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5. Gruppierungsanalysen

Bei den Gruppierungsanalysen geht es darum, Stichproben,
also z.B. eine Reihe von Vegetationsaufnahmen, in Gruppen
moéglichst dhnlicher Individuen zu unterteilen. 1Ist eine
solche Analyse erfolgreich, so kann in der Folge anstatt mit
den Eigenschaften der Individuen mit denjenigen der viel
weniger zahlreichen Gruppen weitergearbeitet werden. Dies
erleichtert das Erkennen von Zusammenhdngen und Gesetz-
mdssigkeiten innerhalb eines Datensatzes. In der
Vegetationskunde gibt es Theorien, welche von der Existenz
organismusdhnlicher Pflanzengesellschaften und mithin natilir-
licher Gruppen ausgehen. Analysen dienen dabei der Erkennung
"echter" Pflanzengesellschaften. Andere Auffassungen gehen
dahin, die Vegetationsdecke der Erde als "Kontinuum" zu be-
trachten (GLEASON 1926, 1939). Logisch gefolgert missten
Gruppierungsanalysen bevorzugte Methoden der Anhidnger
diskreter Pflanzengesellschaften sein. Wie nun aber im fol-
genden zu zeigen ist, konnen mit geeigneten Methoden auch
gradientenhafte Datenstrukturen analysiert werden. Die
Resultate sind in jedem Falle vom Datensatz einerseits, vom
Gruppierungsalgorithmus andererseits abhingig.

5.1 Gruppenstruktur

Zunachst sollen verschiedene Mdglichkeiten von Gruppenstruk-
turen erd6rtert werden. Der einfachste Fall ist in Abb. 5.1
dargestellt. Diese zweidimensionale Struktur ist kontinuier-
lich und einigermassen linear. Die gesamte Wolke von Punkten
kann sinnvollerweise nur als eine einzige natiirliche Gruppe
aufgefasst werden. Wdahrend gewisse Gruppierungsmethoden
tatsdchlich zu diesem Ergebnis kommen, lassen andere eine
weitergehende Unterteilung 2zu (gestrichelte Trennlinien in
Abb. 5.1). Dabei kann von natilirlichen Gruppen nicht die
Rede sein. Eine willkiirliche Unterteilung einer an sich kom-
pakten Punktewolke kann aber sinnvoll und notwendig sein,
wenn eine gradientenhafte Aehnlichkeitsstruktur vorliegt.

Ein wichtiger Spezialfall kontinuierlicher Strukturen ist
die mehrdimensionale Normalverteilung. Um eine solche erken-
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Abb. 5.1 Angendhert multivariat-normalverteilte Stichprobe.
Die Balkendiagramme zeigen die Hdufigkeitsverteilungen
beziliglich der Merkmale 1 wund 2. Gestrichelt ist eine
Moglichkeit zur Unterteilung angedeutet.
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nen zu kénnen, werden alle Achsen in Klassen unterteilt und
die Anzahl der 1Individuen pro Klasse in Balkendiagrammen
dargestellt (Abb. 5.1). Die so entstehenden Haufigkeitsver-
teilungen missen beziliglich jeder Dimension durch eine
Glockenkurve angendhert werden kdénnen. In Vegetationstabel-
len tritt eine solche Struktur fast ausschliesslich bei Art-
vergleichen auf, beim Vergleich von Aufnahmen dagegen fast
nie. Aus diesem Grunde sind zur Gruppierung von Arten und
Aufnahmen gelegentlich verschiedene Methoden zu verwenden.

Recht h3dufig sind Strukturen, wie sie in Abb. 5.2, A, dar-
gestellt sind (vgl. auch BARTEL 1974, S. 83). Sie sind kon-
tinuierlich, oft ausgesprochen ldnglich und gekrimmt. Bei
deren Analyse sind all Jjene Methoden ungeeignet, welche
speziell mehrdimensional normalverteilte Gruppen aus-
einanderhalten kodnnen. Wirkungsvoller sind hier Methoden,
die mehr oder weniger willkiirliche, eher kompakte Gruppier-
tingen herbeifiihren.

Abb. 5.2, B, zeigt den Fall disjunkter "natlirlicher" Grup-
pen. Methoden, die solche Strukturen aufzudecken vermdgen,
gibt es zahlreiche, doch konnen viele davon durch
intermedidre Individuen (dunner Pfeil in Abb. 5.2, B)
gestort werden. Aberrante Individuen (dicker Pfeil) lassen
sich dagegen 1leicht aufspiren und werden in der Regel als
eigene Gruppe betrachtet.

Damit ist das Spektrum in der Pflanzensoziologie auf-
tretender Strukturen noch nicht erschépft. Fast immer zeigt
es sich, dass irgendwelche Kombinationen der in Abb. 5.2, A
und B, gezeigten Fadlle vorliegen. Abb. 5.2, C, ist ein
Beispiel. In der Tat gibt es Methoden, die auch diese Konfi-
guration als aus drei Gruppen bestehend erkennt.

Die hier gezeigten Beispiele lassen die Vermutung aufkommen,
dass die visuelle Gruppierung einer Stichprobe viel rascher
und sicherer sein kdnnte, als eine numerische. SPATH (1977)
erwahnt, dass dies fiir ein- und zweidimensionale Strukturen
zutrifft. Liegen jedoch drei und mehr Dimensionen vor, so
werden numerische Verfahren rasch liberlegen. Bei
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Abb. 5.2 Verschiedene
gekriimmte Gruppe. B: Zwei getrennte Gruppen mit
intermedidrem (diinner Pfeil) und aberrantem Individuum
(fetter Pfeil). C: Zwei quadratische und eine langgezogene
Gruppe.

Gruppenstrukturen., A: Langgezogene,
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vegetationskundlichen Anwendungen mit oft hundert wund mehr
Dimensionen - namlich Arten - bilden sie den einzigen Weg zu
nachvollziehbaren Ergebnissen.

5.2 Heuristische Verfahren

Heuristische Verfahren erflillen die Qualitdtsanforderungen
nicht, welche normalerweise an multivariate Verfahren
gestellt werden. In der Regel basieren sie nicht auf einer
vollstandigen Aehnlichkeitsmatrix. Damit kann, streng genom-
men, die wirkliche Gruppenstruktur einer Stichprobe gar
nicht vollstdndig erfasst werden. Vorteile sind dagegen ein
geringer Rechen- und Speicheraufwand. Tausende von Vegeta-
tionsaufnahmen lassen sich rasch und leicht provisorisch
gruppieren. Beispiel eines iterativen Verfahrens dieser Art
ist TABORD ( VAN DER MAAREL et al. 1978), welches
Vegetationstabellen grosseren Ausmasses zu strukturieren er-
laubt.

Einen typischen, ausgesprochen einfachen Vertreter heuris-
tischer Verfahren finden wir bei ANDERBERG (1973) und SPATH
(1977). Er wird als LEADER-Algorithmus bezeichnet, lehnt
sich stark an ein intuitives Vorgehen an und dient bei VAN
DER MAAREL et al. (1978) als erstes grobes Ordnungsver-
fahren. Als Aehnlichkeitsmass wird oft die Euklidsche Dis-
tanz verwendet. Es gelte folgende Notation:

i i=1,...,n ist die momentan zu verarbeitende Aufnahme
bei einem Total von n;

rho 1ist eine vom Benilitzer zu definierende Distanz. Sie be-
grenzt die in einer Gruppe auftretenden Unterschiede
zwischen den Aufnahmen;

NMAX ist die maximal erlaubte Anzahl Gruppen.

Die LEADER-Methode verlauft sodann wie folgt:
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1. Die erste Aufnahme des Datensatzes (i=1) wird erste
Aufnahme (Leitaufnahme) der ersten Gruppe.

2 i wird um 1 erhdht. Die nidchstfolgende Aufnahme i wird
verarbeitet (im ersten Durchgang ist i = 2). Dazu wird
die Euklidsche Distanz zu den ersten Aufnahmen (Leit-
aufnahmen) der bereits bestehenden Gruppen berechnet.

3. Aufnahme i wird der ersten Gruppe zugeordnet, zu deren
Leitaufnahme die Distanz kleiner ist als rho. Falls
dies gelingt, wird mit 2, weitergefahren.

4. Ist die Distanz von i zu allen Leitaufnahmen grésser
als rho, so wird i zur Leitaufnahme einer neuen Gruppe.
Das Verfahren wird mit 2. fortgesetzt.

5. Uebersteigt die Zahl der Gruppen NMAX, so werden die
noch nicht verarbeiteten Aufnahmen nicht klassifiziert.
Rho sollte etwas vergrdssert werden. Der ganze Gruppie-
rungsprozess ist zu wiederholen (1.), bis alle Aufnah-
men klassifiziert sind.

Der Ablauf lasst sich noch vereinfachen, indem die Zahl der
Gruppen nicht festgelegt wird. Schwerwiegendster Nachteil
der Methode ist, dass das Resultat von der Reihenfolge der
Eingabe der Aufnahmen abhdngt. Das illustrieren die
Beispiele in Abb. 5.3. Rho sei gleich 2. Im Falle A sei die
Reihenfolge der Aufnahmen (1,2,3,4,5). Die erste in den
Prozess eingeschleuste Aufnahme wird =zur Leitaufnahme der
ersten Gruppe. Aufnahme 2 besitzt Distanz d = 1 zu dieser
und kommt damit ebenfalls in Gruppe 1. Aufnahme 3 besitzt d
= 51 2 o 2,24 zu Aufnahme 1 und wird Leitaufnahme der Gruppe
2., Aufnahme 4 wird 1letzterer zugeordnet und Aufnahme 5
schliesslich bildet eine selbstandige Gruppe 3. Im Falle B
soll versuchsweise die Reihenfolge der Aufnahmen so gedndert
werden, dass Nummer 3 an erster Stelle steht. Es gilt also
3,17,2,4,5. Leitaufnahmen werden zunidchst 3 und 1. Aufnahme 2
wird der Leitaufnahme der Gruppe 1 zugeordnet, also Aufnahme
3. Auch Aufnahme 4 gehdrt zu Gruppe 1, wahrend Aufnahme 5
eine neue Gruppe 3 bildet.
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Abb. 5.3 Verschiedene Ldsungen des Leader-Algorithmus. A und
B ergeben sich durch unterschiedliche Reihenfolge in der
Verarbeitung der Aufnahmen. Losung C resultiert, wenn der
maximal zuldssige Durchmesser der Gruppen (rho) reduziert
wird.

Tabelle 5.1

Beispiel fiir die Durchfilhrung der Assoziationsanalyse (A).
Aufbau der Kontingenztafel zur Berechnung von Chiquadrat
zwischen den Arten 1 und 2 (B).

A B
Art Aufnahme Art 1 + -
1 2 3 4 5 Art2
1 1 1 0 0 O + a=2 b=1 a+b=3
2 1 1 1 0 O
3 1 1 1 1 0 - c=0 d=2 c+d=2
4 0O 0o 0 1 1
a+c=2 b+d=3 N =5
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Das Resultat der Analyse ist stark wvon der Wahl wvon rho

abhangig. Setzt man 2z.B. rho = 1.5, so erhdlt man die
visuell leicht als optimal erkennbare Ldsung mit den Gruppen
(1,2), (3), (4,5). Fur das LEADER-Verfahren gibt es

zahlreiche Verbesserungsvorschlidge und Alternativen (ANDER-
BERG 1973), doch sind die Resultate immer von der ur-
spriinglichen Reihenfolge der Aufnahmen abhingig. Heuris-
tische Verfahren werden ihrer Einfachheit wegen eingesetzt,
um sehr grosse vegetationskundliche Datensitze zu
strukturieren. Das Beispiel in Abb. 5.3 zeigt deren Grenzen
auf. Eine provisorische Gliederung ist aber doch 2zu er-
zielen. Sie kann in einem anschliessenden Schritt korrigiert
und optimiert werden (z.B. im Programm CLUSLA, LOUPPEN und
VAN DER MAAREL (1979)).

5.3 Teilungsverfahren
5.3.1 Assoziationsanalyse

Bei Teilungsverfahren wird versucht, fir die Gesamtstich-
probe von Individuen eine mdglichst sinnvolle Unterteilung
zu finden. Als typischer Vertreter soll zuerst die Assozia-
tionsanalyse dargestellt werden, die von WILLIAMS und LAM-
BERT (1959) publiziert und spidter mehrfach variiert wurde.
Es handelt sich um ein monothetisches Verfahren, d.h. jede
Unterteilung wird nur aufgrund der Gegenwart oder des
Fehlens einer einzelnen Art durchgefiihrt. Immerhin wird zur
Auswahl dieser Art die Gesamtdhnlichkeitsstruktur der
Vegetationstabelle berilicksichtigt. Ausgangspunkt bildet eine
Aehnlichkeitsmatrix S der Arten mit den Elementen

2
S.. = X_,./N.
1] 1]

Das Chiquadrat berechnet sich wie in Kapitel 4.5 gezeigt. N
ist die Anzahl Aufnahmen der Vegetationstabelle, die Divi-
sion durch N hat daher auf das Ergebnis keinen Einfluss. An-
hand von Tabelle 5.1, A, soll die Berechnung gezeigt werden.
Flir die Arten 1 und 2 konstruiert man die Kontingenztafel
der Tabelle 5.1, B. Daraus ergibt sich
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2 (ad - bc)2 N (4 - 0)2 5 80
X (1,2) = = = — = 2,22
(a+b)(a+c) (c+d) (b+d) 3*%2%2%3 36

In der Originalversion der Assoziationsanalyse wird die
Unabhdngigkeit der Arten - unbesehen von_Voraussetzungen der
schliessenden Statistik - anhand einer X -Tabelle auf Signi-
fikanz getestet (Anzahl Freiheitsgrade df = 1). Da N in un-
serem Beispiel sehr klein ist, miisste X dazu erst korri-
giert werden. Entsprechende Formeln finden sich bei MULLER-
DOMBOIS und ELLENBERG (1974) wund PIELOU (1977). Nicht
signifikante Werte werden meist durch null ersetzt. Als Ele-
ment der S - Matrix erhalten wir zum Beispiel

S(1,2) = x2(1,2)/N = 2.22/5 = 0.44

In gleicher Weise werden nun die andern Elemente berechnet.
Man setzt die Werte der Diagonalen gleich null und erhidlt

0 0.44 0.166 0.44
S = 0.44 0 0.375 1.00

0.166 0.375 0 0.375

0.44 1.00 0.375 0

Wie in Kapitel 4.5 erwdhnt, lasst sich x2 in relativierter
Form als Korrelationskoeffizient flir die Kontingenztafel
verstehen (V - Wert). Um nun diejenige Art zu finden, die
den grdssten gemeinsamen Zusammenhang mit allen andern Arten
aufweist, miissen nur die Kolonnen (oder Zeilen) in S auf-
addiert zu werden. Wir erhalten

s . =1.046, 1.815, 0.916, 1.815
Das maximale Chiquadrat weisen Art 2 und 4 auf. Anhand
ihrer Gegenwart oder Abwesenheit in den Aufnahmen wird Ta-
belle 5.1, A, unterteilt in die Gruppen (1,2,3) und (4,5).
Das Verfahren geht weiter, indem beide der neu gebildeten
Gruppen in derselben Weise analysiert werden. Da Art 2
sicher zu Xkeiner weiteren Unterteilung zu verwenden ist,
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kann sie (und im vorliegenden Fall auch Art 4) weggelassen
werden. Die beiden neuen S-Matrizen, welche zur Suche der
nidchsten zwei Trennarten dienen, haben deshalb immer eine um
1 verminderte Dimension. Beim vorliegenden Beispiel ist es
jedoch sinnvoll, die Analyse hier abzubrechen.

Die Gruppen der Assoziationsanalyse sind streng hierarchisch
gegliedert. Weil sie auf eindeutigen Trennarten beruhen,
lassen sie sich sehr leicht identifizieren. Filir eine ein-
fache Unterteilung wird eine einzige Art bendtigt, fir vier
Gruppen mindestens zwei Arten, fur acht Gruppen mindestens
drei Arten usw. Da aber eine einzige Art iliber die Gruppenzu-
gehdrigkeit entscheidet, ist das Verfahren stark von
Zufdlligkeiten abhdngig. Wie zu erwarten ist, befriedigt
die so entstehende Struktur pflanzensoziologisch kaum,
krasse Fehlklassifikationen wegen unerwartet auftretender
oder abwesender Arten sind die Regel. Gilinstiger 1liegen die
Verhdltnisse, wenn statt der Artm3ichtigkeiten Koordinaten
aus Hauptkomponentenanalysen verwendet werden (NOY MEIR
1973). Auf diese Weise entfidllt jedoch die Mdglichkeit ein-
facher Identifikation. Um pflanzensoziologische Einheiten
trotzdem mit Hilfe weniger Arten charakterisieren zu kdnnen,
bieten sich Rangierungsmethoden an (vgl. dazu Kap. 6 sowie
HILL (1979%b)).

Die Assoziationsanalyse entspricht ihrer 1Idee nach dem
Konzept der Charakter- und Differentialarten des Systems
Braun-Blanquet. Wohl aus diesem Grunde hat sie einen bemer-
kenswerten Bekanntheitsgrad erlangt.

5.3.2 Gridanalyse

Die Gridanalyse versucht, die hauptsdchlichsten Nachteile
der Assoziationsanalyse zu vermeiden (WILDI 1979). Aus
diesem Grunde soll nicht eine, sondern es sollen mehrere
Dimensionen gleichzeitig zur Abgrenzung von Gruppen beigezo-
gen werden. Gesucht werden echte Gruppen, welche einer
lokalen Anhdufung dhnlicher Individuen entsprechen (Noda im
Sinne von POORE 1955). Wir verfolgen den Algorithmus anhand
von Abb. 5.4. Der Uebersichtlichkeit halber wird nur ein



-106-

2. Achse &
1 2 3 4
15+
5 6 z 8
l’""_."-"'l
101 N J|e
9 10l oI 112
%1 13 14 15 16
[ ]
0 T T T -
0 10 15 20

Abb. 5.4 GRID-Analyse im zweidimensionalen Fall.

1. Achse
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zweidimensionaler Fall dargestellt.

X, .

sei die Koordinate bezliglich der i-ten Achse ( i =

i - ;
1,2..,p ;7 Achsen konnen Arten, Standortsmessungen, Ordina-
tionsachsen usw. sein) der Aufnahme j, j = 1,...,n. Es sind
folgende Operationen durchzufihren:

T

Flir jede Dimension ist der Bereich 8§ 6 festzulegen.

i1
5 _ ] ] = aas
1 max(x1j) mln(x1j). J 1, 2]

b

2 max(xzj) - min(xzj) t F = EpwpweD

In Abb. 5.4 ist &, =15, 5, = 10.

2

Bestimme & = max (&

6 =& =15,
max 1

peeesd ). In Abb. 5.4 ist
1 P

Lege ein p-dimensionales Netz mit der Seitenldnge von
mindestens 5max liber den Aufnahmeraum, so dass alle
Individuen innerhalb des Netzes 1liegen. Die Auflo-
sungskraft wird durch die Anzahl Unterteilungen jeder
Dimension bestimmt (m = 4 in Abb. 5.4).

In den entstandenen mp = 16 Zellen werden die Indivi-
duen gezahlt. Wir erhalten

Zelle Individuen
6 3
8 2
11 1
13 1

Die individuenreichste, noch nicht verarbeitete Zelle
(Nr. 6) wird geprift, ob sie ein lokales Dichtemaximum
enthdlt, also Zentrum einer echten Gruppe darstellt.
Dazu wird kontrolliert, ob nicht eine der Nachbarzellen
(2,5,7,10) bereits ein Zentrum enthdlt. Im Beispiel
bleibt Zelle Nr. 6 Zentrum der ersten Gruppe.
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6. Weil das p-dimensicnale Netz willkiirlich in den Raum
gelegt wurde, wird nun die genauere Lage der Gruppe 1
gesucht. Dazu ist die aktuelle Zelle in Richtung des
Schwerpunkts der in ihr enthaltenen Individuen zu ver-
schieben (Pfeil, fett ausgezogenes Quadrat). Enthdlt
die verschobene Zelle mehr Individuen, so wird weiter
geschoben. In Abb. 5.4 kommt ein Individuum in Zelle 11
dazu, so dass das erste Gruppenzentrum durch 4 Indivi-
duen repriasentiert wird.

7. Nun wird die Zelle mit der nachstniedrigeren Anzahl In-
dividuen verarbeitet (Schritte 5 und 6). Dies ware nach
dem ersten Durchgang Zelle 8.

Der Prozess wird so lange fortgesetzt, bis alle Zellen
abgearbeitet sind. Einzelindividuen konnen den Status einer
unabhdngigen Gruppe erhalten, oder aber dem n&chstgelegenen
Gruppenzentrum zugeordnet werden. In Abb. 5.4 erhalten wir
somit 3 Gruppen, erkennbar an den unterschiedlichen Sym-
bolen.

Die GRID-Analyse 1liefert natiirliche, nicht hierarchische
Gruppen. Dies allerdings nur, wenn die Aufldsung zweckmissig
gewahlt wird. Man sollte daher zuerst mit einer niedrigen
Zellenzahl (d.h. niedriger Aufldsung) beginnen. Steigt die
Gruppenzahl mit stetig wachsender Zellenzahl sprunghaft an,
so sind vermutlich echte Gruppen halbiert worden. Im weitern
ist zu bemerken, dass die Zahl der Dimensionen aus Griinden
der Uebersichtlichkeit nicht zu gross gewdhlt werden sollte.
Das Verfahren hat sich bewdhrt, wenn statt einfacher Art-
madchtigkeiten aus Hauptkomponentenanalysen stammende Koordi-
naten verwendet werden (WILDI 1979).

Die GRID-Analyse eignet sich zum Auffinden diskreter Grup-
pen. Sie hat gegeniiber anderen Verfahren den Vorteil, dass
lokale Verdichtungen von Punkten als Gruppenzentren inter-
pretiert werden, sodass intermedidre Punkte (vgl. Abb. 5.2)
nicht st6rend wirken. Ist der =zu untersuchende Datensatz
geniigend gross, so koénnen Gruppen fast beliebiger Form
entdeckt werden. Beschrankungen ergeben sich aus der prak-
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tisch begrenzten Anzahl von Dimensionen, die sich noch
sinnvoll bearbeiten lassen. Die GRID-Analyse 1ist deshalb
nicht geeignet, um strukturelle Details zu untersuchen.

5.4 Agglomerative Verfahren

Bei dieser Kategorie von Gruppierungsverfahren werden
schrittweise Individuen - spdter Gruppen von Individuen - zu
neuen Gruppen zusammengeschlossen. Dabei kénnen Dendrogramme
gebildet werden. Diese dienen der tlibersichtlichen Darstel-
lung von Resultaten hierarchischer Gruppierungsmethoden
divisiver oder agglomerativer Art. Die Sachverhalte lassen
sich anhand der einfachsten agglomerativen Methode demon-
strieren, ndmlich der Single Linkage Analysis (ANDERBERG
1973).

5.4.1 Single Linkage Analysis

Das Prinzip der Single Linkage Analysis 1ldsst sich am
univariaten Fall verfolgen. Abb. 5.5, A zeigt ein Beispiel.
Jede der 4 Aufnahmen wird charakterisiert durch ein einziges
Merkmal, entsprechend den folgenden Werten:

MerkmallAufn. 1 2 3 4

1] 2 4 7 8

Im ersten Schritt muss nun eine Aehnlichkeitsmatrix
berechnet werden. Die Euklidsche Distanz hat gegeniiber an-
dern Massen den Vorteil, dass sie direkt aus Abb. 5.5, A,
herausgelesen werden kann. Filr d1'2 erhdlt man 2, fir d2 5 =

3, d3 4 = 1 usw. Die Gesamtdhnlichkeitsstruktur ergibt:”’
r

GO
= W o N
- O w W
o = O

Die Gruppierung erfolgt nach einer einzigen Vorschrift: Es
sind stets Jjene 2 Gruppen zu einer neuen Gruppe zusammen-
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Abb. 5.5 Vier univariat charakterisierte Punkte (A) mit ver-
schiedenen Methoden gruppiert: Single Linkage Analysis (B),
Complete Linkage Analysis (C), Average Linkage Analysis (D)
und Minimalvarianzanalyse (E).
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zufassen, welche sich bezliglich ihrer dhnlichsten Individuen
am nachsten stehen. Zu Beginn der Analyse finden wir in Abb.
5.5 4 Gruppen, die aus Jje einem einzigen Individuum
bestehen. Der grafischen Darstellung, aber auch der Dis-
tanzmatrix entnehmen wir, dass A3 und A4 am dhnlichsten sind
und mit d = 1.0 zu einer neuen Gruppe zusammengeschlossen
werden k&nnen. Diese soll zweckmissigerweise die Nummer 5
erhalten., Im Dendrogramm (Abb. 5.5, B) sind die beiden Auf-
nahmen als erste aufgezeichnet und durch einen Bligel der
Hohe d = 1 miteinander verbunden. Der zweite Zusammenschluss
gestaltet sich komplizierter. Zu priifen sind nun noch 3 Dis-
tanzen, ndmlich d1'2, d2’5 und d1'5. d1'2 kann sofort der
Distanzmatrix entnommen werden. Fiir d1’5 gilt bei der Single
Linkage Analysis, dass der Wert von d1’3 = 5 gewdhlt werden
muss, da A3 der Gruppe 1 ndher steht als A4. Entsprechend

gilt 4 =d = 3. Zusammengefasst erhdlt man:
2,5 2,3 ,
d = 2
d1,2 -
a*d .3
2,5 7°

Damit werden A1 und A2 als nachste Gruppe, Nr. 6, auf dem
Niveau d = 2 zusammengeschlossen. Nun miissen noch Gruppe 5
und 6 zusammengeschlossen werden. Um das Niveau des Zusam-
menschlusses zu finden, ist die gesamte Distanzmatrix zu

durchsuchen. Fur d5 6 kommen folgende Werte in Frage:
r
d =5
d1,3 _ 6
1,4
d = 3
a?3 .y
2,4

Als nachststehende Nachbarn der beiden Gruppen qualifizieren
sich AZ und A3 mit d3,3 = 3. Auf diesem Niveau wird in Abb.
5.5, B die neue Gruppe 7 gebildet. Damit ist die Analyse
abgeschlossen., Ihr Resultat ist ein Dendrogramm, welches
lber die Gruppenstruktur der Stichprobe (A1,A2,A3,A4) Auf-
schluss gibt. Meist besteht das Ziel der Analyse darin, eine
bestimmte Anzahl von Gruppen, sagen wir 2, zu generieren. Zu
diesem Zwecke ist das Dendrogramm zu zerschneiden, und zwar
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zwischen d = 2 und d = 3 (gestrichelte Linie in Abb. 5.5,
B). Es resultieren (A3,A4) und (A1,A2) als Gruppen.

Die Anwendungsmdglichkeiten der Single Linkage Analysis
sollen beim Vergleich verschiedener Methoden erdrtert werden
(Kap. 5.4.5). Hier ist noch zu vermerken, dass es zahlreiche
Varianten und Erweiterungen gibt. JANCEY (1974) schldgt eine
Methode vor, bei welcher die Anzahl resultierender Gruppen
vorzugeben ist., Kann aufgrund der Stichprobenstruktur eine
Loésung mit natilirlichen Gruppen gefunden werden, so erfolgt
die Unterteilung des Dendrogrammes automatisch. Andernfalls
wird die Zahl der Gruppen durch den Algorithmus selbst ver-
dndert.

Eine herausragende Rolle spielt die Single Linkage Analysis
in der Geographie, und zwar vor allem im zweidimensionalen
Fall zur L&sung des 'Ndchster Nachbar'"- Problems. Abb. 5.6
zeigt eine Karte mit 5 Ortschaften. Diese sind so mit-
einander zu verbinden, dass

1. jeder Punkt mindestens einmal verbunden wird;
2. keine Schleifen auftreten;
3. die Summe aller Verbindungsstrecken minimal ist.

Nach GOWER und ROSS (1969) liefert die Single Linkage
Analysis unmittelbar die Ldsung. Das so entstehende Gebilde
(Abb. 5.6) heisst Minimalbaum. Es kann derart unterteilt
werden, dass bei pflanzensoziologischen Datensdtzen aus-
gesprochene Gradientenstrukturen aufzufinden sind { KUHN
1983).

5.4.2 Complete Linkage Analysis

Die Complete Linkage Analysis ergibt sich durch ganz geringe
Aenderung des Single Linkage Algorithmus. Die Vorschrift
lautet: Es sind stets jene 2 Gruppen 2zu einer einzigen,
neuen Gruppe zusammenzufassen, welche sich beziiglich ihrer
undhnlichsten Individuen am ndchsten stehen. Am Beispiel der
Abb., 5.5, C, soll der Ablauf verfolgt werden. Der erste
Schritt (Gruppe 5) verlduft dabei genau gleich wie bei der
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Ortschaft D o

Ortschaft A

Ortschaft E

Ortschaft B

Ortschaft C

Abb., 5.6 Losung des Problems "ndachster Nachbar"
mensionalen (geografischen) Falle.

im

zweidi-
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Single Linkage Analysis, was sich auch im Dendrogramm
niederschldgt. Auch im zweiten Schritt sind wieder die 3
Distanzen d1 20 d1 5 und d2 5 2Zu prifen. d1'2 kann direkt an
der Dlstanzmatrlx abgelesen 'werden. Fir d1' ist im Gegen-
satz zur Single Linkage Analysis der Maximalabstand massge-
bend, namlich dy 4 = 6. Entsprechend gilt neu d =d =

' 2,5 2,4
4. zZusammenfassend gilt: !
4,2 = 2
d = 6
d1'5 = 4
2,5

’

A1 und A2 werden zur Gruppe 6 zusammengeschlossen, und =zwar
auf dem Niveau d = 2. Fir die Bildung der Gruppe 7 miissen
wiederum die Maximalabsti@nde gesucht werden. Wir finden

d5,6 = max (d1'3, d1'4,

max (5,6,3,4) =d = 6

Dieser Wert wird zur Vollendung des Dendrogrammes in Abb.
5.5, C, verwendet.

5.4.3 Average Linkage Analysis

Im Vergleich zu den eben beschriebenen Methoden handelt es
sich dabei um eine mittlere, gemdssigte LOsung. Statt der
Maximal- oder Minimaldistanz zwischen Individuen ver-
schiedener Gruppen, wird als Kriterium flir den Zusammen-
schluss die mittlere Distanz gewdhlt. So betridgt dann der
massgebende Abstand zwischen den Gruppen 2 (A2) und 5
(A3,A4) dz’5 = 3.5, wie aus Abb. 5.5, A sofort ersichtlich
wird. Alle {ibrigen Operationen sind mit denjenigen der schon
beschriebenen Verfahren identisch. Fiir den Leser, der die
Analyse nachvollziehen will, wird in Abb. 5.5, D das resul-
tierende Dendrogramm gegeben.
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5.4.4 Minimalvarianz-Analyse

Im Gegensatz zu den bisher besprochenen Methoden beruht die
Minimalvarianz - Analyse (ORLOCI 1967) auf den Streuungsver-
h3dltnissen der Gruppen. Der Zusammenschluss bestehender
Gruppen 2zu grdsseren, neuen, erfolgt stets so, dass die
gruppeninterne Varianz mdglichst wenig zunimmt. Das Ver-
fahren beruht mithin auf den Konzepten der Varianzanalyse.

Wir beginnen die Betrachtung mit der Definition der gruppen-
internen Varianz Q_ (vergleiche dazu auch die Ausfiihrungen
in Kapitel 6.3). Diese ist gleich der Summe der quadrierten
Abstdnde jedes Gruppenindividuums zum Gruppenzentrum:

P n

- 2

Q =2 (Eg (xi,—xi) )
I i=1 4= J

Darin ist xij die Koordinate (Artmdchtigkeit) der Art _i in
der Aufnahme”j, ng die Anzahl Aufnahmen der Gruppe g, x, der
Mittelwert aller Arten in g und p die Anzahl Arten. Qg dsst
sich rascher berechnen aus der Matrix der quadrierten Dis-

tanzen:

Den formalen Nachweis fir diesen Zusammenhang zeigt z.B.
PIELOU (1977), S. 319 f. Z filir i<j bedeutet, dass alle
ng*(ng—1)/2 Elemente der D2 Matrix, welche sich auf die 1In-
dividuen der Gruppe g beziehen, summiert werden. Verwenden
wir wieder das Beispiel aus Abb. 5.5, so miissen die Distan-
zen zuerst quadriert werden:

2 0 4 25 36
D = 4 0 9 16
25 8 0 1

36 16 1 0
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Die linke untere Hidlfte der Matrix ist 2zu vernachlassigen,
sodass jedes Element nur einfach gezdhlt wird. Als Beispiel
erhalten wir fir

=1 11:2 = 2.
(32'3,4 /3 (9+416+1) 6/3 = 8 2/3
Q2,3,4 ist die interne Varianz der Gruppe (2,3,4). ORLOCIs
(1967) Kriterium zur Fusion zweier Gruppen A und B lautet
nun, dass die Zunahme der Varianz Q(A,B) minimal sein soll,
wobei gilt

Q(A,B) = Q(A+B) - Q(A) - Q(B).

Q(A+4B) ist die Varianz der neu zu bildenden Gruppe, Q(A) und
Q(B) sind diejenigen der alten Gruppen. Damit ist Q(A,B)
jener Betrag, um welchen die Varianz beim Zusammenschluss
von A und B vermehrt wird.

Fur den ersten Zusammenschluss brauchen bloss die Elemente
der D2-Matrix nach dem kleinsten Wert abgesucht zu werden.
Als Minimum qualifiziert sich

Q(3,4) =1/2 (1) = 0,5 = Q(5) .

Fir den nachsten Zusammenschluss miissen zuerst alle Q(A,B)-
Werte berechnet werden. Man erhdlt:

Q(1,2) = 1/2 (4) = 2
1 2 2 2
Q(1,5) = (d1'3 +cil1'4 +c‘l3'4 ) - (1) - a(5)
n,_+n
15
= 1/3 (25+36+1) - 0 - 1/2 = 20 2/3 - 1/2 = 20 1/6
Q(2,5) = 1/3 (9+16+1) - 0 - 1/2 = 8 2/3 - 1/2 =8 1/6

In der Matrix-Schreibweise gilt



A G

0 2 20 1/6
Q= 2 0 8 1/6
20 1/6 8 1/6 0

Als neue Gruppe 6 qualifizieren sich die Individuen (1,2)
mit Q = 2. Schliesslich ist flir Gruppe 7 Q(5,6) zu
berechnen:

0(5,6) = 1/4 (4+25+36+9+16+1) -1/2 -2 = 20 1/4

Werden die eben gefundenen Q-Werte auf der y-Achse auf-
getragen, so erhdlt man das Dendrogramm in Abb. 5.5, E.

5.4.5 Besonderheiten agglomerativer Verfahren

Beim Vergleich der hier gezeigten Methoden anhand des
kleinen 4-Punkte Beispiels (Abb. 5.5) ist bemerkenswert,
dass das Resultat stets gleich ausfdallt. In der Tat kann
generell gesagt werden, dass die zu erwartenden Unterschiede
bei den meisten Datenstrukturen klein sind. In der An-
fangsphase funktionieren alle vier besprochenen Methoden
gleich: Zuerst werden die nidchsten Nachbarn zu Zweiergruppen
zusammengefasst. Dies ist auch der konzeptionell schwichste
Teil agglomerativer Verfahren. Die Lage einzelner Punkte,
welche stets gewissen 2Zufdlligkeiten unterworfen ist,
entscheidet wesentlich {iber das Resultat. Erst bei
steigender Individuenzahl pro Gruppe treten die Ver-
schiedenheiten deutlicher hervor. Die wesentlichsten Unter-
schiede betreffen:

a) Die Tendenz zur Kettenbildung

Es handelt sich um eine typische Eigenschaft der Single
Linkage Analysis. Gradienten bildende, beliebig lange Reihen
von Aufnahmen koénnen als eigenstdndige Gruppen erkannt wer-
den. Gerade gegenteilig verhdlt sich die Complete Linkage
Analysis. Bei ihr wachsen die Gruppen fast gleichfdrmig um
die zu Beginn gefundenen Zentren. Sie unterteilt langge-
streckte Reihen in mehrere, gedrungene Gruppen und eignet
sich damit besser flir Daten, die aus natilirlichen Gruppen
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zusammengesetzt sind. Abb. 5.7 illustriert solche Ver-
hdltnisse. Sie zeigt den (kilinstlich konstruierten Fall)
einer Stichprobe von drei Gruppen, wobei eine davon eine
lange Kette bildet. Die einzige Methode, welche diese Struk-
tur erfolgreich aufdeckt, ist die Single Linkage Analysis.
Complete Linkage, Average Linkage und Minimalvarianz-Analyse
sind dazu nicht in der Lage.

Die Vermutung liegt nahe, die Single-Linkage Analysis konnte
sich zur Strukturierung von Daten einer Gradientenanalyse
eignen. Es ist aber zu beachten, dass in der Praxis selten
einfache Punkteketten auftreten. Sobald kompliziertere Kon-
figurationen vorliegen, lassen sich spharische oder ellip-
tische Gruppen leichter interpretieren.

b) Reaktion auf Einzelindividuen

Wie oben dargelegt, bestimmt in der Anfangsphase stets die
Lage einzelner Individuen den Gang der Analyse. Erst bei
fortschreitendem Gruppierungsprozess unterscheiden sich die
Methoden. Single und Complete Linkage Analysis verwenden
als Kriterium fiir Zusammenschliisse bloss die Distanz zu
einem einzigen Individuum einer Gruppe. Beide Methoden sind
deshalb wenig robust. Average Linkage Analysis und das
Minimalvarianzverfahren berilicksichtigen dagegen die Lage
aller Individuen einer Gruppe. Sie tragen mithin der gesam-
ten Gruppenstruktur Rechnung.

c) Berilicksichtigung der Gruppengrosse

Die einzige der hier erwdhnten Methoden, welche auch die An-
zahl der Punkte einer Gruppe als Zusammenschlusskriterium
verwendet, ist die Minimalvarianzanalyse. Abb. 5.8 =zeigt
zwei Falle, die von der Average Linkage Analyse gleich in-
terpretiert werden. Wir nehmen an, dass die beiden Gruppen A
und B zusammengeschlossen werden sollen. Die alten Gruppen-
zentren liegen im rechten und linken Beispiel gleich weit
auseinander., In der Minimalvarianzanalyse ist jedoch nicht
dieser Abstand massgebend, sondern die Varianz der neuen
Gruppe (A,B). Da die Lage des Zentrums von der Anzahl Indi-
viduen in A und B abhdngig ist, liegt es rechts ndher bei
der grosseren Gruppe, A. In der Minimalvarianzanalyse wird
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Abb. 5.7 Unterschiede zwischen verschiedenen agglomerativen
Clusterverfahren am Beispiel der Aehnlichkeitsstruktur von
Abb. 5.2, C: Gruppenbildung von Single Linkage Analysis
(geschlossene Linie), Gruppenbildung von Complete Linkage
Analysis (gestrichelt).
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Abb. 5.8 Durch Average Linkage- wund Minimalvarianzanalyse

verschieden behandelte Fdlle eines Gruppenzusammenschlusses.
Fiir die Average Linkage Analyse sind die Zusammenschliisse
links und rechts gleich giinstig. Aus der Sicht der Minimal-
varianzanalyse erhdlt derjenige rechts den Vorzug.
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der Zusammenschluss rechts wegen der kleineren Varianz die
glinstigere Ldsung sein. Das ist fiir die meisten Anwendungen
sinnvoll. Je mehr Punkte an einer Gruppe beteiligt sind,
desto eher kann davon ausgegangen werden, dass es sich nicht
um einen Artefakt handelt und dass sie deshalb eigenstdndig
ist. Erwartet man dagegen in einem Datensatz Ausreisser und
mdchte diese sicher von echten Gruppen abgetrennt haben, so
ist die Complete Linkage Analyse angemessen.
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