Zeitschrift: Veröffentlichungen des Geobotanischen Institutes der Eidg. Tech.

Hochschule, Stiftung Rübel, in Zürich

Herausgeber: Geobotanisches Institut, Stiftung Rübel (Zürich)

Band: 70 (1980)

Artikel: Proteingehalt, Aminosäurezusammensetzung und Neutralzuckergehalt

von Lemnaceen: vorläufige Mitteilung

Autor: Amadò, Renato / Mueller-Hiemeyer, Ruth / Marti, Urs

DOI: https://doi.org/10.5169/seals-308616

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 14.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Proteingehalt, Aminosäurezusammensetzung und Neutralzuckergehalt von Lemnaceen

Vorläufige Mitteilung

von

Renato AMADO, Ruth MUELLER-HIEMEYER und Urs MARTI

Inhalt

- 1. Einleitung
- 2. Material und Methoden
- Resultate und Diskussion
 Zusammenfassung Summary
 Literatur

1. Einleitung

Es ist bekannt, dass Lemnaceen im Vergleich zu anderen Pflanzen viel Protein enthalten (Nat.Acad.Sci. USA, 1976). Diese Wasserpflanzen bieten sich deshalb als potentielle Proteinquellen sowohl für die tierische als auch für die menschliche Ernährung an. Dies ist vor allem deshalb der Fall, weil Wasserlinsen auf nährstoffreichen Gewässern gut und schnell wachsen und ausserdem leicht zu ernten sind. Von besonderem Interesse ist die Möglichkeit der Verwendung von Abwasser als Nährmedium für die Lemnaceen. Durch ihre Wurzeln und die ins Wasser tauchende Unterseite der Blätter nehmen die Pflanzen die

zum Wachstum notwendigen Nährstoffe auf und erzielen gleichzeitig eine Reinigung des Abwassers.

Lemnaceen wurden bisher gelegentlich als Tierfutterzusätze verwendet (TRUAX et al. 1972). In Südostasien (Burma, Laos, Thailand) wird aber seit Generationen die kleinste Art der Lemnaceen, Wolffia arrhiza, als Gemüse auch für die menschliche Ernährung eingesetzt (BHANTHUMNAVIN & McGARRY 1971).

Die vorliegende Arbeit hatte zum Ziel, den Proteingehalt, die Aminosäurezusammensetzung und die Neutralzuckerverteilung verschiedenster Wasserlinsenarten und -stämme zu bestimmen und miteinander zu vergleichen. Die erhaltenen Resultate sollten einerseits als Hilfsmittel bei der Klassifizierung morphologisch nur schwer unterscheidbarer Arten, andererseits als Hinweis für den Einsatz der verschiedenen Stämme als Proteinquelle für die Ernährung von Tier und Mensch dienen.

Verdankungen

Wir danken Herrn Prof. Dr. E. Landolt für die Bereitstellung und Ueberlassung der Lemnaceenstämme sowie Frl. E. Arrigoni und Herrn U. Stiefel für ihre tatkräftige Mithilfe bei der Durchführung der Aminosäureanalysen.

2. Material und Methoden

Lemnaceenstämme: Die verschiedenen Lemnaceen wurden am Geobotanischen Institut ETHZ gezüchtet. Als Nährmedium diente eine 1:5 verdünnte Hutner-Lösung (bei L. trisulca mit 1 % Zucker). Die Wachstumsbedingungen wurden so gewählt, dass bei 12 h Tageslicht (25'000 Lux) eine Tagestemperatur von 28° C und eine Nachttemperatur von 24° C eingehalten wurden. Die Stämme wurden in 500 ml Erlenmeyerkolben so lange wachsen gelassen, bis die Oberfläche vollständig mit Gliedern bedeckt war. Vor den Wachstumsversuchen wurden die einzelnen Stämme in Reagenzgläsern auf Agar, unter Zusatz von "Casamino acids" und Hefen, bei Temperaturen von 22° C bis 26° C unter Dämmerlicht gehalten.

Nach Beendigung der Wachstumsperiode wurde das Nährmedium abfiltriert und die Pflanzen gut mit viel destilliertem Wasser gewaschen, um möglichst alle Nährlösungsreste von der Oberfläche zu entfernen. Die noch feuchten Wasserlinsen wurden anschliessend mit Filterpapier abgetrocknet, gewogen und im Tiefkühlschrank bei -20° C bis zur Weiterverarbeitung gelagert.

Bestimmung der Trockensubstanz: Die Trockenmasse der Wasserlinsen wurde gravimetrisch durch Ermitteln des Gewichtsverlustes nach Gefriertrocknung bestimmt.

Hydrolysebedingungen für die Aminosäureanalyse: 9 - 10 mg der getrockneten Wasserlinsen wurden in ein Hydrolyseröhrchen genau eingewogen, 1.5 - 2 ml 6 N Salzsäure zugegeben und dann während 5 min Stickstoff eingeleitet, um möglichst alle Luft (0₂) aus den Hydrolyseröhrchen zu verdrängen. Die Hydrolyse wurde während 24 h bei 110°C im Oelbad durchgeführt, anschliessend die Salzsäure am Rotationsverdampfer unter Vakuum (Wasserbadtemperatur < 50°C) abgedampft und der trockene Rückstand in 5 ml Citrat/Salzsäure Puffer pH 2.20 aufgenommen. Das Hydrolysat wurde zur Entfernung unlöslicher Abbauprodukte (Zellwandmaterial) durch eine G4-Glasfilternutsche filtriert und 0.25 ml des Filtrates zur Aminosäureanalyse eingesetzt.

Aminosäureanalyse: Die Aminosäureanalysen erfolgten auf einem Biocal Amino-Acid-Analyzer Modell BC 201 (LKB-Biocal, München, BRD) im Einsäulenverfahren. Folgende Parameter wurden in Anlehnung an das von WERNER (1976) beschriebene Programm gewählt:

Harztyp: Durrum DC 6 A (Durrum Chem.Corp., Palo Alto, Ca., USA)

Säulenhöhe: 32.0 ± 0.5 cm Säulendurchmesser: 0.9 cm

Pufferstrom: 50 ml/h Ninhydrinstrom: 25 ml/h

D	r	-	~	r	2	m	m	1

Puffer	pН	(Na ⁺)	t (min)	T (OC)
Al	3.40 ± 0.01	0.18 N	53	55
В	4.25 ± 0.01	0.18 N	57	65
D	6.45 ± 0.02	1.10 N	85	65
NaOH		0.40 N	15	65
Ao	3.05 ± 0.01	0.18 N	54	65
A ₁	3.40 ± 0.01	0.18 N	6	55

Die totale Laufzeit, inklusive Regenerieren und Aequilibrieren betrug 270 min.

Das beschriebene Programm erlaubte neben den in einem normalen Hydrolysat vorkommenden Aminosäuren auch die Aminosäuren Hydroxyprolin und Hydroxylysin sowie die beiden Hexosamine, Glucosamin und Galactosamin aufzutrennen. Die Standardchromatogramme wurden mit Calbiochem-Lösungen Nr. 893002 (Calbiochem, San Diego, Ca., USA) durchgeführt. Die Auswertung der Chromatogramme erfolgte mit Hilfe eines rechnenden Integrators (Spectra Physics Model AA, Spectra Physics, Darmstadt, BRD).

Bestimmung des Proteingehaltes: Der Proteingehalt der verschiedenen Proben wurde aus der Summe der Aminosäuren errechnet.

Bestimmung der Neutralzucker: Die Neutralzucker wurden nach vorgängiger Hydrolyse als Aldonitrilacetate mit Hilfe der Gaschromatographie bestimmt. 30 - 50 mg der getrockneten Wasserlinsen wurden in einem Hydrolyseröhrchen nach der von PFISTER (1977) beschriebenen Methode hydrolysiert, neutralisiert und nach Entfernung der Kationen und sauren Bestandteile zur Trockne eingedampft. Die so erhaltenen Neutralzucker wurden nach MERGENTHALER und SCHERZ (1976) in die Aldonitrilacetat-Derivate überführt, gaschromatographisch aufgetrennt und mit Hilfe eines rechnenden Interatorsystems SP 4000 (Spectra Physics, Darmstadt, BRD) die Neutralzuckerverteilung ermittelt.

3. Resultate und Diskussion

In der vorliegenden Arbeit wurden insgesamt 94 Lemnaceen-Stämme untersucht, die sich wie folgt auf die 4 Gattungen aufteilen:

Spirodela: 4 Arten, total 14 Stämme

Lemna: 11 Arten, total 37 Stämme

Wolffiella: 6 Arten, total 19 Stämme

Wolffia: 7 Arten, total 24 Stämme

Bestimmung der Trockensubstanz: Von je 2 Arten der vier verschiedenen Gattungen wurde der Trockensubstanzgehalt bestimmt. Die dabei erzielten Resultate sind in Tabelle 1 zusammengestellt. Der mittlere Trockensubstanzgehalt beträgt bei den untersuchten Arten 4.0 ± 0.1 % des Nassgewichtes und stimmt sehr gut mit den von BHANTHUMNAVIN und McGARRY (1971) für Wolffia globosa publizierten Werten überein. Der Trockensubstanzgehalt hängt im Wesentlichen von den gewählten Züchtungsbedingungen ab; im vorliegenden Falle konnten somit keine grossen Unterschiede erwartet werden. Die erhaltenen Resultate liegen in einem sehr engen und statistisch nicht unterscheidbaren Bereich, so dass auf eine Bestimmung der Trockensubstanz der Gesamtheit der Stämme verzichtet werden konnte.

Tabelle 1. Trockengewicht einiger Lemnaceen

Art/Stamm Nr.	Trockensubstanz in % des Frischgewichtes
S. intermedia/7125 S. punctata/6725	3.9 4.0
L. minor/6570	4.0
L. gibba/6566	4.0
W. oblonga/7164	3.9
W. neotropica/7225	4.1
W. brasiliensis/7104	4.0
W. angusta/7274	4.1

Aminosäurezusammensetzung: In den Tabellen 2a - d sind die Verteilungen der einzelnen Aminosäuren der verschiedenen Lemnaceen-Stämme wiedergegeben. Bei den aufgezeigten Werten handelt es sich um Mittelwerte aus mindestens 2 Doppelbestimmungen, die nicht mehr als ± 5 % voneinander verschieden waren. Im allgemeinen lagen die Doppelproben weniger als ± 2 % auseinander. Die Aminosäure Cystein war in den meisten Proben nur in Spuren nachweisbar und konnte auch in Stämmen, in denen sie auswertbar war, nicht zufriedenstellend quantitativ ermittelt werden (Fehler über ± 10 %). Auch die andere schwefelhaltige Aminosäure, das Methionin, war, hauptsächlich in den Spirodela- und Lemna-Arten, nur in Spuren nachweisbar. In einigen anderen Fällen zeigten die Doppelproben Abweichungen von mehr als 5 %, was in den Tabellen mit einem * gekennzeichnet ist. Es ist bekannt, dass diese beiden Aminosäuren bei Anwesenheit von Luftsauerstoff in deren Oxidationsprodukte Cysteinsäure bzw. Methioninsulfoxid übergehen (MOORE und STEIN 1963). Dies sollte jedoch durch die gewählten Hydrolysebedingungen verhindert werden, was auch die Abwesenheit von Peaks der Oxidationsprodukte in den Chromatogrammen bestätigt. Lemnaceen scheinen also im allgemeinen defizitär an schwefelhaltigen Aminosäuren zu sein. Dies ist vor allem im Falle des Methionins, das für die menschliche Ernährung essentiell ist, von grösster Bedeutung. Beim Histidin wurden ebenfalls bei einigen Proben Abweichungen von über 5 % zwischen den beiden Doppelbestimmungen beobachtet(mit * gekennzeichnet). Dies ist wahrscheinlich auf die Tatsache zurückzuführen, dass auch diese basische Aminosäure in relativ kleinen Mengen im Hydrolysat vorhanden ist, was eine quanti-

Tabelle 2a. Aminosäurezusammensetzung und Proteingehalt der Spirodela-Arten

Art	s. ii	nterme	edia	S. b:	iperfo	orata	s.	poly	jrrhi2	za		.punc	ctata	
Stamm Nr.	7125	7342	7747	7291	7357	8410	6731	7124	7181	7205	6725	7111	7248	7273
Asp + Asr	98	99	103	92	105	96	99	91	109	108	104	106	116	103
Thr	49	52	51	52	49	49	50	49	54	49	50	48	51	49
Ser	48	59	53	54	47	54	50	53	49	48	52	48	52	47
Glu + Glr	117	140	138	133	125	132	127	123	127	122	115	121	124	125
Pro	59	71	54	52	51	70	59	52	52	51	49	52	53	52
Gly	61	58	58	57	60	56	61	60	58	60	61	61	58	61
Ala	65	66	68	68	69	65	70	68	69	69	66	68	64	69
Cys 1/2 *	Sp	Sp	Sp	Sp	Sp	Sp	3	5	5	Sp	sp	4	5	1
Val	65	63	74	66	73	62	70	75	65	70	63	74	62	72
Met	sp	11	14	12	sp	8	12	231	12	sp	sp	11	9	3
Ile	55	46	50	48	55	39	50	53	51	55	55	52	48	52
Leu	97	92	90	98	100	109	91	98	95	98	96	99	86	104
Tyr	32	36	37	38	33	39	40	37	38	32	30	35	38	34
Phe	58	56	64	62	59	63	65	54	62	64	62	62	65	63
His	21	23	16*	22	22	15*	25	24	22	26	23	24	23	25
Lys	74	68	67	81	72	77	59	67	67	67	70	67	70	77
Arg	61	61	62	66	61	67	68	64	68	66	68	68	75	65
Protein-														
ausbeute	27.0	34.8	29.5	32.3	31.0	31.4	37.0	31.9	33.4	33.0	29.0	31.2	31.5	30.9
in % TS	J						L							

Tabelle 2b. Aminosäurezusammensetzung und Proteingehalt von Lemna-Arten

Art Stamm	Nr.	L. trisulca . 6624 7192 7258 7315 7431			7431	L. pe pusi: 7507	lla	L. a		L. minor 6570 6578 7194					
Asp +	Asn	135	141	145	139	151	93	101	105	103	87	100	103	99	108
Thr		47	44	50	45	43	46	46	51	48	51	50	48	51	48
Ser		57	57	60	50	51	52	54	51	49	51	54	50	50	53
Glu +	Gln	127	139	133	134	124	140	156	137	133	124	137	124	107	130
Pro		50	55	48	47	41	50	59	61	57	54	57	54	64	58
Gly		62	58	61	59	64	56	52	61	60	60	59	.61	63	60
Ala		69	67	64	65	63	72	64	68	66	67	68	68	66	67
Cys 1/	/2*	sp	7	sp	sp	sp	sp	8	3	5	5	3	3	sp	4
Val		71	61	62	58	57	65	59	69	64	72	63	68	73	63
Met		11	15	sp	11	13	15	11	7*	1000000	14	11	20	sp	21
Ile		48	41	46	48	43	50	45	49	53	52	46	49	57	39
Leu		89	89	90	92	83	98	93	90	103	102	102	98	101	95
Tyr		28	26	30	31	25	36	34	30	37	36	33	35	27	36
Phe		61	58	55	64	53	60	56	52	58	64	61	63	57	66
His		22	20	20	21	19	20	27*	1500000		24	22	20	21	21
Lys		59	65	68	69	56	70	58	62	64	72	68	71	68	69
Arg		67	58	70	69	114	78	77	76	65	68	68	65	62	63
Protei	in-													-	
ausbei		15.4	17.7	18.0	23.0	6.8	27.7	32.9	29.9	34.7	27.1	30.7	30.3	30.0	30.4
in % 7	rs_								L						

Angaben in Milligramm Aminosäure pro Gramm Protein.

^{* =} Doppelproben mit mehr als 5 % Abweichung. (Abkürzungen siehe neben Tab.2c)

Tabelle 2b (Forts.). Aminosäurezusammensetzung und Proteingehalt der *Lemna-*Arten

Art	L.	japor	nica	L. tu	cionii	fera	L.	obscı	ıra	L.	dispe	erma
Stamm Nr.	7182	7325	7683	6573	6601	6619	7133	7134	7599	7190	7223	7368
Asp + Asn	108	101	93	113	115	96	99	89	98	159	105	91
Thr	52	52	47	50	50	45	49	49	51	37	52	47
Ser	48	57	46	50	50	44	50	51	50	48	47	48
Glu + Gln	123	136	142	125	127	120	127	131	132	192	126	123
Pro	52	69	56	58	60	47	51	51	62	41	61	54
Gly	60	61	54	60	62	58	61	63	60	56	60	59
Ala	68	68	65	69	69	61	64	65	66	49	72	61
Cys 1/2*	2	sp	sp	sp	2	sp	5	6	sp	17	3	2
Val	65	63	68	63	64	59	73	73	80	45	63	64
Met	14	11	15	30*	15	17	13	11	17	9	13	3*
Ile	54	48	57	46	44	48	54	55	50	28	45	51
Leu	98	95	97	94	95	86	98	101	97	63	93	93
Tyr	33	31	37	35	35	30	31	30	35	19	36	32
Phe	66	59	63	61	55	51	59	62	63	44	64	64
His	22	22	24	13,	18	13*	23	23	19	16,	24	24
Lys	69	65	69	66	71	71	70	71	60	57	69	73
Arg	69	65	68	70	69	154	72	70	60	121	68	112
Protein-												
ausbeute	30.7	32.2	31.2	32.2	30.4	18.2	27.8	27.0	31.9	19.7	30.3	29.5
in % TS	<u></u>						<u> </u>					

Tabelle 2b (Schluss). Aminosäurezusammensetzung und Proteingehalt der *Lemna-*Arten

Art	L .	gibl	ba	L.	valo	liviar	na	L. minuscula				
Stamm Nr.	6566	7107	7127	7002	7005	7284	7288	6584	6600	6717	6744	
Asp + Asn	104	103	106	109	102	97	98	95	101	113	112	
Thr	47	47	49	53	47	45	54	53	58	50	54	
Ser	50	49	48	59	51	52	56	54	52	53	58	
Glu + Gln	126	130	125	130	127	115	122	130	125	126	130	
Pro	51	52	52	59	53	32	47	52	52	51	50	
Gly	61	60	58	72	61	60	58	65	70	61	65	
Ala	71	67	66	74	67	75	67	71	71	70	70	
Cys 1/2*	3	5	6	sp	3	sp	3	sp	sp	3	sp	
Val	69	69	72	68	68	71	65	66	64	70	67	
Met	15	11	16	sp	19	13	11	sp	sp	11	sp	
Ile	51	51	51	57	55	50	51	55	54	50	55	
Leu	105	101	98	103	106	114	100	102	97	93	100	
Tyr	27	37	35	38	37	36	38	34	33	37	36	
Phe	63	63	60	63	59	67	63	64	60	67	62	
His	25	22	24	nb	21	24	24	22	23	22	23	
Lys	71	64	69	nb	64	85	79	79	77	59	77	
Arg	63	69	67	66	63	67	66	57	63	65	65	
Protein-				**		1 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10						
ausbeute	30.6	30.3	30.5	22.4	35.4	26.0	28.0	19.5	21.6	30.6	22.3	
in % TS												

Angaben in Milligramm Aminosäure pro Gramm Protein.

^{* =} Doppelproben mit mehr als 5 % Abweichung. ** = ohne His und Lys (Abkürzungen siehe neben Tab. 2c)

Tabelle 2c. Aminosäurezusammensetzung und Proteingehalt der Wolffiella-Arten

Art		W.	gladi	iata	W. oblonga				W.]	lingul	lata	W. neotropica				
Stamm	Nr.	7173	7590	7852	7164	7201a	7343	8393	7292	7655	8041	7225	7279	7290	7609	
Asp +	Asn	99	101	100	97	100	95	104	89	103	103	102	92	106	104	
Thr		50	49	52	53	57	53	51	52	57	51	68	49	61	56	
Ser		54	53	57	58	52	57	56	55	54	54	57	49	54	51	
Glu +	Gln	126	125	127	130	125	137	133	117	121	136	139	127	137	123	
Pro		59	54	67	61	66	70	63	52	58	56	59	56	53	53	
Gly		60	58	57	59	60	60	56	60	62	58	82	60	67	61	
Ala		70	68	66	69	72	70	62	72	71	74	.76	69	76	69	
Cys 1	/2*	3	2	7	6	5	sp	1	5	sp	7	sp	2	sp	sp	
Val		62	71	65	61	62	63	65	64	70	62	63	70	73	72	
Met		10	11	14	7	7	8	9	5	10	6*	sp	2,	sp	11	
Ile		46	48	49	44	44	46	50	52	55	45	52	47	58	53	
Leu		107	111	95	103	98	100	97	106	91	104	99	113	107	97	
Tyr		37	41	36	36	38	35	39	38	37	36	31	38	34	38	
Phe		68	72	64	68	63	62	67	66	67	61	57	69	65	63	
His		20	15	18	20	20	13,	17	21	20	22	19	23	nb	19	
Lys		68	62	70	67	66	66	70	79	62	61	64	75	nb	66	
Arg		63	59	57	62	64	64	60	70	65	63	68	60	68	65	
Prote	in-												eto con la constante de la con	**		
ausbe	ute	28.4	30.0	26.9	30.5	32.1	36.3	22.8	25.9	30.7	30.2	23.8	30.2	23.3	32.0	
in %	TS															

Tabelle 2c. (Schluss)

Art	W.	Welwits	chii	W.	W. hyalin		
Stamm Nr.		7468	7644	7376	7378	7426	
Asp + Asn		106	113	102	111	117	
Thr		51	57	50	52	54	
Ser		50	58	49	52	56	
Glu + Gln		126	125	123	126	129	
Pro		52	54	50	52	52	
Gly		59	61	59	59	59	
Ala		68	69	71	74	69	
Cys 1/2*		sp	sp	sp	sp	sp	
Val		65	68	74	70	65	
Met		12	8	sp	8	10	
Ile		53	52	54	52	51	
Leu		101	86	100	101	95	
Tyr		37	36	26	34	31	
Phe		64	61	65	59	55	
His		21	20	20	13*	19	
Lys		69	61	74	69	70	
Arg		67	72	60	68	68	
Protein-	180-180						
ausbeute		20.1	14.6	24.0	29.7	31.3	
in % TS							

Angaben in Milligramm Aminosäure pro Gramm Protein

VERWENDETE ABKUERZUNGEN

Asparaginsäure
Asparagin
Threonin
Serin
Glutaminsäure
Glutamin
Prolin
Glycin
Alanin
Cystein
Valin
Methionin
Isoleucin
Leucin
Tyrosin
Phenylalanin
Histidin
Lysin
Arginin
${\tt Trockensubstanz}$
Spuren
nicht bestimmt

^{*} Doppelproben mit mehr als 5 % Abweichung

^{**} ohne His und Lys

Tabelle 2d. Aminosäurezusammensetzung und Proteingehalt der Wolffia-Arten

Art	W.	brasi	iliens	sis	W.	borea	alis		W.	arrl	niza	
Stamm Nr.	7104	7303	7522	7925	7566	7698	7880	7193	7215	7323	7421	8220
Asp + Asn	108	112	126	155	131	97	130	111	108	106	122	120
Thr	46	46	43	46	41	45	47	51	52	52	49	49
Ser	42	51	50	52	48	48	49	56	48	51	54	48
Glu + Gln	103	132	129	136	126	146	135	139	132	135	133	137
Pro	58	52	49	59	49	58	61	63	57	55	50	51
Gly	56	58	56	53	54	53	55	59	61	62	63	58
Ala	63	70	69	60	66	64	65	70	70	72	71	77
Cys 1/2*	sp	sp	sp	sp	sp	sp	sp	sp	sp	sp	sp	sp
Val	95	63	72	60	74	63	63	61	67	66	65	64
Met	sp	5	10	9	19	10	13	5	9	7	9	8
Ile	50	50	44	46	47	50	44	36	46	49	49	46
Leu	92	98	104	84	102	95	88	95	95	98	95	102
Tyr	30	35	38	31	36	37	34	36	33	29	25	32
Phe	61	63	62	57	64	61	61	66	58	56	58	59
His	23	25	17	21	16	24	20	21	23	22	21	21
Lys	68	67	63	65	61	71	64	67	71	70	66	59
Arg	74	73	70	65	69	[*] 79	72	65	72	72	74	68
Protein-						allocally di						
ausbeute	33.0	31.1	32.7	31.4	26.8	27.3	31.3	36.8	33.2	33.8	30.0	30.8
in % TS												

Tabelle 2d. (Schluss)

Art	W.	globo	sa	W. 0	columl	biana	W. au	stra	liana	W.	angus	sta
Stamm Nr.	7243	7428	8378	7353	7456	7716	7317	7540	7733	7274	7476	7480
Asp + Asn	108	121	111	121	119	177	118	118	123	110	122	120
Thr	51	50	48	49	45	40	51	46	46	46	54	45
Ser	51	50	49	55	60	51	54	54	55	50	56	54
Glu + Gln	125	131	138	134	136	140	134	132	129	126	130	129
Pro	54	48	62	63	44	49	50	53	51	51	52	53
Gly	58	62	58	58	89	58	62	59	60	57	56	57
Ala	65	69	72	70	68	66	69	69	70	64	65	73
Cys 1/2*	sp	sp	sp	sp	sp	sp	sp	sp	sp	3	5	sp
Val	61	62	63	61	59	57	61	72	63	69	65	63
Met	12	12	3*	8	11	4,	9	7	9	7	13	11
Ile	51	51	47	43	45	44	51	47	46	49	50	51
Leu	87	93	104	92	87	92	92	104	96	100	95	100
Tyr	35	31	32	28	28	21	30	36	25	30	32	31
Phe	68	58	61	59	52	60	61	64	62	58	57	59
His	26	21	28*	22	15	20	23	18	28*	22	20	17
Lys	73	64	62	64	61	61	73	62	73	74	64	67
Arg	75	77	64	75	84	60	65	58	64	83	65	72
Protein-												
ausbeute	32.4	35.2	31.4	31.2	16.6	18.6	28.8	31.9	28.7	27.9	29.8	31.5
in % TS												

Angaben in Milligramm pro Gramm Protein

^{* =} Doppelproben mit mehr als 5 % Abweichungen. (Abkürzungen siehe Tab. 2c).

tative Auswertung der Chromatogramme erschwert. Das Tryptophan wird bei der sauren Hydrolyse mit Salzsäure fast vollständig zerstört (GRUEN und NICHOLS 1972) und fehlt deshalb in der vorliegenden Zusammenstellung. Durch die Hydrolyse sind auch die eventuell in den Proteinen vorhandenen Amide der Asparagin- und Glutaminsäure, das Asparagin und das Glutamin, gespalten und in die freie Säure überführt worden, so dass sie in den Tabellen zusammen mit den entsprechenden Säuren erscheinen.

Die Aminosäuremuster der einzelnen Gattungen, Arten und Stämme machen deutlich, dass innerhalb der Familie der Lemnaceen im allgemeinen nur kleine Unterschiede in der Proteinzusammensetzung bestehen. Einige wenige Ausnahmen sind aber immerhin erwähnenswert. So ist das Aminosäuremuster der L. trisulca-Stämme wesentlich von allen andern Arten verschieden und weist einen besonders hohen Asparaginsäuregehalt auf. Dies trifft auch auf einen Stamm der L. disperma (Nr. 7190) zu, in dem neben der Asparagin- auch die Glutaminsäure und das Arginin extrem hohe Werte aufweisen und zusammen fast 50 % des gesamten Proteinanteils ausmachen. Des weiteren fällt auf, dass die Wolffia-Arten im Durchschnitt ebenfalls einen höheren Asparaginsäuregehalt aufweisen als die 3 anderen Gattungen. Besonders hoch ist der Anteil dieser Aminosäure bei einem Stamm der W. columbiana (Nr. 7716). Warum sich einzelne Stämme sehr stark von Stämmen der gleichen Art unterscheiden, ist nicht abgeklärt. Es wäre denkbar, dass zum Teil genetische Faktoren für diese Unterschiede verantwortlich sind. Versteckte Infektionen mit Mikroorganismen sowie partielle Austrocknung der für die Aufbewahrung der verschiedenen Stämme verwendeten Agarschicht sind weitere möglichen Faktoren, welche einen Einfluss auf das Aminosäuremuster der einzelnen Stämme haben könnten. Schliesslich wird die Verteilung der Aminosäuren wahrscheinlich auch durch die im allgemeinen limitierte (zu wenig lange) Kultivierung der Stämme unter genau gleichen Versuchsbedingungen beeinflusst. Ausgedehnte Versuche unter genau kontrollierten Bedingungen könnten diese externen Unsicherheitsfaktoren ausschalten, wurden aber in der vorliegenden Arbeit nicht durchgeführt.

Allgemein lässt sich feststellen, dass das Aminosäuremuster der Lemnaceen auf ein Proteingemisch hindeutet, das einen guten Nährwert für die tierische und menschliche Ernährung besitzt. Von den für den Menschen essentiellen Aminosäuren sind ausser dem Methionin und eventuell dem Tryptophan, das nicht bestimmt wurde, alle in ansehnlichen Mengen vorhanden. Wie Tabelle 3 zeigt,

Tabelle 3. Gehalt an essentiellen Aminosäuren in verschiedenen Rohstoffen

	L. minor/6570	HRS Weizen b	Sojabohnen ^b	Chlorella ^C	
Tryptophan	nb	nb	13	15	
Threonin	48	28	37	34	
Valin	68	45	49	58	
Methionin	20	17	14	20	
Isoleucin	49	38	47	36	
Leucin	98	67	74	40	
Phenylalanin	63	48	49	48	
Lysin	71	23	64	78	

Alle Angaben in Miligramm Aminosäure pro Gramm Protein. a = TKACHUK und IRVINE (1969), b = SOSULSKI (1977), c = SNYDER (1970).

sind besonders Leucin, welches ca. 10 % des Gesamteiweisses ausmacht, aber auch Threonin, Valin, Isoleucin und Phenylalanin in bemerkenswerten Mengen in den Lemnaceen vorhanden. Als Vergleich sind. in der gleichen Tabelle auch die Gehalte an essentiellen Aminosäuren von Weizen-, Sojabohnen- und Chlorella-Proteinen aufgeführt. Besonders interessant ist die Tatsache, dass Lysin, die basische Aminosäure, welche neben dem Methionin in Getreide- und anderen Pflanzenproteinen limitierend ist (TKACHUK und IRVINE 1969), in Lemnaceen zwischen 6 und 8 % des Gesamtproteins ausmacht. Schliesslich sei noch erwähnt, dass auch die semiessentielle Aminosäure Arginin in den Lemnaceen in grossen Mengen vorhanden ist.

Proteingehalt: Die Proteingehalte der einzelnen Stämme und Arten sind in Tabelle 2a - d zusammengestellt. Die Extremwerte liegen bei 6.8 % (L. trisulca/7431) und 37.0 % (S. polyrrhiza/6731) bezogen auf die Trockensubstanz, wobei die meisten untersuchten Proben einen Proteingehalt um 30 % aufweisen. Interessant ist auch hier wieder das abnorme Verhalten der L. trisulca, bei der alle Stämme einen Proteingehalt weit unter dem Durchschnitt zeigen. Dies gilt auch für L. minuscula (Ausnahme, Stamm 6717) und W. Welwitschii, wobei bei dieser Art nur 2 Stämme untersucht wurden und die Resultate deshalb unsicher sind, besonders da diese Art in Kulturlösung nicht optimal wächst. Die manchmal recht beträchtlichen Unterschiede im Proteingehalt innerhalb der gleichen Art sind nicht abgeklärt, doch könnten die im Zusammenhang mit der Aminosäureverteilung angeführten Gründe auch in diesem Falle von ausschlaggebender Bedeutung sein.

Neutralzuckerzusammensetzung: Die Analyse der Zentralzucker wurde nur mit einigen wenigen, zufällig ausgewählten Stämmen, durchgeführt. Damit sollte ein Einblick in die ungefähre Zusammensetzung der Lemnaceen-Polysaccharide erhalten werden. Die erzielten Resultate sind in Tabelle 4 zusammengestellt. Zur Ermittlung der Neutralzuckerzusammensetzung mussten die getrockneten Wasserlinsen zunächst mit 72 %-iger Schwefelsäure behandelt werden, um die unlöslichen Bestandteile der Zellwände, vor allem die Cellulose, der anschliessenden Hydrolyse mit verdünnter Schwefelsäure zugänglich zu machen. Dabei geht ein beträchtlicher Teil der Polysaccharide chemische Reaktionen ein, so dass die quantitative Bestimmung der Neutralzucker nicht möglich ist. Die in Tabelle 4 wiedergegebenen Resultate zeigen lediglich die relative Verteilung der monomeren Bausteine der Polysaccharide auf. Eine quantitative Bestimmung wäre nur nach enzymatischem Abbau mit spezifischen Enzymen möglich. Trotz dieser Unzulänglichkeit lässt sich immerhin feststellen, dass alle bekannten Polysaccharidbausteine nachgewiesen werden konnten, wobei Glucose, der Baustein sowohl der Cellulose als auch der Stärke, ungefähr 60 % der gesamten Neutralzuckermenge ausmacht. Die beobachteten recht grossen Schwankungen einzelner Zucker (Beispiel: Xylose), sind die Folge der methodischen Probleme, die eine Totalbestimmung der Neutralzucker mit sich bringt. Neben den in der Tabelle 4 aufgeführten Zucker, fand sich in allen Chromatogrammen ein nicht identifizierbarer Peak in kleinen Mengen. Es könnte sich dabei um die Hexose Apiose handeln, welche von HART und KINDEL (1970a, 1970b) als Bestandteil eines Apiogalacturons in der Zellwand von L. minor beschrieben wurde. Bei

Tabelle 4. Neutralzuckerzusammensetzung einiger Lemnaceen (in Relativprozenten)

Art Stamm Nr.	L. minuscula			L. valdiviana	W. neotropica	
	6584	6600	6744	7002	72 25	7290
Rhamnose	2.0	2.4	2.6	1.9	2.1	2.6
Fucose	5.2	2.4	5.6	2.6	5.1	2.8
Arabinose	10.9	8.2	11.8	9.5	10.0	8.9
Xylose	7.1	13.8	6.0	14.2	10.2	11.4
Mannose	3.2	3.9	3.8	3.2	3.0	1.9
Glucose	55.4	56.1	55.4	55.3	57.3	54.4
Galactose	14.6	13.6	14.9	13.3	14.3	16.4

allen untersuchten Proben konnten ausserdem mit Hilfe der Aminosäureanalyse die beiden Aminozucker Glucosamin und Galactosamin in kleinen Mengen nachgewiesen werden. Diese beiden Hexosamine sind als Bestandteile von Glycoproteinen in den meisten pflanzlichen und tierischen Geweben anzutreffen. Obwohl die Untersuchung der Neutralzucker nur an 6 Stämmen aus 3 verschiedenen Arten vorgenommen wurde, wird vermutet, dass die Polysaccharidzusammensetzung der Lemnaceen, ähnlich wie jene der Aminosäuren, nur in engen Grenzen variiert. Umfassende Versuche müssten jedoch durchgeführt werden, um diese Vermutung zu bestätigen.

Schlussbemerkungen: Die vorliegende Untersuchung hat eindeutig gezeigt, dass die Familie der Lemnaceen als Proteinquelle für die menschliche und tierische Ernährung durchaus Verwendung finden kann. Der durchschnittliche Proteingehalt beträgt ungefähr 30 % bezogen auf die Trockensubstanz, und die Aminosäurezusammensetzung der Proteine, welche ausser Methionin und eventuell Tryptophan alle essentiellen und semiessentiellen Aminosäuren in bemerkenswerten Mengen enthalten, ist ausgewogen. Selbstverständlich spielen neben dem Proteingehalt noch andere Faktoren eine sehr wichtige Rolle bei der Beurteilung der Wasserlinsen in bezug auf möglichen Einsatz als Nahrungsmittel oder -zusatz. So ist zum Beispiel bekannt, dass Lemna-Arten sehr viel Oxalsäure enthalten (Nat.Acad.Sci. USA 1976), was deren Einsatz für die Ernährung sehr stark limitiert. Systematische Untersuchungen verschiedenster Parameter wären notwendig, um die Verwendbarkeit von Lemnaceen als Nahrungsmittel endgültig abzuklären. Weil der Proteingehalt und die Aminosäurezusammensetzung sowie wahrscheinlich auch das Polysaccharidmuster in allen Arten, von wenigen Ausnahmen abgesehen (z.B. L. trisulca), mehr oder weniger gleich sind, wäre nun abzuklären, welche Züchtungsbedingungen zu wählen sind, um ein Optimum aus den vorhandenen Voraussetzungen schöpfen zu können.

Zusammenfassung

Von 94 Lemnaceen-Stämmen wurde der Proteingehalt und die Aminosäurezusammensetzung untersucht. Dabei stellte sich heraus, dass in dieser Pflanzenfamilie, von wenigen Ausnahmen abgesehen, durchschnittlich 30 % der Trockensubstanz Proteine sind und dass das Aminosäuremuster nur in engen Grenzen schwankt. Ausser Methionin und eventuell Tryptophan sind alle essentiellen Aminosäuren in bemerkenswerten Mengen vorhanden.

An ausgewählten Stämmen wurde ausserdem die Trockensubstanz bestimmt; alle untersuchten Proben weisen einen Trockensubstanzgehalt von 4 % auf.

Die Neutralzuckerverteilung in einigen Stämmen deutet darauf hin, dass auch das Polysaccharidmuster der Lemnaceen ziemlich einheitlich ist.

Die Ergebnisse dieser vorläufigen Studie zeigen, dass Lemnaceen als Proteinquelle für die menschliche Ernährung geeignet sind.

Summary

In this preliminary study the protein content and the amino acid composition of 94 different duckweed-strains have been determined. The average protein content was 30 % of dry matter. The amino acid composition was found to be very similar in the different strains. A few exceptions have however been observed (e.g. L. trisulca). Beside methionine, all the essential amino acids are present in high amounts in all strains. It is concluded therefore that Lemnaceae might be a good protein source for animal and human nutrition.

The dry matter content as well as the neutral sugar composition of a few strains have been determined. It has been shown that *Lemnaceae* contain 4 % dry matter and that the neutral sugar composition varies only little. It is therefore assumed that the polysaccharide content of the duckweeds is more or less the same in all strains under investigation.

Nachtrag

Seit Abschluss der vorliegenden Untersuchungen (Sommer 1979) sind zwei Arbeiten publiziert worden, welche sich ebenfalls vorwiegend mit dem Proteingehalt und der Aminosäurezusammensetzung von Lemnaceen befassen. PORATH et al. (1979) verglichen fünf Klone vier verschiedener Lemnaceen-Arten (Spirodela poly-rrhiza, Wolffia arrhiza, Lemna gibba und L. minor) in bezug auf deren Proteingehalt und Aminosäuremuster. Die erhaltenen Resultate bestätigen unsere Beobachtungen, dass im Aminosäuremuster zwischen den einzelnen Arten im allgemeinen nur geringfügige Unterschiede auftreten, dass aber der Proteingehalt recht grossen Schwankungen unterworfen ist.

RUSOFF et al. (1980) beschrieben eine einfache, effiziente Methode zur Gewinnung von Proteinkonzentraten aus Lemnaceen-Arten. Die für die einzelnen Aminosäuren (insbesondere für die Essentiellen) angegebenen Werte weichen beträchtlich von jenen der vorliegenden Arbeit ab. Wahrscheinlich gehen bei der Herstellung des Konzentrates ansehnliche Mengen Aminosäuren verloren, so dass es fraglich erscheint, ob ein solcher Schritt überhaupt notwendig und sinnvoll ist.

Sowohl PORATH et al. (1979) als auch RUSOFF et al. (1980) gelangen aufgrund der erhaltenen Resultate zu den, auch in der vorliegenden Arbeit gezogenen Schlussfolgerungen, dass Wasserlinsen ausgezeichnete Proteinquellen für die tierische und menschliche Ernährung darstellen.

Literatur

- BHANTHUMNAVIN K. und McGARRY M.G., 1971: Wolffia arrhiza as a possible source of inexpensive protein. Nature 232, S. 495.
- GRUEN L.C. und NICHOLS P.W., 1972: Improved recovery of tryptophan following acid hydrolysis of proteins. Anal. Biochem. 47, 348-355.
- HART D.A. und KINDEL P.K., 1970a: A novel reaction involved in the degradation of apiogalacturonans from *Lemna minor* and the isolation of apiobiose as a product. Biochemistry 9, 2190-2196.
- -- 1970b: Isolation and partial characterization of apiogalacturonans from the cell wall of *Lemna minor*. Biochem. J. 116, 569-579.
- MERGENTHALER E. und SCHERZ H., 1976: Beiträge zur Analytik von als Lebensmittelzusatzstoffe verwendeten Polysacchariden. IV. Gaschromatische Identifizierung und Bestimmung neutraler Bausteine von Polysaccharid-Hydrolysaten. Z. Lebensm.-Unters.Forsch. 162, 25-29.
- MOORE S. und STEIN W.H., 1963: Chromatographic determination of amino acids by the use of automatic recording equipment. In: COLOWICK S.P. und KAPLAN N.O. (eds.), Methods in Enzymology. Acad. Press New York, 6, 819-830.
- NAT.ACAD.SCI. USA, 1976: Making aquatic weeds usefull. Washington DC. USA. PFISTER M., 1977: Abbau von Pektinstoffen aus Aepfeln. Diss. ETHZ Nr. 5929. Juris Drucke und Verlag Zürich, S. 10.
- PORATH D., HEPHER B. und KOTON A., 1979: Duckweed as an aquatic crop: evaluation of clones for aquaculture. Aquat.Bot. 7, 273-278.
- RUSOFF L.L., BLAKENEY E.W. Jr. und CULLEY D.D. Jr., 1980: Duckweeds (Lemna-ceae-Family) A potential source of protein and amino acids. J. Agr.Fd.Chem. 28, 848-850.
- SNYDER H.E., 1970: Microbial sources of protein. Adv. Food Res. 18, 85-140.
 SOSULSKI F., 1977: Concentrated seed proteins. In: GRAHAM H.E. (ed.), Food Colloids. AVI Publ.Comp. Westport, USA, S. 164.
- TKACHUK R. und IRVINE G.N., 1969: Amino acid compositions of cereals and oilseed meals. Cereal Chem. 46, 206-218.
- TRUAX R.E., CULLEY D.D., GRIFFITH M., JOHNSON W.A. und WOOD J.P., 1972: Duckweed for chick feed. Louis. Agricult. 16, 8-9.

WERNER G.C., 1976: Altersabhängige Veränderungen der Knorpelzusammensetzung am Beispiel des menschlichen Hüftgelenkes. Diss. ETHZ Nr. 5784. Juris Druck und Verlag Zürich, S. 23.

Adresse des Autors: Dr. R. AMADÒ

Institut für Lebensmittelwissenschaften ETH

Universitätsstrasse 2

CH-8006 Zürich