz in %

1 3 78.5
2 2 17.0
3 4 4.5
4 1 0

Die Information, welche die Art 1 trägt, ist also völlig
redundant, sodass eine Reduktion auf drei Arten verlustfrei
erfolgen kann.
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Die Interpretation der Ergebnisse ist mit einigen Schwierigkeiten

verbunden. Zunächst ist zu beachten, dass Arten
aufeinanderfolgenden Ranges immer sehr unterschiedliches
Vorkommen aufweisen, wie hier 3 und 2, 2 und 4 usw. Sodann
kann es ohne weiteres geschehen, dass an sich gute Zeigerarten

(hier z.B. Art 1) wegfallen, weil ihre Varianz (oder
Korrelation) bereits durch andere Arten vollständig erklärt
wird. Das hat oft den Nachteil, dass im Feld gut sichtbare
und leicht bestimmbare Arten aus dem Datensatz entfernt werden.

Um dem vorzubeugen, wurde ein interaktives RANK
Verfahren entwickelt, bei welchem der Experimentator aus einer
kleinen Auswahl günstig gelegener Arten diejenige auswählt,
welche definitiv zu rangieren ist (WILDI 1984). Damit steht
dem Pflanzensoziologen ein Instrument zur Verfügung, das
sehr rasch einen guten Einblick in die
Aehnlichkeitsverhaltnisse komplexer Datensätze vermittelt. Aus
früher erwähnten Gründen sollte die Analyse nicht auf dem

Korrelationskoeffizienten, sondern auf dem Skalarprodukt
oder der Kovarianz basieren. Sehr gut interpretierbare
Ergebnisse erzielt man mit den Kontingenzmassen von Jaccard,
Soerensen bzw. van der Maarel. Allerdings muss dabei der
Rechenvorgang wegen fehlender Metrik frühzeitig abgebrochen
werden.

6.3 Rangierung nach Gruppenstruktur

Bei allen bisher behandelten Rangierungsverfahren wurde
versucht, die Arten oder Standortsfaktoren vorgängig einer
weiterführenden Analyse zu gewichten. Dabei wurde stets die
gesamte Information innerhalb der Aehnlichkeitsmatrix
verwendet. Hat man sich jedoch einmal zu einer Klassifikation

entschlossen, so hat man auch auf einen Teil der
Gesamtinformation des ursprünglichen Datensatzes verzichtet.
Statt einzelner Aufnahmen stehen jetzt nur noch Gruppen im
Zentrum des Interesses. Es lohnt sich, die einzelnen Arten
oder Standortsfaktoren erneut zu gewichten, und zwar nach
der Zuverlässigkeit, mit welcher sie auf eine
Gruppenzugehörigkeit hinweisen. JANCEY (1979) schlägt dazu
ein Verfahren vor, welches auf der Varianzanalyse basiert.
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Die Varianzanalyse beruht auf dem Prinzip, dass sich die
Varianz einer gruppierten Stichprobe wie folgt aufteilen
lässt:

Totalvarianz Varianz Varianz
der Stichprobe innerhalb + zwischen

der Gruppen den Gruppen

Bekanntlich berechnen sich die Varianzen als Summen von
Abweichungsquadraten (Abschnitt 4.3). Da obige Beziehungen
auch für die nicht quadrierten Abweichungen gelten, lässt
sich der Sachverhalt leicht grafisch veranschaulichen (Abb.
6.1

Ausgangspunkt bilde eine Stichprobe, bestehend aus drei
Gruppen zu je drei Individuen. Die Indices in den nachfolgenden

Formeln bedeuten:

i für die laufende Aufnahme,
j für die laufende Art,
g für die laufende Gruppe,
t für die laufende Aufnahme

g in der Gruppe g,

Man berechnet zuerst die Mittelwerte Xj für jede Art j. Für
die Summe der Abweichungsquadrate STr ergibt sich dann

2
n

- 2
ST. 2 (x..-x.)

3 1-1 D1 3

für jede Art j. Für die Varianz innerhalb der Gruppen wird
analog vorgegangen, wobei die Abweichungsquadrate aller m

Gruppen noch zu summieren sind:

2
m m

SI. 2 2g(x.t -x
3

g=1 t =1 3tg g
g

Darin ist g die Gruppennummer, m die Anzahl Individuen in
g

i 1,.. ,n
j 1,.. • fP
g 1,.. ,m

t
g

1,. ,rri

g
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Mittelwerte
xGr1

I
><Gr2 *rotal

1 1

*Gr3

1

Abweichungen
innerhalb der
Gruppen, dt

o o o o o o o o o

Abweichungen
total,
d-Total

o o o o o o o o o
^ ^^ ~~^

"•—

Abweichungen
zwischen den
Gruppen, d.

o o o o o o o o o
—1

Abweichung
total innerhalb

+ zwischen

o o o o o c o o o
|d, ' d.

dîotal

Abb. 6.1 Beziehungen zwischen der Gesamtabweichung d
Totalder Abweichung innerhalb einer Gruppe d und der Abweichung

zwischen den Gruppen d Der Gesamtmittelwert ist
der Mittelwert der Gruppe g ist x

Total'
Gr g
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Gruppe g und x.fc der Messwert (Abundanz) der Art j in der
Aufnahme t der Gruppe g. Die Summe der Abweichungsquadrate
zwischen den Gruppen beträgt

2
m

- - 2
SZ. 2 m (x -x.)

3
g=1

g g 3

Man ersieht daraus, dass die Abweichungen zwischen dem

Gesamtmittelwert und den Gruppenmittelwerten jeweils mit der
Gruppengrösse m zu multiplizieren sind.

g

Am folgenden Beispiel soll nun demonstriert werden, dass
sich die verschiedenen Summen der Abweichungsquadrate als
Messgrösse für den Zeigerwert von Arten eignen. Daten und
Resultate sind zusammengefasst in Tab. 6.3. Art 1 ist so
gleichmässig auf alle Gruppen verteilt, dass sie als
Zeigerart sicher nicht in Frage kommt.

Genau gegenteilig verhält sich Art 3, bei welcher die
gruppeninternen Abweichungen klein, diejenigen zwischen den
Gruppen dafür gross sind. Art 3 ist somit ein optimaler
Zeiger - zumindest für Gruppe 1 gegenüber 2 und 3. Art 2

schliesslich steht zwischen den beiden Extremen.

Man könnte nun der Idee verfallen, die Summe der
Abweichungsquadrate zwischen den Gruppen direkt als Mass für
die Güte des Zeigerwertes zu verwenden. In Realität treten
aber nicht so einfache Fälle auf wie in Tab. 6.3. Insbeson-

2
dere unterscheidet sich die Gesamtvarianz ST.; von Art zu
Art. Stichproben- und Gruppengrössen beeinflussen ausserdem
die Zuverlässigkeit der Ergebnisse. JANCEY (1979) standardisiert

deshalb zuerst die Artvektoren j,
x!. (x..-x.)/s..Di 3i 3 3

x'. ist der transformierte Artwert (Abundanz) der Art j in
der Aufnahme i. s^ ist die Standardabweichung der Art j. Um

die verminderte Zuverlässigkeit des Ergebnisses bei kleinen
Gruppen auszugleichen, wird darin durch n-1 und nicht wie in
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Kap. 3 durch n dividiert:

s. [ 2 (x..-x.)2]1/2
3

n-1 i 31 3

In Tab. 6.3, A lässt sich leicht nachrechnen, dass die
Mittelwerte Xj aller Arten gleich 0.666 sind. Weiter beträgt
die Summe der Abweichungsquadrate von diesem Mittelwert je
genau 10.0. Somit ist auch s. überall gleich, nämlich 1.118.
In Tab. 6.3, B, ist dieselbe Tabelle in transformierter Form
wiedergegeben. Das erste Element berechnet sich wie folgt:

x!, (3-0.666)/1.118 2.09
31

Nun wird für die transformierten Werte in Abb. 6.3, B, die
Summe der Abweichungsquadrate berechnet. Da der Mittelwert
aller Arten nun null ist, brauchen nur die Elemente
quadriert und addiert zu werden:

2
n

2
ST. 2 x!.

3 i=1 D1

Die Ergebnisse betragen überall 8.0 (was n-1 entspricht!).
Nun kann zur Berechnung der gruppeninternen Summen der
Abweichungsquadrate geschritten werden (Tab. 6.3, C). Für
die erste Art in der ersten Gruppe erhält man den Mittelwert

x 1/3 (2.09-0.6-0.6) 0.30

Die Summe der Abweichungsquadrate ergibt

ST
2 (2.09-0.3)2+(-0.6-0.3)2+(-0.6-0.3)2

4.824

Wir kommen nun auf die in Tab. 6.2 dargestellten Beziehungen
zurück und sind in der Lage, die Summe der Abweichungsquadrate

innerhalb aller Gruppen zu berechnen. Für die erste
Art findet man (Tab. 6.3, D):
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SI
2

4.82+2.14+0.54 7.50

2
Die Summe der Abweichungsquadrate zwischen den Gruppen, SZ^
wird aus den Gruppenmittelwerten berechnet, für Art 1 also
0.30, 0,-0.3. In Tab. 6.3, D ist auch die totale Summe

der Abweichungsquadrate aus Tab. 6.3, B übernommen worden.

Es bestätigt sich deren Zerlegbarkeit in Sir und SZ?:
3 3

2 2 2
ST. SI. + SZ.

3 3 3

Für Art 1 gilt:
8.0 7.50 + 0.50.

2 2
Das Verhältnis zwischen SI.= und SZ^ ist tatsächlich
charakteristisch für die Differenzierungskraft jeder Art, wie
leicht in Tab. 6.3, D nachzuprüfen ist. JANCEY (1979)
verwendet nun aber statt der Summen der Abweichungsquadrate
die Varianzen. Damit wird ein eventueller Unterschied in der
Grösse der Gruppen ausgeglichen. Sie berechnen sich gemäss
der Theorie der Varianzanalyse wie folgt (vgl. z.B.
GAENSSLEN und SCHUBö 1973):

1

2
Vz SZ.

m-1
3

2
Vi SI

3

Darin ist n wiederum die Anzahl Aufnahmen, m die Anzahl
Gruppen. Die Ergebnisse sind in Tab. 6.3, D dargestellt. Das

endgültige Kriterium zur Rangierung der Arten ist nun der
F-Wert der Varianzanalyse. Er ist nichts anderes als das
Verhältnis der Varianzen zwischen und innerhalb der Gruppen:
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VZ

F —
VI

Grosse F-Werte deuten auf eine grosse Trennkraft der Arten
hin, kleine auf ein unspezifisches Vorkommen der Arten
innerhalb der Vegetationstabelle. Dementsprechend erhält Art 3

in Tab. 6.3 Rang 1. Die F-Werte sind der schliessenden
Statistik gemäss F-verteilt mit df 2 und 6 Freiheitsgraden.
Anhand einer F-Tabelle kann jeder Wert auf Ueberzufälligkeit
geprüft werden (BARTEL 1972, S. 187). Für eine
Irrtumswahrscheinlichkeit von 5% finden wir

F(df 2,6;p 0.05) 5.14

Damit ist der F-Wert der Art 3 signifikant von Null
verschieden, diejenigen der Arten 1 und 2 nicht. Da auch hier
die Voraussetzungen für die Durchführung des F-Testes nicht
geklärt wurden, ist diese Aussage als reine Interpretationshilfe

zu betrachten.

Mit dem dargelegten Beispiel wird die Trennkraft der Arten
bezüglich aller drei Gruppen bestimmt. JANCEY (1979) weist
darauf hin, dass die Rechnung auch nur für einen Teil einer
Tabelle durchgeführt werden kann, also z.B. für die Gruppen
1 und 2. Eine mögliche Anwendung der Methode besteht nun
darin, die ursprüngliche Vegetationstabelle auf die trennenden
Arten zu reduzieren, womit man einen Vegetationsschlüssel
erhält. Aus der Literatur sind leider noch keine grösseren
Anwendungen bekannt.

6.4 Stressanalyse

Ein mögliches Ziel von Rangierungsanalysen besteht in der
Reduktion der Artenzahl. Dies verbessert die Uebersicht über
die Daten und erleichtert rechenintensive Analysen. Mit der
Methode RANK haben wir bereits ein Verfahren erörtert,
welches für eine reduzierte Vegetationstabelle geeignete Ar-
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ten direkt bezeichnet. Wieviele Arten letztlich weggelassen
werden können, bleibt eine offene Frage. Sicher ist, dass
die Datenstruktur durch die Auswahl möglichst wenig Aen-
derungen erfahren sollte. Die Stressanalyse zeigt einen Weg

auf, durch Artenreduktion auftretende Verzerrungen unter
Kontrolle zu halten (ORLOCI 1978).

Als Beispiel verwenden wir die Vegetationstabelle in Tab.
6.2. Die Arten sollen dabei in der Reihenfolge verwendet
werden, wie dies das Ergebnis der RANK-Analyse als
zweckmässig erscheinen lässt. Zur Ermittlung der Aufnahmenstruktur

wird eine Matrix der Euklidschen Distanzen zwischen
den Aufnahmen gerechnet. Werden alle vier Arten
berücksichtigt, so erhalten wir

0.00
D(1,2,3,4)

1 .00 2.65 3.16
0.00 2.45 2.65

0.00 1 .73
0.00

Der untere Teil der Matrix braucht nicht geschrieben zu werden,

da die selben d-Werte auftreten wie oben. Lässt man nun
die letztrangierte Art (Nr. 1) weg, so werden die Distanzen
generell kleiner. Wir berechnen also die neue Matrix und
erhalten:

0

D(2,3,4)
1 .00 2.45 2.45
0 2.24 1 .73

0 1 .41
0

Da nur die relativen Veränderungen der Distanzen
interessieren, wird zwischen allen von null verschiedenen N(N-
1)/2 Distanzen der Korrelationskoeffizient p(DP;Dp)
berechnet. Im obigen Beispiel gilt
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1.00 1.00
2.65 2.45

D(1,2,3,4)=DP=3.16 D(2,3,4)=Dp=2.45 p(DP;Dp)=0.903
2.45 2.24
2.65 1.73
1.73 1.41

Nun wird auch noch Art 4 weggelassen. Die Aufnahmen weisen
jetzt folgende Distanzen auf:

1.00 1.41 2.24
0 1 .00 1.41

0 1 .00
0

D(2,3)

Wir berechnen wiederum die Korrelation mit der Aehn-
lichkeitsstruktur des vollständigen Datensatzes und erhalten

1.00 1.00
2.65 1.41

D(1,2,3,4) 3.16 D(2,3) 2.24 p(DP;Dp) 0.751
2.45 1.00
2.65 1.41
1.73 1.00

Dass die Korrelation weiter gesunken ist, entspricht durchaus

den Erwartungen. Es kommt aber auch vor, dass die Struktur
mit einem Minimum an Arten hervorragend reproduziert

wird. In unserem Beispiel ist dies der Fall. Nur noch auf
der Art 3 basierend erhält man

0.906

Dass Art 3 alleine die Struktur so gut zu reproduzieren ver-

1 .00 0.00
2.65 1.00

D(1,2,3,4) 3.16
2.45
2.65
1 .73

D(3) 1 .00
1 .00
1.00
0.00

p(DP;Dp)
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mag, erstaunt weiter nicht. Sie differenziert klar zwischen
den beiden Gruppen (1,2) und (3,4) in der Tabelle und
qualifizierte sich auch als beste Differentialart bei RANK.
Zusammenfassend lässt sich der Schluss ziehen, dass die
Reduktion der Artenzahl die Datenstruktur in unerwarteter
Weise verändern kann. Eine Untersuchung mit Hilfe der
Stressanalyse ist daher empfehlenswert.
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