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6. Gewichtungsverfahren (Rangierung)

Der Gewichtung von Merkmalen kommt in der Vegetationskunde
besondere Bedeutung zu. Vegetationsaufnahmen besitzen die
Besonderheit, dass sie durch sehr viele Merkmale (Arten)
charakterisiert sind. Ist die Zahl der Merkmale gar grdsser
als diejenige der Aufnahmen, so kann ein Datensatz tiberbe-
stimmt sein. In einem solchen Falle lasst sich jede
beliebige Gruppen- oder Gradientenstruktur anhand aus-
gewahlter Merkmale begriinden. Auf die traditionelle
Tabellenarbeit ilibertragen (ELLENBERG 1956) bedeutet dies,
dass sich dieselbe Vegetationstabelle in verschiedenster
Weise durchaus sinnvoll ordnen ldsst. Es ist daher schon aus
formalen Ueberlegungen heraus erstrebenswert, Aufnahmen
mithilfe modglichst weniger Arten oder Standortsfaktoren
charakterisieren zu k&nnen. Dies erfordert aber meistens
eine Gewichtung der Merkmale.

Eine solche kann vorgenommen werden, um Zeigerarten zu fin-
den. Letztere dienen dann einerseits der Klassifikation der
Aufnahmen. Andererseits erlauben sie die Zuordnung neuer
Aufnahmen zu beschriebenen Pflanzengesellschaften (Identifi-
kation). Schliesslich dienen sie dem Aufbau von Vege-
tationsschliisseln zur pflanzensoziologischen Kartierung im
Felde.

ORLOCI (1978) schldgt eine in der Praxis bislang kaum reali-
sierte Anwendung der Gewichtungsverfahren vor. Seine Ueber-
legungen zielen auf eine Minimalisierung der Feldarbeit bei
vegetationskundlichen Kartierungen ab. Traditionellerweise
werden in Vegetationsaufnahmen aus verschiedenen Griinden
alle Arten von Gefdsspflanzen beriicksichtigt (POORE 1962,
MUELLER-DOMBOIS und ELLENBERG 1974), was aus der Sicht der
Grundlagenforschung auch sinnvoll ist. Namentlich bei den
heute aktuellen Anwendungen der Vegetationskunde im Bereich
der Umweltforschung ist dieses Vorgehen aber nicht zwingend.
Der Aufwand flir die Feldarbeiten fdllt geringer aus, wenn
nur Zeigerarten erhoben werden miissen. Diese sind aber bei
echten Neuuntersuchungen nicht hinreichend bekannt. Mit dem
folgenden Vorgehen kdnnte das Problem im Rahmen einer Vorun-
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tersuchung geldst werden:

1. Man macht einige Vegetationsaufnahmen im zukiinftigen Un-
tersuchungsgebiet (z.B. 20).

2. Durch ein Rangierungs- oder Gewichtungsverfahren werden
die besten Zeigerarten innerhalb des Datensatzes bestimmt.

3. Es werden weitere Aufnahmen zugefiigt (z.B. 10). Eine er-
neute Rangierung ergibt wahrscheinlich einige Aenderungen in
der Gewichtung der Arten.

4, Die Erweiterung des Datensatzes ist ={e) lange
durchzufiihren, bis sich in der Gewichtung kaum noch Ver-
schiebungen ergeben. Die Arten hohen Gewichtes (Zeigerarten)
beschreiben die Aehnlichkeitsstruktur der gesamten zu unter-
suchenden Vegetation hinreichend.

Wird nach Abschluss dieser Vorabkldrung eine Kartierung in
Angriff genommen, so brauchen keine vollstdndigen Aufnahmen
mehr durchgefihrt zu werden. Es kann unmittelbar mit der
flachendeckenden Erhebung auf Grund der gefundenen Zeigerar-
ten begonnen werden. Selbstverstdndlich kann dieses Vorgehen
nur dann zum Erfolg fiihren, wenn eine zweckmidssige Auswahl
der Aufnahmefldchen getroffen wurde, sodass die Erhebung fir
das Untersuchungsobjekt reprasentativ ist.

Man kann grundsatzlich zwei Typen von Gewichtungsverfahren
unterscheiden. Im einen Fall wird die Gesamtstichprobe un-
tersucht, ohne dass ihre Gruppenstruktur bereits bekannt
wdre. Dieser Weg filihrt in der Regel i{iber die Analyse einer
Aehnlichkeitsmatrix. Anders liegen die Verhdltnisse, wenn
von bekannten Pflanzengesellschaften ausgegangen wird. Hier
stellt sich die Frage, welche Arten die besten Zeiger fiur
eine vorgegebene Gruppenstruktur sind. Wir werden im folgen-
den Vertreter beider Typen diskutieren.
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6.1 Feolis Methode

Diese einfache und leicht verst3ndliche Methode soll
einfiihrend dargestellt werden (vgl. FEOLI 1973). Grund-
satzlich basiert sie auf Prdsenz und Absenz der Arten. Sie
kann auf folgende zwei Annahmen zuriickgefiihrt werden:

1. Eine Art ist dann ein guter Zeiger, wenn die Aufnahmen,
in denen sie auftritt, méglichst Zhnlich sind.

2. Aufnahmen, in denen sie vorkommt, sollen im Vergleich zu
solchen, in denen sie fehlt, mdglichst verschieden sein.

Das Prinzip der Methode zeigt Tab. 6.1, A bis C. 1In Tab.
6.1, A, sind die Rohdaten des nachfolgenden Beispiels zu
finden. Zundchst muss eine Aehnlichkeitsmatrix S der Aufnah-
men verfligbar gemacht werden. In Tab. 6.1, B und C ist eine
solche dargestellt. Verwendet wird van der Maarels Koeffi-
zient, doch ist die Methode auch mit jedem anderen Mass zu
realisieren. Feoli bezeichnet nun die Aehnlichkeits-
koeffizienten zwischen Aufnahmen, in denen die 2zu ge-
wichtende Art vorkommt, mit SI. SZ werden Jjene genannt,
welche Aufnahmen mit wund solche ohne die betreffende Art
vergleichen. Fiir die Berechnung des Gewichts der Art, SF,
sind die Mittelwerte massgebend:

Tab. 6.1, B illustriert das Vorgehen filir die Art 1. Diese
kommt nur in den Aufnahmen 1 und 2 vor, die eine Aehnli-
chkeit von 0.8 aufweisen. Fiir SZ Dberiicksichtigt man alle
Koeffizienten, welche die Aufnahmen 1 und 2 mit 3, 4 und 5
vergleichen. Diese sind punktiert eingerahmt. Wir erhalten

(0.143+0.25)/6 0.066

= 0.9175
0.8 0.8

Da Art 2 genau das gleiche Vorkommen hat, gilt dieses
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Tabelle 6.1

Feolis Artrangierung. Vegetationstabelle (a), Aehnli-
chkeitsmatrix der Aufnahmen (B,C). Fall B illustriert die
Berechnung des Gewichtes fur Art 1 oder 2, Fall C filir die
Art 3.

A
Art | Aufn. 1 2 3 4 5
1 2 1
2 1 1
3 1 1 1
4 1 1 1
5 1 2
B
Aufnahme 1 2 3 4 5
1 1 IIII{0.143 0 0 ;
2 LI 7Y - D B .
3 1 0.33 0.17
4 1 0.75
5 1
B
Aufnahme 1 2 3 4 5
| et |
1 1 0.8 0.143]|0 0 1
2 1 0.25 ;o 0 :
3 1 L0-33_ 0.17]
4 1 0.75
5 1




] B

Gewicht auch filir sie. Art 3 hingegen kommt in den Aufnahmen
1, 2 und 3 vor (Tab. 6.1, C). Wir erhalten

(0.33+0.17)/6 0.083

= 0.79

(0.8+0.143+0.25)/3 0.397

Ihre Zeigereigenschaft ist somit deutlich schlechter als
jene der Arten 1 und 2.

Analog werden nun die Gewichte der Arten 4 und 5 berechnet.
Schliesslich erhdlt man folgende Rangordnung:

Art SF-Wert Rang

0.9175
0.9175
0.889
0.843
0.79

w = o=
oW N ==

Anhand dieser Ergebnisse ldsst sich leicht erkennen, welche
Arten beispielsweise fur die Zusammenstellung eines
Vegetationsschliissels gut geeignet sind (z.B. 1, 2 und 5).
Zur Datenreduktion eignet sich jedoch das Verfahren weniger.
Aus den Arten 1 und 2 wird deutlich, weshalb dem so ist.
Beide besitzen hohe SF-Werte., Wird auf eine von beiden ver-
zichtet, so bleibt die Differenzierung zwischen Aufnahmen
(1,2) und (3,4,5) dank der verbleibenden Art erhalten. Trotz
hohen SF-Wertes wiirde somit der Verzicht auf Art 2 die Grup-
penstruktur der Tabelle nicht zerstdéren. Will man den
Informationsverlust durch Weglassen von Arten untersuchen,
so bedarf es komplizierterer Verfahren.

6.2 Rangierung nach erkldrter Varianz
Dieses wvon ORLOCI (1973) unter dem Namen RANK vorgeschlagene

Verfahren ist dann angezeigt, wenn ein dusserstes Minimum an
Zeigerarten gesucht wird. Die Analyse sehr grosser Tabellen
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gestaltet sich einfacher, falls es gelingt, die Anzahl Arten
auf einen Bruchteil zu reduzieren. Natilirlich darf dabei die
urspriingliche Aehnlichkeitsstruktur der Aufnahmen nicht
allzu sehr verdndert werden. Eine erfolgreiche Anwendung
dieses Verfahrens zeigen FEOLI und LAGONEGRO (1982). Sie
revidierten die Klassifikation italienischer Buchenwidlder
anhand von 602 Aufnahmen. Die urspriinglich 475 Arten wurden
mit Hilfe des RANK-Verfahrens vorgdngig auf 108 reduziert,
was die Analyse entscheidend vereinfachte.

Im Gegensatz zu Feolis Verfahren geht Orlocis RANK
schrittweise vor. Das Prinzip ist folgendes (Tab. 6.2): Zu
Beginn jedes Schrittes wird eine provisorische Gewichtung
der Arten gesucht. Als Gewichtungskriterium sind ver-
schiedene Masse denkbar. Wirde =z.B. die Summe der Abun-
danzwerte verwendet, so erhielte Art 1 Rang 1 (dass das
RANK-Verfahren ein anderes Kriterium verwendet, ist aus Tab.
6.2 zu schliessen). Ausgehend von diesem Zwischenresultat
ist nun der Datensatz zu reduzieren. Dazu muss die gesamte
Information, welche die Art mit Rang 1 trdgt, aus der Ta-
belle entfernt werden. Die Information der Art 2 miisste da-
bei fast verschwinden, da sie mit derjenigen von Art 1
anndhernd identisch ist. Der n&dchste Schritt besteht in
einer erneuten provisorischen Gewichtung der verbleibenden
Arten. Art 4 diirfte dabei den héchsten Wert erhalten und mit
dem definitiven Rang 2 ausgeschieden werden. Doch wenden wir
uns nun dem eigentlichen RANK-Algorithmus zu.

Das Verfahren beginnt mit der Berechnung einer Aehn-
lichkeitsmatrix der Arten. Dabei kann ein beliebiges Mass
ausgewdhlt werden. Verwendet man den Korrelationskoef-
fizienten, so erhdlt man fiir die p = 4 Arten in Tab. 6.2

1.0 0.85 -0.91 -0.64

R = 0.85 1.0 -0.71 -0.43
-0.91 -0.71 1.0 0.91
-0.64 -0.43 0.91 1.0

Wie erwartet, heben sich als mégliche Gruppen (1,2) und
(3,4) mit hohen Korrelationen von 0.85 und 0.91 ab. Nun wird
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Tabelle 6.2

Einfache Vegetationstabelle zur Rangierung der Arten. Die
Rdange ergeben sich aufgrund Orlocis RANK.

Aufnahme 1 2 3 4 Rang

Art 1 2 2 1 4.
Art 2 2 1 1 2
Art 3 1 1 1.

Art 4 2 1 3
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eine provisorische Rangordnung gesucht. Massgebend ist die
Summe der Korrelationen jeder Art mit allen andern, also

™ g

SS. = zrz./r..
i hi ii

h=1

Darin ist 8§, die Summe der total P guadrierten
Aehnlichkeitswérte, welche die Art i betreffen. r, ,ist der
Diagonalwert, der im Falle der Korrelationsmatrix l%.o be-
trdgt und damit vernachldssigt werden kann. Fur Art 1 finden
sich alle Aehnlichkeitswerte r i in der ersten Zeile (oder
in der ersten Kolonne) von R. Somit ergibt sich fiir sie

ss, - ((1.0)24(0.85)%4(-0.91)%+(-0.64%))/1 = 2.95

Entsprechend erhidlt man fiir die iibrigen Arten

552 = 2.41
SS3 = 3.14

Die Art mit der héchsten Summe, Art 3, erhdlt den defini-
tiven Rang 1. Bevor die Bedeutung dieses Ergebnisses genauer
untersucht wird, soll aber der Algorithmus weiter verfolgt
werden. Zu diesem Zwecke ist der Einfluss der Art 3 auf die
Korrelationen zu eliminieren. Die Elemente der neuen, redu-
zierten Matrix R berechnen sich nach der Regel

"Mi T "hi T Yhm Yim °

Symbol m steht fir die zu entfernende Art, hier also Art 3.
Die Formel gilt fiir die Korrelation jeder Art h und i. Bei

den y-Werten handelt es sich um Elemente der Korre-
lationsmatrix, denn sie sind folgendermassen definiert:

)1/2 , sowie y, =r, [(r )1/2 .
im

yhm = Byl VF im mm

hm mm

rmm ist in unserem Falle die Korrelation von Art 3 mit sich



-129-

selbst, also 1.0. Mit dem ersten Element beginnend, ergibt
die Reduktion:

ry, o= 1 - (-0.91)2 = 0.17 (h=1,i=1)
ry, = 0.85 - (-0.71%-0.91) = 0.20 (h=1,i=2)
ryy = -0.91 - (1.0%-0.91) =0 (h=1,1i=3)
i, = -0.64 - (-0.91%+0.91) = 0.19 (h=1,i=4)

Diese Operation ist filir alle r i—Werte vorzunehmen. Damit
verschwindet jener Anteil der Korrelation aus der Matrix,
der durch Art 3 verursacht wird. Zeile und Spalte 3 wvon R
missen nun zwangsldufig mit Nullen besetzt sein:

0.177 0.20 0 0.19
R = 0.20 0.50 0 0.21

0 0 0 0

0.19 0.21 0 0.17

Die erneute provisorische Rangordnung ergibt:

(0.172+o.202+0.192)/0.17

SS. = = 0.61
1

SS. = (0.20§+o.so§+0.21§)/0.50 = 0.67

ss4 = (0.197+0.217+0.177)/0.17 = 0.64

Art 2 erreicht nun den maximalen Wert und erh3lt den
endgiiltigen Rang 2. Die Aehnlichkeitsmatrix kann damit
weiter reduziert werden, wobei Zeile und Kolonne 2 und 3 mit
Nullen besetzt sind:

0.14 0 0 0.16
R' = 0 0 0 0

0 0 0 0

0.16 0 0 0.14

Den Rangierungsprozess mit dieser Prdzision weiterzufiihren,
lohnt sich nicht, da nunmehr immer grdssere Rundungsfehler
auftreten! Mit den Arten 3 und 2 sind aber offensichtlich
zwel typische Vertreter der Tabelle 6.2 gefunden worden. Die
Korrelationssummen SS bilden ausserdem ein Mass filir deren
Giite als Zeigerwert. Dieser ist jedoch leichter zu interpre-
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tieren, wenn er am maximal méglichen Wert gemessen wird, wie
er bei einer absolut idealen Zeigerart auftreten wiirde.
Solche Maximalkorrelationen finden sich in der Diagonalen
der Matrix, wo jede Art mit sich selbst verglichen wird. Der
Maximalwert betridgt

Symbol p steht filir die Anzahl Arten. In unserem Beispiel ist

Iy

SSmax = 4. Damit ergeben sich folgende Anteile erklarter
Korrelation:
3.14
Art 3: — * 100 = 78.5%
4.0
0.67
Art 2: — * 100 = 17%
4.0

Die Artkombination (Art 3, Art 2) erkldrt damit 78.5% + 17%
= 95.5% der gesamten Korrelation. Dies bestdtigt die oft
gemachte Erfahrung, dass schon sehr wenige Arten die Struk-
tur einer Vegetationstabelle weitgehend darzustellen
vermégen (vgl. WILDI 1979).

Rechnet man RANK mit grdsserer Genauigkeit fiir alle Arten,
so erhdlt man

Rang Art Erklidrte Varianz in %
1 3 78.5
2 2 17.0
3 4 4.5
4 1 0

Die Information, welche die Art 1 tra3gt, ist also wvdllig
redundant, sodass eine Reduktion auf drei Arten verlustfrei
erfolgen kann!
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Die Interpretation der Ergebnisse ist mit einigen Schwierig-
keiten verbunden. Zundachst ist zu beachten, dass Arten
aufeinanderfolgenden Ranges immer sehr unterschiedliches
Vorkommen aufweisen, wie hier 3 und 2, 2 und 4 usw. Sodann
kann es ohne weiteres geschehen, dass an sich gute Zeigerar-
ten (hier z.B. Art 1) wegfallen, weil ihre Varianz (oder
Korrelation) bereits durch andere Arten vollstandig erklart
wird. Das hat oft den Nachteil, dass im Feld gut sichtbare
und leicht bestimmbare Arten aus dem Datensatz entfernt wer-
den. Um dem vorzubeugen, wurde ein interaktives RANK Ver-
fahren entwickelt, bei welchem der Experimentator aus einer
kleinen Auswahl glinstig gelegener Arten diejenige auswahlt,
welche definitiv zu rangieren ist (WILDI 1984). Damit steht
dem Pflanzensoziologen ein Instrument zur Verfiligung, das
sehr rasch einen guten Einblick in die Aehnlich-
keitsverhdltnisse komplexer Datensdtze vermittelt. Aus
friiher erwdhnten Griinden sollte die Analyse nicht auf dem
Korrelationskoeffizienten, sondern auf dem Skalarprodukt
oder der Kovarianz basieren. Sehr gut interpretierbare Er-
gebnisse erzielt man mit den Kontingenzmassen von Jaccard,
Soerensen bzw. van der Maarel. Allerdings muss dabei der Re-
chenvorgang wegen fehlender Metrik friihzeitig abgebrochen
werden.

6.3 Rangierung nach Gruppenstruktur

Bei allen bisher behandelten Rangierungsverfahren wurde ver-
sucht, die Arten oder Standortsfaktoren vorgdngig einer
weiterfihrenden Analyse zu gewichten. Dabei wurde stets die
gesamte Information innerhalb der Aehnlichkeitsmatrix
verwendet. Hat man sich jedoch einmal zu einer Klassifika-
tion entschlossen, so hat man auch auf einen Teil der
Gesamtinformation des urspriinglichen Datensatzes verzichtet.
Statt einzelner Aufnahmen stehen jetzt nur noch Gruppen im
Zentrum des Interesses. Es lohnt sich, die einzelnen Arten
oder Standortsfaktoren erneut =zu gewichten, und zwar nach
der Zuverlissigkeit, mit welcher sie auf eine
Gruppenzugehdrigkeit hinweisen. JANCEY (1979) schlidgt dazu
ein Verfahren vor, welches auf der Varianzanalyse basiert.



o Rl

Die Varianzanalyse beruht auf dem Prinzip, dass sich die
Varianz einer gruppierten Stichprobe wie folgt aufteilen
lasst:

Totalvarianz Varianz Varianz
der Stichprobe = innerhalb + zwischen
der Gruppen den Gruppen

Bekanntlich berechnen sich die Varianzen als Summen von
Abweichungsquadraten (Abschnitt 4.3). Da obige Beziehungen
auch fiir die nicht quadrierten Abweichungen gelten, lédsst
sich der Sachverhalt leicht grafisch veranschaulichen (Abb.
6.7).

Ausgangspunkt bilde eine Stichprobe, bestehend aus drei
Gruppen zu Jje drei Individuen. Die Indices in den nachfol-
genden Formeln bedeuten:

i fur die laufende Aufnahme, i = 1,...,n
j flir die laufende Art, T &= Tpsas e
g fir die laufende Gruppe, g=1,ce0,m
tg fir die laufende Aufnahme
in der Gruppe g, tg = 1,...,mg

Man berechnet zuerst die Mittelwerte x, fiir jede Art j. Fiir
die Summe der Abweichungsquadrate ST? ergibt sich dann

fliir jede Art j. Flir die Varianz innerhalb der Gruppen wird
analog vorgegangen, wobei die Abweichungsquadrate aller m
Gruppen noch zu summieren sind:

2 m m
st =3 z%x.. -x)

t
g=1 t_=1 Ity 9

Darin ist g die Gruppennummer, mg die Anzahl Individuen in
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; XGn Xgrz  Xtotal XGr3
Mittelwerte ‘ & ‘ ‘
Abweichungen O O O o O O O O O
innerhalb der
Gruppen, d, --—|—- "'-I'—-l'* "'—I—"'“
Abweichungen O O O O O O O O O
total, e e
dvotal - I -

rpf
Abweichungen| O O O O O O O O O
zwischen den i -
Gruppen, d, -—I
Abweichung O O O O O O 0o O O
total = inner- - -
halb + zwischen __d' d, l

dTotal

Abb.
der
zwischen den Gruppen d_.

der Mittelwert der Gruppe g ist X

6.1 Beziehungen zwischen der
Abweichung innerhalb einer Gruppe d

Der

Gesamtabweichung

Gesamtmittelwert ist

Gr g’

d

und der Abwel

X

Total’
chung

Total’
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Gruppe g und th der Messwert (Abundanz) der Art j in der
Aufnahme t der Gruppe g. Die Summe der Abweichungsquadrate
zwischen den Gruppen betridgt

m
sz? =3 m (x -i_)z.
J g 9093

Man ersieht daraus, dass die Abweichungen =zwischen dem
Gesamtmittelwert und den Gruppenmittelwerten jeweils mit der
Gruppengrésse mg zu multiplizieren sind.

Am folgenden Beispiel so0ll nun demonstriert werden, dass
sich die verschiedenen Summen der Abweichungsqguadrate als
Messgrosse flir den Zeigerwert von Arten eignen. Daten und
Resultate sind zusammengefasst in Tab. 6.3. Art 1 ist so
gleichmdssig auf alle Gruppen verteilt, dass sie als
Zeigerart sicher nicht in Frage kommt.

Genau gegenteilig verhdlt sich Art 3, bei welcher die grup-
peninternen Abweichungen klein, diejenigen zwischen den
Gruppen daflir gross sind. Art 3 1ist somit ein optimaler
Zeiger - zumindest flir Gruppe 1 gegeniiber 2 und 3. Art 2
schliesslich steht zwischen den beiden Extremen.

Man koénnte nun der Idee verfallen, die Summe der
Abweichungsquadrate zwischen den Gruppen direkt als Mass fur
die Gilite des Zeigerwertes zu verwenden. In Realitdt treten
aber nicht so einfache Fille auf wie in Tab._6.3. Insbeson-
dere unterscheidet sich die Gesamtvarianz ST, wvon Art =zu
Art. Stichproben- und Gruppengrdssen beeinflussen ausserdem
die Zuverladssigkeit der Ergebnisse. JANCEY (1979) standardi-
siert deshalb zuerst die Artvektoren j,

x!- = (x,,-;{_)/s'.
J1 Ji ] J

xfi ist der transformierte Artwert (Abundanz) der Art j in

der Aufnahme i. s. ist die Standardabweichung der Art j. Um

die verminderte Zuverladssigkeit des Ergebnisses bei kleinen

Gruppen auszugleichen, wird darin durch n-1 und nicht wie in
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Tabelle 6.3.

Rangierung von Arten auf Grund einer Klassifikation. A:
Rohwerte. B: Standardisierte Artvektoren. C: Gruppeninterne
Statistik. D: Summen der Abweichungsquadrate, Varianzen und
F-Werte sowie die resultierende Rangfolge.

- - P

A Aufn.|17 2 3 4 5 6 7 8 9| x. Z(x,.-x.) S,

- J Ji ] J
Art 1|3 - - 2 - - 1 - -|0.666 10 1.118
Art 2|3 2 - 1 - - - = =-=-10.666 10 1.118
Art 3|13 2 1 - - - - - -|0.666 10 1.118

2

B Aufn. 1 2 3 4 5 6 7 8 9 STj
Art 1| 2.09 -0.6 -0.6 1.19 -0.6 -0.6 0.3 -0.6 -0.6 |8.0
Art 2| 2.09 1.19 -0.6 0.3 -0.6 -0.6 -0.6 -0.6 -0.6 |8.0
Art 3| 2.09 1.19 0.3 -0.6 -0.6 -0.6 -0.6 -0.6 -0.6 |8.0

c X ST x ST % ST?
- 1 j 2 3 Jj
1 -
art 1| 0.30 4.82 0 2.14 | -0.3 0.54
Art 21| 0.89 3.75 -0.3 0.54 -0.6 0
art 3| 1.19 1.6 -0.6 0 -0.6 0
2 2 2
D SIj szj STj VI vz F Rang

Art 1| 7.50 0.50
Art 2| 4.29 3.71
Art 3| 1.60 6.40

1.25 |0.25 0.20 3
0.715 [1.86 2.60 2
0.266 [3.20 |12.03 1

@© o ™
[ ]
o © O
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Kap. 3 durch n dividiert:

1
- 1

s = [— 5 (x,,-%.21"/2
Ji 3]

? et g

In Tab. 6.3, A lasst sich leicht nachrechnen, dass die Mit-
telwerte ij aller Arten gleich 0.666 sind. Weiter betragt
die Summe der Abweichungsquadrate von diesem Mittelwert je
genau 10.0. Somit ist auch s, liberall gleich, namlich 1.118.
In Tab. 6.3, B, ist dieselbejTabelle in transformierter Form
wiedergegeben. Das erste Element berechnet sich wie folgt:

x%i (3-0.666)/1.118 = 2.09

Nun wird fiir die transformierten Werte in Abb, 6.3, B, die
Summe der Abweichungsquadrate berechnet. Da der Mittelwert
aller Arten nun null ist, brauchen nur die Elemente guad-
riert und addiert zu werden:

n
st - 3 x?iz.
349

Die Ergebnisse betragen liberall 8.0 (was n-1 entspricht!).
Nun kann 2zur Berechnung der gruppeninternen Summen der
Abweichungsquadrate geschritten werden (Tab. 6.3, C). Fir
die erste Art in der ersten Gruppe erhdlt man den Mittelwert

i1 = 1/3 (2.09-0.6-0.6) = 0.30

Die Summe der Abweichungsquadrate ergibt

(2.09-—0.3)2+(—0.6—0.3)2+(-~0.6-0.3)2
4.824

2
T
S 11

Wir kommen nun auf die in Tab. 6.2 dargestellten Beziehungen
zurlick und sind in der Lage, die Summe der Abweichungsqua-
drate innerhalb aller Gruppen zu berechnen. PFlir die erste
Art findet man (Tab. 6.3, D):
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SI112 = 4.82+2.14+4+0.54 = 7.50
Die Summe der Abweichungsquadrate zwischen den Gruppen, SZ?
wird aus den Gruppenmittelwerten berechnet, fir Art 1 also
0.30, 0,-0.3. In Tab. 6.3, D ist auch die totale Summe
der Abweichungsquadrate aus Tab. 6.3, B ilbernommen wor-
den. Es bestatigt sich deren Zerlegbarkeit in SI% und SZ?:

Flir Art 1 gilt:
8.0 = 7.50 + 0.50.

Das Verhaltnis zwischen SI? und SZ? ist tatsdchlich charak-
teristisch fir die Differenzierungskraft jeder Art, wie
leicht in Tab. 6.3, D nachzupriifen ist. JANCEY (1979)
verwendet nun aber statt der Summen der Abweichungsquadrate
die Varianzen. Damit wird ein eventueller Unterschied in der
Grdsse der Gruppen ausgeglichen. Sie berechnen sich gemiss
der - Theorie der Varianzanalyse wie folgt (vgl. z.B.
GAENSSLEN und SCHUBS 1973):

1 2
— SZ,
m-1 J

; 1 2
Vi = — ST,
J

=}
3

Darin ist n wiederum die Anzahl Aufnahmen, m die Anzahl
Gruppen. Die Ergebnisse sind in Tab. 6.3, D dargestellt. Das
endgliltige Kriterium zur Rangierung der Arten ist nun der
F-Wert der Varianzanalyse. Er ist nichts anderes als das
Verhdltnis der Varianzen zwischen und innerhalb der Gruppen:
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Grosse F-Werte deuten auf eine grosse Trennkraft der Arten
hin, kleine auf ein unspezifisches Vorkommen der Arten in-
nerhalb der Vegetationstabelle. Dementsprechend erhalt Art 3
in Tab. 6.3 Rang 1. Die F-Werte sind der schliessenden Sta-
tistik gemdss F-verteilt mit df = 2 und 6 Freiheitsgraden.
Anhand einer F-Tabelle kann jeder Wert auf Ueberzufdlligkeit
gepriift werden (BARTEL 1972, S. 187). Fir eine Irrtums-
wahrscheinlichkeit von 5% finden wir

F(df = 2,6;p = 0.05) = 5.14

Damit ist der F-Wert der Art 3 signifikant wvon Null ver-
schieden, diejenigen der Arten 1 und 2 nicht. Da auch hier
die Voraussetzungen flir die Durchfiihrung des F-Testes nicht
gekldrt wurden, ist diese Aussage als reine Interpreta-
tionshilfe zu betrachten.

Mit dem dargelegten Beispiel wird die Trennkraft der Arten
bezliglich aller drei Gruppen bestimmt. JANCEY (1979) weist
darauf hin, dass die Rechnung auch nur fiir einen Teil einer
Tabelle durchgefiihrt werden kann, also z.B. fir die Gruppen
1 und 2. Eine mdgliche Anwendung der Methode besteht nun da-
rin, die urspriingliche Vegetationstabelle auf die trennenden
Arten zu reduzieren, womit man einen Vegetationsschlissel
erhdlt. Aus der Literatur sind leider noch keine grdsseren
Anwendungen bekannt.

6.4 Stressanalyse

Ein mégliches Ziel von Rangierungsanalysen besteht in der
Reduktion der Artenzahl. Dies verbessert die Uebersicht iiber
die Daten und erleichtert rechenintensive Analysen. Mit der
Methode RANK haben wir bereits ein Verfahren erdrtert,
welches fir eine reduzierte Vegetationstabelle geeignete Ar-
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ten direkt bezeichnet. Wieviele Arten letztlich weggelassen
werden konnen, bleibt eine offene Frage. Sicher ist, dass
die Datenstruktur durch die Auswahl mdglichst wenig Aen-
derungen erfahren sollte. Die Stressanalyse zeigt einen Weg
auf, durch Artenreduktion auftretende Verzerrungen unter
Kontrolle zu halten (ORLOCI 1978).

Als Beispiel verwenden wir die Vegetationstabelle in Tab.
6.2. Die Arten sollen dabei in der Reihenfolge verwendet
werden, wie dies das Ergebnis der RANK-Analyse als
zweckmdssig erscheinen l&asst. Zur Ermittlung der Aufnahmen-
struktur wird eine Matrix der Euklidschen Distanzen zwischen
den Aufnahmen gerechnet. Werden alle vier Arten
berlicksichtigt, so erhalten wir

0.00 1.00 2.65 3.16

D(1,2,3,4) = 0.00 2.45 2.65
0.00 1.73
0.00

Der untere Teil der Matrix braucht nicht geschrieben zu wer-
den, da die selben d-Werte auftreten wie oben. Lidsst man nun
die letztrangierte Art (Nr. 1) weg, so werden die Distanzen
generell kleiner. Wir berechnen also die neue Matrix und
erhalten:

0 1.00 2.45 2.45

D(2,3,4) = 0 2.24 1.73
0 1.41
0

Da nur die relativen Verdnderungen der Distanzen inter-
essieren, wird zwischen allen von null verschiedenen N(N-
1)/2 Distanzen der Korrelationskoeffizient p(DP;Dp)
berechnet. Im obigen Beispiel gilt
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1.00 1.00

2.65 2.45
D(1,2,3,4)=DP=3.16 D(2,3,4)=Dp=2.45 p(DP;Dp)=0.903

2.45 2.24

2.65 1.73

1.73 1.41

Nun wird auch noch Art 4 weggelassen. Die Aufnahmen weisen
jetzt folgende Distanzen auf:

0 1.00 1.41 2.24
D{2,3) = 0 1.00 1.41
0 1.00

0

Wir berechnen wiederum die Korrelation mit der Aehn-
lichkeitsstruktur des vollstidndigen Datensatzes und erhalten

1.00 1.00
2.65 1.41
D(1,2,3,4) = 3.16 D(2,3) = 2.24 p(DP;Dp) = 0.751
2.45 1.00
2.65 1.41
1.73 1.00

Dass die Korrelation weiter gesunken ist, entspricht durch-
aus den Erwartungen. Es kommt aber auch vor, dass die Struk-
tur mit einem Minimum an Arten hervorragend reproduziert
wird. In unserem Beispiel ist dies der Fall. Nur noch auf
der Art 3 basierend erhdlt man

1.00 0.00
2.65 1.00
D(1,2,3,4) = 3.16 D(3) = 1.00 p(DP;Dp) = 0.906
2.45 1.00
2.65 1.00
1.73 0.00

Dass Art 3 alleine die Struktur so gut zu reproduzieren ver-
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mag, erstaunt weiter nicht. Sie differenziert klar zwischen
den beiden Gruppen (1,2) und (3,4) in der Tabelle und quali-
fizierte sich auch als beste Differentialart bei RANK.
Zusammenfassend ldsst sich der Schluss =ziehen, dass die
Reduktion der Artenzahl die Datenstruktur in unerwarteter
Weise verandern kann. Eine Untersuchung mit Hilfe der
Stressanalyse ist daher empfehlenswert.
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