Zeitschrift: Veröffentlichungen des Geobotanischen Institutes der Eidg. Tech.

Hochschule, Stiftung Rübel, in Zürich

Herausgeber: Geobotanisches Institut, Stiftung Rübel (Zürich)

Band: 50 (1973)

Artikel: Versuch einer vergleichend-ökologischen Analyse der Buchen-Tannen-

Wälder des Schweizer Jura (Weissenstein und Chasseral)

Autor: Pfadenhauer, Jörg

DOI: https://doi.org/10.5169/seals-308384

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 10.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

VERÖFFENTLICHUNGEN DES GEOBOTANISCHEN INSTITUTES DER EIDG. TECHN. HOCHSCHULE, STIFTUNG RÜBEL, IN ZÜRICH 50. HEFT

Versuch einer vergleichend-ökologischen Analyse der Buchen-Tannen-Wälder des Schweizer Jura (Weissenstein und Chasseral)

von Jörg Pfadenhauer

Versuch einer vergleichend-ökologischen Analyse der Buchen-Tannen-Wälder des Schweizer Jura (Weissenstein und Chasseral)

von JÖRG PFADENHAUER

Inhalt

Vo	Vorwort	 •	٠.	•			 	5
1.	1. Einleitung	 •	٠.			٠.	 ٠.	6
2.	2. Methodik	 	٠.				 	
	2.1 Methodik der Vegetationsanalyse			٠				9
	2.2 Methodik der phänologischen Untersuchung	 					 	11
	2.3 Methodik der Klimamessungen	 •					 	11
3.	3. Ergebnisse			٠			 	15
	3.1 Vegetation							
	3.2 Phänologie							
	3.3 Klima							
	3.3.1 Regenniederschlag							
	3.3.2 Horizontalniederschlag							
	3.3.3 Wind							
	3.3.4 Relative Luftfeuchtigkeit							
	3.3.5 Lufttemperatur							
4.	4. Diskussion	 					 	41
	4.1 Vegetation und Phänologie							
	4.2 Vegetation, Niederschlag und Wind							
	4.3 Vegetation und relative Luftfeuchtigkeit							
	4.4 Vegetation und Lufttemperatur							
5.	5. Schlussbetrachtung	 					 ٠.	51
Ζι	Zusammenfassung		• •		٠.	٠	 	54
т;	Literaturyorzajobnis							59

MEINEM LIEBEN LISEI GEWIDMET

Vorwort

Im Jahr 1970 hatte ich Gelegenheit, am Geobotanischen Institut an der ETH Zürich, Stiftung Rübel, über die vergleichende Ökologie schweizerischer Weisstannenwälder zu arbeiten. Neben der – in erster Linie bodenkundlich orientierten – Analyse der Plateau-Tannenwälder im westlichen Aargauer Mittelland (PFADENHAUER 1971) sollte die deutlich ausgeprägte Zonierung der Wälder an Jurahängen mittels genauer floristischer Aufnahme und klimatologischer Messungen untersucht werden. Den Kauf eines Teils der notwendigen meteorologischen Instrumente, die Bezahlung von örtlichen Hilfskräften für die Betreuung und Ablesung der Klimastationen sowie einen Teil der Kosten der Drucklegung dieser Arbeit übernahm in grosszügiger Weise der Zentenarfonds der ETH. Er finanzierte auch meinen Aufenthalt in Zürich. Dafür sei an dieser Stelle sehr herzlich gedankt.

Für die Anregung zu dieser Arbeit sowie für zahlreiche fruchtbare Diskussionen fachlicher und methodischer Art bin ich Herrn Dr. F. KLÖTZLI, für die freundliche Aufnahme und die Möglichkeit, am Geobotanischen Institut arbeiten zu dürfen, dem Direktor, Herrn Prof. Dr. E. LANDOLT, zu grossem Dank verpflichtet. Zu danken habe ich ferner Herrn Dr. TURNER, Schweizerische Anstalt für das forstliche Versuchswesen, Birmensdorf, für die Bereitstellung von sechs Thermohygrographen für das Jahr 1970 und der notwendigen Anzahl Regenmesser.

Das Aufstellen der Stationen, die Organisation der Ablesung und das Befahren staatseigener Forststrassen ermöglichten mir die Herren Kreisförster A. Brentano, La Neuveville, H. Egloff, Solothurn, und J.-F. Gauchat, Courtelary. Die Betreuung und Ablesung der Stationen übernahmen Fam. Bartholomé, Courtelary (Station 9, 1970), Fam. Schneider, Courtelary (Station 9, 1971), sowie die Herren R. Botteron, Nods (Stationen 4, 5 und 6, 1970/1971), H. Leubler, Gänsbrunnen (Stationen 1, 2 und 3, 1970), und A. Vuilleumier, Courtelary (Stationen 7 und 8, 1970/1971). Einen Teil der Zeichenarbeiten erledigten Frl. E. Bräm, Zürich, sowie die Herren G. Högel und H. Seuffert, beide München. Ihnen allen sei an dieser Stelle sehr herzlich für ihre Hilfe gedankt.

Für manche wertvolle Anregung und Diskussion danke ich ferner den Herren Prof. Dr. A. BAUMGARTNER, München, Dr. N. KUHN, Birmensdorf, Prof. Dr. H. LEIBUNDGUT, Zürich, Prof. Dr. J.-L. RICHARD, Neuchâtel, und Dr. TURNER, Birmensdorf. Ganz besonders danke ich auch meiner lieben Frau für ihre unermüdliche Hilfe im Gelände und bei der schriftlichen Ausarbeitung. Nicht zuletzt bin ich der Eidgenössischen Landestopographie, Bern-Wabern, für die Übernahme des Drucks der farbigen vegetationskundlichen und phänologischen Karten zu grossem Dank verpflichtet.

1. Einleitung

In mittleren Höhenlagen des Schweizer Jura, auf südseitigen Hängen zwischen 1100 und 1300 m NN, auf nordwestexponierten Lagen ungefähr zwischen 900 und 1200 m NN bildet die Weisstanne in Vergesellschaftung mit Buche und Fichte ausgedehnte, floristisch ziemlich einheitliche Bestände. Im Kontakt zu diesen Wäldern stehen einerseits in tieferen Lagen kalkliebende Buchenwaldgesellschaften, die von den meisten Schweizer Autoren (u.a. RICHARD 1961, 1965) seit Moor (1952) als Fagetum typicum bezeichnet werden. In der oberen montanen und unteren subalpinen Stufe liegen über den Tannen-Buchen-Mischwäldern als breiter Gürtel die artenreichen, üppigen, «subalpinen», hochstaudenreichen Buchenwälder oder Aceri-Fageten (Issler 1942) über 1200 (Nordseite) bzw. 1300 m NN (Südseite). Eine natürliche Waldgrenze gibt es bekanntlich im Jura nicht; die heute beweideten Almflächen im Gipfelbereich der Juraberge sind anthropogenen Ursprungs. Die potentielle natürliche Vegetation ist das Aceri-Fagetum (vgl. hierzu v.a. Moor 1952, auch 1940, 1942 und 1947; ähnliche Problematik in den Vogesen: Carbiener 1962).

Diese ausserordentlich typische Vegetationszonierung ist von Moor (1947, ausführlich 1952) eingehend beschrieben worden. Er betont hier eine Tatsache, die bei fast jeder Aufnahme und Kartierung einer Vegetationsgrenze zu beachten ist, nämlich die kontinuierliche Änderung der Vegetation mit der kontinuierlichen Änderung des Klimas. Die Anordnung der drei oben angeführten Vegetationseinheiten ist primär klimatisch bedingt; edaphische oder geologische Differenzierungen zu eventuellen Subassoziationen oder Varianten stehen hier nicht zur Debatte. Der von Moor (1952) angegebene Übergangsstreifen – in unserem Fall – zwischen Fagetum typicum und Abieti-Fagetum einerseits und zwischen diesem und dem Aceri-Fagetum anderseits von «mindestens hundert Meter» wird nach eigenen Beobachtungen an vielen Stellen noch wesentlich breiter (zur Problematik der Vegetationszonierung allgemein s. WHITTAKER 1967, dort weitere Literatur).

Es erschien deshalb reizvoll, an Hängen, die diese Zonierung besonders deutlich zeigen und wo die Vegetation noch relativ naturnah erscheint (über den Begriff «naturnah» vgl. Ellenberg 1963), nach Kennzeichnung der Pflanzenbestände mittels Ketten von Klimastationen einfacher, leicht zu betreuender Art quer zu diesen Vegetationsgürteln einzelne oder Kombinationen von Klimafaktoren für zwei Vegetationsperioden zu erarbeiten und diese mit den Vegetationsgürteln in Verbindung zu bringen, wie dies in ähnlicher Form z.B. von Hartmann, van Eimern und Jahn (1959) im Harz durchgeführt wurde. Es handelt sich dabei um eine Analyse der vertikalen Klimaänderungen an Hängen und der Klimaunterschiede zwischen verschiedenen Expositionen (vgl. dazu die

Arbeiten von Cantlon 1953, Baumgartner 1964, Held 1941, van Eimern 1955 und 1958, Wagner 1955 u.a.).

Freilich können solche Untersuchungen nur relative Unterschiede liefern, die nur für die Messzeit gelten und deshalb für eine – hypothetische – Fragestellung der Art, welcher ökologische Faktor oder welche Kombination welcher ökologischen Faktoren entscheidend für die Ausbildung dieser oder jener Einheit ist, bei weitem nicht ausreichen.

Die Untersuchungen wurden am Chasseral ($\lambda = 7^{\circ}04'$, $\varphi = 47^{\circ}08'$, Nordwest- und Südosthang entlang der Linie Nods-Courtelary) und am Weissenstein ($\lambda = 7^{\circ}30'$, $\varphi = 47^{\circ}15'$, Nordwestabhang zwischen Dilitschkopf und Gänsbrunnen) durchgeführt. Einen Überblick über Orographie und Geologie geben die Abbildungen 1 und 2.

Hieraus ist zu ersehen, dass die Schichtabfolge am Chasseral- und Weissenstein-Nordhang sehr ähnlich verläuft. In beiden Fällen sind im Talgrund und bis zu einer Meereshöhe von etwa 800-900 m NN die Gesteine des oberen Malm (Portlandkalke, Kimeridge-Kalke) von alpiner Moräne bedeckt, die – wie übrigens auch am Südabfall des Chasseral auf der Verebnungsfläche mit den Ortschaften Nods, Lignières, Lamboing, Diessse usw. – viel silikatisches Material enthält. Am Weissenstein und im unteren Drittel des Chasseral-Südhangs verlaufen die in den Abbildungen 1 und 2 aufgeführten Schichten ziemlich hang-

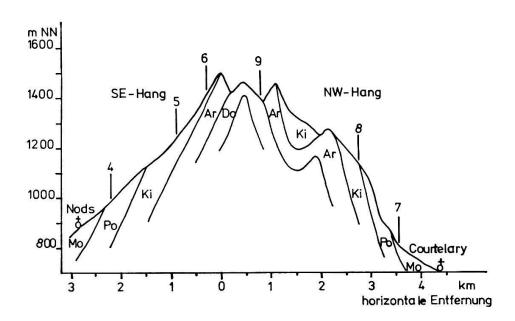


Abb. 1 Schnitt durch das Chasseral-Massiv entlang der Nord-Süd-Koordinate 573, 5fach überhöht. 4, 5, 6, 7, 8, 9: Klimastationen. Geologie nach Krähenbühl (1967) und Rollier et Kissling (1904). Mo = alpine Moränen (z. T. Riß), Po = Portlandkalke (oberer Malm), Ki = Kimeridge-Kalke (oberer Malm), Ar = Aargauer Kalkmergel (unterer Malm), Do = Dogger

Abb. 2 Schnitt durch den Nordteil des Weissenstein entlang der Nord-Süd-Koordinate 603,65. 5fach überhöht. 1, 2, 3: Klimastationen. Geologie s. Abb. 1

parallel, woraus eine nur geringmächtige Verwitterungsdecke resultiert. Lediglich die Aargauer Kalkmergel (unterer Malm) und teilweise die Schichten des oberen und mittleren Dogger stehen senkrecht oder schräg zum Hang, sind deshalb angeschnitten und tragen mergelige, teilweise wasserzügige Verwitterungsdecken. Die starke Gliederung des Reliefs am Chasseral-Nordhang zwischen der Ortschaft Courtelary im Vallon de St-Imier und dem Gipfel kommt durch eine sekundäre Faltung zustande, die am Weissenstein nicht oder nur schwach ausgebildet ist.

2. Methodik

2.1 Methodik der Vegetationsanalyse

Aufnahme der Vegetation und Schätzung von Artmächtigkeit und Soziabilität erfolgte nach Braun-Blanquet (1964), die tabellarische Gliederung nach Ellenberg (1956). Die Nomenklatur der Assoziationen richtet sich weitgehend nach den in der Schweiz üblichen Bezeichnungen (also Fagetum typicum, Abieti-Fagetum, Aceri-Fagetum). Beziehungen zu Pflanzengesellschaften des schwäbischen und fränkischen Jura, des Schwarzwaldes, der Vogesen und des Alpennordrandes, die bei Oberdorfer et al. (1967) aufgeführt sind, werden im Verlauf der Arbeit kurz diskutiert, soweit dies zur Thematik erforderlich bzw. aufschlussreich erscheint. Die Nomenklatur der Phanerogamen erfolgte nach Flora Europaea, Bd. 1 und 2 (1964/1968), und ROTHMALER (1966).

Die horizontalen Grenzen, innerhalb denen die Vegetationskartierung durchgeführt wurde, richten sich nach dem Bereich, in dem die Klimastationen standen. Sie seien im folgenden gemeinsam mit den vertikalen Grenzen kurz genannt, können aber auch aus den Vegetationskarten im Anhang entnommen werden.

Weissenstein

- obere vertikale Grenze: Grat des Dilitschkopfes
- untere vertikale Grenze: Waldrand bei Schofmatt, Gemeinde Gänsbrunnen
- seitliche horizontale Grenzen: Koordinaten Nrn. 602,78 und 604,43

Chasseral-Nord

- obere vertikale Grenze: Grat des Chasseral-Hauptkamms
- untere vertikale Grenze: Waldrand zwischen Cortébert und Courtelary
- seitliche horizontale Grenzen: Koordinaten Nrn. 571,68 und 574,53
 Chasseral-Süd
- obere vertikale Grenze: Grat des Chasseral-Hauptkamms
- untere vertikale Grenze: Waldrand bis Le Citeron, dann Kartenrand des Blattes 1125 (1: 25000)
- seitliche horizontale Grenzen: Koordinaten Nr. 574,53 und Kartenrand des Blattes 1125 (1: 25000)

Bei der Abfassung der Vegetationstabellen (Anhang) wurde bewusst auf eine Gliederung nach Assoziations-, Verbands-, Ordnungs- und Klassenkennarten verzichtet. Im Rahmen dieser relativ kleinräumigen Arbeit erschien dies nicht sinnvoll, da es hier in erster Linie auf die Vegetationsverteilung an den einzelnen Hängen in bezug auf die Standortsfaktoren ankam. Unabhängig davon wird

Tabelle 1 Schlüssel für die Kartierung der phänologischen Zustandsstufen am Weissenstein und am Chasseral am 24./25. Juni 1970 (Eichstrecke

Grandson-Chasseron)								
Stufe	4	3	7	1	0	7	7	_3
Salvia pratensis	8-2 6	2-2	7					
9-10 9-10		∞	∞	7-8	7–8	2-9	4-5	4
8		7	1-9	4-5				
		∞	2-6	3-4				
		9-10	6	6-8	7-8	2-9	4-5	34
Syringa (Hellblau)	6-8							
Rhinanthus spec	6-8	2-8	1-9	2				
Lonicera xylosteum	10	9-10	2-8	7				
Galium odoratum	10	6-8	∞	7–8	2-6			
Crataegus spec	10	6-8	2-8	7–8	L-9			
Viburnum lantana	10	6	∞	∞	7			
Phyteuma spicatum		8	2-8	34				
Lathyrus vernus		10	6-8	∞	∞			
Sorbus aucuparia		6-8	∞	∞	6-7	4-5	34	
Taraxacum officinale		10	9-10	6	6-8	∞	∞	
Trollius europaeus		:	9-10	6-8	∞	6-7	2	
Primula elatior		:	10	6	6-8	6-8	6-8	∞
Sambucus racemosa		:	10	9-10	9-10	6-8	∞	7-8
Ajuga reptans		:	∞	2-8	2-9	2-6	5	4-5

aber an Hand der charakteristischen Artenkombination die Beziehung der untersuchten Vegetationseinheiten zu Gesellschaften angrenzender Gebiete kurz diskutiert (Abschnitt 3.1.4).

Um die kontinuierliche Änderung der Vegetation mit zunehmender Meereshöhe an ungegliederten, gleichmässig geneigten Hängen verdeutlichen zu können, wurde nach der Methode der Gradientenanalyse (vgl. dazu ausführlich Whittaker 1967) am Nordhang des Weissenstein entlang der Koordinate 503,55 und am Südhang des Chasseral entlang einer Linie von Le Désert über den Punkt 1125 m NN an der Strasse Nods-Chasseral bis zum Waldrand zwischen Métairie de Nods und der Strassenkehre bei Punkt 1421,1 m NN Transekte gelegt, die alle bearbeiteten Vegetationsgürtel und ihre Grenzen senkrecht schneiden. Entlang dieser Linien wurden Probeflächen von 2 m² Grösse im Abstand von 20 m ausgelegt, sämtliche Pflanzenarten notiert und ihre Artmächtigkeit geschätzt, ferner Bodenmischproben aus 0-10 cm Tiefe (ohne Streu) entnommen und auf Wassergehalt (HOH % des Trockengewichts) und pH untersucht. Im Radius von 10 m um jede Probefläche wurden die diesen Kreis beschattenden Bäume notiert und ihre Verteilung entlang des Transekts im Kopf der Tafeln 1 und 2 dargestellt.

2.2 Methodik der phänologischen Untersuchung

Die Kartierung der phänologischen Zustandsstufen (Wärmestufen), definiert von Ellenberg (1954) und ausgearbeitet von Schreiber (1968 a und b) erfolgte im Rahmen der phänologischen Bearbeitung der Schweiz mittels einer Eichstrecke am Chasseron unter Zuhilfenahme der Wuchsklimakarte aus Schreiber (1968 a). Tabelle 1 gibt den Kartierungsschlüssel für die Zeit vom 23.–25. Juni 1970. Hierbei bedeuten die Ziffern

1	kahl	6	bis 1/4 blühend
2	Knospen schwellend	7	bis ½ blühend
3	Knospen stark geschwollen	8	Vollblüte
4	kurz vor der Blüte	9	abblühend
5	beginnende Blüte	10	völlig verblüht

Über die Methodik und auftretende Schwierigkeiten bei der Kartierung siehe ausführliche Diskussion bei Kuhn (1967).

2.3 Methodik der Klimamessungen

Die Lage der Klimastationen in den Untersuchungsgebieten am Weissenstein und am Chasseral vermitteln die Abbildungen 1 und 2. Bei der Aufstellung und Einrichtung wurde auf möglichst geringe Horizonteinengung geachtet. Lichtungen, Kahlschläge usw. sollten mindestens einen Durchmesser haben, der der

doppelten Höhe der Bäume am Waldrand entspricht. Bei allen Messplätzen wurde jedoch diese geforderte Mindestgrösse bei weitem überschritten.

Die Stationen 1, 2 und 3 im Schitterwald standen entsprechend der Vegetationsgliederung (Nr. 1 im Bereich des Fagetum typicum, Nr. 2 im Bereich des Abieti-Fagetum, Nr. 3 im Bereich des Aceri-Fagetum) in einer relativen Höhe über dem Talgrund (Weiler Wirtshof, Gemeinde Gänsbrunnen: 770 m NN) von 40 m (Station 1), 155 m (Station 2) und 535 m (Station 3) auf Kahlschlägen über 100 m Breite (2 und 3) und auf einer Viehweide (1). Die horizontale Distanz betrug zwischen 1 und 2 450 m und zwischen 2 und 3 750 m.

Die Stationen 4 (Fagetum typicum), 5 (Abieti-Fagetum) und 6 (Aceri-Fagetum) am südostexponierten Hang des Chasseral lagen ausschliesslich auf Viehweiden (1: 990 m NN oberhalb der Ortschaft Nods auf den Weiden Champ Matthieu, 2: 1245 m NN auf der Almfläche Prés de Mijoux, 3: oberhalb der Waldgrenze zwischen der Métairie de St-Jean-Devant und der Métairie de Nods auf 1411 m NN). Das Fehlen genügend grosser freier Flächen sowie die Notwendigkeit, die Stationen mit dem Wagen erreichen zu können, erlaubte leider keine Aufstellung in einer Linie. Nimmt man den Talgrund, d.h. in diesem Fall die tiefste Stelle des Plateaus im Süden des Chasseral bei 750 m NN an, so lagen die Stationen 4 in 240 m, 5 in 495 m und 6 in 661 m relativer Höhe.

Die drei Messstellen am NW-Hang des Chasseral wurden ebenfalls entsprechend der Vegetationsgliederung errichtet, nämlich Nr. 7 im Fagetum typicum in 800 m NN bei dem Bauernhof Petit Bois, Nr. 8 im Abieti-Fagetum in 1139 m NN auf dem Weidegelände bei La Miège und Nr. 9 auf einer leichten Kuppe nordwestlich der Métairie du Milieu de Bienne im Gebiet des Aceri-Fagetum in 1398 m NN. Die Horizontalentfernung betrug zwischen 7 und 8 800 m und zwischen 8 und 9 1950 m, die relative Höhe über dem Talgrund (Courtelary 695 m NN) für Nr. 7 105 m, für Nr. 8 444 m und für Nr. 9 703 m.

Aus Tabelle 2 kann entnommen werden, welche Messungen in den Jahren 1970 und 1971 an welchen Stationen durchgeführt wurden. Gemessen wurde nur während der Vegetationszeit, und zwar vom 15. Juni bis 19. Oktober 1970 und vom 31. Mai bis 11. Oktober 1971. Die Ablesung erfolgte wöchentlich am Montagvormittag. Demnach ergaben sich bei der Berechnung von Niederschlagssummen und der mittleren monatlichen Windgeschwindigkeit für die einzelnen Monate folgende Zeiteinteilungen:

1970	Juni	15. 6. – 29. 6.	1971	Juni	31.	5. –	28.	6.
	Juli	29. 6. – 27. 7.		Juli	28.	6. –	2.	8.
	August	27. 7. – 31. 8.		August	2.	8. –	30.	8.
	September	31. 8. – 28. 9.		September	30.	8	27.	9.
	Oktober	28.9 - 19.10		Oktober	27	9 -	11.1	10.

Für Temperatur und Luftfeuchtigkeit gelten die Tage der vollen Monate ausser Juni 1970 (16.6.–30.6.), Oktober 1970 (1.10.–19.10.) und Oktober 1971 (1.10. bis 11.10.).

Tabelle 2 Messungen von klimatischen Standortsfaktoren 1970/1971 am Weissenstein und am Chasseral

Ort	Ort	Weissensteir	nstein				Chassera	ral		
Station Höhe	Nr. m NN	1 810	2 925	3	990	5 1245	6 1411	9 1398	8 1139	800
16.631.10.1970	Regenniederschlag	+ +	+ +	+ +	++ ++	+ + + + +	++ ++	+ + + + +	+ + + + +	+++++
1.6.–13.10.1971	Regenniederschlag				+ + + + +	+ + + + +	+ + + + +	+ +	+ + + + +	++ ++

- Folgende Instrumente waren im Einsatz:
- Regenniederschlag: Normalniederschlagsmesser nach Hellmann mit 200 cm² Auffangfläche, aussen weiss lackiert, aufgestellt in 1 m Höhe über dem Boden. Ablesung wöchentlich am Montagvormittag
- Nebelniederschlag: Nebelfanggitter nach GRUNOW (1952) auf einem Normalniederschlagsmesser in 1 m über dem Boden. Differenz zwischen Regenmesser ohne und Regenmesser mit Nebelfanggitter ergibt den Nebel- oder
 Horizontalniederschlag (zur Kritik s. Abschnitt 3.3.2, ferner BAUMGARTNER
 1958). Ablesung wöchentlich am Montagvormittag
- Windweg: Windwegmesser der Fa. Lambrecht, Göttingen, in 250 cm Höhe. Ablesung wöchentlich am Montagvormittag
- Lufttemperatur und rel. Luftfeuchtigkeit: Registrierung mit Thermohygrograph (Fa. Lambrecht, Göttingen) in Giessener Wetterhütte in 120 cm Höhe über dem Boden. Wöchentliche Ablesung am Montagvormittag. Kontrolle und Nacheichung des Gerätes im Gelände mit Stationsthermometer und Aspirationspsychrometer nach Assmann

Da die Thermohygrographen während der Messzeit 1971 teilweise ausfielen, sind ihre Ergebnisse für dieses Jahr nicht ausgewertet, weil für vergleichende Untersuchungen lückenlose Beobachtungsdaten erforderlich sind. 1970 und 1971 waren an den Stationen 4–9 auch Atmographen nach Klausing in Betrieb, die aber trotz regelmässiger Inspektion keine brauchbaren, vergleichbaren Ergebnisse lieferten.

3. Ergebnisse

3.1 Vegetation

3.1.1 Weissenstein (Vegetationstabelle 1, hinten im Umschlag)

Das Fagetum typicum ist am Nordfuss des Weissenstein nur fragmentarisch ausgebildet. Die ausserordentlich flachgründigen Böden verhindern das Gedeihen der sonst auch in reinen Buchenwäldern vorkommenden anspruchsvolleren Arten der Trennartengruppe D1 (Vegetationstabelle 1). Ab 900 m NN tritt zu der bisher fast allein herrschenden Buche die Tanne und die Fichte hinzu und mit ihnen die Arten von D1 und D2. Hiervon ist die teilweise aspektbildende Art Festuca sylvatica erwähnenswert, nach der Moor (1952) der Subassoziation der nordexponierten Abieti-Fageten die Bezeichnung festucetosum gibt. Die Böden, die wegen der parallel zum Hang streichenden Schichten der kimeridgen und Portland-Kalke wie im Fagetum typicum sehr flachgründig sind, neigen leicht zur Verhagerung und besonders unter Fichtenschirm zur Versauerung. Geringe pH-Erniedrigung reicht aus, um grossflächig die Arten der Gruppe D3 mit Vaccinium myrtillus und einer Reihe azidophiler Moose zur Vorherrschaft gelangen zu lassen. Deshalb muss neben einer reinen Ausbildung eine solche mit Vaccinium myrtillus ausgeschieden werden. In höheren Lagen kommt noch eine dritte Ausbildung hinzu, und zwar dort, wo die Schichten des Dogger oder Braunen Jura und der Aargauer Kalkmergel mehr oder weniger senkrecht angeschnitten sind, also in Höhen zwischen 1000 und 1200 m NN. Verbunden mit einer deutlich erhöhten Luftfeuchtigkeit und höheren Niederschlägen (vgl. Abschnitt 3.3) wird hier die Voraussetzung für das Gedeihen einer Adenostyles alliariae-Ausbildung des Abieti-Fagetum geschaffen, die ausser dieser Hochstaude noch eine Reihe anderer hygrophiler, nährstoffliebender Pflanzen aufweist (Trennartengruppe D4). Bei rund 1250 m NN beginnt dann das Aceri-Fagetum mit seinen nitrophilen, breitblättrigen Stauden wie Cicerbita alpina, Rumex arifolius u.a. Arten der Gruppe D5. In der Baumschicht fehlt die Tanne vollständig, während der Bergahorn neben der Buche wesentlich den Aspekt bestimmt. Erwähnenswert sind auf der nur wenig geneigten Fläche kurz unterhalb des Dilitschkopfes (bei 1300 m NN) grosse Gebiete mit Herden von Allium ursinum, innerhalb deren die subalpinen Hochstauden etwas zurücktreten.

Die kontinuierliche Änderung der Vegetation, wie sie in der Tabelle naturgemäss trotz der entsprechenden Anordnung der Vegetationsaufnahmen nicht zum Ausdruck kommt, wird am ehesten durch das Transekt der Tafel 1 (Anhang) deutlich. Die Probeflächen sind in einer Linie vom Fagetum typicum bis zum Aceri-Fagetum des Gipfels angeordnet. Die maximalen pH-Werte liegen bei 7,5 im Bereich des Abieti-Fagetum; ein deutliches Minimum mit Werten

unter 6 ist im Aceri-Fagetum zu erkennen, was vermutlich mit einer stärkeren Entbasung durch höhere Niederschläge zu erklären ist. Sinngemäss nimmt auch der Wassergehalt von unten nach oben erheblich zu (von 40 auf über 150% TG). Der floristische Gradient wird vor allem deutlich bei der Betrachtung der Verteilung der Arten Viola reichenbachiana bis Aconitum vulparia. Charakteristisch ist das Maximum von Adenostyles alliariae in den Probeflächen 43 und 44, während eine Reihe von Arten ihren Verbreitungsschwerpunkt an der (konstruierten) Grenze zwischen Abieti-Fagetum und Aceri-Fagetum haben (Prenanthes purpurea, Heracleum sphondylium ssp. montanum, Luzula sylvatica, Senecio fuchsii).

3.1.2 Chasseral-Nordhang (Vegetationstabelle 2, hinten im Umschlag)

Der bis 860 m NN gedeihende, plenterwaldartig genutzte Buchen-Tannen-Fichten-Bestand auf alpiner Moräne nimmt eine klare Sonderstellung innerhalb der Fageten des Jura ein. Arten wie Convallaria majalis, Majanthemum bifolium, Carex digitata und Hedera helix kennzeichnen seine submontane Lage, das Fehlen der Gruppen D2 und D3 des Abieti-Fagetum lassen Beziehungen zu artenarmen Kalk-Fageten erkennen. Ob die Begünstigung der Fichte und der Tanne und damit das Auftreten eines teilweise sehr dichten Moosteppichs aus azidophilen Arten (D6) anthropogen bedingt ist oder ob wegen der natürlichen Basenarmut (im Vergleich zu Jurakalken) und dem geringen Porenvolumen (vgl. Moor 1952) das Substrat als nadelholzfördernd zu bezeichnen ist und diese Arten von Natur aus begünstigt hat, kann selbstverständlich auf Grund der geringen Aufnahmezahl nicht entschieden werden (vgl. Diskussion in Abschnitt 3.1.4.1 und 5).

Oberhalb 900 m NN stockt dann das Abieti-Fagetum, das hier aber bei weitem nicht so artenreich in Erscheinung tritt wie am Weissenstein. Trotz Nordlage fehlen Festuca sylvatica, Mycelis muralis, Adenostyles glabra u.a., die den flachgründigen, steinigen Boden im Schitterwald besiedelten. Dagegen treten eine Reihe von Arten auf, die auf tiefgründigen, lehmig-humosen Böden schliessen lassen, wie Viola reichenbachiana und Polygonatum verticillatum. Auch hier gibt es neben einer reinen Ausbildung eine solche mit Adenostyles alliariae, wobei die Pflanzen der Gruppe D3 als Trennarten fungieren. Unter Fichtenbeschirmung gelangen gelegentlich die Säurezeiger von D6 (Vaccinium myrtillus, Pleurozium schreberi, Rhytidiadelphus triquetrus) zur Vorherrschaft, spielen aber flächenmässig nur eine geringe Rolle. Mit steigender Meereshöhe nimmt die Anzahl der hygrophilen Arten zu, bis ungefähr oberhalb 1250 m NN meist als Restbestände zwischen ausgedehnten Weideflächen, teilweise auch an steileren Hängen das Aceri-Fagetum die herrschende Pflanzengesellschaft wird. Hier fehlen die Arten der Gruppe D1, die die unteren Berglagen kennzeichnen; auch Dryopteris filix mas, Polygonatum verticillatum u.a. (D2) treten deutlich zurück. Überhaupt ist das geringe Vorhandensein von Ordnungs- bzw. Klassenkennund -trennarten der Fagetalia bzw. Querco-Fagetea in diesem Gebiet auffallend.

Die Bestände selbst sind lückig, wobei sich an den freien Stellen eine fast undurchdringliche, nahezu mannshohe Krautschicht aus subalpinen Hochstauden der Gruppe D4 ausgebreitet hat. Dies erweckt mancherorts den Eindruck eines Mosaiks zwischen Gesellschaften der Adenostyletalia und undefinierbaren Fragmenten irgendwelcher Wälder. Überraschend ist nicht das zu erwartende Fehlen der Tanne (wie am Weissenstein), sondern das der Buche. Statt dessen ist der herrschende Baum die Fichte, deren Beständen vereinzelt der Bergahorn beigemischt ist. Inwieweit hierbei anthropogener Einfluss vorliegt, kann in diesem Rahmen nicht entschieden werden. Es ist aber anzunehmen, dass im Gefolge der jahrhundertealten Bewirtschaftung der Jurahochflächen die Fichte zuungunsten der Buche gefördert wurde (ausführliche Diskussion bei Moor 1954). Besonders massives Auftreten von Picea abies begünstigt das Gedeihen der azidophilen Trennartengruppe D6, und zwar nicht nur auf normal drainierten Böden, sondern auch auf quelligen Stellen am Hangfuss über Aargauer Kalkmergel, wo ausserdem Caltha palustris, Deschampsia caespitosa u.a. Arten der Gruppe D5 gedeihen.

Aus der Vegetationskarte geht hervor, dass das obig beschriebene Aceri-Fagetum nur auf Nordhängen stockt. An südexponierten Stellen, etwa östlich von Le Houbel oder nördlich der Métairie du Milieu de Bienne, gedeiht ein in seinem Aufbau erheblich abweichender Bestand, der seinen Verbreitungsschwerpunkt auf dem Chasseral-Südhang hat. Er wird deshalb im folgenden Kapitel besprochen.

3.1.3 Chasseral-Südhang (Vegetationstabelle 3, hinten im Umschlag)

Die Vegetation des Südhangs unterscheidet sich erheblich von der des Nordhangs. Zunächst liegt die Grenze zwischen Buchen- und Buchen-Tannen-Wald höher, nämlich durchschnittlich bei knapp 1100 m NN. Das Fagetum typicum ist artenarm und seine Krautschicht lückig. Auffallend ist das stete Auftreten von Cardamine heptaphyllos und Elymus europaeus, die auf der Nordseite des Chasseral und am Weissenstein fast vollständig fehlen. Die Tanne ist der Baumschicht aus Buche beigemischt, spielt aber keine entscheidende Rolle. Der Boden ist skelettreich, flachgründig und nur dort etwas tiefgründiger, wo die Arten der Gruppe D2 auftreten. Relikte der tiefer liegenden Carici-Fageten (Melica nutans, Euphorbia amygdaloides, Convallaria majalis u.a.) kennzeichnen die Bestände, die zum Teil vom Weidevieh stark gestört sind. Deshalb ist auch die Fichte auf ausgedehnten Flächen und am Waldrand zur Vorherrschaft gelangt.

Auch das Abieti-Fagetum ist im unteren Hangdrittel nicht besonders üppig ausgebildet (Abieti-Fagetum elymetosum, reine Ausbildung). Typisch ist jedenfalls das Fehlen der Gruppe D1 und die Vorherrschaft der Gruppe D2. Das gehäufte Auftreten von Elymus europaeus berechtigt zur Bezeichnung «elymetosum» dieser Subassoziation. Säurezeiger fehlen ausser Vaccinium myrtillus, einer Spezies, die gleichmässig stetig in allen drei Vegetationseinheiten am Südhang gedeiht. Oberhalb von 1150 m NN ändert sich der Aspekt schlagartig.

Es kommen die Arten Adenostyles alliariae, Primula elatior, Polystichum aculeatum, Sanicula europaea, Lysimachia nemorum, Athyrium filix femina und Festuca sylvatica (D3) hinzu. Die Krautschicht wird artenreich und üppig; Farne und grossblättrige Stauden beherrschen das Bild (Adenostyles alliariae-Ausbildung). Die Artengruppe D4 mit Bromus benekeni, Carex montana, Brachypodium sylvaticum und Geum urbanum ist charakteristisch für einen südexponierten Bestand auf der Nordseite des Chasseral (südlich Piénibon), erreicht aber keine grössere Flächendeckung und soll deshalb hier nicht weiter behandelt werden.

Knapp unterhalb 1300 m NN kann die Grenze zum Aceri-Fagetum der Südlage gezogen werden. Dieser hochstaudenreiche Buchenwald unterscheidet sich von den bisher beschriebenen sehr deutlich. Zunächst ist die krüppelige Wuchsform der Buche erwähnenswert, die die herrschende Baumart darstellt und durch zum Teil niederliegenden Wuchs und gebüschartige Formen ein Begehen der Bestände erheblich erschwert. Fichte und Tanne, soweit sie noch vereinzelt vorkommen, sind ebenfalls klein, zum Teil krüppelig ausgebildet und tragen dichten Flechtenbewuchs. Der grobblockige Boden ist dicht mit den Arten der Gruppe D5 bewachsen. Es fehlen zum Teil die als Trennarten des Unterverbandes Aceri-Fagion angesehenen hygrophilen Hochstauden wie Chaerophyllum hirsutum und Cicerbita alpina. Statt dessen treten einige wärmeliebende Arten wie Centaurea montana, Valeriana montana, Daphne mezereum u.a. auf, die Beziehungen zum Seslerio-Fagetum erkennen lassen. Aspektbildend sind Adenostyles alliariae, Senecio fuchsii, Prenanthes purpurea, Polygonatum verticillatum, Cardamine heptaphyllos und Heracleum sphondylium ssp. montanum. Wie bereits erwähnt, gedeiht die «Südlagen»-Ausbildung des Aceri-Fagetum auch auf südwestorientierten Hängen des Chasseral-Nordabfalls. Dort gibt es an quelligen Stellen (Aargauer Kalkmergel) eine «Südlagen»-Ausbildung mit Geum rivale (D6), die am Chasseral-Südhang aus geologischen Gründen fehlt.

Das Transekt der Tafel 2 lässt die Verteilung der einzelnen Arten noch deutlicher hervortreten. Von den Baumarten ist die Buche die einzige, die in allen drei Vegetationseinheiten gleichmässig vorkommt, wenn auch im Aceri-Fagetum mit reduzierter Vitalität. Dies gilt ebenso für Galium odoratum, Solidago virgaurea, Cardamine heptaphyllos u.a., die am Ende von Tafel 2 unter der Bezeichnung «indifferente Arten» zusammengefasst sind. Die Fichte und die Tanne dagegen fehlen im Aceri-Fagetum, der Bergahorn im Fagetum typicum. Die übrigen Pflanzen gruppieren sich zu einem floristischen Gradienten, der nicht linear, sondern entsprechend der Anordnung der einzelnen Arten ähnlich einer Neutralisationskurve verläuft. Ihre steile Stelle markiert den Übergang zwischen der reinen und der Adenostyles alliariae-Ausbildung des Abieti-Fagetum elymetosum; hier erreichen Lamiastrum montanum, Geranium robertianum, Oxalis acetosella, Viola reichenbachiana, Senecio fuchsii und Keimlinge von Fagus sylvatica sehr rasch ihr optimales Vorkommen. pH und Wassergehalt geben keinen Aufschluss über etwaige Unterschiede.

3.1.4 Vegetationskundlicher Vergleich zwischen den Untersuchungsgebieten

3.1.4.1 Fagetum typicum

Ein Vergleich zwischen den Fageten der drei Untersuchungsgebiete Weissenstein, Chasseral-Nord und Chasseral-Süd zeigt gemäss der Teilstetigkeitstabelle (Tab. 3) eine hohe Uneinheitlichkeit dieses Vegetationstyps. Für eine genaue Interpretation der Unterschiede reicht natürlich das Aufnahmematerial nicht aus; dazu kommt, dass die Gesellschaft hier nur fragmentarisch ausgebildet und vielfach durch Beweidung gestört ist. Sehr artenarm bietet sich der Buchenwald am Fuss des Weissenstein-Nordhangs dar, wo gelegentlich durch Femelschlag auftretende Bestandeslücken kurzfristig von Eschenkeimlingen besiedelt werden. Die artenreicheren Fageten gedeihen auf den besseren Böden des Chasseral. Nord- und Südhang sind hier durch die Artengruppe D3 gekennzeichnet, die ausser Vaccinium myrtillus, das am Weissenstein wahrscheinlich nur wegen der geringen Aufnahmezahl nicht mit erfasst wurde, wärmeliebende (im Vergleich zu Abieti-Fagetum und Aceri-Fagetum) und mässig nährstoffreiche Böden bevorzugende Arten enthält. Signifikant ist der Unterschied zwischen Chasseral-Nordund Chasseral-Südhang. Das Fagetum auf alpiner Rissmoräne, die etwa zur Hälfte aus basischem (kalkalpinem), zur Hälfte aus silikatischem (zentralalpinem) Material besteht und oberflächlich entbast ist, im Vallon de St-Imier stellt auf Grund der Artengruppe D3 ein montanes Luzulo-Fagetum dar (vgl. RICHARD 1961), in dem die Tanne von Natur aus beteiligt ist, während die Buchenwälder der Südseite bei Nods im Untersuchungsgebiet bereits auf Jurakalken stocken und deshalb einen völlig anderen Charakter tragen. Sie sind nach Oberdorfer et al. (1967) als Cardamino heptaphyllae-Fagetum (Moor 1952, TH. MÜLLER 1966) zu bezeichnen, gehören damit in den (umstrittenen) Verband Daphno-Fagion und stehen dem Lathyro-Fagetum (HARTMANN 1954; = Cephalanthero-Fagetum OBERD. 1957 p.p.) der Schwäbischen Alb als montane Rasse nahe. Eine systematische Einordnung der Fageten am Weissenstein ist auf Grund der geringen Aufnahmezahl nicht möglich.

3.1.4.2 Abieti-Fagetum

Auch hier bestehen zwischen den untersuchten Jurahängen grosse floristische Unterschiede, nicht nur zwischen Süd- und Nordlage, was an sich verständlich ist, sondern vor allem auch zwischen den Nordlagen am Weissenstein und am Chasseral (Tab. 4). Die Arten der Gruppe D1 kennzeichnen die flachgründigen Böden des Schitterwaldes mit Festuca sylvatica (vgl. Moor 1952), Mycelis muralis und Adenostyles glabra. Tiefgründigere Böden verursachen dagegen das Auftreten von Viola reichenbachiana, Polygonatum verticillatum und Adenostyles alliariae (D3) im Buchen-Tannen-Wald des Chasseral. Die Nordlage wird angedeutet durch Rubus idaeus, Heracleum sphondylium ssp. montanum und die

Tabelle 3 Trennarten innerhalb des Fagetum typicum (b = Weissenstein-Nordhang, a = Chasseral-Nordhang, c = Chasseral-Südhang)

		ь	a	c
D1	Fraxinus excelsior Kml	3	•	
D2	Hedera helix Oxalis acetosella Fragaria vesca Geranium robertianum Rubus idaeus	2 1 2 1	V V IV III III	I I I I
D3	Hylocomium splendens Rhytidiadelphus triquetrus Rubus spec. Melampyrum pratense Pyrola secunda Primula elatior Polystichum aculeatum Actaea spicata Adenostyles alliariae Dicranum scoparium			
D4	Viola reichenbachiana Vaccinium myrtillus Lamiastrum montanum Lathyrus vernus Paris quadrifolia Majanthemum bifolium Corylus avellana Hieracium sylvaticum Ajuga reptans Phyteuma spicatum Neottia nidus avis Dryopteris filix mas Lilium martagon Carex sylvatica	1	V IV IV III III II II I	IV V III IV III III III III III III III
D5	Cardamine heptaphyllos Polygonatum verticillatum Anemone nemorosa Melica nutans Sorbus aucuparia Rosa pendulina Elymus europaeus Euphorbia amygdaloides	1	II II II	V IV IV IV IV III

Tabelle 4 Trennarten innerhalb des Abieti-Fagetum (e = Weissenstein-Nordhang, A.-F. festucetosum, d = Chasseral-Nordhang, A.-F. typicum, f = Chasseral-Südhang, A.-F. elymetosum

		е	d	\mathbf{f}
D1	Festuca sylvatica Mycelis muralis Adenostyles glabra Carex digitata Lonicera alpigena Dicranum scoparium Hylocomium splendens Fraxinus excelsior Cephalanthera alba Ctenidium molluscum Plagiochila asplenioides Rhytidiadelphus triquetrus	IV IV III III III III III III III III	II I I	I I
	Pleurozium schreberi	I	•	•
D2	Rubus idaeus Heracleum sphondylium ssp. montanum Actaea spicata Aruncus dioicus	III III II	IV II I II	I
D 3	Viola reichenbachiana	II II	V V IV	V V III
D4	Sanicula europaea Cardamine heptaphyllos Carex sylvatica Ajuga reptans Elymus europaeus Lathyrus vernus Primula elatior	II II II	I II II II II	III V IV IV III III

Schluchtwaldarten Actaea spicata und Aruncus dioicus (D2), Südlage mit lehmigen, stark verwitterten Böden durch Cardamine heptaphyllos, Carex sylvatica u.a. sowie vor allem durch Elymus europaeus (D4). Wenn man die in Tabelle 4 klar hervortretenden Einheiten benennen will, könnte man analog Moor (1952) von einem Abieti-Fagetum festucetosum (Weissenstein-Nord) und elymetosum (Chasseral-Süd) sprechen. Konsequenterweise wäre der trennartenlose Buchen-Tannen-Wald des Chasseral-Nordhangs als Abieti-Fagetum typicum zu bezeichnen.

Insgesamt gesehen, entsprechen die Abieti-Fageten des Schweizer Jura wohl am ehesten dem Lathyro-Abietetum (Oberdorfer Mskr.) der Schwäbischen Alb,

also montanen, tannenreichen Formen des Lathyro-Fagetum (einschl. Elymo-Fagetum Kuhn 1937). Es wurde von Oberdorfer (1957) Abieti-Fagetum jurassicum (montane und hochmontane Kalk-Tannen-Buchen-Wälder) genannt. Arten wie Lonicera nigra, Rosa pendulina, Epipactis helleborine, Adenostyles alliariae, Heracleum sphondylium ssp. montanum, Vaccinium myrtillus, gelegentlich auch Cardamine heptaphyllos, die im Abieti-Fagetum des Schweizer Jura im Gegensatz zu dem der Schwäbischen Alb gedeihen, kennzeichnen die grösseren Höhen und trennen es vom Lathyro-Abietetum. Es erscheint jedenfalls gerechtfertigt, den Buchen-Tannen-Wäldern des Schweizer Jura den Rang einer eigenen Gebietsassoziation zuzugestehen. Zweifellos vermitteln sie in ihrer Artengarnitur zu den Abieti-Fageten der Schweizer Voralpen (Kuoch 1954).

3.1.4.3 Aceri-Fagetum

Dass sich auch die hochstaudenreichen Buchenwälder der drei untersuchten Hänge wesentlich voneinander unterscheiden, ist nach Kenntnis der übrigen Vegetationseinheiten fast zu erwarten. Tatsächlich gibt es bei den Trennartengruppen alle möglichen Kombinationen, wie aus Tabelle 5 hervorgeht. Klar ist die Unterscheidung der Aceri-Fageten der Nordhänge durch D2 (Cicerbita alpina usw.) von denen des Südhangs durch D5 (Knautia sylvatica, Centaurea montana usw.). Das Auftreten azidophiler Moose (D1) und das Fehlen der Trennartengruppe D4 (Fagus sylvatica, Viola reichenbachiana, Galium odoratum u.a.) am Chasseral-Nordhang ist durch die bereits erwähnte starke Vorherrschaft der Fichte bedingt, während am Weissenstein die Anwesenheit von Festuca sylvatica durch den intensiven Kontakt mit dem Abieti-Fagetum festucetosum und von Fraxinus excelsior durch die geringe Höhenlage und das Vorhandensein leicht quelliger Stellen (auch Geum rivale) eine Erklärung findet (D3).

Die systematische Stellung des Aceri-Fagetum ist in den vergangenen Jahren ziemlich geklärt worden. Es gehört als selbständige Assoziation in den Unterverband Aceri-Fagion (ELLENBERG 1963), der mit einigen hygrophilen Arten zum Verband Tilio-Acerion vermittelt (PFADENHAUER 1969).

· 3.1.4.4 Zusammenfassung der besprochenen Vegetationseinheiten

Aus Tabelle 6 geht hervor, dass sich Buchen-, Buchen-Tannen- und hochstaudenreicher Buchenwald durch eine Reihe von Trennartengruppen gut voneinander unterscheiden. D1 kennzeichnet mit Hedera helix, Convallaria majalis, Lathyrus vernus u.a. die am tiefsten gelegenen Luzulo- und Cardamine heptaphyllae-Fageten. Abies alba und andere Pflanzen der Gruppe D2 haben ihren Verbreitungsschwerpunkt im Abieti-Fagetum und fehlen im Aceri-Fagetum. Arten mit höheren Ansprüchen an Luftfeuchtigkeit (Farne) und Nährstoffverhältnissen (Dryopteris filix mas, Athyrium filix femina, Polygonatum verticillatum, Adenostyles alliariae u.a. von D3) gedeihen im Buchen-Tannen-Wald und im hochstaudenreichen Buchenwald, während die Hochstauden der Gruppe D4 ausschliesslich letzterem vorbehalten bleiben.

Tabelle 5 Trennarten innerhalb des Aceri-Fagetum (g = Chasseral-Nordhang, h = Weissenstein-Nordhang, i = Chasseral-Südhang)

		g	h	i
D1	Saxifraga rotundifolia	IV	110	
	Pleurozium schreberi	III	•	136
	Rhytidiadelphus triquetrus	II	•	I
	Plagiochila asplenioides	II	I	3.€
	Ctenidium molluscum	II	I	7.●
	Dicranum scoparium	II	•	8.●
	Petasites albus	II	•	::●:
	Cardamine pratensis	II	•	
	Aconitum napellus	II	I	(≨8 (1•)
	Anthriscus sylvestris	II	•	•
D2	Cicerbita alpina	V	IV	•
	Chaerophyllum hirsutum	IV	II	I
	Veratrum album	IV	II	I
	Aconitum vulparia	III	IV	I
$\mathbf{D3}$	Geum rivale	I	III	I
	Festuca sylvatica	•	III	Ι
	Fraxinus excelsior	•	III	•
	Silene dioica	•	II	
	Allium ursinum	•	II	•
	Luzula sylvatica	•	II	٠
	Fissidens taxifolius	•	II	
$\mathbf{D4}$	Fagus sylvatica	II	V	IV
	Galium odoratum	I	V	IV
	Viola reichenbachiana	II	V	IV
	Polygonatum verticillatum	Ι	IV	V
	Carex sylvatica	•	III	IV
	Mercurialis perennis	•	III	II
	Sanicula europaea	•	III	II
	Geranium robertianum		II	II
$\mathbf{D}5$	Knautia sylvatica	II	I	V
	Solidago virgaurea	I	٠	IV
	Centaurea montana	٠	•	IV
	Fragaria vesca	*	٠	III
	Sorbus aucuparia	ě	I	III
	Valeriana montana	•	•	III
	Cardamine heptaphyllos	II	<u>.</u>	III
	Elymus europaeus	•	I	II
	Melampyrum sylvaticum	*	02	II
	Carduus personata	•	•	II
	Lathyrus vernus	•		I

Tabelle 6 Assoziationstrennarten des Fagetum typicum (a, b, c), Abieti-Fagetum (d, e, f) und Aceri-Fagetum (g, h, i) am Weissenstein und am Chasseral

Nummer de	r Assoziation	a	b	c	d	е .	f	g	h	i
D1 Melica	a nutans			IV						•
Anemo	one nemorosa	•		IV	•				•	•
	rbia amygdaloides	•		III						•
	a helix	V	2	I	•	•	•			•11
	llaria majalis	II	1	II	•	•	•	•	•	
	rus vernus	IV		IV	•		•		•	•
	themum bifolium	III		IV	•	•	•		•	%
Melan	npyrum sylvaticum	II	*	I	•	•	•	. •	•	
D2 Abies	alba	V	3	IV	V	V	V	1	I	II
Epipa	ctis helleborine	I	2	I	II	III	II	•		•
Neotti	a nidus avis	II	•	II	II	III	II		100	•
Carex	digitata	III	1	II	(*)	III			9.	10.3
Coryli	us avellana	IV	•	II	II	: • ::	I	•	1.	•
D3 Dryop	teris filix mas	I		II	v	IV	V	II	v	III
Epilob	oium montanum	•	1	•	I	II	Ι	I	II	II
Athyri	ium filix femina				II	II	II	IV	IV	III
Polygo	onatum verticillatum			\mathbf{v}	V	II	V	I	IV	V
Adeno	styles alliariae	1		•	IV	II	III	V	V	IV
Primu	la elatior	II		•	II		III	V	III	V
	leum montanum	197		•	II	III	I	IV	III	V
	era alpigena	1.00	•	•	I	III		II	II	II
Lysim	achia nemorum	8 ● 8	•	•	<u> </u>	•	II	I	I	I
D4 Seneci	io fuchsii		•		I	I	I	IV	V	IV
Knaut	ia sylvatica	I		•	•	100	1	II	I	V
Ranun	culus lanuginosus	101		•	•	(*)	II	IV	V	III
Chaer	ophyllum hirsutum		•	•		•	•	IV	II	I
	x arifolius			•			•	IV	IV	III
	rum album			•	8.08	•	•	IV	II	I
5000 👼 20	paludosa	(•)		•	1.	•	•	III	III	II
	tum vulparia	•		•		•	•	III	IV	I
	iculus platanifolius) • (•				II	I	III
	ium sylvaticum	190	•	•				II	II	III
	rivale	€.	٠	•		•		I	III	I
Cicert	oita alpina	i.	•	•	•	• 3	•	V	IV	·J

3.2 Phänologie

Die Kartierung der phänologischen Zustandsstufen ergab Wuchsklimakarten der Untersuchungsgebiete, die die mögliche landwirtschaftliche Nutzung angeben (vgl. dazu Ellenberg 1954). Wir folgen bei dieser Einteilung der Arbeit von Schreiber (1968). Am Weissenstein und am Chasseral kommen insgesamt

8 Stufen vor, die in Tabelle 7 zusammengestellt und erklärt sind. Aus Tabelle 8 geht hervor, wie gross der vertikale Bereich der einzelnen Wärmestufen ist. Erwartungsgemäss liegen die Grenzen am Nordhang über 100 Höhenmeter tiefer als am Südhang.

Tabelle 7 Relative Wärmestufen am Weissenstein und am Chasseral (Bezeichnung nach Schreiber 1968)

Stufe Nr.	Relative Wärmestufe	Landwirtschaftliche Klimastufe	Erläuterung
4	ziemlich kühl	untere Ackerbaustufe	Grenzklima des erwerblichen Obstbaus
3	kühl	mittlere Ackerbaustufe	
2	sehr kühl	obere Ackerbaustufe	
1	ziemlich rauh	untere Berggrünlandstufe	Grenzklima des Sommer- getreideanbaus
0	rauh	mittlere Berggrünlandstufe	
-1	sehr rauh	obere Berggrünlandstufe	Grenzklima für zweischürige Wiesennutzung
_2 _3	ziemlich kalt kalt	untere Alpengrünlandstufe mittlere Alpengrünlandstufe	

Tabelle 8 Bereich der kartierten Wärmestufen an den untersuchten Hängen des Weissenstein und des Chasseral in m NN

Stufe Nr.	Weissenstein	Chasseral-Nord	Chasseral-Süd
4	? – 790	? – 790	? - 900
3	790 - 900	790 - 900	900 - 1000
2	900 - 990	900 - 1000	1000 - 1090
1	990 - 1040	1000 - 1160	1090 - 1250
0	1040 - 1300	1160 - 1310	1250 - 1410
-1	1300 - ?	1310 - 1410	1410 - 1550
—2		1410 - 1550	1550 - ?
—3		1550 - ?	

3.3 Klima

3.3.1 Regenniederschlag

Trotz eines relativen Höhenunterschiedes von über 500 m vom Talgrund bis zum Gipfel (Dilitschkopf) konnte eine Differenzierung des Regenniederschlags bei den Summenwerten der Vegetationszeit (Juni-Oktober) 1970 am Weissen-

stein nicht festgestellt werden (Abb. 3). Aus Tabelle 9 ist dagegen zu entnehmen, dass in den Monaten Juni-August eine Minderung der Regenmengen mit zunehmender Meereshöhe stattfand, während im September und Oktober eine geringe Zunahme zu erkennen ist. Der erheblich über dem der Station 2 liegende Wert der Station 3 im Gipfelbereich gleicht die Gesamtsumme aus.

Ganz anders liegen die Verhältnisse am Chasseral. Im Jahr 1970 war die Niederschlagsverteilung an den sechs Stationen dergestalt, dass die grössten Regenmengen mit 592 mm (Juni-Oktober) in etwa 1200 m Meereshöhe am südostexponierten Hang fielen (Abb. 4). Die Stationen 4 und 6, deren Höhendifferenz 420 m betrug, erhielten gleich viel Niederschlag (rund 457 mm). Auf der Nordseite dagegen wurde am meisten an der höchstgelegenen Station Nr. 9 (498,9 mm), am wenigsten an der Talstation Nr. 7 (449,1 mm) gemessen. Im Jahr 1971 fiel zwischen dem 1. Juni und dem 11. Oktober insgesamt erheblich mehr Regen an allen Stationen, wobei das Maximum mit 647,5 mm bei Station 6, das Minimum mit 471,1 mm bei Station 7 auf der Nordseite lag (Abb. 5). Ein Vergleich der Abbildungen 4 und 5 zeigt, dass während beider Jahre der Südhang des Chasseral mehr Niederschlag erhielt als der Nordhang. Wir werden auf die Deutung dieses Phänomens und seine Wirkung auf die Vegetation noch zurückkommen.

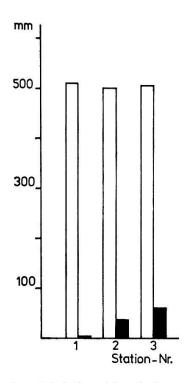


Abb. 3 Regen- (weiss) und Horizontalniederschlag (schwarz) als Summen der Vegetationszeit Juni-Oktober 1970 an den Stationen 1-3 am Weissenstein

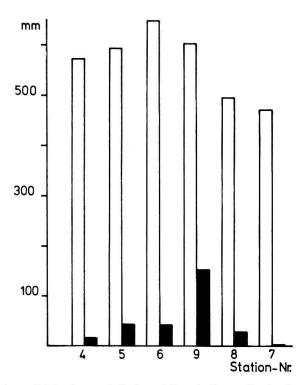


Abb. 4 Regen- (weiss) und Horizontalniederschlag (schwarz) als Summen der Vegetationszeit Juni-Oktober 1970 an den Stationen 4-9 am Chasseral

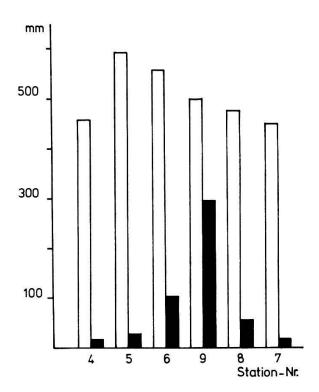


Abb. 5 Regen- (weiss) und Horizontalniederschlag (schwarz) als Summen der Vegetationszeit Juni-Oktober 1971 an den Stationen 4-9 am Chasseral

3.3.2 Horizontalniederschlag

Die Differenz zwischen den Werten, die in den ohne und in den mit Nebelfanggitter versehenen Regenmessern gemessen wurden, ergibt die von 200 cm² Drahtnetz aufgefangene Menge Horizontalniederschlag. Man misst nicht nur den treibenden Nebel, sondern erhält auch einen höheren Anteil Regenniederschlag, der dadurch zustande kommt, dass durch Windeinwirkung der Regenfall nicht mehr senkrecht, sondern schräg oder bei sehr starkem Wind horizontal einfällt. In tieferen Lagen oder bei geringen Regenfällen kann obige Differenz auch negativ sein, weil die Auffangfläche der Regenmesser durch das Drahtnetz abgeschirmt wird und an diesem anhaftende Tropfen wieder verdunsten, ehe sie in das Sammelgefäss abfliessen können. Die Bezeichnung «Nebelniederschlag» ist deshalb ungenau. In dieser Arbeit soll nur von «Horizontalniederschlag» gesprochen werden (zur Kritik des Nebelfanggitters vgl. Grunow 1954, 1955, 1958). Eine Zunahme des Horizontalniederschlags mit steigender Meereshöhe war deshalb zu erwarten, nicht nur weil in den Kammlagen besonders häufig dichter Nebel auftritt, sondern auch weil die Windgeschwindigkeit grösser wird. Am Weissenstein ist eine Erhöhung von 3,7 mm (Station 1) über 36,9 mm (Station 2) auf 60,4 mm (Station 3) zu verzeichnen (Abb. 3, Tab. 10). Das sind

Tabelle 9 Monatliche Niederschlagssummen der Messstellen 1–9 am Weissenstein und am Chasseral. Da die Ablesungen wöchentlich erfolgten, ist die tatsächliche Messzeit für 1970: Juni: 15.6.–29.6., Juli: 29.6.–27.7., August: 27.7.–31.8., September: 31.8.–28.9., Oktober: 28.9.–19.10.; für 1971: Juni: 31.5.–28.6., Juli: 28.6.–2.8., August: 2.8.–3.8., September: 30.8.–27.9., Oktober: 27.9.–11.10.

Ort		Weisse	enstein		Chasse SE-Ha			Chasse NW-F		
Station Höhe	n Nr	1 810	2 925	3 1305	4 990	5 1245	6 1411	9 1398	8 1139	7 800
1970	Juni	121,4	119,6	114,9	75,0	131,9	95,5	108,0	103,3	106,2
	Juli	83,1	90,3	78,5	99,0	110,8	125,6	120,1	104,1	99,6
	August	196,8	184,3	172,5	151,5	201,2	189,1	173,1	156,0 38,7	127,5 37,5
	September	21,6	23,9	24,9	30,8	54,2	58,3	31,8	72,4	78,3
	Oktober	88,4	82,1	114,5 505,3	89,1 457,4	93,7	88,3	65,9 498,9	474,5	449,1
1971	Summe Juni	511,3	500,2		158,6	591,8 175,0	556,8 184,0	152,2	117,6	120,0
19/1					130,4	173,0	158,7	135,9	153,2	120,0
	Juli				227,2	236,9	256,5	241,0	194,8	189,9
	August				36,3	35,0	42,8	48,0	23,9	28,5
	September						Para America	10000000		15
	Oktober				1,0	9,0	6,1 647,6	6,4 603,5	5,4 494,9	5,6 471,1
	Summe				573,5	594,0	047,0	003,3	434,3	4/1,1

Tabelle 10 Monatliche Summen des Horizontalniederschlags der Messstellen 1-9 am Weissenstein und am Chasseral (tatsächliche Messzeit s. Tab. 7)

Ort		Weis	Weissenstein			Chasseral SE-Hang		Chasseral NW-Hang			
Station Höhe	Nr	1 810	2 925	3 1305	4 990	5 1245	6 1411	9 1398	8 1139	7 800	
1970	Juni	2,4	_	2,8	_	1,6	8,7	16,0	9,5	7,3	
	Juli	, <u></u>	0,1	32,4	2-2	13,9	46,0	91,7	4,9	_	
	August	1,0	10,5	24,2	1,6	5,4	12,0	69,0	7,2	9,7	
	September	_	_	-	* - *	1,4	34,1	42,5	2,1	0,8	
	Oktober	0,3	26,3	» »	15,6	5,8	2,1	74,3	31,0	0,9	
	Summe	3,7	36,9	60,4	17,2	28,1	103,1	294,5	54,7	18,7	
1971	Juni				9,0	24,1	17,1	78,8	11,1	_	
	Juli				3,0	2,9	9,4	41,0	9,6	3,2	
	August				1,0	7,0	4,9	28,4	7,3	0,1	
	September				3,0	4,3	8,5	3,7	0,4	0,2	
	Oktober				1,0	4,8		-	_	_	
	Summe				17,0	43,1	41,5	151,9	28,4	3,5	

bei Station 3 im Bereich des Aceri-Fagetum immerhin knapp 10% der Summe des Regenniederschlags während der Vegetationszeit.

Am Chasseral sind diese Verhältnisse erheblich klarer ausgeprägt. Die Daten des Horizontalniederschlags stehen fast in umgekehrtem Verhältnis zu den Regenmengen. Durchschnittlich die höchsten Werte konnten auf der Nordseite des Chasseral festgestellt werden, wobei das Maximum mit 294,5 mm an Station 9 gemessen wurde. Das entspricht etwa 34% des Regenniederschlags während der Vegetationszeit. Am Südhang betrug der Horizontalniederschlag in einer Höhe von 1400 m NN bei Station 6 103,9 mm, das entspricht 16% des Regenniederschlags an dieser Stelle, während die Stationen 4, 5, 7 und 8 im Vergleich dazu nur mehr geringe Werte erhielten (Abb. 4).

Auch im Jahr 1971 lag das Maximum mit 159,9 mm bei Station 9 (Abb. 5). Aus dem Rahmen dagegen fielen die Daten bei Station 6 mit nur 41,5 mm, während auf halber Hanghöhe der Südostseite immerhin schon 43,1 mm gemessen wurden. Im Vergleich erhalten die unteren Hangteile des Südhangs mehr Horizontalniederschlag als die des Nordhangs.

3.3.3 Wind

Die wöchentliche Ablesung der Windwegmesser ergab durchschnittliche Windgeschwindigkeiten für die Monate Juni-Oktober der Jahre 1970 und 1971, wie sie in Tabelle 11 aufgeführt sind. Da nur vier Schalenwindwegmesser zur Ver-

fügung standen, konnte in jedem Jahr nur eine Hangseite und zu Vergleichszwecken die mittlere Station des Gegenhangs untersucht werden.

Danach sind die Werte am Chasseral-Nordhang verhältnismässig hoch, vor allem an der frei stehenden Station 9, wo im Juli und Oktober durchschnittlich über 14 km/h gemessen wurden. Überhaupt scheint der Nordhang erheblich windausgesetzter zu sein als der Südhang. Vergleicht man die Werte der Station 5 (maximal 0,6 km/h) auf 1200 m NN auf der Südseite mit denen der Station 7 auf 800 m NN, also 400 m tiefer gelegen, im Tal bei Courtelary, so sind die Windgeschwindigkeiten hier noch über sechsmal so hoch (rund 3,5 km/h).

Ähnliche Ergebnisse vermittelt das Jahr 1971, wo die drei Stationen auf der Südseite und die Station 8 auf der Nordseite mit Windwegmessern ausgerüstet waren. Die Werte dieser Station lagen im Durchschnitt um etwa 1 km/h niedriger als im Vorjahr, während die der Station 5 etwa gleich hoch waren (1970: 0,535 km/h, 1971: 0,526 km/h). Aus Abbildung 6, wo die Ergebnisse beider Jahre miteinander vergleichbar dargestellt sind, geht hervor, dass in gleicher Höhe (z. B. bei 1400 m NN) am Nordhang im Mittel dreizehnmal höhere Windgeschwindigkeiten auftraten als am Südhang. Für die Niederschlagsverteilung ist dieses Ergebnis von erheblicher Bedeutung.

Die Beobachtung der Windrichtung während der Monate Mai-Oktober 1970, deren Daten mir freundlicherweise von der Meteorologischen Zentralanstalt in Zürich zur Verfügung gestellt wurden, erfolgte nicht am Chasseral, sondern an

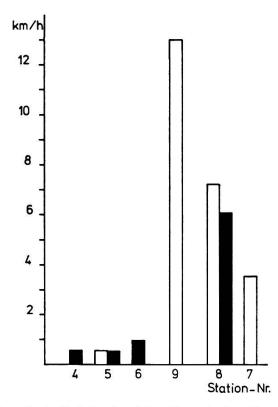


Abb. 6 Mittlere Windgeschwindigkeit (km/h) während der Vegetationszeit Juni-Oktober 1970 (weiss) und 1971 (schwarz) an den Stationen 5, 9, 8 und 7 (1970) und 4, 5, 6 und 8 (1971)

Tabelle 11 Durchschnittliche Windgeschwindigkeit (in km/h) an den Stationen 4-9 (Chasseral) während der Vegetationszeit 1970 und 1971 (tatsächliche Messzeit s. Tab. 7)

Station	Nr	4	5	6	9	8	7
Höhe	m NN	990	1245	1411	1398	1139	800
1970	Juni		0,537		12,982	4,755	2,818
	Juli		0,558		14,427	7,819	4,201
	August		0,465		10,483	4,187	2,952
	September		0,611		12,029	8,602	3,676
	Oktober		0,504		14,989	8,270	3,269
	Mittel Juni-Oktober		0,535		12,982	7,220	3,522
1971	Juni	0,634	0,565	0,967		6,576	
	Juli	0,613	0,491	0,838		5,247	
	August	0,579	0,481	0,864		6,526	
	September	0,652	0,567	1,012		6,106	
	Oktober	0,481	0,524	1,086		5,858	
	Mittel Juni-Oktober	0,592	0,526	0,953		6,063	

dem nordwestlich gelegenen Mont-Soleil auf der anderen Seite des Vallon de St-Imier (1180 m NN) und kann auch als typisch für das Gebiet des Chasseral angenommen werden. Die Ergebnisse sind in Abbildung 7 dargestellt. Danach fallen von insgesamt 552 Daten (täglich dreimalige Beobachtung der Windrichtung um 7^{00} , 13^{00} und 21^{00} h vom 1. Mai-31. Oktober 1970) = 100% 225 (= 40.8%) auf windstilles und 327 (= 59.2%) auf windbewegtes Wetter. Am häufigsten wehte der Wind aus südwestlicher Richtung (17,9%), am zweithäufigsten aus Nordost (11,9%) und am dritthäufigsten aus Südost (10,2%).

3.3.4 Relative Luftfeuchtigkeit

Die Registrierung der rel. Luftfeuchtigkeit durch den Hygrographen in 120 cm über dem Boden wurde für alle zwei Stunden (2⁰⁰, 4⁰⁰, 6⁰⁰, ... 24⁰⁰ h) ausgewertet. Daraus wurden mittlere monatliche Tagesgänge, mittlere Tagesgänge während der Vegetationszeit Juni-Oktober 1970, Tages- und Monatsmittel sowie mittlere Tagesschwankungen abgeleitet. In Tabelle 12 und in Abbildung 8 sind die mittleren Tagesgänge dargestellt. Danach ist das Gangniveau, also der Bereich, in dem sich die Luftfeuchtigkeit im Laufe des Tages bewegt (gilt sinngemäss auch für die Lufttemperatur, s. Kap. 3.3.5), bei nahezu allen Stationen sehr unterschiedlich. Lediglich Nr. 6 und Nr. 9 auf 1400 m NN liegen in einem ähnlichen Bereich von 76-86%.

Die mittlere Tagesschwankung ist eine bevorzugte Grösse, um die vertikale Gliederung eines Hangs zu kennzeichnen. Die in Tabelle 13 angegebenen Mittelwerte der Tagesschwankungen (für 1970) verdeutlichen die Unterschiede zwischen den Stationen 4 und 7, deren Höhendifferenz fast 300 m beträgt. Die Werte sind desto geringer, je höher die Stationen über dem Talgrund standen.

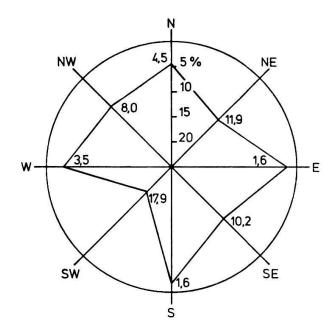


Abb. 7 Prozentuale Verteilung der Windrichtung am Mont-Soleil (1180 m NN, $\lambda=7^{\circ}00'$, $\varphi=47^{\circ}10'$), beruhend auf 552 (=100%) Beobachtungen (täglich 7^{00} , 13^{00} und 21^{00}) während der Vegetationszeit Mai-Oktober 1970 (59,2% windbewegt, 40,8% windstill)

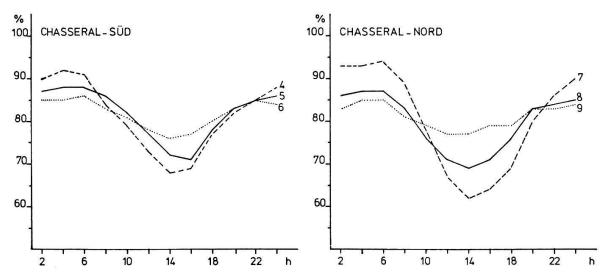


Abb. 8 Mittlere Tagesgänge der rel. Luftfeuchtigkeit während der Vegetationszeit Juni-Oktober 1970 an den Stationen 4-6 (Südhang) und 7-9 (Nordhang) am Chasseral

Tabelle 12 Mittlere Tagesgänge der rel. Luftfeuchtigkeit für die Vegetationszeit Juni-Oktober 1970 am Chasseral

Station Nr	4	5	6	9	8	7
Höhe m NN	890	1245	1411	1398	1139	800
Uhrzeit 2	90	87	85	83	86	93
4	92	88	85	85	87	93
6	91	88	86	85	87	94
8	84	86	83	81	83	89
10	79	82	81	79	76	78
12	73	77	78	77	71	67
14	68	72	76	77	69	62
16	69	71	77	79	71	64
18	77	78	80	79	76	69
20	82	83	83	83	83	80
22	85	85	85	83	84	86
24	88	86	84	84	85	90
Mittel	81	82	82	81	80	80

Tabelle 13 Mittelwerte der Tagesschwankung der rel. Luftfeuchtigkeit (%) in den Monaten Juni-Oktober und in der Vegetationszeit 1970 am Chasseral

Station Nr	4	5	6	9	8	7
Höhe m NN	990	1245	1411	1398	1139	800
Juni	26	19	10	8	20	33
Juli	26	22	16	14	23	32
August	25	22	12	13	20	35
September	25	18	8	9	21	38
Oktober	16	10	7	7	11	22
Mittel Juni-Oktober	24	17	10	10	18	32

Tabelle 14 Monatsmittel der rel. Luftfeuchtigkeit (%) in den Monaten Juni-Oktober und in der Vegetationszeit 1970 am Chasseral

Station Nr. Höhe m NN.	4 990	5 1245	6 1411	9 1398	8 1139	7 800
Juni	81	86	88	87	83	76
Juli	79	84	85	85	82	77
August	83	85	84	83	82	82
September	79	78	76	75	75	80
Oktober	85	77	76	81	78	87
Mittel Juni-Oktober	81	82	82	82	80	80

So kommt es, dass der Verlauf der rel. Luftfeuchtigkeit an den Talstationen 4 und 7 alle von den übrigen Registrierungen eingenommenen Bereiche überstreicht. Am Tag war es deshalb im Durchschnitt trockener, nachts feuchter als an den übrigen Messstellen. Dies gilt sinngemäss auch für die Station 5 bzw. 8 gegenüber 6 bzw. 9.

Die jahreszeitliche Periodik der mittleren Tagesschwankung ist an den Stationen 6 und 9 sowie in etwas abgeschwächter Form an 5 und 8 zu ersehen. Die grössten Schwankungen treten im Juli, die geringsten im Oktober auf. Zum Herbst hin verkleinert sich die Tageswelle. Die talnahen Stationen verhalten sich dagegen anders. So zeigt Nr. 7 bei Courtelary ein Maximum von 38% im September.

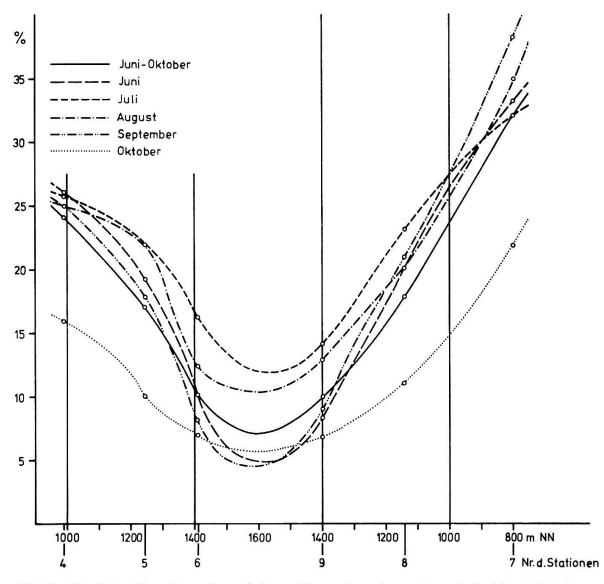


Abb. 9 Vertikale Verteilung der mittleren Tagesschwankung der rel. Luftfeuchtigkeit am Chasseral während der Vegetationszeit Juni-Oktober 1970

In Abbildung 9 ist die vertikale Verteilung der Tagesschwankung in den Monaten Juni, Juli, August, September und Oktober sowie im Mittel der Vegetationszeit Juni-Oktober 1970 aufgetragen. Die Abszisse stellt eine Linie von Nods über den Gipfel (1600 m NN) bis Courtelary ohne Berücksichtigung der horizontalen Entfernung dar, wobei nur die Höhenstufen und die Lage der Stationen angegeben sind (vgl. die gleiche Darstellung der Abszisse in den Abb. 10, 12 und 13). Die Tagesschwankungen betragen danach bei 1000 m NN auf der Südseite etwa 24%, auf der Nordseite 23,5%, bei 1400 m NN auf der Südseite 10,5%, auf der Nordseite 10%. Signifikante Unterschiede zwischen gleichen Höhenlagen der beiden verschiedenen Expositionen bestehen also nicht. Die Schwankung nimmt im Verlauf eines Aufstiegs von 1000 m bis 1600 m NN durchschnittlich um etwa 17% ab, das entspricht einer Minderung von 3%/100 m Höhe.

Von diesen sehr typischen Verhältnissen unterscheidet sich der Verlauf der Mittelwerte der rel. Luftfeuchtigkeit grundsätzlich. Die Monatsmittel sowie die Mittelwerte Juni-Oktober 1970 sind in Tabelle 14 wiedergegeben. Eine Übersicht über die vertikale Verteilung der Monatsmittel gibt Abbildung 10. Die zwischen den Werten der einzelnen Stationen im Jahresablauf interpolierten Linien gleicher rel. Luftfeuchtigkeit zeigen eine bestimmte Gesetzmässigkeit. So ist im Frühjahr (Juni, Juli) der Nordhang eindeutig feuchter als der Südhang; im Herbst (September) bildet sich auf der nordwestexponierten Seite des Chasseral eine «Trockeninsel» aus (75%), die der südostexponierten Seite fehlt. In den mittleren und oberen Hanglagen ist, erkenntlich an der Häufung der Linien gleicher Luftfeuchtigkeit, zwischen Sommer und Herbst (August/September) ein rascheres «Austrocknen» der Luft festzustellen als in den unteren Hanglagen.

3.3.5 Lufttemperatur

Die Registrierungen der Lufttemperatur durch die Thermographen mit Bimetall-Messfühlern in 120 cm Höhe über dem Boden wurden wie bei der rel. Luftfeuchtigkeit alle zwei Stunden ausgewertet. Auch hier sind aus diesem Material mittlere monatliche Tagesgänge, mittlere Tagesgänge während der Vegetationszeit Juni-Oktober 1970, Tages- und Monatsmittel sowie Temperatursummen gewonnen worden. In Tabelle 15 und Abbildung 11 sind die mittleren Tagesgänge der Vegetationszeit dargestellt.

Das Gangniveau (s. Kap. 3.3.4) und die Tagesschwankung kennzeichnen die einzelnen Geländeteile, für die die Klimastationen repräsentativ sind, sehr gut. Am Südhang des Chasseral ist das Gangniveau, also der Temperaturbereich, in dem sich die einzelnen Kurven bewegen, verschieden, die Tagesschwankungen dagegen fast gleich. Am Nordhang sind Gangniveau und Tagesschwankung vertikal sehr verschieden, wobei der Temperaturverlauf an der Station 9 die von den übrigen Registrierungen eingenommenen Bereiche überstreicht. Hier war es nachts also wärmer, unter Tags kälter als an den übrigen Messstellen.

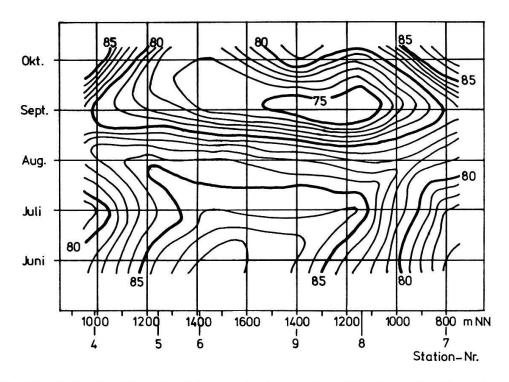


Abb. 10 Vertikale Verteilung der Monatsmittel der rel. Luftfeuchtigkeit während der Vegetationszeit Juni-Oktober 1970 am Chasseral

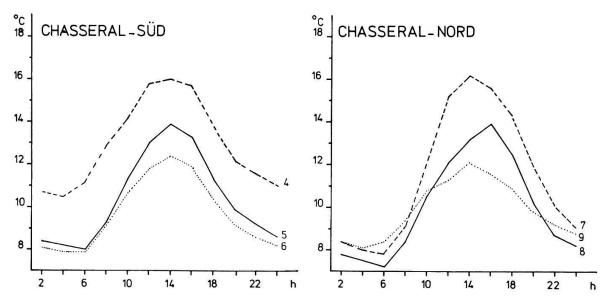


Abb. 11 Mittlere Tagesgänge der Lufttemperatur während der Vegetationszeit Juni-Oktober 1970 an den Stationen 4-6 (Chasseral-Südhang) und 7-9 (Chasseral-Nordhang)

Tabelle 15 Mittlere Tagesgänge der Lufttemperatur für die Vegetationszeit Juni-Oktober 1970 am Chasseral

Station Nr	4	5	6	9	8	7
Höhe m NN	990	1245	1411	1398	1139	800
Uhrzeit 2	10,7	8,4	8,1	8,4	7,8	8,4
4	10,5	8,2	7,9	8,1	7,5	8,0
6	11,2	8,0	7,9	8,4	7,2	7,8
8	12,9	9,3	9,2	9,4	8,4	9,1
10	14,2	11,3	10,7	10,8	10,5	12,0
12	15,8	13,0	11,8	11,3	12,1	15,2
14	16,0	13,9	12,4	12,1	13,2	16,2
16	15,7	13,3	11,9	11,6	13,9	15,6
18	13,8	11,3	10,4	10,9	12,5	14,3
20	12,2	9,9	9,2	9,8	10,2	11,9
22	11,6	9,2	8,6	9,2	8,7	10,1
24	11,0	8,6	8,2	8,8	8,2	9,1
Mittel	13,0	10,3	9,7	9,9	10,0	11,5

Tabelle 16 Mittelwerte der Tagesschwankung der Lufttemperatur (°C) in den Monaten Juni-Oktober 1970 am Chasseral

Station Nr	4	5	6	9	8	7
Höhe m NN	990	1245	1411	1398	1139	800
Juni	5,9	5,4	3,8	3,1	5,7	7,7
Juli	5,7	6,3	5,1	4,8	7,7	8,0
August	6,0	6,5	5,0	4,4	8,7	9,5
September	6,2	6,9	5,3	4,4	7,4	10,9
Oktober	4,3	4,7	3,5	2,4	4,2	6,6
Mittel Juni-Oktober	5,5	5,9	4,5	4,0	6,7	8,4

Tabelle 17 Monatsmittel der Lufttemperatur am Chasseral (Juni-Oktober 1970)

Station Nr	4 990	5 1245	6 1411	9 1398	8 1139	7 800
Juni	14,7	11,3	10,8	9,8	11,7	13,2
Juli	14,1	11,4	10,3	11,6	11,6	13,1
August	14,8	12,5	11,6	12,2	12,9	14,7
September	13,2	11,0	10,5	10,5	11,1	11,6
Oktober	8,1	5,5	5,3	5,3	2,7	5,0
Mittel Juni-Oktober	13,0	10,3	9,7	9,9	10,0	11,5

Die Mittelwerte der Tagesschwankung der Lufttemperatur in den Monaten Juni-Oktober 1970 sind in Tabelle 16 angegeben. Hieraus ist klar ersichtlich, dass mit Ausnahme der Station 8 (August) die höchsten Werte im September, die niedrigsten im Oktober auftraten. Damit unterliegt auch die Tagesschwankung der Lufttemperatur einem jahreszeitlichen Rhythmus.

Die Vertikalprofile der Tagesschwankung in den Monaten Juni, Juli, August, September und Oktober sowie das Mittel der Vegetationszeit sind in Abbildung 12 aufgetragen. Ein Vergleich zwischen den Werten der Südseite und denen der Nordseite in gleicher Meereshöhe zeigt erhebliche Unterschiede. So beträgt die durchschnittliche Tagesschwankung der Lufttemperatur bei 1000 m NN am Südhang 5,5 °C, am Nordhang 7,7 °C, bei 1400 m NN am Südhang nur mehr 4,6 °C, am Nordhang 4,0 °C. Während in höheren Lagen oberhalb 1300 m NN auf der Nordseite der tägliche Temperaturgang ausgeglichener verläuft als auf der Südseite, sind in tieferen Lagen die Schwankungen auf der Nordseite wesentlich geringer als auf den südexponierten Hängen.

Über die Monatsmittel der Lufttemperatur an den verschiedenen Messstellen des Chasseral unterrichtet Tabelle 17, eine Übersicht über die vertikale Verteilung vermittelt Abbildung 13. Die Linien gleicher Temperatur sind Isothermen, mit deren Hilfe für jeden Punkt entlang der Messstrecke am Süd- und Nordhang

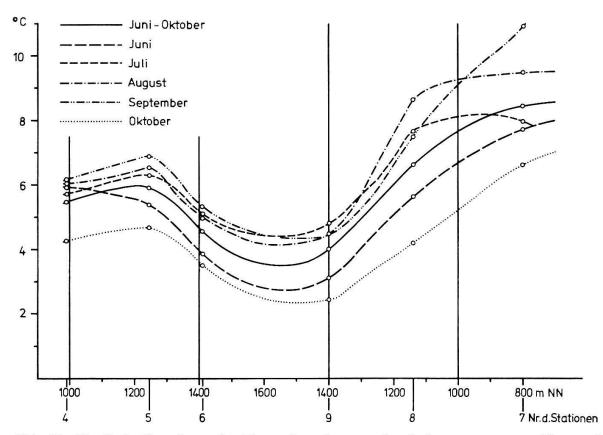


Abb. 12 Vertikale Verteilung der Tagesschwankungen der Lufttemperatur am Chasseral während der Vegetationszeit Juni-Oktober 1970

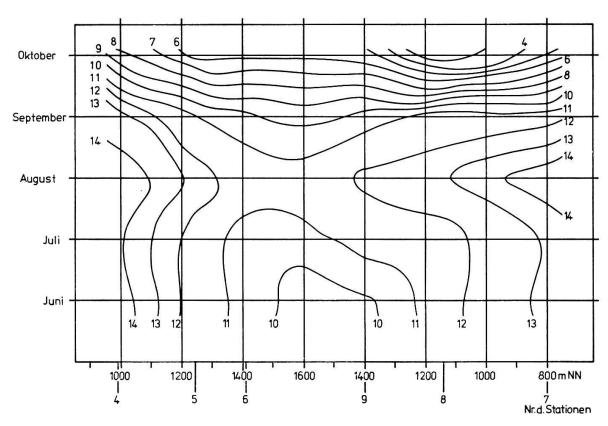


Abb. 13 Vertikale Verteilung der Monatsmittel der Lufttemperatur am Chasseral während der Vegetationszeit Juni-Oktober 1970

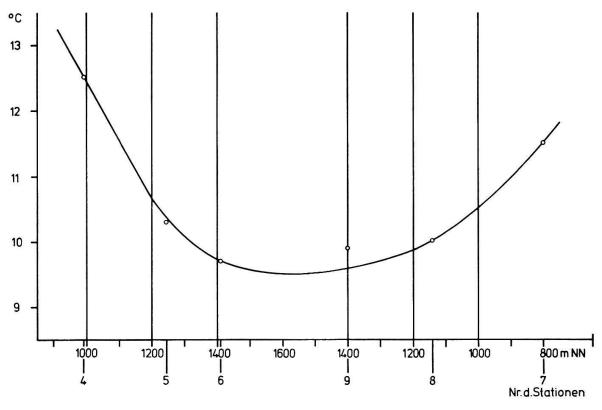


Abb. 14 Vertikale Verteilung der mittleren Lufttemperatur in der Vegetationszeit 1970 am Chasseral

Tabelle 18 Fortlaufende Temperatursummen von Juni-Oktober 1970 am Chasseral

Station Nr	4	5	6	9	8	7
Höhe m NN	990	1245	1411	1398	1139	800
Juni	2 646	2 034	1 944	1 764	2 106	2 376
Juli	7 891	6 275	5 776	6 079	6 421	7 249
August	13 397	10 925	10 091	10 618	11 220	12 718
September	18 149	14 885	13 871	14 398	15 216	16 894
Oktober	21 162	16 931	15 842	16 369	16 220	18 745

des Chasseral die entsprechenden Mitteltemperaturen abgelesen werden können. Der zu erwartende rasche Temperaturanstieg dürfte im April/Mai erfolgen und ist wegen der jahreszeitlich späten Installation der Stationen nicht mehr erfasst. Im Juni, Juli und August verlaufen die Temperaturen ziemlich gleichmässig. Auffallend ist die stärkere Erwärmung des Nordwesthangs im August, wo die mittlere Lufttemperatur in 1400 m NN auf über 12 °C steigt, während sie in derselben Höhe am Südosthang bei 11,5 °C liegt. Rascher Temperaturabfall erfolgt zwischen September und Oktober, kenntlich an der Drängung der Isothermen, wobei die niedrige Mitteltemperatur von 2,7 °C für Oktober an Station 8 mit Kaltluftbildung auf Plateaulage zusammenhängen dürfte. Eine raschere Abkühlung der talnahen Station Nr. 7 bei Courtelary ist nicht festzustellen.

Die vertikale Verteilung der mittleren Lufttemperatur während der Vegetationszeit 1970 zeigt Abbildung 14. Demgemäss ist der gesamte Chasseral-Nordhang im Mittel kühler als der Südhang, auch wenn kurzfristig im August eine stärkere Erwärmung erfolgt (Abb. 13). So differieren die Mitteltemperaturen in 1000 m Meereshöhe zwischen Nord- (10,5 °C) und Südhang (12,4 °C) um 1,9 °C,

4. Diskussion

4.1 Vegetation und Phänologie

Nach Rehder (1964) kann die Karte der phänologischen Zustandsstufen als Höhenstufenkarte der Vegetation interpretiert werden, da die einzelnen Wärmestufen die Situation des Lokalklimas für einen bestimmten Ort wiedergeben. Im Fall des Schweizer Jura, wo die Zonierung des kollin-submontanen Buchenwaldes, des Buchen-Tannen-Waldes und des hochstaudenreichen Buchenwaldes höhenabhängig und damit im wesentlichen klimaabhängig ist, bietet sich diese Beziehung an. Ein Vergleich der Vegetationskarten mit den Wuchsklimakarten ergibt den in Abbildung 15 dargestellten Zusammenhang.

Das Fagetum typicum nimmt am Nordhang des Weissenstein und des Chasseral die Stufen 3 und 4 ein, also die untere und die mittlere Ackerbaustufe, wo in geeigneten Lagen noch mehr oder weniger intensiver Ackerbau möglich ist. Die obere Ackerbaustufe sowie die untere und ein Teil der mittleren Berggrünlandstufe, also der Bereich der Niederalmen (mit einer Weidezeit bis zu 150 Tagen), stellen das Gebiet des Abieti-Fagetum dar, während die Aceri-Fageten in der oberen Berggrünland- (Grenzklima für zweischürige Wiesennutzung) und der Alpengrünlandstufe (Bereich der Hochalmen mit einer Weidezeit von 70-80 Tagen) vorkommen. Auf Südhängen verliert der Buchen-Tannen-Wald an den submontanen Buchenwald die Stufe 2 (obere Ackerbaustufe), was mit der extremen Flachgründigkeit des Bodens zusammenhängen mag (verschlechterte Bedingungen für die Arten des Abieti-Fagetum).

4.2 Vegetation, Niederschlag und Wind⁴

Bei der Beurteilung der Niederschlagsverhältnisse in den Untersuchungsgebieten sind eine Reihe von modifizierenden Faktoren zu berücksichtigen, die teils in der Messmethode, teils in den Windverhältnissen und in der Orographie begründet sind. Die horizontale Lage der Auffangfläche der Regenmesser führt in Abhängigkeit von der Hangneigung und vom Einfallswinkel des Regens zu einem falschen Flächenverhältnis zwischen Auffangfläche und Gelände (Grunow 1954, vgl. Diskussion bei BAUMGARTNER 1958). Der luvseitige Hang erhält desto mehr Regen pro Flächeneinheit, je senkrechter dieser auf die Unterlage fällt. Auch die Vegetation fängt an ihrer Oberfläche durch ihre unterschiedliche Höhe und Struktur den Niederschlag nicht horizontal ab. Eine Ausschaltung dieser Fehlerquelle ist durch Verwendung hangparalleler Gefässe möglich.

[△] Da die Verteilung des Niederschlags entscheidend von den Windverhältnissen (Windgeschwindigkeit, Windrichtung) abhängt, sollen beide Grössen zusammen diskutiert werden.

Die mit der Ortshöhe vor allem am Nordhang erheblich zunehmende Windgeschwindigkeit hatte ebenfalls einen Einfluss auf die Messung, dergestalt, dass das Ergebnis am Nordhang im Vergleich zum Südhang zu gering aussiel. Dieser Fehler, der dadurch entstand, dass die Regenmesser ohne Windschutz betrieben wurden, beträgt aber auch bei starkem Wind höchstens 5%, kann also für die charakteristische Verteilung der Regenmengen am Chasseral nicht allein ausschlaggebend gewesen sein.

Entscheidenden Einfluss übt vielmehr das Strömungsfeld am Berg aus, dergestalt, dass der fallende Niederschlag durch das Anwachsen der vertikalen Windgeschwindigkeit in den Kammlagen (erzwungenes Überströmen des Gipfelgrates) in Richtung zum Kamm versetzt und den oberen luvseitigen Hängen entzogen wird. Daraus resultierte 1970 und 1971 eine höhere Regenmenge in den mittleren und oberen Lagen des Südhangs als am Nordhang.

Dies kann folgerichtig nicht nur für den Sommer, sondern auch für den Winter angenommen werden. Die ergiebigsten Schneefälle und die grösste Schneehöhe ist deshalb im Aceri-Fagetum der Südseite zu erwarten, was nach Aussagen der dort lebenden Bevölkerung und nach eigenen Beobachtungen auch zutrifft. Die waldbauliche Bedeutung dieser Tatsache vermittelt ein rein physiognomischer Vergleich zwischen den Buchenwäldern hier und auf der Nordseite. Die Bestände am Südhang mit ihren niederliegenden, krüppeligen Buchen und Bergahornbäumen ergeben ein ganz anderes Bild als die am Nordhang. Schneebruch ist hier keine Seltenheit, wie in dem langdauernden, schneereichen Winter 1969/70 festgestellt werden konnte.

Eine eindeutige, regelmässige Zunahme der Regenniederschläge mit steigender Meereshöhe ist auch am Chasseral weder in den einzelnen Monaten noch bei der Summe für die gesamte Vegetationszeit zu erwarten, eine Beobachtung, die von vielen Autoren auch in anderen Gebieten gemacht wurde. Berechnet man trotzdem unter Zuhilfenahme der Niederschlagssummen für 1970 und 1971 lineare Regressionen, so gelangt man zu der Darstellung der Abbildung 16. Im Durchschnitt nimmt damit der Regenniederschlag am Südhang um 75 mm/100 m, am Nordhang um etwa 30 mm/100 m Meereshöhe zu. Bei 1100 m NN erhalten beide Expositionen die gleiche Menge, nämlich 500 mm pro Vegetationszeit (Juni-Oktober).

Auch die Verteilung des Horizontalniederschlags ist nicht allein höhenabhängig. Während der Weissenstein-Nordhang von Stationen 1–3 nur eine Zunahme von rund 60 mm verzeichnet, erhalten die Gipfelstationen am Chasseral-Süd über 100 mm, am Chasseral-Nord nahezu 300 mm. Im letzten Fall entspricht der Horizontalniederschlag rund 60% des Regenniederschlags. Zweifelsohne ist auch hier der Wind der entscheidende Faktor. Erstens diffundiert mit zunehmender Windgeschwindigkeit eine grössere Menge Nebel durch das Nebelfanggitter und wird von diesem ausgefiltert. Zweitens – und im Fall der Station 9 bestimmt entscheidend – ist die bereits ausgesprochene Wirkung der Windgeschwindigkeit auf den Fall der Regentropfen. Ähnlich wie die Vegetation fängt das Nebelfanggitter erheblich mehr Regen auf als die horizontale Auf-

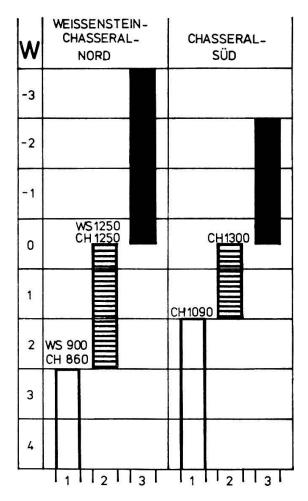


Abb. 15 Beziehung zwischen Vegetation (1 und weiss: Fagetum typicum, 2 und schraffiert: Abieti-Fagetum, 3 und schwarz: Aceri-Fagetum) und phänologischen Zustandsstufen. Zahlen über den Säulen: Höhe der Vegetationsgrenzen (WS = Weissenstein, Ch = Chasseral) in m NN

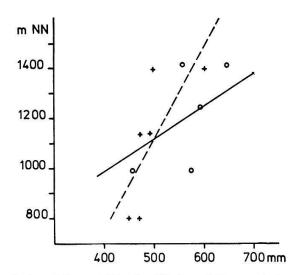


Abb. 16 Beziehung zwischen Meereshöhe (m NN) und Regenniederschlag (mm) während der Vegetationszeiten 1970 und 1971 am Chasseral-Nordhang (+,----) und -Südhang (o,-----)

fangfläche des Regenmessers allein. Der eingangs erwähnte Messfehler, der durch die Verwendung horizontaler statt hangparalleler Auffangflächen entsteht, wird dadurch zum Teil kompensiert.

Der ergiebigste Absatz von Horizontalniederschlag beschränkt sich also auf das Gebiet oberhalb 1300 m NN im Gipfelbereich und ist hier durchaus als wesentlicher Standortsfaktor zu bewerten. Einerseits wird bei häufigem Auftreten von Nebel während der Vegetationszeit die Einstrahlung und die Evapotranspiration vermindert, anderseits erhöht sich das Wasserangebot durch die Auffangwirkung der Vegetation erheblich.

Welche Wassermengen die prozentualen Werte des Horizontalniederschlags repräsentieren, lässt sich nicht unmittelbar angeben. Grunow (1955) hat für windausgesetzte Waldränder der Kammlagen des Hohen Peissenbergs (989 m NN) in Oberbayern dreimal höhere Werte erhalten als die Nebelfänger angaben. Da die Menge des ausfiltrierten Horizontalniederschlags aber nur von der Art der Vegetation abhängt, sagen in 1/m² umgerechnete Werte nichts aus.

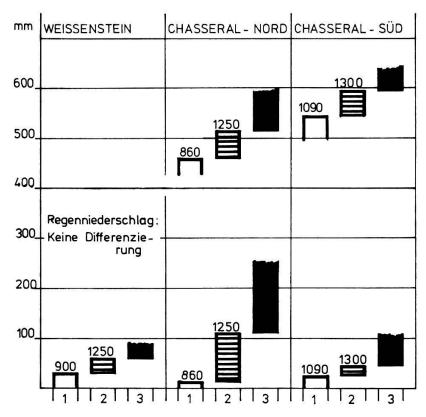


Abb. 17 Beziehung zwischen Vegetation (1 und weiss: Fagetum typicum, 2 und schraffiert: Abieti-Fagetum, 3 und schwarz: Aceri-Fagetum) und Regen- bzw. Horizontalniederschlag (mm) am Weissenstein (Summe Juni-Oktober 1970) und am Chasseral (Mittel aus den Summen Juni-Oktober 1970 und 1971). Zahlen über den Säulen: Höhe der Vegetationsgrenzen (m NN). Oben: Regenniederschlag, unten: Horizontalniederschlag

Für Vergleichszwecke sind die tatsächlich im Regenmesser aufgefangenen Mengen ausreichend.

Deshalb erscheint es nicht sinnvoll, Regen- und Horizontalniederschlag bei den einzelnen Stationen zu summieren, um (abgesehen vom Taufall) den tatsächlichen Gesamtniederschlag während der Vegetationszeit angeben zu können. Dagegen kann man beide Niederschlagsarten getrennt für den Bereich der einzelnen Vegetationseinheiten am Weissenstein und am Chasseral ermitteln (Abb. 17). Für den Chasseral wurden hierfür die Werte der Vegetationszeiten 1970 und 1971 gemittelt, um eine allgemein gültigere Aussagekraft zu erzielen. Leider war dies für den Weissenstein nicht möglich, so dass die Ergebnisse der Abbildung 17 zwischen Weissenstein und Chasseral nicht vergleichbar sind.

Es ist ersichtlich, dass die Vegetationseinheiten keine definierte Menge an Niederschlag erhielten. So fielen im Bereich des Abieti-Fagetum auf der Südseite des Chasseral zwischen 550 und 600 mm, ein Betrag, den die obersten Partien des Aceri-Fagetum der Nordseite aufweisen. Die Mengen an Horizontalniederschlag sind deshalb erwartungsgemäss im Aceri-Fagetum am Nordhang am höchsten.

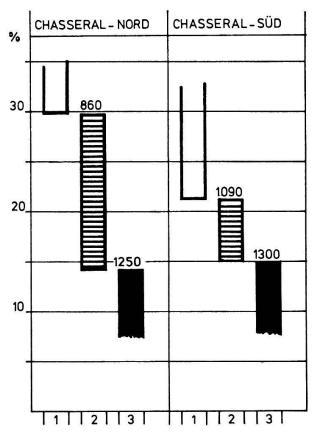


Abb. 18 Beziehung zwischen Vegetation (1 und weiss: Fagetum typicum, 2 und schraffiert: Abieti-Fagetum, 3 und schwarz: Aceri-Fagetum) und mittlerer Tagesschwankung der rel. Luft-feuchtigkeit (%) während der Vegetationszeit Juni-Oktober 1970 am Chasseral. Zahlen über den Säulen: Höhe der Vegetationsgrenzen (m NN)

4.3 Vegetation und relative Luftfeuchtigkeit

Der Verlauf der rel. Luftfeuchtigkeit ist mit der Vegetation nur schwer in Verbindung zu bringen. Seine Abhängigkeit vom Verlauf der Lufttemperatur verursacht bei der vertikalen Verteilung der Monatsmittel (Abb. 10) im allgemeinen Zunahme mit steigender Temperatur. Im Juni und Juli erhöhen sich die Monatsmittel vom Talgrund bis zum Gipfel fast um 2% pro 100 Höhenmeter, so dass im Bereich des Aceri-Fagetum am Nord- und Südhang über 85% Durchschnittswert gemessen wurde (zum Vergleich: im Fagetum typicum zwischen 75 und 80%). Im Spätsommer und Herbst (September und Oktober) kehrt sich dieses Verhältnis um; nun liegen die Werte im Aceri-Fagetum bei 74–75%, im Fagetum typicum bei 80–85%. Bemerkenswert ist die Tatsache, dass zwischen 1100 m NN und dem Gipfel auf der Nordseite eine «Trockeninsel» auftritt, die mit dem Temperaturverlauf nur wenig in Beziehung gebracht werden kann.

Entscheidend für die Vegetation ist die rel. Luftfeuchtigkeit zur Zeit der Vegetationsentwicklung im Frühjahr. Das Wachstum breitblättriger, hygrophiler Hochstauden wird sicher durch den höheren Wassergehalt der Luft günstig beeinflusst. Der in beiden Expositionen gleiche Schwankungsbereich von etwa 10% innerhalb des Tagesgangs während der Vegetationszeit (vgl. Abb. 9) lässt erst recht im Bestand einen gleichmässigen Verlauf der rel. Luftfeuchtigkeit erwarten. Im Bereich des Fagetum typicum – das sind Cardamino heptaphyllae-Fagetum auf der Südseite und Luzulo-Fagetum auf der Nordseite – herrschen Schwankungen von über 25%. Diese Verhältnisse sind in Abbildung 18 verdeutlicht.

4.4 Vegetation und Lufttemperatur

Der Jahresablauf der vertikalen Verteilung der Monatsmittel der Lufttemperatur (Abb. 13) zeigt die wesentlichen Unterschiede zwischen Süd- und Nordhang am Chasseral. Durchschnittlich sind die unteren und mittleren Hangteile der Südseite im Bereich des Fagetum typicum und des Abieti-Fagetum in allen Monaten der Vegetationszeit erheblich wärmer als die des Nordhangs, und zwar im Mittel um rund 1°C. Die oberen Hanglagen sind dagegen im Frühling am Südhang und im Sommer am Nordhang wärmer, während im Herbst bei raschem Temperaturabfall der gesamte Nordhang schneller auskühlt als der Südhang. Damit ist die Südseite zur Zeit der Vegetationsentwicklung in den Monaten Mai-Juli erwartungsgemäss wärmemässig begünstigt. So erreicht das Gebiet des Luzulo-Fagetum bei Courtelary einen Mittelwert von 11,5 °C, der bei Nods erst in einer Höhe von 1100 m NN, d.h. an der Grenze zwischen Fagetum typicum und Abieti-Fagetum, erzielt wird. Die mittleren Temperaturbereiche, die für die einzelnen Pflanzengesellschaften ermittelt wurden, zeigt Abbildung 19. Sie differieren teilweise nur um ½ °C in beiden Expositionen. Die Unterschiede zwischen Luzulo-Fagetum (11,2-12,0 °C) und Cardamino heptaphyllae-Fagetum

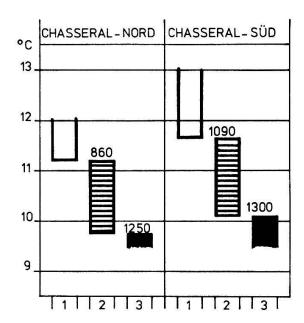


Abb. 19 Beziehung zwischen Vegetation (1 und weiss: Fagetum typicum, 2 und schraffiert: Abieti-Fagetum, 3 und schwarz: Aceri-Fagetum) und mittlerer Lufttemperatur während der Vegetationszeit Juni-Oktober 1970 am Chasseral. Zahlen über den Säulen: Höhe der Vegetationsgrenzen (m NN)

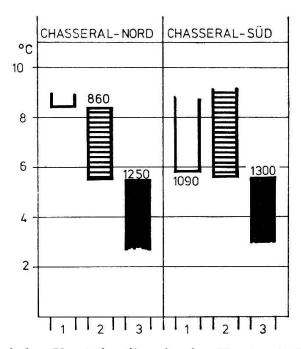


Abb. 20 Beziehung zwischen Vegetation (1 und weiss: Fagetum typicum, 2 und schraffiert: Abieti-Fagetum, 3 und schwarz: Aceri-Fagetum) und mittlerer Tagesschwankung der Luft-temperatur während der Vegetationszeit Juni-Oktober 1970 am Chasseral. Zahlen über den Säulen: Höhe der Vegetationsgrenzen (m NN)

(11,7-13,0 °C) sowie zwischen Aceri-Fagetum in Südexposition (9,5-10,2 °C) und Aceri-Fagetum in Nordexposition (9,5-9,8 °C) sind signifikant.

Die mittleren Tagesschwankungen der Lufttemperatur sind eine bevorzugte Grösse, um die vertikale Gliederung eines Hangs zu kennzeichnen. Sie unterliegen einer Periodizität, die von den Jahreszeiten, von der Meereshöhe und von der Exposition abhängig ist. Die Höchstwerte wurden an allen Stationen in den Monaten Juli, August und September, die Tiefstwerte im Juni und Oktober gemessen. Auf dem Südhang nehmen die Schwankungen bis 1200 m NN leicht zu, betragen also im Bereich des Fagetum typicum und Abieti-Fagetum rund

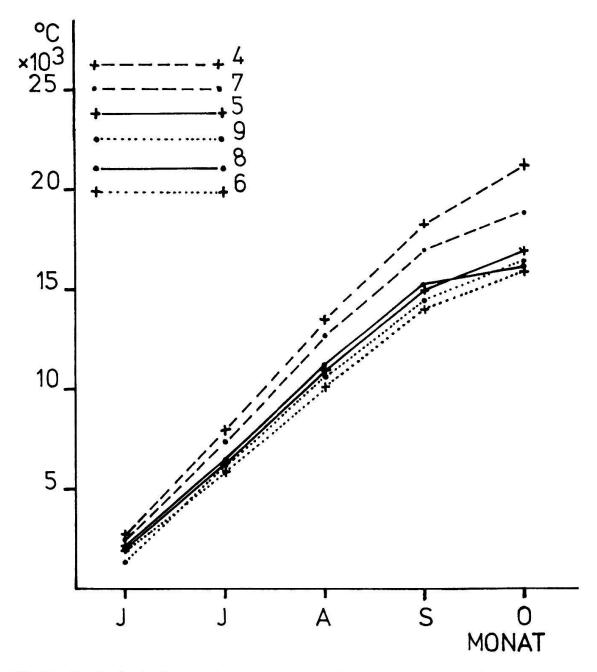


Abb. 21 Fortlaufende Summenkurven der monatlichen Temperaturen (16.7.-31.10.1970) für die Stationen 4-9 am Chasseral

6°C, während sie im Aceri-Fagetum oberhalb 1300 m NN einen raschen Abfall bis auf 3,5°C erkennen lassen. Auf dem Nordhang sind fast die gleichen Schwankungen oberhalb 1250 m NN im Bereich des Aceri-Fagetum beobachtet worden; die höchsten Werte dagegen liegen mit über 8°C am Hangfuss bei Courtelary, im Gebiet des Luzulo-Fagetum. Diese Verhältnisse sind in Abbildung 20 dargestellt.

Für die Korrelationsbildung zwischen verschiedenen meteorologischen Daten ist die Berechnung der Temperatursummen notwendig (BAUMGARTNER 1961). Sie wurde aus den monatlichen Temperaturmitteln durch Aufsummieren gebildet (Tab. 18). In Abbildung 21 sind die Summen am Ende der einzelnen Monate für sämtliche sechs Stationen am Chasseral angegeben. Wie schon aus Abbildung 14 zu schliessen war, wurden die höchsten Temperatursummen am unteren Südhang im Bereich des Cardamino heptaphyllae-Fagetum bei Station 4 erreicht. Danach folgt in einem Abstand von über 2400 °C das Gebiet der Station 7 am Nordhang, während die Temperatursummen der übrigen Messstellen sehr nahe beieinander liegen. Drückt man die Endsummen in Prozenten des Mittels der Endsummen aller Stationen aus (17546 °C), so ergibt sich folgende vertikale Verteilung der Temperatursummen:

Station	Nr.	4	5	6	9	8	7
Höhe	m NN	990	1245	1411	1398	1139	800
	%	115	96	90	93	92	107

Daraus folgt, dass die Hochlagen des Südhangs (Station 6) nur rund drei Viertel der Temperatursummen der tieferen Lagen (Station 4) erhalten, dass die Hochlagen im Bereich des Aceri-Fagetum auf der Südseite im Mittel etwas kühler sind als die auf der Nordseite, und dass die mittleren und unteren Hanglagen der Nordseite ganz erheblich geringere Temperaturen aufweisen als dieselben Höhenlagen auf der Südseite. Von Interesse ist auch, dass die talfernen Zonen oberhalb 1250 m NN (Südhang) bzw. 1100 m (Nordhang) viel einheitlicher sind, was die Mitteltemperaturen und die Temperatursummen betrifft, als die über 300 m mächtigen talnahen Zonen; mit anderen Worten, die Temperaturdifferenz zwischen beiden Bereichen ist relativ gross, und eine mehr oder weniger abrupte Temperaturänderung ist an ihrer Grenze zu erwarten. Diese Grenze fällt am Süd- und am Nordhang in die Adenostyles alliariae-Ausbildung des Abieti-Fagetum. Die Gebiete des Fagetum typicum erhalten damit über 105% des Mittels der Endsummen aller Stationen, die des Abieti-Fagetum zwischen 95 und 105% und die des Aceri-Fagetum unter 95%.

In Abbildung 22 ist das von LOSSNITZER (1948) vorgeschlagene Diagramm zur hydrothermischen Beurteilung der Klimaverhältnisse am Chasseral verwendet. Hierbei wurden Temperatur- und Niederschlagssummen gekoppelt. Je steiler die Kurven, desto höher sind die Niederschläge und desto geringer die Temperatur. Der mittlere und der obere Südhang, repräsentiert durch die Stationen 5 und 6, sind in der Betrachtung gleich zu bewerten. Sehr deutlich und charakteristisch ist dagegen der «Sprung» zum Hangfuss (Station 4). Die bei

1100 m NN relativ rasch erfolgende Wandlung des trockenen, warmen Cardamino heptaphyllae-Fagetum zum kühlfeuchten Abieti-Fagetum kommt hier sehr gut zum Ausdruck (s. oben). Ausgeglichenere Verhältnisse herrschen dagegen am Nordhang, dessen talnahe Lagen trotz niedriger Meereshöhe erwartungsgemäss kühlfeuchter sind als am Südhang.

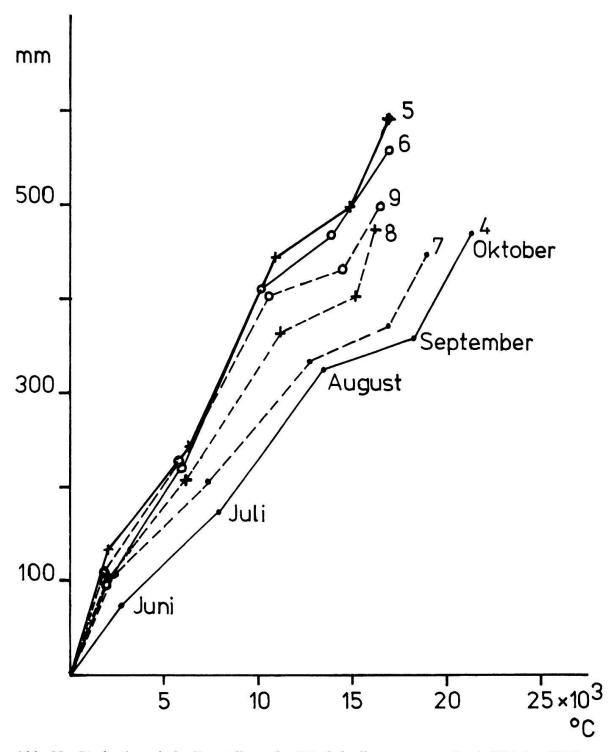


Abb. 22 Hydrothermische Beurteilung der Wuchsbedingungen von Juni-Oktober 1970 am Süd- (Stationen 4, 5 und 6) und Nordhang (Stationen 7, 8 und 9) des Chasseral (Witterungsdiagramm nach Lossnitzer 1948)

5. Schlussbetrachtung

Aus vorstehend ausgeführten Untersuchungsergebnissen der klimatologischen Standortserkundung am Weissenstein und am Chasseral ergaben sich innerhalb der Vertikalprofile der meteorologischen Daten einige kennzeichnende Diskontinuitäten, die zum Teil mit den Standortsgrenzen der untersuchten Vegetation zusammenfallen. Wir haben die Diskontinuität z.B. bei der hydrothermischen Beurteilung der Wuchsbedingungen am Südhang des Chasseral zwischen den Stationen 4 und 5 an der Grenze zwischen Buchen- und Buchen-Tannen-Wald festgestellt. Ähnlich abrupte Änderung eines klimatologischen Standortsfaktors stellt die rasche Zunahme des Horizontalniederschlags im Gipfelbereich des Chasseral dar.

Das typische Bild bestimmen aber nicht die Diskontinuitäten, sondern die Kontinuitäten, nämlich der mit steigender Meereshöhe sich gleichmässig ändernde Verlauf einzelner Faktoren. Hierzu zählt z.B. die mittlere Lufttemperatur, deren Werte sich für jede Vegetationseinheit auf Süd- und Nordhang des Chasseral und sicher auch am Weissenstein eindeutig angeben lassen (vgl. Abb. 19). Die Kombination aller Faktoren erlaubt dann eventuell eine Aussage über relative Unterschiede zwischen den kartierten Vegetationseinheiten.

In unserem Fall ist einer der entscheidensten Faktoren wohl die genannte Verteilung der Lufttemperatur. Sie ermöglicht die Einordnung des Abieti-Fagetum in einen Bereich von etwa 10–11,5 °C (Mittelwert der Vegetationszeit 1970). Alle anderen untersuchten Klimadaten differenzieren bei weitem nicht so deutlich; ihre Werte sind für Nord- und Südhangvegetation oft unterschiedlich.

Die durchweg höchsten Niederschläge am mittleren und oberen Südhang des Chasseral lassen, vereint mit der Tiefgründigkeit des Bodens, einen artenreicheren Buchen-Tannen-Wald entstehen als auf der Nordseite, wo wie am Weissenstein noch extreme Flachgründigkeit wirksam wird. Anderseits ermöglicht der Horizontalniederschlag in den oberen Lagen der Nordseite zweifellos die Ausbildung des üppigsten Aceri-Fagetum mit mannshohen Hochstauden und Farnen sowie vereinzelt sogar kleinen Quellaustritten, deren Wasser aber rasch in Klüften und Spalten der verkarsteten Jurakalke versickert. Unter der Annahme, dass der Horizontalniederschlag in diesem Bereich durchschnittlich das Wasserangebot um den doppelten Betrag des Regenniederschlags erhöht, erhalten diese Wälder den höchsten Niderschlag am Chasseral. Im Gebiet des Abieti-Fagetum spielt der Horizontalniederschlag keine ausschlaggebende Rolle, auch nicht im Herbst zur Zeit der Hochnebel.

Die obere Grenze der Tanne, die am Nordhang bei rund 1250 m NN, am Südhang bei etwa 1300 m NN liegt, ist klimatisch nicht fixierbar. Immerhin wird ihr Optimalvorkommen durch eine mittlere Schwankung der Lufttempera-

tur von 4,8 °C charakterisiert (während der Vegetationszeit). In allen Bereichen mit höheren Werten gedeiht die Tanne gut; das trifft auch für die abiesreichen Wälder in den Juratälern zu, die in dieser Arbeit Luzulo-Fagetum genannt wurden. Diese Täler sind frostgefährdet, was hier aus Mangel an Stationen nicht nachgewiesen werden konnte. Die von vielen Autoren festgestellte warme Hangzone dürfte deshalb am Nordhang des Chasseral etwa in der Höhe des Gehöftes Mi-Côte, also zwischen 900 und 1100 m NN, liegen.

Gründe, die den Ausschluss der Tanne im Aceri-Fagetum, ihre geringe Vitalität im Fagetum typicum (Ausnahme Luzulo-Fagetum) und ihr optimales Gedeihen im Abieti-Fagetum exakt angeben, können nur durch langjährige Messreihen mit erheblichem Aufwand oder durch autökologische Versuche gefunden werden. Bisherige Angaben, z.B. Begrenzung der Tanne durch bestimmte Januar- oder Juli-Temperaturmittel (vgl. dazu z.B. WILLKOMM 1887, DENGLER 1912, RUBNER 1921, DZIUBALTOWSKI 1930, DANNECKER 1955, SEITSCHEK 1967), geben Anhaltspunkte, die durch Verdichtung des Netzes von Klimastationen experimentell geprüft werden müssen. Dies gilt auch für den von Ellenberg (1963, S. 270) angegebenen Bereich der Januar-Mitteltemperaturen von Schweizer Stationen von —2 bis —4°C, innerhalb dessen die Tanne ihr ökologisches Optimum hat. Ein- oder zweijährige Klimamessungen, deren Ergebnisse in dieser Arbeit vorliegen, liefern ebenfalls nur Anhaltspunkte dafür, in welcher Richtung man weiterarbeiten müsste.

Es ist bekannt, dass in der Höhenstufung der Wälder in den mitteleuropäischen Gebirgen die Tanne zwischen Buche und Fichte vermittelt. Dies gilt auch für den Kontinentalitätsgrad des Klimas, der gemeinhin durch Temperaturschwankungen (und Luftfeuchtigkeitsschwankungen) - sowohl als mittlere Tagesschwankung als auch als Temperaturgang innerhalb eines Jahres - und durch die jährliche Niederschlagsmenge (vgl. thermische und hygrische Kontinentalität) gekennzeichnet wird. Diese Verhältnisse können im Bereich der sogenannten Zwischenalpen (Kuoch 1954, auch Mayer 1963 und 1969) gut studiert werden. Es hat sich gezeigt, dass das Klima der Jurahochflächen klar ozeanisch getönt ist. Dies gilt für das Gebiet des Aceri-Fagetum am Süd- und am Nordhang des Chasseral. Hier ist die Tanne und die Fichte (auch am Nordhang unter natürlichen Bedingungen) gegenüber der Buche nicht mehr konkurrenzfähig (z.B. Gefährdung durch Schneebruch). Die im Vergleich dazu relativ kontinentalen Tallagen fördern das Gedeihen von Tanne und Fichte gegenüber der Buche (Luzulo-Fagetum). Hier erreicht die Tanne eine hervorragende Bonität. Die mittleren Höhenlagen an Jura-Süd- und -Nordhängen sind wohl nicht nur aus klimatischen, sondern auch aus edaphischen Gründen für die Tanne gut geeignet. Das kühle und feuchte Klima (vgl. Abb. 22) ermöglicht auf den laubbaumfördernden Juragesteinen (vgl. Zwischenalpen: kristalline Schiefer, Flysch als nadelholzförderndes Gestein - reine Abieteten ohne Buche) in diesen montanen Zwischenlagen das Gedeihen beider Bäume gleichzeitig.

Es wäre reizvoll gewesen, durch Umrechnung der Niederschläge und der Temperaturverhältnisse für die Vegetationszeit 1970 das Klima am Chasseral zu klassifizieren. Hierfür stünden eine Reihe von Formeln älteren und jüngeren Datums zur Verfügung (Köppen 1908 und 1919, Martonne 1926, Thornthwaite 1948, Emberger 1932, Bagnouls und Gaussen 1957 u.a.). Dies scheiterte aber aus folgenden Gründen: Erstens standen Daten nur in den Monaten Juni-Oktober zur Verfügung. Die für solche Berechnung wichtige mittlere Jahrestemperaturschwankung konnte deshalb nicht verwendet werden. Zweitens geben die Werte an Regenniederschlag, wie er mit Normalniederschlagsmessern gemessen wurde, nicht das tatsächliche Wasserangebot wieder, da der Horizontalniederschlag hierbei nicht berücksichtigt und ein Aufsummieren beider Werte nach dem in 4.2 Gesagten nicht möglich ist.

Als Ausblick sei deshalb darauf hingewiesen, dass die Untersuchung der in der Schweiz so typisch und naturnah ausgebildeten Weisstannenwälder sowohl auf der Alpennord- als auch auf der Alpensüdseite mittels Kleinklimastationen über längere Zeiträume hinweg eine ausserordentlich dankbare Aufgabe wäre und wahrscheinlich Daten liefern würde, die zur Klärung des «Tannenproblems» erheblich beitragen könnten.

Zusammenfassung

- 1. Die Zonierung der Wälder am NW-Hang des Weissenstein ($\lambda = 7^{\circ}30'$, $\varphi = 47^{\circ}15'$) sowie am NW- und SE-Hang des Chasseral ($\lambda = 7^{\circ}04'$, $\varphi = 47^{\circ}08'$) wurde vegetationskundlich, phänologisch und klimatologisch untersucht.
- 2. Die tabellarische Gliederung der Vegetation (Tab. 3-6 und Vegetationstabellen im Anhang) ergab am Weissenstein ein fragmentarisch ausgebildetes Fagetum typicum, dessen synsystematische Einordnung nicht möglich war, ein von 900 bis 1250 m NN reichendes Abieti-Fagetum festucetosum, dessen Adenostyles alliariae-Ausbildung zum hochstaudenreichen Aceri-Fagetum oberhalb 1250 m NN vermittelt. Der Chasseral-Nordhang gliedert sich in ein tannenreiches Luzulo-Fagetum am Unterhang, ein Abieti-Fagetum typicum zwischen 860 und 1250 m NN und ein üppiges, fichtenreiches Aceri-Fagetum. Am Südhang gedeiht bis 1100 m NN das Cardamino heptaphyllae-Fagetum, zwischen 1100 und 1300 m NN das auf tiefgründigerem Boden (im Vergleich zum Nordhang) stockende Abieti-Fagetum elymetosum und darüber eine spezielle südexponierte Ausbildung des Aceri-Fagetum, dem ein Teil der hygrophilen Hochstauden fehlen und dessen Baumschicht aus krüppeligen, strauchartig wachsenden Buchen besteht.
- 3. Die phänologische Untersuchung erfolgte nach der Methode SCHREIBER (1968b) und hatte eine Gliederung der Untersuchungsgebiete in phänologische Wärmestufen zur Folge, die Wuchsklimakarten ergab (Karten 3 und 4 im Anhang). Ihre Beziehung zur Vegetation ist folgende (vgl. Abb. 15):

Stufe 4, 3: Fagetum
Stufe 2, 1, 0: Abieti-Fagetum
Stufe 0, -1, -2, -3: Aceri-Fagetum

- 4. Die Untersuchung des Klimas erfolgte an neun Stationen jeweils im Bereich der entsprechenden Vegetation, davon je drei am Weissenstein-Nordhang (1: Fagetum typicum, 810 m NN, 2: Abieti-Fagetum festucetosum, 925 m NN, 3: Aceri-Fagetum, 1305 m NN), am Chasseral-Nordhang (7: Luzulo-Fagetum, 800 m NN, 8: Abieti-Fagetum typicum, 1139 m NN, 9: Aceri-Fagetum, 1398 m NN) und am Chasseral-Südhang (4: Cardamino heptaphyllae-Fagetum, 990 m NN, 5: Abieti-Fagetum elymetosum, 1245 m NN, 6: Aceri-Fagetum, 1411 m NN). Am Weissenstein wurden Regen- und Horizontalniederschlag (16.6.–31.10.1970), am Chasseral ebenfalls Regen- und Horizontalniederschlag sowie Lufttemperatur, rel. Luftfeuchtigkeit (Wetterhütte 120 cm über dem Boden) und Windweg (16.6.–31.10.1970 und 1.6.–17.10.1971) gemessen.
- 5. Der meiste Regen fällt an den oberen und mittleren Lagen des Chasseral-Südhangs. Die hier deshalb zu erwartenden höchsten Schneemengen im Winter verursachen das gebüschartige Wachstum der Buche.
- 6. Der Horizontalniederschlag, dessen Werte sich aus Nebelniederschlag und den vom senkrechten Fall durch Windeinwirkung mehr oder weniger horizontal abweichenden Regenmengen zusammensetzen, ist im Bereich der höchsten durchschnittlichen Windgeschwindigkeit (Kammlagen der Chasseral-Nordseite) am höchsten. Den grössten Anteil am Gesamtniederschlag kann man deshalb hier, im Gebiet des Aceri-Fagetum, erwarten, wodurch einzelne Quellaustritte und die üppige Ausbildung dieser Vegetationseinheit verursacht werden. Am Weissenstein sind diese Verhältnisse ähnlich, aber wesentlich undeutlicher ausgeprägt.

- 7. Der mittlere Tagesgang der rel. Luftfeuchtigkeit während der Vegetationszeit verlief am ausgeglichensten in den Gebieten oberhalb 1300 (Südseite) bzw. 1250 m NN (Nordseite) bei einer Schwankung von etwa 10%, während an den talnahen Hängen über 25% gemessen wurde (Abb. 8). In der Darstellung der mittleren rel. Luftfeuchtigkeit Juni bis Oktober 1970 (Abb. 10) fällt eine «Trockeninsel» am mittleren und oberen Nordhang im Frühherbst auf.
- 8. Die Vegetationseinheiten Fagetum (einschl. Luzulo-Fagetum, Cardamino heptaphyllae-Fagetum), Abieti-Fagetum und Aceri-Fagetum lassen sich durch die mittlere Lufttemperatur während der Vegetationszeit gut charakterisieren (Fagetum 11,2-13,0 °C, Abieti-Fagetum 10,2 bis 11,2 °C, Aceri-Fagetum 9,5-10,2 °C; Abb. 19). Erwartungsgemäss herrschen die grössten mittleren Tagesschwankungen im relativ kontinentalen Vallon de St-Imier bei Courtelary (Station 7) mit über 8 °C, während im Aceri-Fagetum oberhalb 1300 m nur noch 3,5 °C gemessen wurden (Abb. 9 und 18).
- 9. Die hydrothermische Beurteilung der Chasseral-Hänge (Diagramm nach LOSSNITZER 1948) zeigt eine deutliche Diskontinuität zwischen der Station 4 am Unterhang einerseits und den mittleren und oberen Hängen (Stationen 5 und 6) anderseits. Diese rasche Wandlung von einem relativ warmen und trockenen zu einem relativ kühlen und feuchten Klima fällt mit der Grenze zwischen Cardamino heptaphyllae-Fagetum und Abieti-Fagetum zusammen.
- 10. Die obere bzw. untere Grenze des Tannenvorkommens ist nur schwer klimatisch zu fixieren. Der Bereich des Optimalvorkommens wird durch eine mittlere Schwankung der Lufttemperatur von 4,8 °C während der Vegetationszeit gekennzeichnet. Das ozeanische Klima der Jurahochflächen schliesst die Tanne zugunsten der Buche aus (Schneebruch, Rauhfrost). Das kühle und feuchte Klima ermöglicht in montanen Zwischenlagen auf den laubbaumfördernden Juragesteinen das Gedeihen von Buche und Tanne gleichzeitig.

Summary

- 1. The zonation of woods on the NW-slope of Weissenstein ($\lambda = 7^{\circ}30'$, $\varphi = 47^{\circ}15'$) and on the NW- and SE-slope of Chasseral ($\lambda = 7^{\circ}04'$, $\varphi = 47^{\circ}08'$) has been investigated from a phytosociological, phenological and climatological point of view.
- 2. The arrangement of the vegetation in tabular form (tables 3-6, vegetation table in appendix) on Weissenstein showed fragmentarily developed Fagetum typicum which could not be synsystematically classified, and Abieti-Fagetum festucetosum from 900 to 1250 m above sea level of which the Adenostyles alliariae part shows relations to the Aceri-Fagetum above 1250 m. The northern slope of Chasseral shows Luzulo-Fagetum with silver fir (Abies alba) on its lower part, Abieti-Fagetum typicum grows between 860 and 1250 m and Aceri-Fagetum with spruce (Picea abies) and lush high shrub about 1250 m above sea level. On southern slope Cardamino heptaphyllae-Fagetum grows up to 1100 m, Abieti-Fagetum elymetosum on deep groundy soils (in comparison to the northern slope) between 1100 and 1300 m and above 1300 m vegetation consists of a special form of Aceri-Fagetum exposed to the south, without hygrophilous high herbs but with crippled beech shrubs.
- 3. The phenological examination according to SCHREIBER (1968b) resulted in a phenological climatic graduation shown in a map (in appendix) in relation to the vegetation as follows:

```
grade 4, 3: Fagetum
grade 2, 1, 0: Abieti-Fagetum
grade 0, -1, -2, -3: Aceri-Fagetum
```

- 4. The measuring of the climatic factors was accomplished at nine stations during the growing season in the area of the corresponding vegetation units: Three stations on the northern slope of Weissenstein (1: Fagetum typicum, 810 m, 2: Abieti-Fagetum festucetosum, 925 m, 3: Aceri-Fagetum, 1305 m above sea level), three stations on the northern slope of Chasseral (7: Luzulo-Fagetum, 800 m, 8: Abieti-Fagetum typicum, 1139 m, 9: Aceri-Fagetum, 1398 m above sea level), and three stations on the southern slope of Chasseral (4: Cardamino heptaphyllae-Fagetum, 990 m, 5: Abieti-Fagetum elymetosum, 1245 m, 6: Aceri-Fagetum, 1411 m above sea level). On Weissenstein rain and horizontal precipitation were measured (16.6.-31.10. 1970), on Chasseral rain and horizontal precipitation and air temperature, rel. humidity (in thermometer screens 1.2 m above ground) and wind velocity (16.6.-31.10.1970 and 1.6.-17.10.1971).
- 5. Most of the rain falls in the upper and medium areas of the southern slope of Chasseral. Therefore also the largest quantity of snow is to be expected in winter here and this is responsible for the shrubby growth of the beech.
- 6. The horizontal precipitation consists of fog precipitation and rain which diverted from vertical to more or less horizontal fall by influence of wind. This precipitation is highest in the range of the highest average wind velocity (ridge area on northern slope of Chasseral: lush growth of hygrophilous high herbs in the *Aceri-Fagetum*, numerous springs).
- 7. The medium daily variation of rel. humidity during the growing season reached its utmost level in the areas above 1300 m (southern slope) respectively above 1250 m above sea level (northern slope). There the daily amplitude comes up to about 10%, on the slopes close to the valley more than 25% (Fig. 8). In figure 10 showing the medium rel. humidity from June

- to October 1970, a "dry spot" can be noticed on the middle and upper parts of northern slope in September.
- 8. The vegetation units Fagetum (including Luzulo-Fagetum, Cardamino heptaphyllae-Fagetum), Abieti-Fagetum and Aceri-Fagetum can be well characterized by means of average air temperature during the growing season (Fagetum 11.2-13.0 °C, Abieti-Fagetum 10.2-11.2 °C, Aceri-Fagetum 9.5-10.2 °C, see Fig. 19). As expected the greatest average daily amplitude prevales in the comparatively continental Vallon de Saint-Imier near Courtelary (station 7) with more than 8 °C, while only 3.5 °C have been measured in the area of the Aceri-Fagetum above 1300 m (Fig. 9 and 18).
- 9. The hydrothermic examination of the Chasseral slopes (diagramm according to Lossnitzer 1948) shows a clear discontinuity between station 4 (on the lower slope) on the one hand and station 5 and 6 (on the medium and upper slopes) on the other hand. This quick change from a comparatively warm and dry to a comparatively cool and moist climate coincides with the boundary line between *Cardamino heptaphyllae-Fagetum* and *Abieti-Fagetum*.
- 10. The upper respectively lower boundary line of the occurrence of *Abies alba* can hardly be fixed by climatic factors. The area of optimal growth is characterized by an average amplitude of air temperature of 4.8 °C during the growing season. The oceanic climate of the plateaus of Suisse Jura excludes the silver fir in favour of beech (breakage of boughs by snow, hoarfrost). The cool and moist climate enables growth of beech and fir simultaneously in montaneous areas on the Jura stones generally inducing growth of deciduous trees.

(Translated by Fam. Brügmann, München)

Literaturverzeichnis

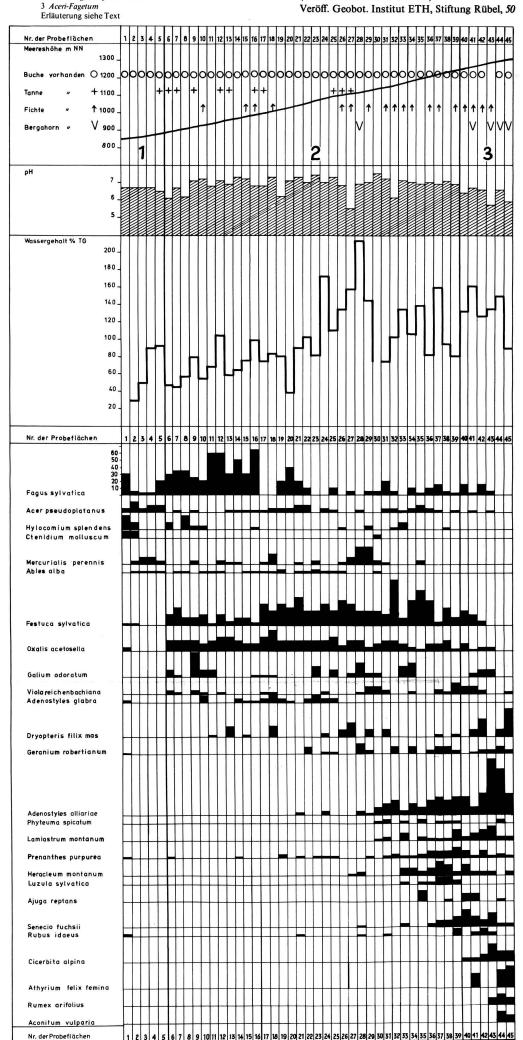
- BACH, R., 1950: Die Standorte jurassischer Buchenwaldgesellschaften mit besonderer Berücksichtigung der Böden. Ztschr. Schweiz. Bot. Ges. 60, 50-152
- R. Kuoch und M. Moor, 1962: Die Nomenklatur der Pflanzengesellschaften. Mitt. Flor.-Soz. Arbeitsgem. N. F. 9, 301-308
- BAGNOULS, F., und H. GAUSSEN, 1957: Les climats écologiques et leur classification. Ann. Géogr. 66, 193-220.
- BAUMGARTNER, A., 1958: Zur Höhenabhängigkeit von Regen- und Nebelniederschlag am Grossen Falkenstein (Bayer. Wald). Comptes rendus et rapports. Ass. Gén. Toronto 1957, 1, 529-534.
- 1960: Die Lufttemperatur als Standortsfaktor am Grossen Falkenstein. 1. Mitteilung. Forstw. Cbl. 79, 11/12, 362-373.
- 1961: Die Lufttemperatur als Standortsfaktor am Grossen Falkenstein. 2. Mitteilung. Forst. Cbl. 80, 3/4, 107-120.
- 1964: Klimatologische Abgrenzung forstlicher Standorte im Mittelgebirge. Mitt. Staatsforstverw. Bayerns, H. 34, 142–153.
- BLÜTHGEN, J., 1964: Allgemeine Klimageographie. In: Lehrbuch der allgemeinen Geographie (E. Obst Hg.), 599 S. Berlin.
- Braun-Blanquet, J., 1964: Pflanzensoziologie. 3. Aufl., 865 S. Wien/New York.
- Borell, L., et F. Serre, 1969: Phytosociologie et analyse de cernes ligneuses: l'exemple de trois forêts du Haut-Var (France). Oecol. Plant. 4, 155–176.
- Cantlon, J.E., 1953: Vegetation and microclimats on north and south slopes of Cucketuuk Mountains, New Jersey. Ecol. Monogr. Durham N.C. 23, 241–270.
- CARBIENER, R., 1962: Les sols et la végétation des «Chaumes» du sommet du Champs du Fen (Vosges Centrales). Bull. Ass. Fr. Et. Sol., 18–33.
- Dannecker, K., 1955: Aus der hohen Schule des Weisstannenwaldes. 206 S. Frankfurt.
- DENGLER, A., 1912: Untersuchungen über die natürlichen und künstlichen Verbreitungsgebiete einiger forstlich und pflanzengeographisch wichtiger Holzarten in Nord- und Mitteldeutschland. III. Die Horizontalverbreitung der Weisstanne. Mitt. Forstl. Versuchsw. Preussens.
- 1944: Waldbau auf ökologischer Grundlage. 3. Aufl., Berlin.
- DZLUBALTOWSKI, S., 1930: Le sapin sur la limite septentrionale de son aire en Pologne. Acta Soc. Bot. Polon. 7, 357-379.
- EIMERN, J. VAN, 1955: Zur Methodik der Geländeaufnahme. Mitt. DWD 2, 14, 125–131.
- 1958: Geländeklimaaufnahmen für landwirtschaftliche Zwecke. Bayer. Landw. Jb. 35, 193-210.
- ELLENBERG, H., 1954: Naturgemässe Anbauplanung, Melioration und Landespflege. Landwirtschaftl. Pflanzensoz. III, 109 S.
- 1956: Aufgaben und Methoden der Vegetationskunde. In H. Walter: Einführung in die Phytologie, Bd. 4 (Grundlagen der Vegetationsgliederung), 136 S. Stuttgart.
- 1963: Vegetation Mitteleuropas mit den Alpen. In H. Walter: Einführung in die Phytologie IV, 2, 943 S. Stuttgart.
- EMBERGER, L., 1932: Sur une formule climatique et ses applications en botanique. Météorologie 1932, 423-432.
- Flora Europaea, Bd. 1 und Bd. 2. Cambridge 1964/1968.
- Frehner, H. K., 1963: Waldgesellschaften im westlichen Aargauer Mittelland. Beitr. Geobot. Landesaufn. Schweiz, 44, 96 S.
- GEIGER, R., 1961: Das Klima der bodennahen Luftschicht. Braunschweig, 646 S.
- Grunow, J., 1952: Nebelniederschlag, Bedeutung und Erfassung einer Zusatzkomponente des Niederschlags. Ber. DWD US-Zone 42, S. 30.

- 1954: Die Niederschlagsmessungen mit hangparallelen Auffangflächen. Methode, Erfahrungen, Folgerungen. UGGI Ass. Int. Hydr. Sci., Ass. Gén. Rome.
- 1955: Der Niederschlag im Bergwald. Niederschlagszurückhaltung und Nebelzuschlag.
 Forstw. Cbl. 74, 22–36.
- HARTMANN, F. K., J. VAN EIMERN und G. JAHN, 1959: Untersuchungen reliefbedingter kleinklimatischer Fragen in Geländequerschnitten der hochmontanen Stufe des Mittel- und Südwestharzes. Ber. DWD 7, Nr. 50.
- und G. Jahn, 1967: Waldgesellschaften des mitteleuropäischen Gebirgsraums nördlich der Alpen. Stuttgart.
- Held, J. R., 1941: Temperatur und relative Feuchtigkeit auf Sonn- und Schattenseite in einem Alpenlängstal. Met. Ztschr. 58, 398–404.
- Issler, E., 1942: Vegetationskunde der Vogesen. Pflanzensoz. 5d, Jena.
- KÖPPEN, W., 1900: Versuch einer Klassifikation der Klimate vorzugsweise nach ihren Beziehungen zur Pflanzenwelt. Geogr. Ztschr. 6, 593-611, 657-679.
- 1918: Klassifikation der Klimate nach Temperatur, Niederschlag und Jahresablauf. Peterm. Geogr. Mitt. 64, 193-203, 243-248.
- Krähenbühl, C., 1967: Chasseral. Etude orographique et botanique. Act. Soc. Jur. d'Emulation 1967.
- Kuhn, N., 1967: Natürliche Waldgesellschaften und Waldstandorte der Umgebung von Zürich. Veröff. Geobot. Inst. ETH Zürich, Stiftung Rübel, 40, 87 S.
- Lossnitzer, H., 1948: Eine einfache graphische Witterungsdarstellung. Wetter und Klima 1, 270–277.
- MARTONNE, E. DE, 1941: Nouvelle carte mondiale de l'indice d'aridité. Météorologie 1941, 3-26.
- MATTFELD, J., 1926: Das Areal der Weisstanne. Mitt. Deutsch. Dendrolog. Ges. 2.
- MAYER, H., 1961: Entstehung des nordalpinen Abieti-Fagetum. Schweiz. Ztschr. Forstw., 757
- 1963: Tannenreiche Wälder am Nordabfall der mittleren Ostalpen. 208 S. München/Basel/Wien.
- 1969: Tannenreiche Wälder am Südabfall der mittleren Ostalpen. 259 S. München/Basel/Wien.
- Moor, M., 1938: Zur Systematik der Fagetalia. Ber. Schweiz. Bot. Ges. 48, 417-469
- 1940: Pflanzensoziologische Beobachtungen in den Wäldern des Chasseralgebietes. Ber. Schweiz. Bot. Ges. 50, 545-566.
- 1942: Die Pflanzengesellschaften der Freiberge. Ber. Schweiz. Bot. Ges. 52, 363-422.
- 1947: Die Waldpflanzengesellschaften des Schweizer Jura und ihre Höhenverbreitung.
 Schweiz. Ztschr. Forstw. 98, 1.
- 1952: Die Fagion-Gesellschaften im Schweizer Jura. Beitr. Geobot. Landesaufn. Schweiz, 31, 201 S.
- 1954: Fichtenwälder im Schweizer Jura. Vegetatio 5/6, 542-552.
- 1962: Pflanzengesellschaften als geologische Zeiger im Jura. Regio Basiliensis 4, 1, 15-38.
- OBERDORFER, E., et al., 1967: Systematische Übersicht über die Pflanzengesellschaften Westdeutschlands. Schr. R. Vegetationskde. 2, 7-62.
- PFADENHAUER, J., 1969: Edellaubholzreiche Wälder im Jungmoränengebiet des Bayerischen Alpenvorlandes und in den Bayerischen Alpen. Diss. Bot. 3, 212 S.
- 1971: Vergleichend ökologische Untersuchungen an Plateau-Tannenwäldern im westlichen Aargauer Mittelland. Veröff. Geobot. Inst. ETH Zürich, Stiftung Rübel, 47, 76 S.
- Rehder, H., 1964: Wärmestufen, geologische Unterlage und Verbreitung einzelner Arten und Pflanzengesellschaften im Südostschwarzwald. Arb. Landwirt. Hochschule Hohenheim 30, 125–144.
- RICHARD, J.-L., 1961: Les forêts acidophiles du Jura. Mat. Levé Géobot. Suisse 31, p. 164.
- 1965: Extraits de la carte phytosociologique des forêts du Canton de Nâuche tel. Mat. Levé Géobot. Suisse 47, p. 46.
- ROLLIER, L., et E. KISSLING, 1904: Carte géologique de la Suisse, f. VII (Porrentruy, Solothurn).

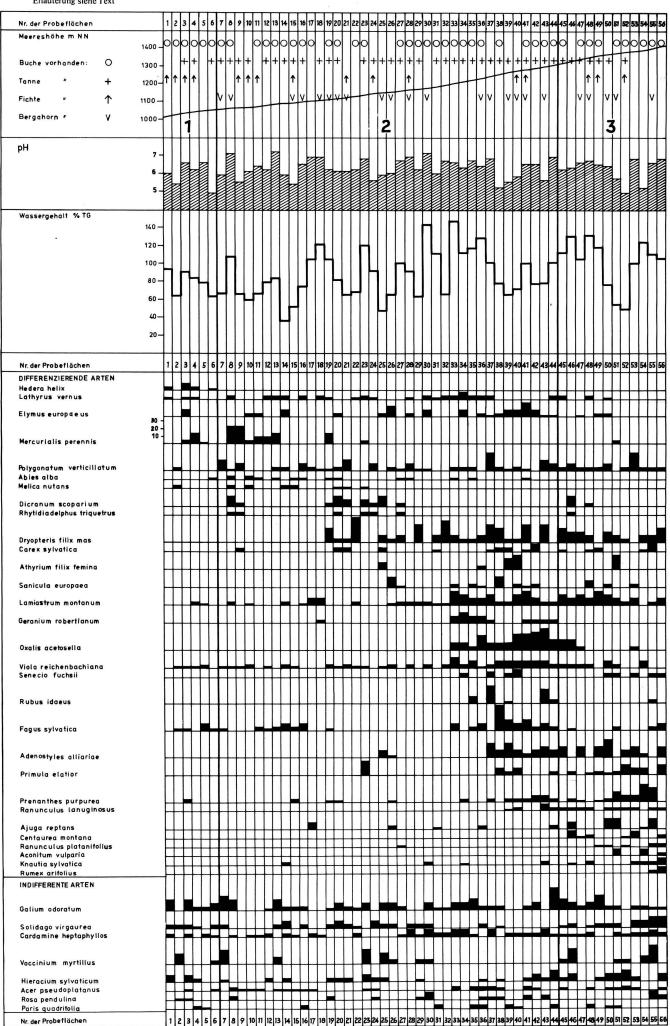
- ROTHMALER, W., 1961-1963: Exkursionsflora von Deutschland, Bd. I-III, Berlin.
- RUBNER, K., 1921: Die Spätfröste und die Verbreitungsgrenzen unserer Waldbäume. Forstw. Cbl. 1921, 2.
- 1932: Der Nebelniederschlag im Wald und seine Messung. Tharandter Forstl. Jb. 82.
- SAXER, A., 1955: Die Fagus-, Abies- und Piceagürtelarten in den Kontaktzonen der Tannenund Fichtenwälder der Schweiz. Beitr. Geobot. Landesaufn. Schweiz 36.
- Schreiber, K.-F., 1968a: Les conditions thermiques du Canton de Vaud. Mat. Levé Géobot. Suisse 49, p. 31.
- 1968 b: Ecologie appliquée à l'agriculture dans le Nord vaudois. Mat. Levé Géobot. Suisse, 50, p. 151.
- Seitschek, J., 1967: Die Weisstanne im Bodenseegebiet. Beih. Forstw. Cbl. 26.
- SPITALER, R., 1922: Klimatische Kontinentalität und Ozeanität. Peterm. Geogr. Mitt.
- THORNTHWAITE, C. W., 1948: An approach toward a rational classification of climate. Geogr. Rev. 38, 55-94.
- TREGUBOV, S., 1941: Les forêts vierges montagnardes des Alpes Dinariques. Comm. SIGMA 78, 116 S.
- TSCHERMAK, L., 1950: Die natürliche Verbreitung der Tanne in Österreich. Österr. Vierteljahresschr. Forstw.
- WAGNER, R., 1955: Die geographische Anordnung der Mikroklimate auf dem Hosszubérc-Berg im Bükkgebirge. Acta Geogr. 1, 27-43.
- WHITTAKER, R. H., 1967: Gradient analysis of vegetation. Biol. Rev. 49, 207-264.
- WILLKOMM, O., 1887: Forstliche Flora von Deutschland. Leipzig.

Adresse des Autors: Dr. Jörg Pfadenhauer

Waldbauinstitut, Abt. Vegetationskunde und Landschaftspflege


Schellingstrasse 12 D-8 München 13

Tafel 1 Verteilung der Arten innerhalb des Transekts im Schitterwald (Weissenstein-Nordhang) von 850 m bis 1330 m NN


1 «Fagetum typicum»

2 Abieti-Fagetum festucetosum

Zu: PFADENHAUER, J., 1973: Versuch einer vergleichend-ökologischen Analyse der Buchen-Tannen-Wälder des Schweizer Jura (Weissenstein und Chasseral) Veröff. Geobot. Institut ETH, Stiftung Rübel, 50

Zu: PFADENHAUER, J., 1973: Versuch einer vergleichend-ökologischen Analyse der Buchen-Tannen-Wälder des Schweizer Jura (Weissenstein und Chasseral)

Zu: PFADENHAUER, J., 1973: Versuch einer vergleichend-ökologischen Analyse der Buchen-Tannen-Wälder des Schweizer Jura (Weissenstein und Chasseral) Veröff. Geobot. Institut ETH, Stiftung Rübel, 50 Vegetationstabelle 1: Weissenstein (Schitterwald) , 1 "Fagetum typicum" 2 Abieti-Fagetum festucetosum 21 reine Ausbildung 22 Vaccinium myrtillus—Ausbildung 23 Adenostyles alliariae—Ausbildung 3 Aceri-Fagetum 22 23 3 29 30 2 77 M6 10 127 125 1 20 25 2 V NW F 10 11 12 1 70 69 86 90 90 15 50 10 NW NW NNW 90 70 80 10 10 10 40 80 40 50 50 0 26 25 25 14 15 M1 73 92 95 30 10 N NNW 90 80 2 10 2 20 2 40 18 19 20 5 76 M4 101 102 118 19 76 21 22 23 24 29 M2 M5 M3 78 95 124 103 106 109 26 8 laufende Numme 6 7 71 13 72 92 15 0 90 0 20 16 3 17 18 74 5 99 101 10 15 N NW 90 90 30 20 70 70 20 10 25 7 27 75 28 9 29 77 3 67 84 35 N 90 10 70 1 2 66 68 82 83 35 15 NNW WNW 90 100 10 90 30 15 0 0 97 15 NW 80 50 40 10 Nr.der Aufnahm 79 89 5 N 65 82 25 N 90 10 7 8 75 9 112 113 119 0 40 45 45 W NW N NW 0 80 70 80 0 10 20 30 0 80 90 70 0 10 0 0 89 104 35 25 N NW 90 80 0 0 50 70 0 30 18 17 130 132 5 3 NW N 80 60 Meereshohe in 10 m 95 15 NW 80 10 70 40 89 25 NW 90 0 50 30 20 N NNO 70 95 ? ? ? ? 20 NW 90 Hangneigung (°) 30 N 90 10 70 40 30 N 90 ? ? 20 N0 90 ? ? 25 N 90 30 60 0 Hangrichtung Deckungsprozent 50 10 0 10 20 0 Str 20 10 17 20 0 Artenzahl 12 12 13 15 26 39 26 23 30 22 28 30 Bäume und Sträucher Fagus sylvatica Str Acer pseudoplatanus : Str 1 Picea abies Str D1 Abies alba Sorbus aucuparia Str Rubus idaeus Sorbus aria Fraxinus excelsion Rosa pendulina Lonicera alpigena Str Lonicera nigra Lonicera xylosteum Trennarten 1.2 . 2+.2 + + . +.2 . . + + + +.2 +.2 . . +.2 . 1.2 . 1.2 1.2 +.2 . 2.2 +.2 +.2 . + + + .2 +.2 + .2 Festuca sylvatica Ademostyles glabra Geranium robertianum Mycelis muralis : Phyteuma spicatum Epipactis helleborine Heracleum sphondylium 1.1 1.2 1.1 + . ssp. montanum Carex digitata 1.1 1.2 1.2 1.2 + 1.2 +.2 (+) . . 1.2 + + Polystichum aculeatum Cephalanthera damasonium Pyrola secunda Helleborus foetidus . + . . +.2 . + +.2 + Elymus europaeus Veronica officinalis (+) Actaea spicata Aruncus dioicus Prenanthes purpurea Oxalis acetosella Paris quadrifolia Hieracium sylvaticum Dryopteris filix mas Lamiastrum montanum D3 Dicranum scoparium Hylocomium splendens Solidago virgaurea Vaccinium myrtillus Neottia nidus avis Ctenidium molluscum
Plagiochila asplenioides Rhytidiadelphus triquetrus Hypnum cupressiforme : : Viola reichenbachiana Adenostyles alliariae Ajuga reptans Senecio fuchsii Athyrium filix femina Carex sylvatica Polygonatum verticillatum D5 Ranunculus lanuginosus Aconitum vulparia . + (+) 1.1 1.2 + 1.2 . 3.1 2.2 2.2 2.1 +.2 1.2 2.1 2.3 2.1 3.2 2.2 (+) +.2 . +.2 + + + + 1.2 . +.2 1.1 Rumex arifolius Cicerbita alpina Sanicula europaea +.2 Primula elation Crepis paludos Geranium sylvaticum Allium ursinum übrige Arten Galium odoratum

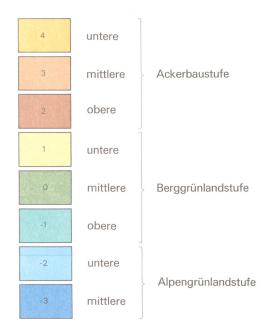
Luzula sylvatica +-3 1-1 +-2 1-2 . Fissidens taxifolius Eurhynchium striatum Pleurozium schreberi

Mercurialis perennis

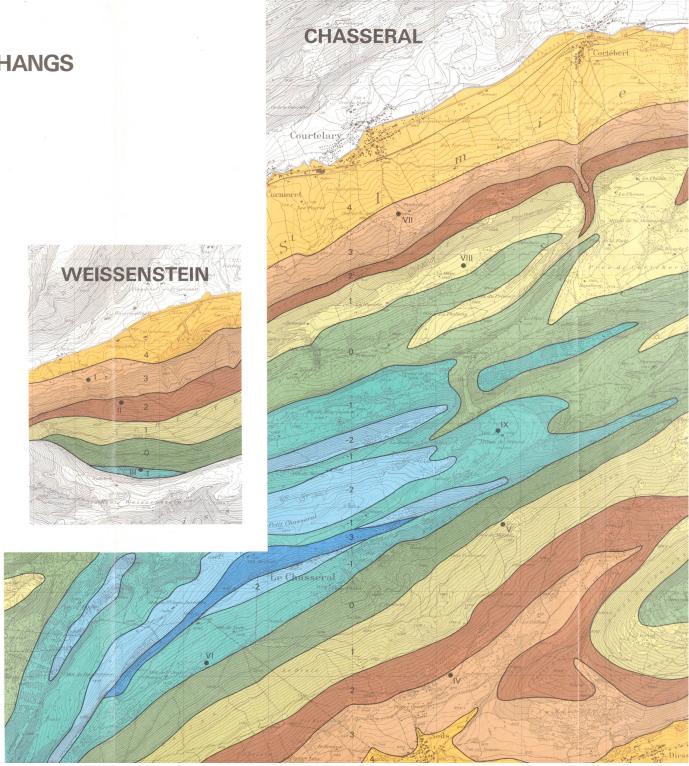
Fragaria vesca Epilobium montanum • 1•1 • +•2

Ausserdem in 2: Hedera helix +, Cardamine heptaphyllos 1.3, 3: Sambucus nigra Str +, 4: Carex spec. +.2, Convaliaria majalis +.3, 5: Ligustrum vulgare Kr. +, Carex spec. +.2, "edera helix 1.2, Thuidium tamariscinum 1.3, 6: Pinus sylvestris B 1, Hypericum perforatum +, Thalictrum aquilegifolium +, 8: Tortella tortuosa +.2, 9: Carex flacca +.2, 10: Hypericum perforatum +.2, Carex alba +.2, 11: Acer campestris B +, Rubus saxatilis 2.2, Melampy-um sylvaticum 1.2, Sesieria coerulea 3.4, Ranunculus acris +, Mnium undulatum +, 12: Veronica chemaedrys +.2, Mnium undulatum +, Polytrichum attenuatum +.2, 13: Angelica sylvestris +, Mnium cuspidatum +, Mnium punctatum +.3, 14: Ribes alpinum Kr +, Corylus avellana Kr +, Carex niba +,

Ausserdem in 1: Melampyrum sylvaticum +.2, Rubus spec. +, Pyrola seounda +.2, 2: Rubus spec. +, Sorbus aria Str +, Rubus savatilis +, 3: Melampyru sylvaticum +.3, Pyrola secunda +.2, Vicia cracca +, Veronica officinalis +, 4: Milium effusum +, Sambucus nigra Str +, 5: Stachys sylvatica +, 6: Rubus spec. +, 7: Polygonatum multiflorum +, Lonicera xylosteum +, 8: Geum urbanum +, Veronica latifolia +, Lurhynchium striatum 1.3, 11: Polytrichum attenuatum +.2, 12: Pyrola secunda 1.2, Sorbus aria Str +, 15: Pyrola secunda 1.3, Veronica chamaedrys +, Melleborus foetidus +, 19: Rubus spec. +, 70: Rubus spec. +, 70: Euchynchium striatum +.3, Sambucus nigra Kr +, 19: Rubus spec. +, 70: Euchynchium striatum +.3, Sambucus nigra Kr +, 19: Rubus spec. +, 70: Euchynchium striatum +.3, Sambucus nigra Kr +, 19: Rubus spec. +, 70: Euchynchium striatum +.3, Sambucus nigra Kr +, 20: Helleborus foetidus +, 20: Euchynchium striatum 2.2, Sambucus nigra Kr +, 20: Helleborus foetidus +, 20: Euchynchium striatum 2.3, 37: Polytrichum attenuatum +.2, Polytrichum 1.1, Illium ursimum 1.1, 40: Pryopteris spinulosa +, Sambucus nigra Kr +, 20: Helleborus foetidus Kr +, 40: Euchynchium striatum 2.3, 37: Polytrichum attenuatum 2.3, 37: Polytrichum nigra Kr +, 20: Helleborus foetidus Kr +, 40:


Ribes aloinum

Vegetation	stabelle 3 Chasseral	L—SE—Hang	3	Ab 21 22	Cardanie heptaphyllae-lagetum Zu: FFADENHAUER, J. 1973: Versuch einer vergleichend-okologischen Analyse der Buchen-lannen-Walder des Schweizer (Weissenstein und Chasseral) 21 reine Ausbildung Veröff. Geobot. Institut ETH, Stiftung Rübel, 50 22 ^denostyles alliariae-Ausbildung Aceri-lagetum													er Jura																									
laufende M Mr. der Au Meereshöhe Hangreigur Hangrichtu Deckungspr Artenzahl	fnahme in 10 m g (⁰) ng		1 2 154 128 102 102 5 10 50 SS0 90 90 0 10 60 30 0 0 23 24	22 1 100 1 5 5 5 90 0 40	03 104 15 15 80 80 95 90 10 0 20 40 0 0	134 1 105 20 50 80 0 20	7 8 27 150 95 102 10 15 50 50 60 100 30 20 80 20 80 0 28 24	23 1 102 1 5 80 90 0 50		151 113 5 \$\$0 100 40 30 0	13 14 20 130 108 108 5 15 50 50 80 95 10 0 80 30 10 0 24 19	24 108 15 50 90 0 40	50 4	1 135 0 111 5 15 0 SS0 0 80 0 10 0 30 0 0	19 148 1 112 1 15 \$\$0 \$ 70 0 50		4 114 5 10 0 SS0 0 90 0 0 0 40 0 0	137 1 115 1 15 so s 90 10 20 0	24 25 47 144 15 116 25 10 80 90 10 10 30 40 20 0 21 28	140 1 117 1 5 50 90 0 40	138 136 118 109 15 5 80 80 0 0 20 60	25 111 15 S0 80 0 80	114 11 5 SSO S 80 9	8 156 8 119 5 25 0 30 0 90 0 0 0 40 0 0	157 2 120 12 15	4 35 7 142 0 121 5 5 5 SSO 0 90 0 20 0 50 0 0	36 3 139 14 123 12 15 3 S0 S 80 9 10 1 60 6 0 30 3	5 26 4 126 0 20 0 S0 0 100 0 10 0 60 0 0	28 1 127 12 15 1 50 5 100 9 0 1 50 6	0 41 16 14 18 134 15 15 10 80 10 80 10 40 10 9 29	99 1 120 1 45 3 50 3 100 9 20 3 80 0	98 110 18 135 30 5 50 50 90 70 20 10 90 100 0 40	40 1 50 55 50 7 10 1 100 10	1 143 9 129 5 15 0 SS0 0 70 0 20 0 40 0 0	158 129 1 25 SSO : 90 0 70 !	49 50 15 13 30 136 25 25 80 80 10 20 50 70 0 0	3 29 5 132 5 25 0 80 0 80 0 80	3 52 5 146 15 134 13 10 2 50 SS 80 6 20 3 50 10 0 27 3	0 50 0 0	12 16 140 13 10 1 50 55 80 1 10 100 5	55 139 15 15	113 1 131 1 35 SW 60 10 70	59 60 112 120 134 138 50 35 SW SS0 70 70 20 10 80 80 30 0 34 30
Băume und	Sträucher																																										
Fagus	sylvatica	8,_	4 4	5	5 5	3	2 5	5	4 3	4	4 5	3	4 4	4	2	4 4	3	4	2 4	3	2 4	:	5 3	3	4 5	5	5 5	4	3 2	3	5 4		1 5	3	5	2 3	4	2 3	3	4 2	4		
Picea	abies	Kr B Str	3.3 1.1 1 + . 1	1 +	1.1 + 1	• + 2 •	2 1	1.1	+ +	+ 1	1.1 +	1.1	1.1 +	•	+ 2	+ + 1 1	1	1	+ + + 2 + 1	1	+ +		1.1 + 1.1 - 1 -	1	† · · · · · · · · · · · · · · · · · · ·	1 +	+ +	1	2 1	2	1 1	3	2 1	4 + 1 1	+ 3	3 1	2	3 · 1 +	2	2 2	1 .	3	2 2
Abies	alba	B Str	2 1		1 1	1	: :	1	2 2 2 2	3 +	1 2	2	2 1	2 +	:	2 2	2 +	2	1 2	3	3 2	2	1 2	2 +	3 1	1	1 1	2	1 1	•				2	1		:	i :	1		:	1	
Acer	pseudoplatanus	B Str Kr	: :			:		•		:	· · · · · · · · · · · · · · · · · · ·	:		:	:		1 +			:	· ·	•		:	1.1 +	:	• •	+	1 2	2	1.1 1		1 1			2 2 1	1 +	3 3	+	: :	1 + 2.2		2 3
	s aucuparia pendulina	Str Kr Kr	+-2	+•2 +	+ .	+.2	+ • + +	+•2	+ +•2		-2 +	:	+.2 +	:	. +	2 2.	5 +•2 +	+•2	 + +	+•2	+.2		+ + + + + + + + + + + + + + + + + + + +	+•2	+•3 +	+	1.2 +	+	+ +	+	+ 1	. +	+ 1.		+.2 +	. 1 - 1.1	+•2 +	. 1 2 +.	3 +•2	1.1 +. 1.2 +	1 2 2.2	+ +	
Sorbi	s aria	Str Kr Str	· ·	+	: :	:	+ •	•	: :	:	+ :	÷	: :	:	:	+ +.	2 .	÷ .	: :	;	: :	:	: :	:	: :	:	: :	:	: :	+	+ +		÷ ÷	:		1 +	:	: :	:	÷ :	+	+ .	. 1
	era nigra us avellana	Str Kr Str		•		:	+ . + 1	:		:	* ·	:	÷ :	:	:	: : : :	+	+ :	. + 	:	: : : :	÷	: ;	+	: :	:	: :	:	+ +	:				:	+ .		÷	: ;	:		:	+ +	
Trennarter		Kr	+ •	•		•	+ .	٠		+		•		•	+	+ •	+	•	٠.	٠		•	+ .	٠		•		٠		•	• 1	٠		٠		•	٠		٠		٠	•	
D1 Majar Melic Anemo	themum bifolium d nutans ne nemorosa rbia amygdaloides llaria majalis		. 1.1 +.2 +.2 1.1 + . + t.2 +.2	:	• +•2 + 1•2 + •	. 1	-3 +-2 -1 1-1 +	1.2		+•2	· ·	:	+ •	+ + + + + + + + + + + + + + + + + + + +	:		:			•	: : : :	:		+		•	: :			:				:			:		:	• • • •	•		
D2 Laniz Violoi Geraria Ajugaria Paria Par	strum montanum reichenbachiana reichenbachiana cium sylvaticum reptans s acetosella quadrifolia teris filix mas sylvatica lum robertianum styles alliariae la elatior tichum aculeatum ula europaea achia nemorum ula filix femina ca sylvatica s benekeni montana poutalian sylvaticum urbanum lia sylvaticum urbanum lia sylvaticum culus lanuginosus culus piatanifolius arifolius ium sylvaticum lana montana s paludosa era alpigena us personata e mezereum tum vulparia rivale	kr Kr				. 1	- 1.1 + +.2 +.1 +.2 +.2 +.2 +.2 +.2 +.2 +.2 +.2 +.2 +.2	2-1	+ + + + + + + + + + + + + + + + + + + +	11.1 1 +-2 - 2 - 1 +-2	1•2 • • • 2•3 1•3	+.2 1.2 1.3 1.1 1.1 + + +.2		+ 1.1 1.1 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	1.2 + 1.1 - 2.2 + 2 + .2 + .2 + .2 + .2 + .2 + .2	2 2 + + + 2 - 1 1 - 2 - 2 + - 2 + - 2 + - 2 + - 3 + - 4 - 5 + - 6 - 7 - 7	2 1.1 1.2 +.2 +.2 2 +.2 1.1 2 +.2 1.1 2 +.2 2 +.2 1.1 2 +.2 2 +.2 1.1 2 +.2 2	1.11 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.	1.1 + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +	+.2	1.2 1 1.1 1.2 1.3 1.2 1.3 1.2 1.3 1.2	1.2 1	2 1.1 2 +.2 2 +.2 1.5 1.1 1.1 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	1.1 1.: 1.3 +: 1.3 +: 1.2 +: 1.2 +: 1.2 +: 1.2 +: 1.2 +: 1.2 +: 1.3 +: 1.2 +: 1.3 +: 1.2 +: 1.3 +: 1.3 +: 1.3 +: 1.3 +: 1.3 +: 1.3 +: 1.2 +: 1.3 +: 1.3 +: 1.3 +: 1.3 +: 1.3 +: 1.3 +: 1.2 +: 1.3 +	2 1.1 1 1.2 2 + 1 1 1.2 2 + 2 2.3 1.1 1 2 2 + 2 2 4.2 2 1.1 1 1.2 2 + 2 2 4.2 2 1.1 1 1.1 2 2 - 2 2 4.2 2 1.1 1 1.1 2 2 - 2 2 4.2 3 1 1.1 1 1.1 2 2 - 2 3 1.2	1.1 1 11 1 12 + 13 + + + + + 11 1 11 + + 11 1 +	1 + 2 2 + 2 1.1 1 + 2 2 + 1 1 + 2 2 + 2 2.3	1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1	2 +	1.2 2.1.2 1. + 2.	1	1.1 + 1.1 1.1 1.1 1.1 1.2 2.1 1.2 2.1 2.3 2.4 1.2 4.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1	2 1.2 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.	1.1 1. 1.1 1. 1.1 1. 1.2 . + .1 1.2 . + .2 . + .2 . + .2 . 	2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 +	+.2 + 1.1 . + +.2 . + 3.3 1 1.2 1 		2 2 + 1 1 1 - 1 1 - 2 - + 1 1 1 - 1 2 2 + 2 + 2 	+ 2. + 2. + 1. - 1. - 2. - 1. - 2. - 2. - 2. - 2. - 2. - 2. - 2. - 3. - 2. - 3. - 4. - 3. - 4. - 3. - 4. - 3. - 4. - 5. - 6. - 7. - 7.	2-2 - 3 + -2 - 1 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	11.2 1.2 1.1 1.2 1.2 1.2 1.2 1.2 1.2 1.2	. 2.2 .2 2.1 . 1.2
Chaer Equis	ampsia caespitosa ophyllum hirsutum etum sylvaticum a palustris							•	: :	:		•															: :	:		•		2.2 1.3 2.1 +.2	+•2		: :		:		:		:		
Galiu	m odoratum		1.3 1.1																																								
Prena Carda Polyc Vaccii Phyte Solic Elymu Lathy Mercu Fraga Rubus Meott Epipa Melam Epilc Cares Mycel	nthes purpurea mine heptaphyllos onatum verticillatum nium myrtillus muma spicatum ago virgaurea s europeaus rus vernus rialis perennis rialis perennis rialis perennis rialis desus ia nidus avis ctis helleborine opyrum sylvaticum bium montanum digitata is muralis styles glabra		1-2 +-2 1-1 1-1 1-2 +-2 2-3 +-2 1-2 +-2 1-2 +-2 1-3 1-3 1-4 1-3 1-4 1-3 1-4 1-3 1-4 1-5 1-6 1-7 1-7 1-7 1-7 1-7 1-7 1-7 1-7	1.1 + + + + 2.3 1. + + + 1.2 + + 1.2 + + 1.2 + 1.	+ 1.1	11.1 +.2 + +.2 3 . + 1.2 + +	.2 + .323 +.:	1.1 1 1 1 1 1 3 3 4 4 4 4 4 4 4 4 4 4 4 4	.2 + .1 + .3 + .3 2.3 · . + .+.2 + · . +	+ 1.1 1 +.2 + 2.2	+ + + + + + + + + + + + + + + + + + +	+ 1.1 2 1.2 2 2.3 + + 2 2 . 1 + + 1	1.1	+ 1.2 +.3 2 2.3 2 2.3 +.2 +.2	1.1 1 + 2.3 + 1 . 1 . 1.3 +	+ 1 2 + 1 2 2 1 2 1 + + +	1.1 1.1 2 +.2 1.2 + 2.1 2 +.2 + 2 +.	1.1 + 1.2 1.2 1.2 2.2 + 1.1 1.2 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1	+ + -2 1.1 -2 2.2 - + - 1.2 -2 +.2 -1 -	1.1 2.1 1.2 + 1.1 + 1.1	+ + + - 1.1 -2 1.2 -2 1.2 -2 1.2 + + - 1.1 - 2.3 - + - + - + - + - + - + - + - +	+ + + 1 + 1 3.2 2 2.1 1 + . 1 +	-2 1.1 + 1.2 2.1 1.3 1.2 1.3 1.2 1.3 1.2 1.3 1.2 1.3 1.2 1.3 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4	1.1 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	1.1 1.1 1.1 1.1 2.2 + . + 1.2 + 1.1 . 1.2 . + . 2.3 + . +.2	1+.2	1.2 1.7 2.1 1.7 - 2.7 +.2 +.2 +.2 + 1.2 1.7 + 1.2 + + + +	1 + 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.1 1. 1.1 1. 1.3 + 1.1 2. 1.1 2. + +.	1 + 1 2-1 1-1 +-2 2 + 2 + 2 - 1-3 2 + +	2.2 1. 1.1 1. 2.3 . 1.1 2. + .	1 2.2	1.3 1.3 +.2	1.2 2.1 2.1 1.1 1.1 1.1 +	2.2 1. 1.1 + 1.1 1. 1.2 . 1.1 1. 2.2 . + . + .	1 2.2 2.1 2 2.1 +.2 2 + 2 1.1 1.1 +	2.1 1 2.2 1 . 3 2.2 + . 1 1.1 1 . 2 +	.1 2.1 .2 2.2 .3 3.2 .2 1.2 .1 1.3 .1 1.1 .1 +	1.1 3.3 2 +.2 1.2 +.2	+ + .1 . .2 +.2 . . 2.3	2.3 2 1.3 3 3 +-2 + 2 2 1 . 1. + + 2.2 1	3.2 1. +.2 2.2 .1 1.	. +.2 . 1 1.3 . 1.3 . 1.3 . 1.1 . 1


Ausserdem in 1: Lonicera xylosteum Str +, Lilium martagon +, 2: Lilium martagon +, 2: Lilium martagon +, 8: Lonicera xylosteum Str -, 4: Medera belix +, 3: Lonicera xylosteum Str -, 4: Minula sylvatica +-2, Lilium martagon +, 5: Lonicera xylosteum Kr +, 6: Hedera belix +, 7: Luzula sylvatica +-2, 6: Minula sylvatica +-2, 1: Minula sylvatica +-2

WÄRMESTUFENKARTE DES WEISSENSTEIN-NORDHANGS UND DES CHASSERAL

Aufnahme und Kartierung: J.Pfadenhauer 1970 Massstab 1:25 000

I, II, III,IX Nr. der Klimastationen

VEGETATIONSKARTE DES WEISSENSTEIN-NORDHANGS UND DES CHASSERAL

Aufnahme und Kartierung: J. Pfadenhauer 1970 Massstab 1:25 000

1. Fagetum typicum

Fagetum (Weissenstein-Nord)
Luzulo-Fagetum (Chasseral-Nord)
Cardamine heptaphyllae-Fagetum (Chasseral-Süd)

2. Abieti- Fagetum

21+22

reine und Vaccinium myrtillus-Ausbildung

23

Adenostyles alliariae-Ausbildung

21

reine Ausbildung

23

Adenostyles alliariae-Ausbildung

festucetosum (Weissenstein-Nord)

typicum (Chasseral-Nord) elymetosum (Chasseral-Süd)

3. Aceri- Fagetum

30

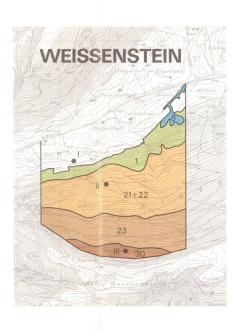
Ausbildung auf N- exponierten Hängen (Weissenstein-, Chasseral-Nord)

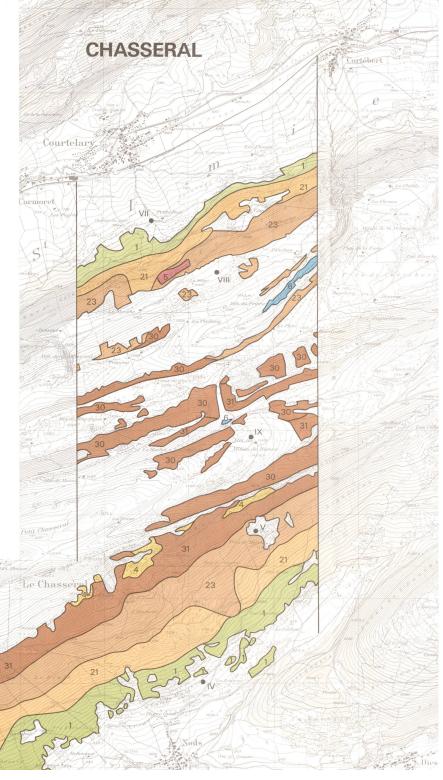
31

Ausbildung auf S- exponierten Hängen (Chasseral-Süd)

4

Seslerio-Fagetum


5


Asplenio-Piceetum

6

Aceri-Fraxinetum

I, II, III, IX Nr. der Klimastationen

