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5. Gruppierungsanalysen

Bei den Gruppierungsanalysen geht es darum, Stichproben,
also z.B. eine Reihe von Vegetationsaufnahmen, in Gruppen
möglichst ähnlicher Individuen zu unterteilen. Ist eine
solche Analyse erfolgreich, so kann in der Folge anstatt mit
den Eigenschaften der Individuen mit denjenigen der viel
weniger zahlreichen Gruppen weitergearbeitet werden. Dies
erleichtert das Erkennen von Zusammenhängen und
Gesetzmässigkeiten innerhalb eines Datensatzes. In der
Vegetationskunde gibt es Theorien, welche von der Existenz
organismusähnlicher Pflanzengesellschaften und mithin
natürlicher Gruppen ausgehen. Analysen dienen dabei der Erkennung
"echter" Pflanzengesellschaften. Andere Auffassungen gehen
dahin, die Vegetationsdecke der Erde als "Kontinuum" zu
betrachten (GLEASON 1926, 1939). Logisch gefolgert müssten
Gruppierungsanalysen bevorzugte Methoden der Anhänger
diskreter Pflanzengesellschaften sein. Wie nun aber im
folgenden zu zeigen ist, können mit geeigneten Methoden auch
gradientenhafte Datenstrukturen analysiert werden. Die
Resultate sind in jedem Falle vom Datensatz einerseits, vom

Gruppierungsalgorithmus andererseits abhängig.

5.1 Gruppenstruktur

Zunächst sollen verschiedene Möglichkeiten von Gruppenstrukturen
erörtert werden. Der einfachste Fall ist in Abb. 5.1

dargestellt. Diese zweidimensionale Struktur ist kontinuierlich
und einigermassen linear. Die gesamte Wolke von Punkten

kann sinnvollerweise nur als eine einzige natürliche Gruppe
aufgefasst werden. Während gewisse Gruppierungsmethoden
tatsächlich zu diesem Ergebnis kommen, lassen andere eine
weitergehende Unterteilung zu (gestrichelte Trennlinien in
Abb. 5.1). Dabei kann von natürlichen Gruppen nicht die
Rede sein. Eine willkürliche Unterteilung einer an sich
kompakten Punktewolke kann aber sinnvoll und notwendig sein,
wenn eine gradientenhafte Aehnlichkeitsstruktur vorliegt.

Ein wichtiger Spezialfall kontinuierlicher Strukturen ist
die mehrdimensionale Normalverteilung. Um eine solche erken-
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Abb. 5.1 Angenähert multivariat-normalverteilte Stichprobe.
Die Balkendiagramme zeigen die Häufigkeitsverteilungen
bezüglich der Merkmale 1 und 2. Gestrichelt ist eine
Möglichkeit zur Unterteilung angedeutet.
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nen zu können, werden alle Achsen in Klassen unterteilt und
die Anzahl der Individuen pro Klasse in Balkendiagrammen
dargestellt (Abb. 5.1). Die so entstehenden Häufigkeitsverteilungen

müssen bezüglich jeder Dimension durch eine
Glockenkurve angenähert werden können. In Vegetationstabellen

tritt eine solche Struktur fast ausschliesslich bei
Artvergleichen auf, beim Vergleich von Aufnahmen dagegen fast
nie. Aus diesem Grunde sind zur Gruppierung von Arten und
Aufnahmen gelegentlich verschiedene Methoden zu verwenden.

Recht häufig sind Strukturen, wie sie in Abb. 5.2, A,
dargestellt sind (vgl. auch BARTEL 1974, S. 83). Sie sind
kontinuierlich, oft ausgesprochen länglich und gekrümmt. Bei
deren Analyse sind all jene Methoden ungeeignet, welche
speziell mehrdimensional normalverteilte Gruppen
auseinanderhalten können. Wirkungsvoller sind hier Methoden,
die mehr oder weniger willkürliche, eher kompakte Gruppierungen

herbeiführen.

Abb. 5.2, B, zeigt den Fall disjunkter "natürlicher" Gruppen.

Methoden, die solche Strukturen aufzudecken vermögen,
gibt es zahlreiche, doch können viele davon durch
intermediäre Individuen (dünner Pfeil in Abb. 5.2, B)
gestört werden. Aberrante Individuen (dicker Pfeil) lassen
sich dagegen leicht aufspüren und werden in der Regel als
eigene Gruppe betrachtet.

Damit ist das Spektrum in der Pflanzensoziologie
auftretender Strukturen noch nicht erschöpft. Fast immer zeigt
es sich, dass irgendwelche Kombinationen der in Abb. 5.2, A

und B, gezeigten Fälle vorliegen. Abb. 5.2, C, ist ein
Beispiel. In der Tat gibt es Methoden, die auch diese
Konfiguration als aus drei Gruppen bestehend erkennt.

Die hier gezeigten Beispiele lassen die Vermutung aufkommen,
dass die visuelle Gruppierung einer Stichprobe viel rascher
und sicherer sein könnte, als eine numerische. SPäTH (1977)
erwähnt, dass dies für ein- und zweidimensionale Strukturen
zutrifft. Liegen jedoch drei und mehr Dimensionen vor, so
werden numerische Verfahren rasch überlegen. Bei
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Abb. 5.2 Verschiedene Gruppenstrukturen. A: Langgezogene,
gekrümmte Gruppe. B: Zwei getrennte Gruppen mit
intermediärem (dünner Pfeil) und aberrantem Individuum
(fetter Pfeil). C: Zwei quadratische und eine langgezogene
Gruppe.
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vegetationskundlichen Anwendungen mit oft hundert und mehr
Dimensionen - nämlich Arten - bilden sie den einzigen Weg zu
nachvollziehbaren Ergebnissen.

5.2 Heuristische Verfahren

Heuristische Verfahren erfüllen die Qualitätsanforderungen
nicht, welche normalerweise an multivariate Verfahren
gestellt werden. In der Regel basieren sie nicht auf einer
vollständigen Aehnlichkeitsmatrix. Damit kann, streng genommen,

die wirkliche Gruppenstruktur einer Stichprobe gar
nicht vollständig erfasst werden. Vorteile sind dagegen ein
geringer Rechen- und Speicheraufwand. Tausende von
Vegetationsaufnahmen lassen sich rasch und leicht provisorisch
gruppieren. Beispiel eines iterativen Verfahrens dieser Art
ist TABORD (VAN DER MAAREL et al. 1978), welches
Vegetationstabellen grösseren Ausmasses zu strukturieren
erlaubt.

Einen typischen, ausgesprochen einfachen Vertreter
heuristischer Verfahren finden wir bei ANDERBERG (1973) und SPäTH

(1977). Er wird als LEADER-Algorithmus bezeichnet, lehnt
sich stark an ein intuitives Vorgehen an und dient bei VAN

DER MAAREL et al. (1978) als erstes grobes Ordnungsverfahren.

Als Aehnlichkeitsmass wird oft die Euklidsche Distanz

verwendet. Es gelte folgende Notation:

i i 1,...,n ist die momentan zu verarbeitende Aufnahme
bei einem Total von n;

rho ist eine vom Benutzer zu definierende Distanz. Sie be¬

grenzt die in einer Gruppe auftretenden Unterschiede
zwischen den Aufnahmen;

NMAX ist die maximal erlaubte Anzahl Gruppen.

Die LEADER-Methode verläuft sodann wie folgt:
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Abb. 5.3 Verschiedene Lösungen des Leader-Algorithmus. A und
B. ergeben sich durch unterschiedliche Reihenfolge in der
Verarbeitung der Aufnahmen. Lösung C resultiert, wenn der
maximal zulässige Durchmesser der Gruppen (rho) reduziert
wird.

Tabelle 5.1

Beispiel für die Durchführung der Assoziationsanalyse (A).
Aufbau der Kontingenztafel zur Berechnung von Chiquadrat
zwischen den Arten 1 und 2 (B).

B

Art Aufna hme
1 2 3 4 5

1 1 1 0 0 0

2 1 1 1 0 0

3 1 1 1 1 0

4 0 0 0 1 1

Art 1

Art2
+ -

+ a=2 b=1 a+b=3

- c=0 d=2 c+d=2

a+c=2 b+d=3 N 5
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Das Resultat der Analyse ist stark von der Wahl von rho
abhängig. Setzt man z.B. rho 1.5, so erhält man die
visuell leicht als optimal erkennbare Lösung mit den Gruppen
(1,2), (3), (4,5). Für das LEADER-Verfahren gibt es
zahlreiche Verbesserungsvorschläge und Alternativen (ANDERBERG

1973), doch sind die Resultate immer von der
ursprünglichen Reihenfolge der Aufnahmen abhängig. Heuristische

Verfahren werden ihrer Einfachheit wegen eingesetzt,
um sehr grosse vegetationskundliche Datensätze zu
strukturieren. Das Beispiel in Abb. 5.3 zeigt deren Grenzen
auf. Eine provisorische Gliederung ist aber doch zu
erzielen. Sie kann in einem anschliessenden Schritt korrigiert
und optimiert werden (z.B. im Programm CLUSLA, LOUPPEN und
VAN DER MAAREL (1979)).

5.3 Teilungsverfahren

5.3.1 Assoziationsanalyse

Bei Teilungsverfahren wird versucht, für die Gesamtstichprobe

von Individuen eine möglichst sinnvolle Unterteilung
zu finden. Als typischer Vertreter soll zuerst die
Assoziationsanalyse dargestellt werden, die von WILLIAMS und
LAMBERT (1959) publiziert und später mehrfach variiert wurde.
Es handelt sich um ein monothetisches Verfahren, d.h. jede
Unterteilung wird nur aufgrund der Gegenwart oder des
Fehlens einer einzelnen Art durchgeführt. Immerhin wird zur
Auswahl dieser Art die Gesamtähnlichkeitsstruktur der
Vegetationstabelle berücksichtigt. Ausgangspunkt bildet eine
Aehnlichkeitsmatrix S der Arten mit den Elementen

2
S. X. ./N.il 13

Das Chiquadrat berechnet sich wie in Kapitel 4.5 gezeigt. N

ist die Anzahl Aufnahmen der Vegetationstabelle, die Division

durch N hat daher auf das Ergebnis keinen Einfluss.
Anhand von Tabelle 5.1, A, soll die Berechnung gezeigt werden.
Für die Arten 1 und 2 konstruiert man die Kontingenztafel
der Tabelle 5.1, B. Daraus ergibt sich
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(ad - be)2 N (4 - 0)2 5 80
X (1,2) — 2.22

(a+b)(a+c)(c+d)(b+d) 3*2*2*3 36

In der Originalversion der Assoziationsanalyse wird die
Unabhängigkeit der Arten - unbesehen von Voraussetzungen der
schliessenden Statistik - anhand einer X -Tabelle auf Signifikanz

getestet (Anzahl Freiheitsgrade df 1). Da N in
unserem Beispiel sehr klein ist, musste x dazu erst korrigiert

werden. Entsprechende Formeln finden sich bei MüLLER-
DOMBOIS und ELLENBERG (1974) und PIELOU (1977). Nicht
signifikante Werte werden meist durch null ersetzt. Als
Element der S - Matrix erhalten wir zum Beispiel

S(1,2) x2(1,2)/N 2.22/5 0.44

In gleicher Weise werden nun die andern Elemente berechnet.
Man setzt die Werte der Diagonalen gleich null und erhält

0 0.44 0.166 0.44
S 0.44 0 0.375 1 .00

0.166 0.375 0 0.375
0.44 1.00 0.375 0

2
Wie in Kapitel 4.5 erwähnt, lasst sich x in relativierter
Form als Korrelationskoeffizient für die Kontingenztafel
verstehen (V - Wert). Um nun diejenige Art zu finden, die
den grössten gemeinsamen Zusammenhang mit allen andern Arten
aufweist, müssen nur die Kolonnen (oder Zeilen) in S

aufaddiert zu werden. Wir erhalten

S 1 .046, 1.815, 0.916, 1.815

Das maximale Chiquadrat weisen Art 2 und 4 auf. Anhand
ihrer Gegenwart oder Abwesenheit in den Aufnahmen wird
Tabelle 5.1, A, unterteilt in die Gruppen (1,2,3) und (4,5).
Das Verfahren geht weiter, indem beide der neu gebildeten
Gruppen in derselben Weise analysiert werden. Da Art 2

sicher zu keiner weiteren Unterteilung zu verwenden ist,
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kann sie (und im vorliegenden Fall auch Art 4) weggelassen
werden. Die beiden neuen S-Matrizen, welche zur Suche der
nächsten zwei Trennarten dienen, haben deshalb immer eine um
1 verminderte Dimension. Beim vorliegenden Beispiel ist es
jedoch sinnvoll, die Analyse hier abzubrechen.

Die Gruppen der Assoziationsanalyse sind streng hierarchisch
gegliedert. Weil sie auf eindeutigen Trennarten beruhen,
lassen sie sich sehr leicht identifizieren. Für eine
einfache Unterteilung wird eine einzige Art benötigt, für vier
Gruppen mindestens zwei Arten, für acht Gruppen mindestens
drei Arten usw. Da aber eine einzige Art über die
Gruppenzugehörigkeit entscheidet, ist das Verfahren stark von
Zufälligkeiten abhängig. Wie zu erwarten ist, befriedigt
die so entstehende Struktur pflanzensoziologisch kaum,
krasse Fehlklassifikationen wegen unerwartet auftretender
oder abwesender Arten sind die Regel. Günstiger liegen die
Verhältnisse, wenn statt der Artmächtigkeiten Koordinaten
aus Hauptkomponentenanalysen verwendet werden (NOY MEIR
1973). Auf diese Weise entfällt jedoch die Möglichkeit
einfacher Identifikation. Um pflanzensoziologische Einheiten
trotzdem mit Hilfe weniger Arten charakterisieren zu können,
bieten sich Rangierungsmethoden an (vgl. dazu Kap. 6 sowie
HILL (1979b)).

Die Assoziationsanalyse entspricht ihrer Idee nach dem

Konzept der Charakter- und Differentialarten des Systems
Braun-Blanquet. Wohl aus diesem Grunde hat sie einen
bemerkenswerten Bekanntheitsgrad erlangt.

5.3.2 Gridanalyse

Die Gridanalyse versucht, die hauptsächlichsten Nachteile
der Assoziationsanalyse zu vermeiden (WILDI 1979). Aus
diesem Grunde soll nicht eine, sondern es sollen mehrere
Dimensionen gleichzeitig zur Abgrenzung von Gruppen beigezogen

werden. Gesucht werden echte Gruppen, welche einer
lokalen Anhäufung ähnlicher Individuen entsprechen (Noda im
Sinne von POORE 1955). Wir verfolgen den Algorithmus anhand
von Abb. 5.4. Der Uebersichtlichkeit halber wird nur ein
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2. Achse

15

10-

5-

1 2 3 4

5 6 7 8

A

A

IX1» •
g 10 1 • n 12
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13

¦
14 15 16

10 15
-I *~
20 1. Achse

Abb. 5.4. GRID-Analyse im zweidimensionalen Fall.
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zweidimensionaler Fall dargestellt.

x.. sei die Koordinate bezüglich der i-ten Achse i
1,...,p ; Achsen können Arten, Standortsmessungen, Ordina-
tionsachsen usw. sein) der Aufnahme j, j 1,...,n. Es sind
folgende Operationen durchzuführen:

1. Für jede Dimension ist der Bereich 8. festzulegen.
8 max(x - min(x j 1,.,i ,i

8 max(x - min(x j 1, ,n

In Abb. 5.4 ist 8 15, 8 10.

Bestimme ->max max (8 ,...,8 In Abb. 5.4 ist
8 8, 15. P

max 1

Lege ein p-dimensionales Netz mit der Seitenlänge von
mindestens 8 über den Aufnahmeraum, so dass alle
Individuen innerhalb des Netzes liegen. Die
Auflösungskraft wird durch die Anzahl Unterteilungen jeder
Dimension bestimmt (m 4 in Abb. 5.4).

pIn den entstandenen m =16 Zellen werden die Individuen

gezählt. Wir erhalten

Zelle Individuen
6 3

8 2

11 1

13 1

5. Die individuenreichste, noch nicht verarbeitete Zelle
(Nr. 6) wird geprüft, ob sie ein lokales Dichtemaximum
enthält, also Zentrum einer echten Gruppe darstellt.
Dazu wird kontrolliert, ob nicht eine der Nachbarzellen
(2,5,7,10) bereits ein Zentrum enthält. Im Beispiel
bleibt Zelle Nr. 6 Zentrum der ersten Gruppe.
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6. Weil das p-dimensionale Netz willkürlich in den Raum

gelegt wurde, wird nun die genauere Lage der Gruppe 1

gesucht. Dazu ist die aktuelle Zelle in Richtung des
Schwerpunkts der in ihr enthaltenen Individuen zu
verschieben (Pfeil, fett ausgezogenes Quadrat). Enthält
die verschobene Zelle mehr Individuen, so wird weiter
geschoben. In Abb. 5.4 kommt ein Individuum in Zelle 11

dazu, so dass das erste Gruppenzentrum durch 4 Individuen

repräsentiert wird.

7. Nun wird die Zelle mit der nächstniedrigeren Anzahl In¬
dividuen verarbeitet (Schritte 5 und 6). Dies wäre nach
dem ersten Durchgang Zelle 8.

Der Prozess wird so lange fortgesetzt, bis alle Zellen
abgearbeitet sind. Einzelindividuen können den Status einer
unabhängigen Gruppe erhalten, oder aber dem nächstgelegenen
Gruppenzentrum zugeordnet werden. In Abb. 5.4 erhalten wir
somit 3 Gruppen, erkennbar an den unterschiedlichen
Symbolen.

Die GRID-Analyse liefert natürliche, nicht hierarchische
Gruppen. Dies allerdings nur, wenn die Auflösung zweckmässig
gewählt wird. Man sollte daher zuerst mit einer niedrigen
Zellenzahl (d.h. niedriger Auflösung) beginnen. Steigt die
Gruppenzahl mit stetig wachsender Zellenzahl sprunghaft an,
so sind vermutlich echte Gruppen halbiert worden. Im weitern
ist zu bemerken, dass die Zahl der Dimensionen aus Gründen
der Uebersichtlichkeit nicht zu gross gewählt werden sollte.
Das Verfahren hat sich bewährt, wenn statt einfacher
Artmächtigkeiten aus Hauptkomponentenanalysen stammende Koordinaten

verwendet werden (WILDI 1979).

Die GRID-Analyse eignet sich zum Auffinden diskreter Gruppen.

Sie hat gegenüber anderen Verfahren den Vorteil, dass
lokale Verdichtungen von Punkten als Gruppenzentren
interpretiert werden, sodass intermediäre Punkte (vgl. Abb. 5.2)
nicht störend wirken. Ist der zu untersuchende Datensatz
genügend gross, so können Gruppen fast beliebiger Form
entdeckt werden. Beschränkungen ergeben sich aus der prak-



-109-

tisch begrenzten Anzahl von Dimensionen, die sich noch
sinnvoll bearbeiten lassen. Die GRID-Analyse ist deshalb
nicht geeignet, um strukturelle Details zu untersuchen.

5.4 Agglomerative Verfahren

Bei dieser Kategorie von Gruppierungsverfahren werden
schrittweise Individuen - später Gruppen von Individuen - zu
neuen Gruppen zusammengeschlossen. Dabei können Dendrogramme
gebildet werden. Diese dienen der übersichtlichen Darstellung

von Resultaten hierarchischer Gruppierungsmethoden
divisiver oder agglomerativer Art. Die Sachverhalte lassen
sich anhand der einfachsten agglomerativen Methode
demonstrieren, nämlich der Single Linkage Analysis (ANDERBERG

1973).

5.4.1 Single Linkage Analysis

Das Prinzip der Single Linkage Analysis lässt sich am

univariaten Fall verfolgen. Abb. 5.5, A zeigt ein Beispiel.
Jede der 4 Aufnahmen wird charakterisiert durch ein einziges
Merkmal, entsprechend den folgenden Werten:

Merkmal Aufn. 1 2 3 4

1 2 4 7 8

Im ersten Schritt muss nun eine Aehnlichkeitsmatrix
berechnet werden. Die Euklidsche Distanz hat gegenüber
andern Massen den Vorteil, dass sie direkt aus Abb. 5.5, A,
herausgelesen werden kann. Für d.. 2 erhält man 2, für d

3, d 1 usw. Die Gesamtähnlichkeitsstruktur ergibt: '
3,4

0 2 5 6

D 2 0 3 4

5 3 0 1

6 4 10
Die Gruppierung erfolgt nach einer einzigen Vorschrift: Es

sind stets jene 2 Gruppen zu einer neuen Gruppe zusammen-
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Complete Linkage Analysis (C), Average Linkage Analysis (D)
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zufassen, welche sich bezüglich ihrer ähnlichsten Individuen
am nächsten stehen. Zu Beginn der Analyse finden wir in Abb.
5.5 4 Gruppen, die aus je einem einzigen Individuum
bestehen. Der grafischen Darstellung, aber auch der
Distanzmatrix entnehmen wir, dass A3 und A4 am ähnlichsten sind
und mit d 1.0 zu einer neuen Gruppe zusammengeschlossen
werden können. Diese soll zweckmässigerweise die Nummer 5

erhalten. Im Dendrogramm (Abb. 5.5, B) sind die beiden
Aufnahmen als erste aufgezeichnet und durch einen Bügel der
Höhe d 1 miteinander verbunden. Der zweite Zusammenschluss
gestaltet sich komplizierter. Zu prüfen sind nun noch 3

Distanzen, nämlich d- c-2 5 un<^ ^1 5* *l 2 kann sofort der
Distanzmatrix entnommen werden. Für d-) 5 gilt bei der Single
Linkage Analysis, dass der Wert von d-| 3 5 gewählt werden
muss, da A3 der Gruppe 1 näher steht als A4. Entsprechend
gilt d d 3. Zusammengefasst erhält man:

d1 2
2

d ' 5

ri1'5 Hd2,5 3-

Damit werden A1 und A2 als nächste Gruppe, Nr. 6, auf dem

Niveau d 2 zusammengeschlossen. Nun müssen noch Gruppe 5

und 6 zusammengeschlossen werden. Um das Niveau des
Zusammenschlusses zu finden, ist die gesamte Distanzmatrix zu
durchsuchen. Für d kommen folgende Werte in Frage:5,6

d1 4
6

d2' 3

4,4 4

Als nächststehende Nachbarn der beiden Gruppen qualifizieren
sich A2 und A3 mit d2 3 3. Auf diesem Niveau wird in Abb.
5.5, B die neue Gruppe 7 gebildet. Damit ist die Analyse
abgeschlossen. Ihr Resultat ist ein Dendrogramm, welches
über die Gruppenstruktur der Stichprobe (A1,A2,A3,A4) Auf-
schluss gibt. Meist besteht das Ziel der Analyse darin, eine
bestimmte Anzahl von Gruppen, sagen wir 2, zu generieren. Zu
diesem Zwecke ist das Dendrogramm zu zerschneiden, und zwar
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zwischen d 2 und d 3 (gestrichelte Linie in Abb. 5.5,
B). Es resultieren (A3,A4) und (A1,A2) als Gruppen.

Die Anwendungsmöglichkeiten der Single Linkage Analysis
sollen beim Vergleich verschiedener Methoden erörtert werden
(Kap. 5.4.5). Hier ist noch zu vermerken, dass es zahlreiche
Varianten und Erweiterungen gibt. JANCEY (1974) schlägt eine
Methode vor, bei welcher die Anzahl resultierender Gruppen
vorzugeben ist. Kann aufgrund der Stichprobenstruktur eine
Lösung mit natürlichen Gruppen gefunden werden, so erfolgt
die Unterteilung des Dendrogrammes automatisch. Andernfalls
wird die Zahl der Gruppen durch den Algorithmus selbst
verändert.

Eine herausragende Rolle spielt die Single Linkage Analysis
in der Geographie, und zwar vor allem im zweidimensionalen
Fall zur Lösung des "Nächster Nachbar"- Problems. Abb. 5.6
zeigt eine Karte mit 5 Ortschaften. Diese sind so
miteinander zu verbinden, dass

1. jeder Punkt mindestens einmal verbunden wird;
2. keine Schleifen auftreten;
3. die Summe aller Verbindungsstrecken minimal ist.
Nach GOWER und ROSS (1969) liefert die Single Linkage
Analysis unmittelbar die Lösung. Das so entstehende Gebilde
(Abb. 5.6) heisst Minimalbaum. Es kann derart unterteilt
werden, dass bei pflanzensoziologischen Datensätzen
ausgesprochene Gradientenstrukturen aufzufinden sind (KUHN

1983).

5.4.2 Complete Linkage Analysis

Die Complete Linkage Analysis ergibt sich durch ganz geringe
Aenderung des Single Linkage Algorithmus. Die Vorschrift
lautet: Es sind stets jene 2 Gruppen zu einer einzigen,
neuen Gruppe zusammenzufassen, welche sich bezüglich ihrer
unähnlichsten Individuen am nächsten stehen. Am Beispiel der
Abb. 5.5, C, soll der Ablauf verfolgt werden. Der erste
Schritt (Gruppe 5) verläuft dabei genau gleich wie bei der
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Ortschaft A

Ortschaft D I //
Ortschaft E

Ortschaft B

Ortschaft C

Abb. 5.6 Lösung des Problems "nächster Nachbar"
mensionalen (geografischen) Falle.

im zweidi-
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Single Linkage Analysis, was sich auch im Dendrogramm
niederschlägt. Auch im zweiten Schritt sind wieder die 3

Distanzen d-| 2» ^1 5 un<ä <3p c zu prüfen, d. 2 kann direkt an
der Distanzmatrix abgelesen werden. Für d. _ ist im Gegensatz

zur Single Linkage Analysis der Maximalabstand massgebend,

nämlich d. « 6. Entsprechend gilt neu d d
1 / ^ 2,52,44. Zusammenfassend gilt:

d1 2 ¦ 2

d ' 6

d2,5 4

A1 und A2 werden zur Gruppe 6 zusammengeschlossen, und zwar
auf dem Niveau d 2. Für die Bildung der Gruppe 7 müssen
wiederum die Maximalabstände gesucht werden. Wir finden

d5,6 maX (d1,3' d1,4' d2,3' d2,4>

max (5,6,3,4) d 6
1/4

Dieser Wert wird zur Vollendung des Dendrogrammes in Abb.
5.5, C, verwendet.

5.4.3 Average Linkage Analysis

Im Vergleich zu den eben beschriebenen Methoden handelt es
sich dabei um eine mittlere, gemässigte Lösung. Statt der
Maximal- oder Minimaldistanz zwischen Individuen
verschiedener Gruppen, wird als Kriterium für den Zusammen-
schluss die mittlere Distanz gewählt. So beträgt dann der
massgebende Abstand zwischen den Gruppen 2 (A2) und 5

(A3,A4) d2 5 3.5, wie aus Abb. 5.5, A sofort ersichtlich
wird. Alle übrigen Operationen sind mit denjenigen der schon
beschriebenen Verfahren identisch. Für den Leser, der die
Analyse nachvollziehen will, wird in Abb. 5.5, D das
resultierende Dendrogramm gegeben.
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5.4.4 Minimalvarianz-Analyse

Im Gegensatz zu den bisher besprochenen Methoden beruht die
Minimalvarianz - Analyse (ORLOCI 1967) auf den Streuungsverhältnissen

der Gruppen. Der Zusammenschluss bestehender
Gruppen zu grösseren, neuen, erfolgt stets so, dass die
gruppeninterne Varianz möglichst wenig zunimmt. Das
Verfahren beruht mithin auf den Konzepten der Varianzanalyse.

Wir beginnen die Betrachtung mit der Definition der
gruppeninternen Varianz Q (vergleiche dazu auch die Ausführungen
in Kapitel 6.3). Diese ist gleich der Summe der quadrierten
Abstände jedes Gruppenindividuums zum Gruppenzentrum:

p ng - 2
Q S (2y (x..-x.)

g i=1 j=1
1D X

Darin ist x.. die Koordinate (Artmächtigkeit) der Art i in
der Aufnahme j, ng die Anzahl Aufnahmen der Gruppe g, x. der
Mittelwert aller Arten in g und p die Anzahl Arten. Q^ lässt
sich rascher berechnen aus der Matrix der quadrierten
Distanzen:

Q - 2 d2.
g idn Kj J

g

Den formalen Nachweis für diesen Zusammenhang zeigt z.B.
PIELOU (1977), S. 319 f. 2 für i<j bedeutet, dass alle
n *(n -1)/2 Elemente der D Matrix, welche sich auf die In-y ydividuen der Gruppe g beziehen, summiert werden. Verwenden
wir wieder das Beispiel aus Abb. 5.5, so müssen die Distanzen

zuerst quadriert werden:

0 4 25 36
D 4 0 9 16

25 9 0 1

36 16 10
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Die linke untere Hälfte der Matrix ist zu vernachlässigen,
sodass jedes Element nur einfach gezählt wird. Als Beispiel
erhalten wir für

Q-, 1/3 (9 + 16 + 1) 26/3 8 2/3.2,3,4

Q2 3 4 ist die interne Varianz der Gruppe (2,3,4). ORLOCIs

(1967) Kriterium zur Fusion zweier Gruppen A und B lautet
nun, dass die Zunahme der Varianz Q(A,B) minimal sein soll,
wobei gilt

Q(A,B) Q(A+B) - Q(A) - Q(B).

Q(A+B) ist die Varianz der neu zu bildenden Gruppe, Q(A) und
Q(B) sind diejenigen der alten Gruppen. Damit ist Q(A,B)
jener Betrag, um welchen die Varianz beim Zusammenschluss
von A und B vermehrt wird.

Für den ersten Zusammenschluss brauchen bloss die Elemente
der D -Matrix nach dem kleinsten Wert abgesucht zu werden.
Als Minimum qualifiziert sich

Q(3,4) 1/2 (1) 0,5 Q(5)

Für den nächsten Zusammenschluss müssen zuerst alle Q(A,B)-
Werte berechnet werden. Man erhält:

Q(1,2) 1/2 (4) 2

1

Q(1,5) (d 2+d 2+d3 2, -Q(1) -Q(5)
Vn5
1/3 (25+36+1) - 0 - 1/2 20 2/3 - 1/2 20 1/6

Q(2,5) 1/3 (9+16+1) -0-1/2=82/3- 1/2 8 1/6

In der Matrix-Schreibweise gilt
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0 2 20 1/6
Q 2 0 8 1/6

20 1/6 8 1/6 0

Als neue Gruppe 6 qualifizieren sich die Individuen (1,2)
mit Q 2. Schliesslich ist für Gruppe 7 Q(5,6) zu
berechnen:

Q(5,6) 1/4 (4+25+36+9+16+1) -1/2 -2 20 1/4

Werden die eben gefundenen Q-Werte auf der y-Achse
aufgetragen, so erhält man das Dendrogramm in Abb. 5.5, E.

5.4.5 Besonderheiten agglomerativer Verfahren

Beim Vergleich der hier gezeigten Methoden anhand des
kleinen 4-Punkte Beispiels (Abb. 5.5) ist bemerkenswert,
dass das Resultat stets gleich ausfällt. In der Tat kann
generell gesagt werden, dass die zu erwartenden Unterschiede
bei den meisten Datenstrukturen klein sind. In der
Anfangsphase funktionieren alle vier besprochenen Methoden
gleich: Zuerst werden die nächsten Nachbarn zu Zweiergruppen
zusammengefasst. Dies ist auch der konzeptionell schwächste
Teil agglomerativer Verfahren. Die Lage einzelner Punkte,
welche stets gewissen Zufälligkeiten unterworfen ist,
entscheidet wesentlich über das Resultat. Erst bei
steigender Individuenzahl pro Gruppe treten die
Verschiedenheiten deutlicher hervor. Die wesentlichsten
Unterschiede betreffen:

a) Die Tendenz zur Kettenbildung
Es handelt sich um eine typische Eigenschaft der Single
Linkage Analysis. Gradienten bildende, beliebig lange Reihen
von Aufnahmen können als eigenständige Gruppen erkannt werden.

Gerade gegenteilig verhält sich die Complete Linkage
Analysis. Bei ihr wachsen die Gruppen fast gleichförmig um

die zu Beginn gefundenen Zentren. Sie unterteilt
langgestreckte Reihen in mehrere, gedrungene Gruppen und eignet
sich damit besser für Daten, die aus natürlichen Gruppen
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3 4

Abb. 5.7 Unterschiede zwischen verschiedenen agglomerativen
Clusterverfahren am Beispiel der Aehnlichkeitsstruktur von
Abb. 5.2, C: Gruppenbildung von Single Linkage Analysis
(geschlossene Linie), Gruppenbildung von Complete Linkage
Analysis (gestrichelt).

A

• •

• •- » •

A

• •

Abb. 5.8 Durch Average Linkage- und Minimalvarianzanalyse
verschieden behandelte Fälle eines Gruppenzusammenschlusses.
Für die Average Linkage Analyse sind die Zusammenschlüsse
links und rechts gleich günstig. Aus der Sicht der
Minimalvarianzanalyse erhält derjenige rechts den Vorzug.
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der Zusammenschluss rechts wegen der kleineren Varianz die
günstigere Lösung sein. Das ist für die meisten Anwendungen
sinnvoll. Je mehr Punkte an einer Gruppe beteiligt sind,
desto eher kann davon ausgegangen werden, dass es sich nicht
um einen Artefakt handelt und dass sie deshalb eigenständig
ist. Erwartet man dagegen in einem Datensatz Ausreisser und
möchte diese sicher von echten Gruppen abgetrennt haben, so
ist die Complete Linkage Analyse angemessen.


	Gruppierungsanalysen

