Zeitschrift: Veröffentlichungen des Geobotanischen Institutes Rübel in Zürich

Herausgeber: Geobotanisches Institut Rübel (Zürich)

Band: 25 (1952)

Artikel: Irische Pflanzengesellschaften

Autor: Braun-Blanquet, Josias / Tüxen, Reinhold

Kapitel: V. Klasse: Ammophiletea Br. - Bl. et Tx. 1943

DOI: https://doi.org/10.5169/seals-307716

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 25.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

TABELLE 11

Rumex trigranulatus-Glaucium flavum-Ass.

	Au Ve Gr	der Aufnahme tor getBedeckung % össe der Probefläche (m²) tenzahl	340 Tx 50 4 10	341 Tx 85
Territoriale				
$_{\rm T}^{\rm Hs}$	Rumex crispus L. var. trigram Glaucium flavum Crantz	ulatus Syme	2.2 1.2	+.1
Verbands-	und Ordnungscharakterarten:			
Hrept Hros T Hros			2.2 +.1 :	4.5 2.2 $+.1$
Begleiter:				
Hros Hs Grh Grh Gr Gr Gr Hrept Grh Hros T	Plantago lanceolata L. Cirsium vulgare (Savi) Petrak Agropyron junceum (Juslen.) Carex arenaria L. Cirsium arvense (L.) Scop. Sonchus arvensis L. var. Agrostis stolonifera L. subvar. Poa pratensis L. var. humilis E Plantago maritima L. Matricaria maritima L. Hypochoeris radicata L.	P. B. salina J. et W.	+ +.1 +.2 +.1 2.1 +.1	+ +.1 +.2 +.2 + 1 St° 1 St

Infolge der Trockenheit und Hitze der letzten Wochen war fast die ganze Vegetation verbrannt, außer Rumex trigranulatus, Glaucium flavum und einem Teil der Potentilla anserina-Pflanzen.

Wenn man die Tab. 12 des Euphorbio-Agropyretum juncei betrachtet, wird deutlich, daß nicht selten neben Mischbeständen dieser Assoziation mit der Atriplex glabriuscula-Polygonum Raji-Ass. auch solche mit der hier beschriebenen Gesellschaft auf älteren Tanglagen vorkommen (vgl. Tab. 13).

V. Klasse: Ammophiletea Br.-Bl. et Tx. 1943 Ordnung: Elymetalia arenariae Br.-Bl. et Tx. 1943

1. Verband: Agropyro-Minuartion peploidis Tx. 1945 mskr.

(Syn.: Elymion arenariae Wi. Christiansen 1927 p.p.)

Euphorbio-Agropyretum juncei Tx. 1945 mskr.

Wie an vielen Orten des w- und nw-europäischen Festlandes, ist auch in Irland die Agropyron junceum-Gesellschaft am reichSyn.: Agropyretum Kühnholtz-Lordat 1927b, 1928; Br.-Bl. 1928, 1932. Agropyretum-Stade Kühnholtz-Lordat 1927a. Agropyretum juncei Allorge 1941; Hocquette 1927 (p. p.); Kühnholtz-Lordat 1931; Tansley 1911, 1939.

Autnahme 249 227 286 328 334 336 337 140 141 206 208 139 338 der Probefläche (m²) Tx BB BB Tx Tx Tx Tx BB BB Tx	\$. *.			• •	4
Aufmahme 249 227 226 228 334 336 337 140 141 206 208 139 339 339 131 der Probefläche (m2) Tx Tx Tx Tx Tx Tx Tx BB BB Tx Tx Tx Tx BB BB Tx Tx <td>χΤ . 8 8</td> <td>, 4.6. 4.6.</td> <td>+</td> <td>$\frac{+}{6i}$ +</td> <td>+ · · +</td>	χΤ . 8 8	, 4.6. 4.6.	+	$\frac{+}{6i}$ +	+ · · +
Authrahme 249 227 226 228 322 334 336 337 140 141 206 208 139 389 389a der Probefläche (m²) Tx BB BB Tx Tx BB BB Tx Tx BB Tx Tx BB BB Tx Tx<	Tx 100 20 7	. 2. 2. 7. 5.	2.1	1.1	.+6:
Autnahme 249 227 226 322 334 336 337 140 141 206 208 139 339 der Probefläche (m²) Tx BB BB Tx Tx Tx Tx BB BB Tx Tx BB BB Tx Tx BB BB Tx Tx BB BB Tx BB BB Tx BB BB Tx BB BB Tx BB Tx BB Tx BB Tx BB Tx BB Tx	Tx Tx	3.5	2.2	+:	
Aufnahme 249 227 226 328 334 336 337 140 141 206 208 138 Beackung % Tx Tx Tx Tx Tx Tx Tx Tx BB BB Tx Tx Tx BB BB Tx Tx <t< td=""><td>3598 Tx 20 35 8</td><td>2. + 2. 1. 5. 6.</td><td>$\frac{1}{2}$. $\frac{1}{2}$.</td><td>+.1</td><td>+ .+ .</td></t<>	3598 Tx 20 35 8	2. + 2. 1. 5. 6.	$\frac{1}{2}$. $\frac{1}{2}$.	+.1	+ .+ .
Autnahme Taylor 226 228 322 334 336 337 140 141 206 208 Ger Probefläche (m²) Tx BB BB Tx Tx Tx Tx Tx BB BB Tx	7x Tx 40	9.00 cm 4.01 cm	$\frac{2.1}{1.2} \cdot \cdot \cdot \frac{1}{2.1}$.
Aufnahme Tx BB BB Tx Tx Tx Tx Tx BB BB BB Tx BB	158 BB 100 40 6	8. 8.	+ · · ·	• +	.+ .+
Aufnahme	Tx Tx 25.	· 4.6.		•+	1.
Aufnahme	7x 100 25 5	3.4	1.2		÷
Autnahme Tx BB BB Tx Tx Tx Tx Tx BB BB BB Cx Tx	141 BB 100 60 4	3.1	3.2		e +
Aufnahme	140 100 40 5	, '4 ;+	+ · · ·		.+
Aufnahme	2 N . 8 4	. 0101	Ø1 Ø1		
Aufnahme Tx BB BB BB Tx Tx BB BB BB Tx Tx A der Probefläche (m²) 25 70 80 85 40 60 4 4 4 4 4 4 3 5 4 4 4 4 4 3 5 4 4 4 4 4					
Aufnahme Tx BB BB BB Tx der Probefläche (m²)				a _ s	• • •
Autnahme Tx BB BB BB BB BB Ger Probefläche (m²) Edm (100 100 25 70 80 85 hl en: eum (Juslen.) !anticum Coss. imum L. H.1 3.2 4.3 2.3 idanella L. ima L. ima L. L. ima L. Babingt. Tx BB					• • • •
Aufnahme				• •	
Aufnahme 249 227 Tx BB der Probefläche (m²) 25 70 bhl ten: teum (Juslen.) tlanticum 2.2 4.3 ides (L.) Hiern 2.2 . Coss. imum L. +.1 3.2 danella L tima L L.	85. 85.	86.4			
Aufnahme der Probefläche (m²) Bedeckung % bhl ten: teum (Juslen.) lanticum ides (L.) Hiern Coss. imum L. danella L. danella L. danella L. ima L.			_	* *	
Aufnahme der Probefläche (m²) Bedeckung % bhl ten: teum (Juslen.) lanticum ides (L.) Hiern Coss. imum L. danella L. danella L. danella L. ima L.	BB 100 70 4		$\frac{3.2}{1.2}$	36 - 3 €	
Nr. der Aufnahme Autor Grösse der Probefläche (m²) VegetBedeckung % Artenzahl iale Charakterarten: Agropyron junceum (Juslen.) P. B. ssp. atlanticum (Simonet) 1 Minuartia peploides (L.) Hiern Diotis maritima Coss. scharakterarten: Eryngium maritimum L. Convolvulus soldanella L. Ammophila arenaria (L.) Roth Euphorbia paralias L. r. Potentilla anserina L. Rumex crispus L. Rumex crispus L. var. trigranulatus Syme Polygonum Raji Babingt. Lotus corniculatus L. var.		9. 9. 9. 9.	+.1	* •	
erritori Grh Grh Chs rdnung Hs Grh Grh Hs Hrept T Hs	Autor Autor Grösse der Probefläche (m²) VegetBedeckung % Artenzahl	ri	ng	iter: ppt Pote Mat Run	Poly Loti Sals os Tare

* Stetigkeit aus 10 Aufn. von der französischen Atlantik- und Kanalküste.

1 Es handelt sich hier um die als «type occidental» von S im onet (Bull. Soc. bot. Fr. 82, S. 625) beschriebene tetraploide Pflanze, die von der mediterranen (ssp. mediterraneum Simonet = A. farctum Viv.) mit 2 n = 42 Chromosomen beträchtlich abweicht.

Außerdem kommen vor: Hs Glaux maritima L. in Aufn. 208: +.1, in 205: r; in 131: Grh Festuca rubra L. var. 1.2, T Atriplex glabriuscula Edm. +; in 207: Grh Carex arenaria L. +.1.

Fundorte (vgl. Abb. 4a, S. 283):

Tx. 249: Vordünen auf der Nehrung b. Rossbeigh (Dingle Bay, Co. Kerry). BB. 226—28, Tx. 322, 334, 336/37: Vordünen s Wexford. BB. 139—141, Tx. 205—208: Flache Vordünen bei Roundstone (Co. Galway). Tx. 339, 339a: Flache Vordünen s Wexford (Tafel I).

Tx. 131: Hoher Strandwall bei Keel (Achill Island).

sten entwickelt, wo ältere «Weiß»-Dünen vom Meer zerstört werden und viel Sand am Fuße derselben von der Flut hin und wieder bespült wird. Weite Agropyron-Dünen, wie vor den Ammophila-Dünen der Landes (SW-Frankreich) oder auf den NE-Enden der Ostfriesischen Inseln (die hier ausschließlich mit Agropyron junceum bewachsen sind), haben wir nicht gesehen (vgl. jedoch Pethybridge a. Praeger 1905, p. 146). Überhaupt war an allen besuchten Orten statt Dünenbildung eher Dünen-Zerstörung zu beobachten. Nur bei Rossbeigh (Dingle Bay) sahen wir echte Neubildungen von Dünen auf beschränktem Raum.

Die irische Vordünen-Gesellschaft ist nächstverwandt mit der entsprechenden der französischen Atlantik- und Kanalküsten, in der Euphorbia paralias und Convolvulus soldanella höchste Stetigkeit erreichen, während Minuartia peploides dort etwas mehr zurücktritt. Diese Unterschiede können aber nur als geographische Varianten aufgefaßt werden.

Dagegen ist die Gesellschaft der Nordseeküsten eine eigene, viel ärmere Ass. Auch das holländische Agropyretum boreo-atlanticum ist ärmer als das irische.

Neben dem «reinen» Euphorbio-Agropyretum sind Durchdringungen mit der Atriplex glabriuscula-Polygonum Raji-Ass. (Tab.

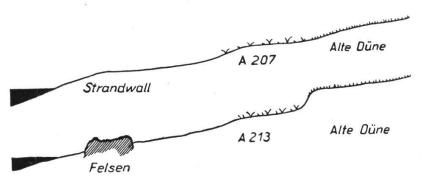


Abb. 1. Strand bei Roundstone mit verschiedenen Lagen des Euphorbio-Agropyretum juncei (A) vor der alten Düne.

0

5) und mit Agropyro-Rumicion crispi-Gesellschaften (Tab. 11) auf versandeten Tang-Spülsäumen sehr häufig. Der rechte Flügel unserer Tabelle zeigt Beispiele für diese Erscheinung. Daß diese als soziologische Gemische aufgefaßt werden müssen, zeigen die Aufnahmen der «reinen» Gesellschaften.

Die Verzahnung der Atriplex glabriuscula-Polygonum Raji-Ass. mit dem Euphorbio-Agropyretum zeigen auch folgende Aufnahmen vom Dünenfuß bei Roundstone, Co. Galway, und von Keel, Achill Island (vgl. Abb. 1):

TABELLE 13

Nr. der Aufnah	me 213	214	Grösse der Probefläche ((m^2)	20	40
Autor	Tx	Tx	VegetBedeckung %		50	30
Exposition	SW	S	Artenzahl		11	16
Neigung	180	200				
Euphorbio-2	Agropyretum-Arte	en:				
Grh	Agropyron junce	um (Jus	slen.) P. B.		3.5	2.2
Grh	Minuartia peploie				2.2	1.2
$_{\mathrm{Hs}}$	Eryngium mariti					(+)
$_{ m Hs}$	Euphorbia parali			ii.		(+K)
Cakiletalia-	Arten:					
${f T}$	Atriplex glabrius	scula Ed	Im.		+.1	+.1
$ar{ ext{T}}$	Matricaria marita				1.2	2.2
$ar{ ext{T}}$	Senecio vulgaris L. fo. sordidus Peterm.				+.1	+.1
$ar{ ext{T}}$	Polygonum heter					
			Meissn.) Lindm.			2.2
	var. litorale (Link) Lindm.					+.1
		(1 (5.5
Begleiter:						
$_{ m Hs}$	Rumex crispus I	٠.		-	+.2	+.2
Hs	Cirsium vulgare		Petrak		+	1.1
Hrept	Potentilla anseri					1.2
	Sedum acre L.			_	+.2	2.2
${f T}$	Cerastium tetran	drum C	urt.		+.2	+.2
Hros	Taraxacum offic				+.1	+.1
${f T}$	Erodium cicutari				+	
Hros	Plantago lanceol					+

2. Verband: Ammophilion borealis Tx. mskr. 1945

(Syn.: Elymion arenariae Wi. Christiansen 1927 p.p., Ammophilion auct.)

Euphorbio-Ammophiletum arenariae Tx. mskr. 1945 (Syn.: Ammophiletum auct.)

Das westatlantische Euphorbio-Ammophiletum, das von der wund n-europäischen Ammophila arenaria beherrscht wird (während

TABELLE 14

Euphorbio-Ammophiletum arenariae

St. *	4144 · 86 · ·	
256 Tx 100 90 12	22.2 22.1 22.1 3.1 5.1 5.1 7.	7; · 6; 6; · · · · · · · · · · · · · · ·
255 Tx 60 13		$\frac{2}{6},\frac{2}$
251 Tx 10 50 12	25.25 0 + + · · · · · · · · · · · · · · · · ·	+ 81 + + + + +
261 Tx 50 11	23.23 2.1.2 ·	$\frac{1}{6}$
260 Tx 35	23.23 ·	$\overset{+}{\omega}$ $\overset{+}$
257 Tx 30 6	3.2 2.2/3 1.1 	5
250 Tx 20 50 6	(v) + 2.5. (v)	
251a Tx 60 5	23.23 ·	
225 BB 100	$\overset{\circ}{\omega}\overset{\circ}{\omega}\overset{\circ}{\omega}$ \cdots $+\overset{\circ}{\omega}\overset{\circ}{\omega}$ \cdots	$\cdots\cdots\cdots_{\mathfrak{G}_{2}^{\prime}}+\cdots\cdots$
224 BB 100	75.1.1.4	Ξ + \cdot
223 BB 100	£.8.55	$\cdots \cdot \overset{+}{\circ} \cdot \overset{2}{\circ} \cdot \overset{2}{\circ} \cdot \cdots \cdot \overset{2}{\circ} \cdot$
338 Tx 50 8	$\dot{c}_{1}^{+}\dot{c}_{2}^{+}\dot{c}_{3}^{-}$ $\dot{c}_{2}^{+}\dot{c}_{3}^{+}\dot{c}_{3}^{+}$	·+ · · · · · · · · · · · · · · 63 · · · ·
335 Tx 80	4.81	\cdots
333 Tx 20 80 7		
Nr. der Aufnahme Autor Grösse der Probefläche (m²) Veget Bedeckung % Artenzahl	Charakterarten und Verbandscharakterarten: Grh Ammophila arenaria (L.) Roth Hs Eryngium maritimum L. Hs Euphorbia paralias L. Hs Lathyrus maritimus (L.) Bigel. Ordnungscharakterarten: Grh Agropyron junceum (Juslen.) P. B. ssp. atlanticum (Simonet) Grh Convolvulus soldanella L. Grh Minuartia peploides (L.) Hiern Hs Diotis maritima Coss.	Hs Lotus corniculatus L. var. Hros Leontodon taraxacoides (Vill.) Mér. Cerastium tetrandrum Curt. Grh Poa pratensis L. var. humilis Ehrh. Hs Galium verum L. var. litorale Brêb. Hros Taraxacum Zinn em. Weber spec. Grh Carex. arenaria L. Grh Festuca rubra L. var. genuina Hack. (in 335 = subvar. pruinosa Hack.) Kin 335 = subvar. pruinosa Hack.) Crithmum maritimum L. Anagallis arvensis L. Scleropoa loliacea Godr. et Gren. Hrept Agrostis stolonifera L. subvar. salina J. et W.
	Charal Grh Hs Hs Hs Hs Cordnus Grh Grh Hs	Begleiter Hs Hros T Grh Hs Hros Grh Grh Gr Grh Gr T T T Hrept

* St = Stetigkeit aus 14 Aufnahmen von der französischen Atlantikküste.

Weiter kommen vor in Aufn. 333: Hs Rumex crispus L. var. trigranulatus Syme +; in 224: Hs Ononis repens L. 1.2; in 257: Pilz +.1; in 260: Gma Inocybe lacera Fr. +.1; in 251: Hs Senecio Jacobaea L. 1.1; in 255: Chsucc Sedum acre L. 2.2; in 256: Hrept Trifolium repens L. +, Hros Plantago lanceolata L. +.

Fundorte (vgl. Abb. 2):

Tx. 250—261: Nehrung von Rossbeigh in der Dingle Bay (Co. Kerry). BB. 223—225, Tx. 333—338: s Wexford.

im mediterranen Ammophiletum A. arundinacea auftritt) und das außerdem gegen die mediterrane Assoziation sehr stark verarmt ist, dürfte als eigene Assoziation aufzufassen sein. Vom Elymo-Ammophiletum der s und e Nordsee- und der w Ostseeküsten ist es u. a. durch Euphorbia paralias und Convolvulus soldanella und durch das viel häufigere Vorkommen von Eryngium maritimum sowie durch das fast völlige Fehlen von Ammophila baltica, Elymus arenarius und Lathyrus maritimus unterschieden (vgl. Tafel II, 1).

Seine Verbreitung reicht von der französischen Atlantik- und Kanalküste bis Belgien (Hocquette 1927). Auch in England ist es nach Tansley verbreitet. In Irland scheint die Gesellschaft dagegen nicht gerade häufig zu sein. Jedenfalls fehlt sie in mehreren Dünen-Gebieten, die heute so weit im Abbruch liegen, daß nur noch die älteren Kleingras-Dünen vorhanden sind. Die Verbreitung des Euphorbio-Ammophiletum muß aber ehemals weit größer gewesen sein, denn nur durch die Sand fangende Lebenstätigkeit dieser Gesellschaft sind die Dünen an der irischen Küste entstanden. Ihre heutige starke Erosion geht mit der Zerstörung der Moore durch das Meer an verschiedenen Küsten-Abschnitten (z.B. in NW-Irland) parallel.

An Stelle des Euphorbio-Ammophiletum wächst an vielen Dünenküsten Irlands nur das Euphorbio-Agropyretum, welches den durch die Zerstörung älterer Dünen freigewordenen Sand besiedelt, ohne daß aber hohe Ammophila-Dünen folgen, wie es bei Neubildung von Dünen die Regel ist. Wahrscheinlich reicht hier die Zufuhr von frischem Sande durch den Wind nicht aus (vgl. Abb. 2).

Die weitere Entwicklung der untersuchten Ammophila-Bestände führt mit der Degeneration von Ammophila durch nachlassende Übersandung und damit mangelnde Ernährung zu einer

Lotus corniculatus-Phase, die z.B. auf der Nehrung von Rossbeigh in der Dingle Bay (Co. Kerry) ausgezeichnet zu studieren ist (Aufn. 260, 261, 251, 255, 256 der Tab. 14). Mit nachlassender Menge und Lebenskraft der steten Ammophiletum-Arten macht sich eine ganze Reihe von Arten der Folge-Gesellschaft mehr und mehr breit, zur Blütezeit von Lotus einen sehr bezeichnenden tief-

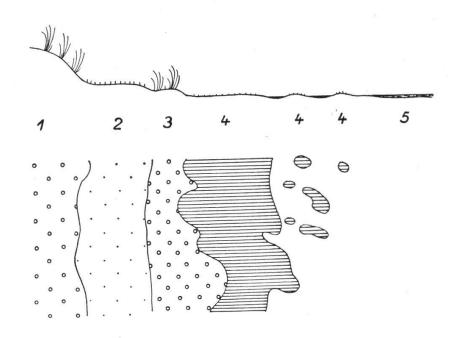


Abb. 2. Kontakt des Puccinellietum maritimae mit dem Euphorbio-Ammophiletum an der E-Seite der Nehrung bei Glenbeigh, Co. Kerry.

- 1 = Euphorbio-Ammophiletum (Aufn. 257, Tab. 14).
- 2 = Lotus corniculatus-Stadium (Aufn. 256, Tab. 14).
- 3 = Euphorbio-Ammophiletum (Aufn. 255, Tab. 14).
- 4 = Puccinellietum maritimae (Aufn. 254, Tab. 25).
- 5 = Wasser mit Salicornietum.

gelben Aspekt bildend, der sich stark von dem des optimalen Euphorbio-Ammophiletum mit dem Gelbgrün der Euphorbia und dem Amethystblau von Eryngium maritimum unterscheidet. Die weitere Entwicklung führt dann rasch zum Kleingras-Rasen der Viola Curtisii-Syntrichia ruralis-Ass. (Tab. 46).

Bei Keel (Co. Mayo) (Tx. 130) und bei Roundstone (Connemara) (Tx. 209) hatte dieses *Lotus*-Stadium auf einer älteren Düne folgende Zusammensetzung:

TABELLE 15

Lotus crassifolius-Stadium

12		Tx 130	Tx 209
Elymetalia	-Arten:	100	200
Grh Hs Grh	Agropyron junceum (Juslen.) P.B. Eryngium maritimum L. Minuartia peploides (L.) Hiern	$3.2 \\ +.2 \\ +.2$	$\begin{array}{c} 2.1 \\ +.1 \end{array}$
Koelerion	albescentis-Arten:		
Grh Grh	Festuca rubra L. ssp. eu-rubra Hack. subvar. pruinosa Hack. Carex arenaria L.	2.1 1.1	1.2 2.1
Hs Hros Grh T	Lotus corniculatus L. subvar. crassifolius (Pers.) Ser. Taraxacum Zinn em. Web. spec. Poa pratensis L. var. humilis Ehrh. Cerastium tetrandrum Curt.	+.2 + ·	$2.2 + .2 \\ 3.2 + .2$
Begleiter:			
Hrept Hros Hs Grh Gr T Hrept Hrept Hros	Potentilla anserina L. Plantago lanceolata L. var. dubia Wahlenb. Rumex crispus L. Tussilago farfara L. Cirsium arvense (L.) Scop. Sonchus asper (L.) Hill Agrostis stolonifera L. Trifolium repens L. Bellis perennis L.	1.1 (+) + + + 2.1	1.1 +.2

Infolge der Beweidung wachsen verschiedene nitrophile Weidepflanzen in dieser Dünen-Gesellschaft.

Diese Sukzession scheint keineswegs durch die Entkalkung der Dünen bedingt zu sein. Im optimalen Ammophiletum von Rossbeigh wurde ein Kalkgehalt von 0,6—1,4% (Mittel 1,05%) CaCO₃ bestimmt. Hier wuchsen nur Ammophila arenaria 3.4 (blühend!) und Agropyron junceum 1.1 (Initialstadium des Euphorbio-Ammophiletum). In der Kleingras-Düne, die in der Nähe auf das Lotus-Stadium des Ammophiletum folgt (Aufn. 263, Tab. 46), wurden zwar nur noch 0,2% CaCO₃ festgestellt. Aber dieselbe Gesellschaft wächst auf Strandhill, Co. Sligo, wo das Ammophiletum durch die Erosion der Dünen heute auf großen Strecken fehlt, auf einem Sand mit 48—49% CaCO₃ (Aufn. 69, Tab. 46). Wir vermuten daher, daß im Nachlassen der Überwehung mit frischem nährstoffhaltigem Seesand die Ursache der Verdrängung des Ammophiletum durch die Kleingras-Gesellschaft liegt (vgl. Br.-Bl. u. de Leeuw, van Dieren, Westhoff, Tüxen mskr.).

Der Sand der irischen Dünen ist sehr grobkörnig (wie überall am Atlantik) und im Gegensatz zum hellen Sand der FestlandsDünen an vielen Orten dunkel (gelbbraun) gefärbt. Nur bei Roundstone (Connemara) sahen wir blendendweißen Dünensand.

Nirgends haben wir übrigens Sträucher, sei es Hippophaë rhamnoides oder Rubus caesius var. dunensis, als Abbauer des Ammophiletum bemerkt, wie das in NO-Frankreich, Belgien, Holland und
NW-Deutschland häufig zu beobachten ist. Obwohl diese Arten in
Irland nicht ganz fehlen, scheinen sie in der Entwicklung der
Dünen-Vegetation keine Rolle zu spielen. Auch Salix repens var.
arenaria beobachteten wir nur auf älteren Dünen bei Sligo (vgl.
Tab. 32). Auch in dieser Hinsicht ähnelt das irische EuphorbioAmmophiletum dem w- und nw-französischen (vgl. aber Darbishire).

VI. Klasse: Potametea Tx. et Prsg. 1942 1. Ordnung: Potametalia W. Koch 1926

Verband: Potamion eurosibiricum W. Koch 1926

In manchen Seen und Teichen sahen wir die auch auf dem europäischen Festlande in eutrophen Gewässern weitverbreitete Seerosen-Gesellschaft (Myriophylleto-Nupharetum), ohne sie allerdings genauer untersuchen zu können.

Von anderen Assoziationen des Potamion-Verbandes wurde nur eine Potamogeton-Gesellschaft aufgenommen, die in folgender Zusamensetzung den flachen, klaren, langsam über ei- bis faustgroße Geschiebe fließenden Boyle-River oberhalb der Hauptbrücke in der Stadt Boyle (Co. Roscommon) bewohnt.

Verbands- und Ordnungscharakterarten:

Hgr	Fontinalis antipyretica L.	2.2
Hgr	Potamogeton crispus L.	2.2
Hgr	Potamogeton L. spec.	3.4
Hgr	Potamogeton lucens L.	1.2
Hgr	Potamogeton gramineus L.	2.3
Hgr	Potamogeton pusillus L.	+.2
	Ferner	
Hgr	Myriophyllum alterniflorum DC.	3.3

Zur Klärung der Potamion-Gesellschaften Irlands wären zahlreiche Aufnahmen notwendig. Die uns zur Verfügung stehende Zeit reichte hierfür nicht aus. Verschiedene Hinweise finden sich