Zeitschrift: Veröffentlichungen des Geobotanischen Institutes Rübel in Zürich

Herausgeber: Geobotanisches Institut Rübel (Zürich)

Band: 5 (1928)

Artikel: Pollenanalytische Untersuchungen an Schweizer Mooren und ihre

Florengeschichtliche Deutung

Autor: Keller, Paul

Kapitel: Untersuchungsergebnisse

DOI: https://doi.org/10.5169/seals-306914

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 04.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

UNTERSUCHUNGSERGEBNISSE.

A. Moore des Mittellandes. a) Untere Stufe.

Krutzelried bei Schwerzenbach (Kt. Zürich)
450 m ü. M.

Im Glattal liegt ca. eine Viertelstunde von Schwerzenbach entfernt das 6 ha grosse Krutzelried in einer typischen von Moränen umschlossenen Mulde. Dieses kleine Ried ist schon lange durch den Besuch namhafter Botaniker zu einer grossen Berühmtheit gelangt. Nathorst (1892, 1894), entdeckte hier als erster in den sogenannten Dryastonen am Rande der Alpen eine Glazialflora mit Resten von Dryas octopetala, Betula nana, Azalea procumbens, Polygonum viviparum, Arctostaphylos uva ursi und einer Anzahl Gletscherweiden. Schröter, Neuweiler, Brockmann, Gams, Nordhagen haben hier geweilt und diese Resultate nachgeprüft. In diesem Moor habe ich meine ersten Proben gesammelt und daraus das erste Pollendiagramm konstruiert. Zahlreiche Bohrungen dienten dazu, das gewonnene Resultat zu prüfen und auch zu untersuchen, ob dort die Dryastone wirklich durch Pollenarmut sich auszeichnen, wie angenommen wird.

In der Mitte des Moores ergab sich als Schichtfolge:

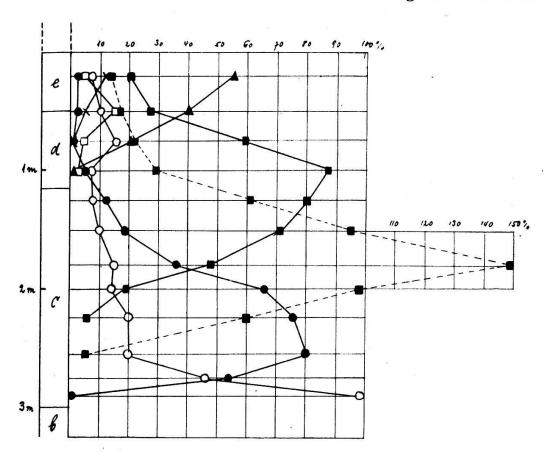
 $0~\mathrm{cm} - 50~\mathrm{cm}$ Trifariumtorf $H_6~B_2~R_2~V_0~F_2$

 $50~\rm{cm}-120~\rm{cm}$ Eriophorumtorf $\rm{H_7~B_2~R_2~V_0~F_2}$ bei 90—100 cm $\rm{V_{2-3}}$

 $120 \,\mathrm{cm} - 300 \,\mathrm{cm}$ Lebertorf

200 cm Dryastone.

Durch den starken Torfabbau liegt hier der Trifariumtorf frei an der Oberfläche. Am Rand des Moores ist er noch von jüngerem Moostorf überlagert. Die Durchsicht der Proben ergab folgenden Schichtwechsel:


- a. Moränenkies am Rande des Moores in 2 m Tiefe angebohrt.
- b. Dryastone. Die fossilreichen Schichten sind an der oben genannten Stelle 50 cm mächtig, nach Gams-Nordhagen (1923) 40—60 cm. Sie führen in der Hauptsache Blätter von Betula nana und von verschiedenen Salix-Arten. (Eine genaue Liste findet sich bei Neuweiler 1901.) In ihrem Alter sind sie höchstwahrscheinlich gleichzusetzen den «Lemmingschichten» im Schaffhauser-Becken, die E. von Mandach ins Magdalénien oder Solutréen setzt. In diesen Schichten findet sich sehr häufig der Halsband-Lemming (Myodes torquatus) erhalten, der heute nur noch im hohen Norden im Dryasgestrüpp lebt. Da auf so kurze Distanz einerseits die Tierreste und andrerseits die für seine Lebensmöglichkeit unentbehrlichen Pflanzenresten sich fossil erhalten haben, so dürfen wir wohl die beiden Fossilien als gleichaltrig ansehen.
- c. Lebertorf. Diese Schicht hat eine Mächtigkeit von 30 cm am Rande des Moores bis 180 cm in dessen Mitte. Wir finden in dieser Dygyttja reichlich Samen im Potamogeton natans und P. filiformis nach Neuweiler (1901), Typha- und Myriophyllum-Pollen Fragmente von Sphagnumarten und deren Sporen, Reste von Cyperaceen, Radizellen, und häufig Gramineen-Epidermisresten in den obersten Schichten, ebenfalls einige Lycopodiumsporen. Eine genaue Liste findet sich bei Neuweiler (1901, S. 10—14) der grosse Mengen Torf untersuchte und der beste Kenner der pflanzlichen Fossilien in unsern Moorlagern ist.
- d. Eriophorum torf, 45—70 cm mächtig. Die Scheiden von Eriophorum vaginatum, welche den «Lindbast» liefern, sind bei der Probeentnahme sehr gut erkennbar. Bei der mikroskopischen Durchsicht herrschen die Epidermisfragmente des scheidigen Wollgrases vor. In den obern Teilen dieser Schicht erscheinen schon Sporen und Reste von Hypnumarten, sowie einige Vaccinium-Tetraden.
- e. Trifarium torf. Wir erkennen schon makroskopisch deutlich die Reste von Calliergon trifarium. Mikroskopisch erscheinen noch Pollentetraden der Moosbeere, Pollen von Typha, Lycopodium-Sporen, während die Eriophorumfasern abgenommen haben. Einige Samen von Potamogeton natans und von Menyanthes wurden noch notiert.

f. Jüngerer Moostorf. In den Randpartien, wo die Oberfläche des Moores noch intakt ist, finden wir diese oberste Schicht mit einer Mächtigkeit von 60—80 cm. Es erscheinen darin schon Cyperaceen- und Gramineenresten, während die Moosfragmente spärlicher werden. Daneben finden sich auch schon makroskopische Reste von moorbewohnenden Bäumen. Eine Liste der Oberflächen-Vegetation findet sich bei Neuweiler (1901, S. 18—19).

Die mikroskopische Durchsicht der 12 Proben ergab das Pollendiagramm (Abb. 2), das folgenden Wechsel der Zusammensetzung des postglazialen Waldbildes ergab:

Abb. 2.

Diagramm Krutzelried

Bei Beginn der Moorbildung, in unserm Profil ist es der Uebergang von den Dryastonen zum Lebertorf, herrschte ein ausgesprochenes Birken maximum mit 99% Betula. Welche Birkenspezies das Maximum bildete, das konnte ich nicht feststellen, da es bis jetzt noch nicht gelungen ist, die einzelnen Betula spec. auf Grund morphologischer Pollendifferenzen einwandfrei voneinander zu

unterscheiden. Es gibt wohl Grössenunterschiede zwischen B. nana und B. pendula, B. pubescens, aber in den meisten Fällen haben wir im Präparat nicht eine genügend grosse Anzahl von Birkenpollen, um eine einwandfreie Trennung auf Grund einer Variationsstatistik durchführen zu können. Diese Vorherrschaft der Birke erkennen wir auch schon in den obersten Schichten der Dryastone. Bei weitern Untersuchungen ergaben sich Pollenspektren in Proben der Dryastone, von 100%, 92%, 85% Betula beziehungsweise 0%, 8%, 9%, 15% Pinus und 4%, 2%, 2%, 7% Salix. Die Dryastone enthalten in ihren obersten Lagen Pollen, entgegen der Ansicht von Brockmann (1926), doch sind diese nicht so zahlreich, wie in dem darüber gelagerten Lebertorf. Der Birkengehalt fällt nun sehr rasch und in der nächsten Probe erscheint schon die Kiefer mit 54%, die nun einen raschen Anstieg verzeichnet. Wir haben das Kiefermaximum mit 80% Pinus, 20% Betula und als Unterholz 6% Corylus und 3% Salix. In diese Periode, in der die Kiefer dominiert, fällt das Auftreten der Hasel, die rasch grossen Anteil am Pollenspektrum erhält. Die Armut des Waldes, die für den früh-postglazialen Wald (Betula, Pinus, Corylus und Salix) charakteristisch ist, verschwindet langsam mit dem Auftreten der Komponenten des Eichenmischwaldes. Die Zusammensetzung des Waldbildes hat sich geändert, in Probe 6 aus 180 cm Tiefe verzeichnen wir das überwältigende Haselmaximum mit 149% Corylus. Der Eichenmischwald ist von 19% der vorhergehenden Probe auf 48% gestiegen bei einem Anteil der übrigen Bäume von 37% Pinus, 15% Betula und 4% Salix. So rasch der Haselstrauch vom kleinen Anteil am Unterholz des Kiefernwaldes zum ausschlaggebenden Bestandteil des Haselwaldes gewachsen ist, so rasch nimmt er wieder ab. Der Eichenmischwald übernimmt die Führung und in der Probe aus 100 cm Tiefe notieren wir das Eichenmischwaldmaximum, wobei 87% von der Pollensumme von Tilia, Quercus und Ulmus herrühren. Die sehr holzreiche Schicht in 90-100 cm Tiefe fällt mit diesem Eichenmaxinum zusammen. Gams (1923) nennt nach Bestimmung der Holz-Stubben diesen Torf die «Eichenschicht», da die meisten makroskopischen Reste von Quercus herrühren. Diese Tatsache findet im pollenanalytischen Waldbild ihre völlige Bestätigung. Neu sind im Pollenspektrum Alnus und Fagus erschienen, von welchen letztere Pollenart rasch zunimmt und die Führung in der Zusammensetzung erhält. In der obersten Probe ist zweifellos das Buchen maxi-mum zu erkennen mit 56% Fagus, während der Anteil des Eichenmischwaldes auf 20% gesunken ist und die übrigen Komponenten die folgenden sind: Alnus 4%, Betula 6%, Pinus 3%, Abies 11% und Corylus 12%. Hier bricht der Entwicklungsgang des Moores ab, da die folgenden Schichten abgebaut worden sind. Ein Profil vom Rande des Moores zeigt uns, dass nach der Tanne auch die Fichte in den Spektren erscheint, wobei beide stets wachsenden Anteil an der Pollensumme verzeichnen. Das deutliche Vorherrschen der Buche verschwindet und an ihre Stelle tritt in der Oberflächen-Probe die Tanne. In diesem Spektrum von der Tannen-Fichten-Buchen-Zusammensetzung spiegelt sich sehr gut unser heutiges Waldbild.

Ueberblicken wir das Diagramm, so erkennen wir leicht folgende Phasen der Waldentwicklung:

Erste Phase der Birke

Zweite Phase der Kiefer (+ Birke + Hasel)

Dritte Phase der Hasel (+ Eichenmischwald + Kiefer)

Vierte Phase des Eichenmischwaldes

Fünfte Phase der Buche

Sechste Phase der Buche und Tanne (Ausbreitung der Fichte)

Pfahlbau "Weiher" bei Thayngen 456 m ü. M.

Das Ried liegt südlich von Thayngen in einem Seitentälchen der Fulach. Im Jahre 1925 und in den darauf folgenden Jahren wurden in diesem Ried von Sulzberger, Konservator am Schaffhauser Museum und E. v. Mandach weitgehende Ausgrabungen gemacht und das Moordorf «Weiher» völlig frei gelegt. Die ca. 4000 m² grosse Moorsiedelung stammt aus dem Anfang der Bronzezeit, wie die reichen Keramikfunde und auch meine pollenanalytischen Untersuchungen ergeben haben.

Von den Ausgrabungen ist heute nichts mehr zu sehen. Das Ried ist kultiviert und zum grossen Teil in Ackerland umgewandelt. Südlich des Strässchens, das ziemlich genau in der Mitte des Moores von Osten nach Westen verläuft, etwa 17 m vom Häuschen nördlich entfernt, wurde eine erste Bohrung gemacht. Sie findet sich an der Grenze der Ausgrabungen der Packbauten an einer Stelle, wo noch

ein ungestörtes Profil zu erhalten war. Es ergab sich folgender Aufbau des Riedes:

0 cm — 40 cm Abraum

40 cm - 160 cm Caricestorf

bei 60 cm H₂- B₁ R₂ V₀ F₀ 1 Menyanthes-Same

bei 130 cm H_4 B_1 - R_2 V_0 F_1

125 cm - 130 cm Kulturschicht V₂ (Birke) Menyanthes-Same.

160 cm — 240 cm Phragmitestorf

bei 170 cm H₅ B₂ R₂ V₁ F₁

bei 230 cm H_6 B_1 R_2 V_1 F_{0-}

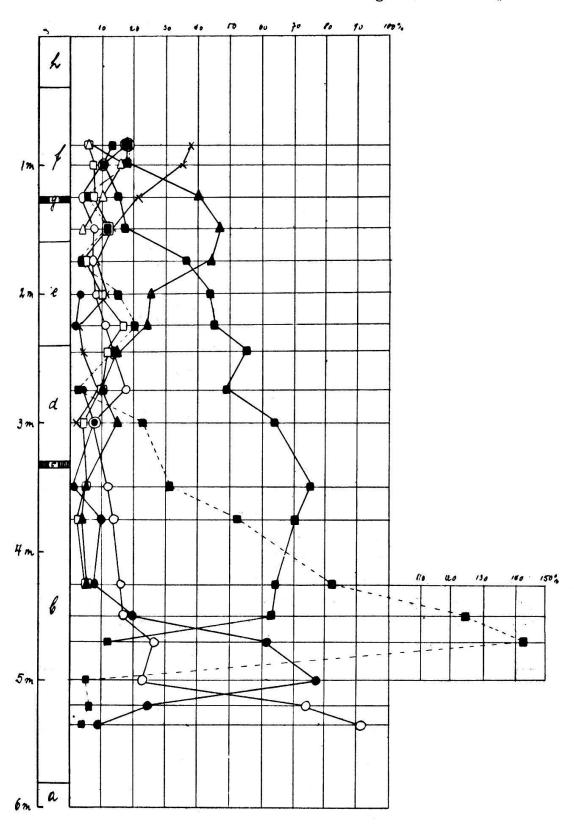
 $240 \text{ cm} - 330 \text{ cm} \text{ Moostorf } H_7 B_1 R_1 V_0 F_0$

330 cm — 335 cm Kulturschicht

335 cm — 580 cm Lebertorf

580 cm Lehm

An anderer Stelle wurde ein analoges Profil mit ebenfalls zwei Kulturschichten erbohrt und Lehm bei 570 cm.


- a. Lehm. Ein äusserst zäher, undurchlässiger Glazialton.
- b. Lebertorf. 250 cm. In der Mitte des Moores folgt auf den Lehm zuerst Seekreide von geringer Mächtigkeit mit viel pflanzlichem und tierischem Detritus (nach Gams). In der mächtigen Lebertorfschicht fand ich Samen von Potamogeton natans und Najas flexilis (von Dr. Neuweiler gütigst bestimmt) in grosser Menge, daneben Carexarten, Reste von Birke (Borkenfragmente) und Weidenarten. Tierreste fanden sich in den kleinen Proben aus meiner Bohrerkanne nicht, ich verweise auf die Angaben in Gams-Nordhagen, sowie auf die vortrefflichen Arbeiten von E. v. Mandach (im Druck). Mikroskopisch fanden sich sehr häufig Navicula spec. und einige Sporen von Athyrium filix femina, sowie Pollen von Alisma plantago, Desmidiaceenhälften und einige Equisetumsporen.
 - c. Kulturschicht.
- d. Moostorf. 90 cm mit zahlreichen Sphagnum-Aestchen und Stengelchen, Eriophorumresten, Sporen von Athyrium filix femina, die von nun an in keiner Probe mehr fehlen, Equisetum- und Lycopodiumsporen, Pollentetraden von Ericaceen.
- e. Phragmitestorf. 80 cm. Der Huminositätsgrad hat nun schon bedeutend abgenommen, die Reste sind makroskopisch schon gut erkennbar als solche von *Phragmites*, *Eriophorum* und verschie-

denen Cyperaceen. Mikroskopisch beherrschen die Pusteln und Eriophorumzellen das Bild. Daneben finden sich Pollen von Typha und Farnsporen (Athyrium f. f. und Dryopteris).

- f. Kulturschicht.
- g. Caricestorf. In diese 120 cm mächtige Schicht fällt die oberste steinzeitliche Fundschicht mit verkohlten Holzresten. Mikroskopisch finden sich in dem wenig humifizierten Torf zahlreiche Pustelradizellen, Eriophorumfragmente, Pollen von Cyperaceen und Farnsporen.
- h. Abraum. Wir haben eine mächtige Abraumschicht, da die Oberfläche schon zu kultiviertem Ackerboden umgewandelt ist. In dieser Schicht wurden natürlich keine Proben gesammelt.

Wie die Waldentwicklung sich gestaltete, darüber gibt das Pollendiagramm (Abb. 3) Auskunft, das uns folgende Phasen zeigt:

- 1. Phase der Birke. Die Birke dominiert mit 91% gegenüber *Pinus* mit 9% und einem Unterholz, bestehend aus *Corylus* und *Salix* mit 4 beziehungsweise 9%.
- 2. Phase der Kiefer. In den folgenden Proben gelangt nun die Föhre zur Vorherrschaft mit 77%, während der Birkengehalt auf 23% gefallen ist, ein deutliches Kiefermaximum.
- 3. Phase der Hasel. In einem plötzlichen rapiden Anstieg erreicht die *Corylus*kurve die überwiegende Vorherrschaft mit 143% gegenüber 61% *Pinus*, 27% *Betula* und 12% des neuerschienenen Eichenmischwaldes. Von den Komponenten dieses Eichenmischwaldes verzeichnet die Linde anfänglich die grössten Prozente, um dann von der Ulme abgelöst zu werden, während die Eiche erst nachher die Führung übernimmt, eine Tatsache, die allgemein zu beobachten ist. Der Haselgehalt fällt sehr rasch wieder, an seine Stelle tritt die
- 4. Phase des Eichen mischwaldes. Die Linden-Ulmen-Eichenprozente machen nun für eine längere Periode den Hauptanteil am Waldbild aus mit 76, 63% etc. In diese Zeit fällt die erste Kulturschicht, also neolithisch, weil zur Zeit des Eichenwaldes, wie die später zu besprechenden Stationen ergeben haben. Neu zu verzeichnen sind noch während dieser Periode die Erle, Buche und später die Tanne. Die Buche tritt bald führend hervor, es folgt die
- 5. Phase der Buche. Die Dominanz von Fagus mit 46% ist recht deutlich gegenüber 17% Eichenmischwald, 12% Alnus, 8% Be-

tula und 12% Corylus. Die obere Kulturschicht fällt in diese Periode, ähnlich derjenigen von Niederwil bei Frauenfeld. Von den Archäologen ist diese Station zufolge der Funde als früh-bronzezeitlich erkannt worden, so dass also dieses Zeitalter nach dem Höhepunkt der Buchenperiode einsetzt. Eine letzte Periode, die

6. Phase der Tanne ist noch angedeutet. Die Buchenkurve fällt rasch, die der Tanne verzeichnet 38%, alle übrigen Waldbaumprozente sind kleiner als 20%. In dieser Periode ist die Fichte eingewandert und zeigt nun steigenden Anteil am Pollenspektrum. Es folgt der Ackerboden, dem keine Proben entnommen wurden.

Diese Waldbaumfolge reiht sich prächtig an die übrigen Untersuchungen an.

Pfahlbau Niederwil bei Frauenfeld¹) 412 m ü. M.

In der Senkung eines niedrigen Hügelzuges liegt rechts der Strasse von Niederwil nach Strass bei Frauenfeld der sogenannte «Egelsee». Die sechs bis sieben ha grosse Fläche ist heute völlig verlandet.

Dieses kleine Moor ist berühmt in der urgeschichtlichen Forschung des Kantons Thurgau, da sich hier die reiche Fundstätte einer steinzeitlichen Siedelung findet (siehe Keller-Reinerth 1925). Sie wurde 1862 von Pupikofer entdeckt und erregte durch den Reichtum ihrer Funde grosses Aufsehen. Ferdinand Keller und Messikom mer veranlassten eine gründliche Durchforschung, und heute finden sich in verschiedenen Museen des In- und Auslandes zerstreut Gegenstände aus der Station Niederwil. Die beste Sammlung ist im Landesmuseum, daneben findet sich eine hübsche, wenn auch nicht allzu reichhaltige Kollektion im Thurgauischen Museum in Frauenfeld.

Das Moor ist auch bekannt geworden durch die Funde, die in dem geschichteten Lehm gemacht wurden. Schröter erwähnt in der «Flora der Eiszeit» das Vorkommen der Zwergbirke (Betula nana), einer alpinen Weide (S. reticulata) und der Silberwurz (Dryas octo-

¹⁾ siehe Keller, P. (1926) vorläufige Mitteilung.

petala), also eine Flora analog der des Krutzelriedes in den Dryastonen.

Da genau datierte Schichten äusserst wichtig sind für die Deutung der waldgeschichtlichen Entwicklung, und solche uns nur an urgeschichtlichen Fundstätten zugänglich sind, so sammelte ich auch in diesem Moore einige Proben. Etwa fünf Meter vom Dränierungsgraben und ca. fünfzig Meter von dessen Ausgang am Südende des Moores, im Bereiche der Station, aber an einer noch unberührten Stelle, erschloss ich folgendes Profil:

```
0 cm — 35 cm Abraum
```

35 cm — 40 cm erste steinzeitliche Kulturschicht, mit zahlreichen verkohlten Holzresten

40 cm - 45 cm Lehm

45 cm - 180 cm Caricestorf, zum Teil sehr holzreich

bei 50 cm H_4 B_1 R_2 V_2 F_0

bei 75 cm H_5 B_2 R_{2-} V_{1-2} F_1

180 cm — 195 cm zweite steinzeitliche Kulturschicht

195 cm - 230 cm Eriophorumtorf H_{5-} B_{1-2} R_2 V_{1-2} F_2

230 cm - 245 cm dritte steinzeitliche Kulturschicht.

245 cm - 470 cm Lebertorf

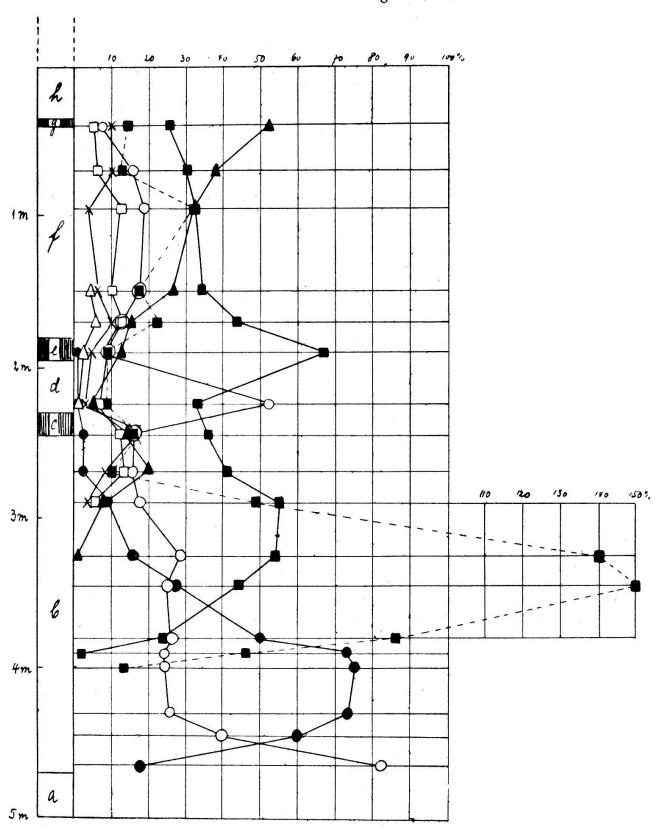
470 cm Lehm.

Die Feststellung dreier so deutlich voneinander getrennten Pfahlbausiedelungen, wovon die unterste beinahe 2,5 m tief liegt, und ihre Einordnung in die Torfschichten ist sehr bedeutungsvoll. Messikommer (in Heierli 1901) berichtet allerdings von sieben Kulturschichten, doch glaube ich, dass er hierin zu weit gegangen ist.

Eine weitere Bohrung 300 m östlich der ersten, etwa in der Mitte des Moores ergab die gleiche Schichtfolge. Es wurden deshalb keine weiteren Proben entnommen.

a. Lehm.

b. Lebertorf. Die unterste Schicht wurde von Früh (1883) als Dopplerit erwähnt und eingehend beschrieben. Doch bestreitet Neuweiler (1901), der das Ried genau untersuchte, die Richtigkeit dieser Angabe und führt alles als Lebertorf an. Die Proben sind sehr pollenreich mit Pollendichten von 1500, 1100 etc. Daneben kommen andere Fossilien nur ganz vereinzelt vor, so Fragmente des scheidigen Wollgrases, die eingeschwemmt sein dürften, Pusteln von Cyperaceen, Typha- und Ericaceenpollen neben spärlichen Equi-


setumsporen. Reich ist dagegen die Diatomeenflora, die ich nicht näher bestimmen konnte als Navicula spec.

- c. Kulturschicht. In dieser direkt auf etwas lehmigen Lebertorfschichten ruhenden Kulturschicht finden sich viele verkohlte Holzreste.
- d. Eriophorum torf. Diese 35 cm mächtige Schicht ist erfüllt von zahlreichen Resten von *Eriophorum*, sowie einzelnen Moosresten und *Typha*pollen. Die Proben sind stark sandig, was auf eine Ueberschwemmung der untersten Kulturschicht hindeuten könnte, die dadurch verlassen werden musste und verbrannt wurde.
- e. Kulturschicht. Wir finden in dieser mittleren Schicht nur verkohlte Holzreste, keine pflanzlichen Fragmente vor. Ob das eine eigene Station oder aber nur der unterste Teil der obersten Niederlassung ist, können nur Ausgrabungen entscheiden.
- f. Caricestorf. Dieser schwarze Torf ist 135 cm mächtig und wird stellenweise noch abgebaut. An Fossilien sind zu erwähnen: Reste von Cyperaceen, Eriophorum, Calliergon trifarium, Lycopodium- und Equisetumsporen sowie Typhapollen. Die Proben der basalen Schichten sind wieder stark sandig (Ueberschwemmung) und daher sehr mühsam zu analysieren.
- g. Kulturschicht. Diese oberste auf einer 5 cm mächtigen Lehmschicht aufruhende neolitische Fundschicht zeigt wieder sehr deutlich verkohlte Holzreste. Da sie sich in nur 35—40 cm Tiefe findet, sind schon viele Reste von Töpfereien, Gewebestücke, Werkzeuge, Samen und dergleichen ausgegraben worden, die heute zahlreiche Museen zieren. Auch ich fand noch einige Tonscherben.
- h. Abraum. Die ursprüngliche Oberfläche des Riedes ist zerstört infolge des starken Abbaues, der um die Mitte des letzten Jahrhunderts hier geherrscht hat. Die Rotfarbfabrik Islikon war ganz auf den Torf als einzigen Brennstoff angewiesen, so dass eine reiche Torfnutzung einsetzte. An einigen Stellen (Mitte des Moores) liegt Trifariumtorf an der Oberfläche, wie in den mittleren Partien des Krutzelriedes.

Wenden wir uns zu den pollenanalytischen Befunden, die im Pollendiagramm (Abb. 4) graphisch dargestellt sind. Wir erkennen dabei folgenden Gang in der Entwicklung des Waldbildes:

Bei der Moorbildung herrschte eine sehr artenarme Flora des Waldes vor: Nur *Betula* und *Pinus*. Das Verhältnis lässt eine deut-

Diagramm Pfahlbau Niederwil

liche Birkenzeit erkennen mit 82% Betula gegenüber 18% Pinus. Der Kieferngehalt ist nun im Steigen begriffen, die Birkenprozente nehmen rapid ab, so dass die Verhältnisse in den nächsten Proben folgende sind: Einem Kiefernanteil von 74, 75 und 73% steht ein solcher der Birke von 26, 25 und 27% gegenüber, also eine deutliche Kiefernperiode. In dieser Zeit erscheint die Hasel, deren Anteil am Pollenniederschlag bald ein beträchtlicher ist. Die Birkenprozente halten sich nun ziemlich auf der gleichen Höhe, neu erscheinen die Komponenten des Eichenmischwaldes: Ulme, Eiche und Linde. In die Lücke zwischen die abfallende Kiefernkurve und den Anstieg der Eichenmischwaldkurve fällt die überhebende Kulmmination der Haselkurve. Wir haben eine begrenzte, scharf ausgesprochene Haselzeit. Diese verschwindet wieder und an ihre Stelle tritt der Eichenmischwald, der nun lange mit einer kleinen Unterbrechung der Birke die Führung übernimmt. In diese Zeit des Eichenmischwaldes fallen die beiden untern Kulturschichten. Die Annahme, dass während des Neolithikums der Eichenwald geherrscht hat, findet hier ihre Bestätigung. Zwischen der zweiten und dritten steinzeitlichen Kulturschicht, die durch sandigen Eriophorumtorf getrennt sind, macht sich ein kleines Birkenmaximum geltend. Ueber dessen Ursache kann man im Zweifel sein. Möglich wäre, dass die erste Ansiedelung durch Brand zerstört wurde und die Birke wieder der erste waldbildende Baum war, eine Erscheinung, die allgemein zu konstatieren ist. Möglich auch, dass durch Ueberschwemmung die erste Station zerstört wurde, worauf der starke Sandgehalt der Zwischenschicht hindeutet, und dass die Birke den ersten Waldgürtel bildete. In der Folgezeit übernimmt dann der Eichenmischwald wieder die Führung. Neu zu verzeichnen sind während dieser Zeit die Tanne und die Fichte. Die letztere erscheint hier im Waldbild in drei Proben mit drei, sechs und fünf %, verschwindet dann aber wieder. Ob wir es mit Ferntransport zu tun haben oder aber mit einer Erscheinung, die schon auf den Einfluss der neolithischen Bewohner zurückzuführen ist, das bleibt noch eine offene Frage. Dieselbe Erscheinung zeigt sich auch im Diagramm des Pfahlbaues von Robenhausen (siehe dort). In die ausklingende Eichenzeit und die beginnende Buchenperiode fällt die dritte Kulturschicht, die direkt auf einer Lehmschicht aufruht.

Von den Archaeologen ist die Station Niederwil nie wissenschaftlich ausgebeutet worden, nur die oberste Schicht (35—40 cm) wurde ein wenig untersucht. Diese Schicht gehört nach den vorhandenen Funden ins Ende des Neolithikums und in den Anfang des Bronzezeitalters, da man schon Tiegel darin fand. Das letzte Spektrum, das uns diese Probe liefert, zeigt uns die Buchenzeit, die also in den Uebergang Steinzeit-Bronzezeit zu verlegen ist. Der weitere Verlauf der Waldentwicklung ist uns in diesem Diagramm nicht enthalten, da die obersten Torfschichten fehlen. Das Zunehmen der Tannenprozente deutet die hier fehlende Buchen-Tannen-Phase an, die in unser rezentes Waldbild überleitet.

Buhwiler-Torfried (Kanton Thurgau)¹) 480 m ü. M.

In der Mulde zwischen dem Wertbühler Moränenhügel und dem südlich ansteigenden Nollen (732 m) zieht sich von Metzgersbuhwil bis gegen Mettlen ein Talmoor. Seine Länge beträgt ca. ein Kilometer und seine grösste Breite 210 Meter. Die Torfausbeutung ist fast vollständig erloschen, nur noch vereinzelte Bauern holen ihre «Turben», doch erinnern sich alle hier ansässigen Leute, dass vor Jahren eine reiche Torfnutzung auch von den Bewohnern der umliegenden Ortschaften stattgefunden hatte. So ist die ursprüngliche Oberfläche nicht mehr erhalten und typischer Moorboden findet sich nur noch auf einer ganz kleinen Fläche, der übrige Teil des Moores ist melioriert worden und ist heute fruchtbares Acker- und Weideland.

Ich habe dieses Moor eingehender untersucht, insbesondere durch zahlreiche Bohrungen ein genaues Quer- und Längsprofil aufgenommen, da es ganz in der Nähe meines Heimatortes liegt. Den inneren Aufbau des Moores erschloss ich wie folgt:

¹⁾ siehe Keller, P. (1926) vorläufige Mitteilung.

175 cm — 190 cm toniger Torf

190 cm - 230 cm Eriophorumtorf H_4 B_2 R_{1-2} V_2 F_2

230 cm - 260 cm toniger Torf, holzfrei V_{2-3}

260 cm - 390 cm Moostorf

bei 320 cm H_5 B_2 R_2 V_1 F_1 bei 370 cm H_6 B_2 R_2 V_0 F_{0-}

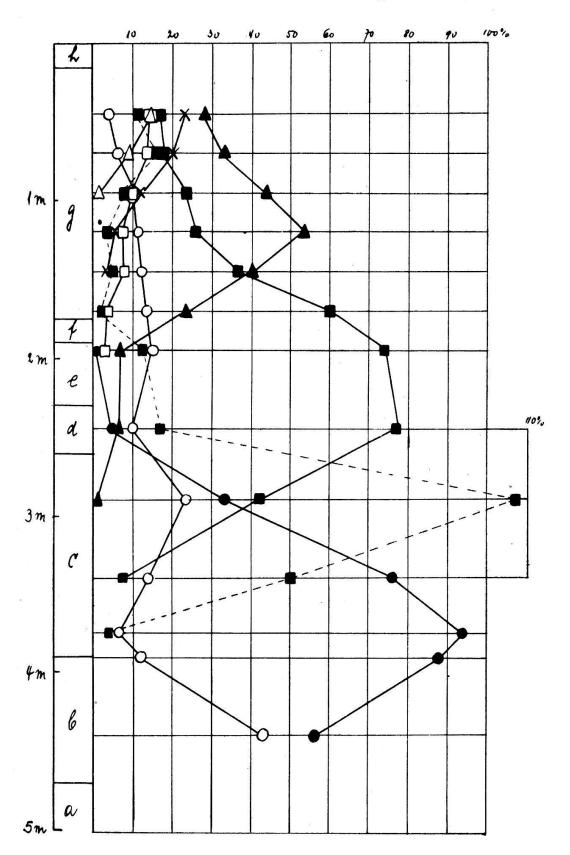
390 cm — 470 cm Seekreide, gelblich-grau mit Konchylien 470 cm Lehm mit Sand.

- a. Lehm. Diese Schicht ist sehr sandig und das Bohren daher mühsam, sodass die Mächtigkeit des Lehms nicht erforscht wurde.
- b. Seekreide. In dieser breiigen Masse von gelblich grauer Farbe fanden sich verschiedene Molluskenschalen. Die Bestimmung nach Geyer (1909) ergab die gleichen Arten wie in den Seekreideablagerungen von Sirnach und Sulgen, nämlich

Valvata alpestris. Sehr häufig Valvata cristata. Sehr häufig Bythinia tentaculata. Sehr häufig Limnaea ovata Planorbis marginatus var. submarginatus Pisidium nitidum

Daneben fanden sich noch zahlreiche Desmidiaceenhälften.

- c. Moostorf. Dieser 130 cm mächtige Sphagnum-Eriophorum-torf enthält sehr zahlreiche Fragmente dieser Arten. In den untern Schichten ist diese Torfart stark humifiziert, sodass die einzelnen Bestandteile kaum mehr zu erkennen sind, ausser den selten fehlenden Cyperaceen-Pusteln.
- d. Toniger Torf. Diese tonige Schicht von ca. 30 cm Mächtigkeit lässt sich durch das ganze Querprofil hindurch verfolgen. Sie ist sehr wahrscheinlich durch eine lokale Einschwemmung oder Ueberflutung entstanden. Es ist also diesem tonigen Horizont nur eine lokale Bedeutung beizumessen, ebenso dem ansehnlichen Holzgehalt.
- e. Eriophorumtorf. Hier überwiegen die Reste des scheidigen Wollgrases. Der starke Holzgehalt der vorigen Schicht macht sich auch hier noch bemerkbar. Eine *Chara*-Oospore konnte nicht näher bestimmt werden.
 - f. Toniger Torf. 15 cm. Siehe oben.


g. Caricestorf. Im Anschluss an die vorige tonige Schicht findet sich auch hier wieder ein beträchtlicher Holzgehalt, was auf eine nur lokale Einschwemmung zurückzuführen sein mag. In den oberen Schichten verschwindet dieser Holzgehalt und es sind nur noch mikroskopische Funde zu verzeichnen: Pollentetraden von Ericaceen und Typhapollen neben Cyperaceenresten.

h. Abraum. Diese Schicht ist nicht untersucht worden.

Aus 15 weiteren Bohrungen wurde der genaue Verlauf der Schichten durch das ganze Moor hindurch verfolgt. Die Mächtigkeit der Torfschichten ist bei weitem keine so grosse wie die Ausdehnung des Riedes ahnen liesse. Nach Westen dehnt sich dieses in Wirklichkeit nur noch einige 100 Meter aus, dann erreicht der Lehm die subrezente Pflanzendecke, während Schilfbestände eine weitgrössere Torfmächtigkeit vortäuschen. Das ganze Ried dient an den nicht drainierten Flächen der Streunutzung, die typische Moorvegetation ist längs verschwunden.

Betrachten wir nun die Resultate der mikroskopischen Durchsicht der Proben, die uns im Pollendiagramm (Abb. 5) die periodischen Schwankungen im Waldbild zeigen.

Die unterste untersuchte Probe aus 440 cm zeigt uns deutlich, wie sich der Birkenanteil dem der Kiefer nähert. Die Moorbildung hat wahrscheinlich in der ausklingenden Birkenzeit stattgefunden. Auf diese folgt die ausgesprochene Kieferndominanz mit 88, 93 und 76% Kiefer. Die Hasel zeigt von anfänglich kleinem Anteil einen rapiden Anstieg und verzeichnet in der Probe 290 cm das Haselmaximum. Dieser Kulminationspunkt der Kurve ist hier sehr schön ausgebildet, zwischen der stark abnehmenden Kieferkurve und dem stetig ansteigenden Eichenmischwald. Letzterer erreicht bald sein Maximum. Die Vorherrschaft des Eichenmischwaldes (EMW) ist lange sehr ausgesprochen. Mit 77, 74 und 60% EMW ist diese sehr deutlich. Neu erscheinen die Erle und die Tanne. Die Zusammensetzung des Waldbildes ändert sich nun zu Gunsten der Buche, diese überflügelt den Eichenmischwald in einem raschen Anstieg und dominiert mit 53% im Buchenmaximum. Der oberste Teil der Waldgeschichte fehlt in diesem Diagramm, da die obersten Schichten abgebaut worden sind. Wir sehen nur noch eine Abnahme der Buchenkurve und ihr entsprechend ein deutliches Steigen der Tannen- und Fichtenkurven. Letztere Periode fehlt in

unserer Untersuchung, sie ist nur noch schwach angedeutet. Obwohl heute das Moor von zahlreichen Birken bewachsen ist, bewirken die Birkenprozente keine Störung im Pollenspektrum der weiteren Umgebung des Moores.

Die gefundenen Einwanderungsfolgen der einzelnen Waldbäume und ihre Perioden sind hier sehr schön zu erkennen und lassen sich wie folgt gliedern:

- 1. Phase der Birke + Kiefer
- 2. " der Kiefer (+ Birke + Hasel)
- 3. , der Hasel
- 4. , des Eichenmischwaldes
- 5. " der Buche
- 6. , der Buche + Tanne.

Mooswangerried bei Sirnach (Kant. Thurgau)¹) 568 m ü. M.

Das Mooswangerried erstreckt sich über eine Fläche von ungefähr 21 ha östlich von Anwil bei Sirnach, im westlichen Teil des Trockentales von Littenheid. Besitzerin ist die Buntweberei Zweifel & Co. in Sirnach. Das Ried ist aus einem untiefen, ruhenden Gewässer hervorgegangen, einem ehemaligen Fischweiher des Klosters Fischingen, der in der Mitte des letzten Jahrhunderts trocken gelegt wurde.

Die Flora des Gebietes ist von Wegelin (1924) eingehend beschrieben worden, ebenso die Torfnutzung. Ich verweise daher auf diese Angaben. Heute ist die Torfausbeutung wieder eingestellt, da die jetzt herrschenden Kohlenpreise eine rationelle Torfnutzung nicht mehr erlauben. In den Nachkriegsjahren sind ganz beträchtliche Torfmengen auf maschinellem Wege dem Ried entnommen worden. Doch gibt es auch heute noch genügend unberührte Stellen für eine Profilaufnahme. An einer solchen Stelle, ca. 200 m von den sogenannten Stöcklihalden und fünf Meter von der östlichen Ecke der grossen Aushubfläche der Weberei Sirnach entfernt, ergab sich bei der Probenentnahme das untenstehende Profil:

¹⁾ siehe Keller, P. (1926) vorläufige Mitteilung.

0 cm - 25 cm subrezenter Torf (Abraum)

25 cm - 185 cm Caricestorf, hellbraun bis braunrot 45 cm H_3 B_1 R_2 V_0 F_1 95 cm H_4 B_1 R_2 V_0 F_1 mit Phragmites 125 cm H_5 B_2 R_2 V_1 F_1

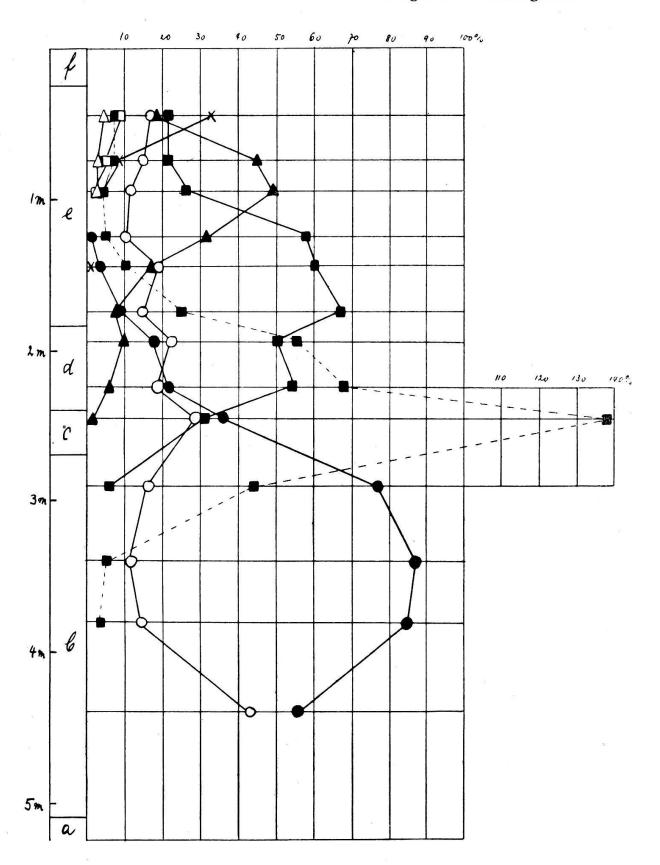
185 cm — 240 cm Moostorf, braunschwarz, mit zunehmendem Holzgehalt

195 cm H₅ B₂₋ R₂ V₁ F₀
240 cm H₆ B₂₋ R₁₋ V₂₋₃ F₀

240 cm — 270 cm Lebertorf

270 cm — 510 cm Seekreide, Schneckengyttja

510 cm Lehm


- a. Lehm. Der eigentliche Untergrund ist hier nicht angebohrt worden, da der Lehm sehr zähe und undurchlässig ist und sich durch Pollenarmut oder Fehlen von Pollen auszeichnet.
- b. Seekreide. Sie ist nicht zähe wie der darunter liegende Lehm, sondern feucht und knetbar, leicht zu zerreiben und enthält sehr viel gebleichte Molluskenschalen. Die von Wegelin angeführten Arten (siehe dort) konnte ich nur bestätigen, neue Arten habe ich keine gefunden. Bei der mikroskopischen Untersuchung fanden sich neben den angeführten Pollenarten noch Wurzelfasern, Scheiden- und Epidermisfragmente des Wollgrases, spärliche Moosreste, Hälften von Desmidiaceen, sowie Mycelfäden höherer Pilze, die selten in einem Torfpräparat fehlen.
- c. Lebertorf. In dieser bildsamen, nicht zähen Masse finden sich reichliche Wurzelfasern und Pustelradizellen von Cyperaceen, einige Sphagnumsporen, Pollen von Typha latifolia und Nuphar luteum, der gelben Seerose. Ebenso finden sich noch vereinzelte Desmidiaceenhälften, die ich nicht bestimmen konnte.
- d. Moostorf. Dieser braunrote bis schwarze Torf enthält neben Schilfrhizomen recht zahlreiche Reste von Stengeln und Blättern des scheidigen Wollgrases, vereinzelte Moosfragmente und Sporen, Radizellen von Cyperaceen und Pollen von Nuphar luteum und Myriophyllum spec. Die Mächtigkeit des Torfes nimmt gegen das nordwestliche Ufer noch bedeutend zu. Leute der dorügen Gegend versichern, dass anfangs des letzten Jahrhunderts der Müsberg ins Rutschen geraten sei. Die Tannen im Torfe stammen daher

wahrscheinlich von diesem Rutsch her, wobei sie im weichen Torf versunken sind, also kein Grenzhorizont!

- e. Caricestorf. Makroskopisch herrschen feine Würzelchen von *Eriophorum* und *Carices*arten vor, die dem Torf eine faserige Beschaffenheit verleihen. Daneben sind noch zahlreiche Pustelradizellen, Pollentetraden von *Ericaceen* und Pollen der gelben Seerose zu verzeichnen.
- f. A braum. Diese Schicht ist nicht untersucht worden, weder auf die pflanzliche Zusammensetzung, noch auf die Pollenflora, da hier die menschlichen Eingriffe eine grosse Rolle spielen und kein einwandfreies pollenanalytisches Resultat zu erwarten ist.

Das Ergebnis der mikroskopischen Durchsicht der einzelnen Torfproben hinsichtlich des prozentualen Anteiles der verschiedenen Waldbäume am Gesamtpollenniederschlag gibt das umstehende Pollendiagramm (Abb. 6), das uns die Entwicklung des Waldbildes in allen Phasen deutlich zeigt.

Die unterste Probe enthält nur Kiefern- und Birkenpollen. Wir sehen sehr deutlich, dass letztere nahe an den Gehalt der erstern herankommt. Dieser schöne Anstieg der Birkenkurve deutet noch das Birkenmaximum der Umgebung an, das vor Einsetzen der Moorbildung an dieser Stelle geherrscht haben muss. Die Verhältnisse ändern sich in den folgenden Proben, die Föhre hat unbedingte Vorherrschaft, wir notieren ein äusserst deutliches Kiefernmaxim u m mit 88% Pinus. In dieser Probe ist die Hasel erstmals erschienen und zeigt einen sehr schnellen Anstieg ihrer Kurve. Dieser Anteil an Pollen im Gesamtniederschlag wird, wie früher eingehend erwähnt worden ist, getrennt berechnet, daher kommt es, dass wir im folgenden Haselwerte von über 100% zu verzeichnen haben. Der Kieferngehalt geht zurück, die Hasel zeigt ein ausgesprochenes Maximum mit 138%, bei einem übrigen Pollenspektrum von 36% Pinus, 29% Betula, und 31% Eichenmischwald. Letzterer ist in der folgenden Probe neu erschienen und verzeichnet stets zunehmenden Anteil. Es ist hier die Ulme, die von den drei Konstituenten zuerst die grössten Werte verzeichnet. So rasch die Hasel gestiegen ist, so rapid geht ihr Anteil wieder zurück. Wir haben eine symmetrische Haselkurve mit überhebendem Kulminationspunkt. Nun ändert sich die Zusammensetzung in der Weise, dass der Eichenmischwald die grössten Prozentwerte zu verzeichnen hat und in Probe

175 cm notieren wir sein Maimum mit 67%. Die Buche ist neu erschienen, ihr Anteil steigt langsam, aber stetig, während die Kieferwerte immer kleiner werden, diejenigen der Birke bleiben so ziemlich gleich. Auf Kosten des Eichenwaldes steigt der Buchenanteil, überholt letztern und wir haben in der Probe 95 cm das Buch en maximum zu verzeichnen mit 49% Fagus, 26% EMW., 11% Birke und 4% Hasel. Während der Buchenvorherrschaft kommen Alnus, Abies und Picea neu in die Zählung, wobei die Tanne die Buche überholt. Das oberste Tannen-Buchenspektrum zeigt wieder den Uebergang in das rezente Waldbild. Im obersten halben Meter wurden keine Proben mehr entnommen, da in dieser Schicht schon ein zu starker menschlicher Einfluss sich geltend macht.

Aus dem Verlauf der Pollenkurven lassen sich deutlich die folgenden Phasen herausschälen:

- 1. Phase der Kiefer (+ Birke + Hasel)
- 2. , der Hasel (+ Eichenmischwald + Kiefer)
- 3. " des Eichenmischwaldes (+ Buche)
- 5. " der Buche
- 5. , der Tanne und Buche

Eschlikoner Torfmoor (Kanton Thurgau) 570 m ü. M.

Südlich der Station Eschlikon an der Linie Winterthur-Wil erstreckt sich das Eschlikoner-Torfmoor über eine Fläche von ca. 20 ha. Der grösste Teil des Riedes gehört der Bürgergemeinde, welche die Torfnutzung parzellenweise auf öffentliche Versteigerung bringt. Die Bauern verwenden den getrockneten Torf als Streue für das Vieh, indem sie ihn zu Torfmull zermahlen. Bis 1922 wurde auch hier maschinell Torf abgebaut, eine grosse rechteckige Aushubfläche zeugt noch davon.

Das Torfmoor ist eingebettet von Hügeln aus Süsswassermolasse: nördlich Hiltenberg, Buchholz, Ruine Lanzberg und südlich der Hackenberg. Nach Westen neigt sich der Talboden zur Lützelmurg, die aus dem Bichelsee kommt und östlich fliesst das Wasser zur Murg, die am Hörnli entspriesst. Es ist also ein Talscheidenmoor im kleinen. An der südlichen Wand der grossen Aushubfläche ergab sich bei der Probeentnahme folgendes Profil:

0 cm - 10 cm Abraum

10 cm — 100 cm Phragmitestorf (Arundinetum) rotbraun, rasch anlaufend und braun-schwarz werdend.

 $30 \text{ cm } H_3 B_1 R_2 V_1 . F_1$

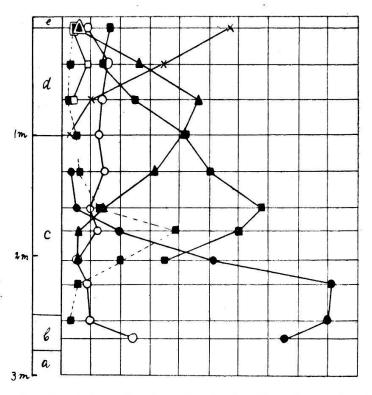
60 cm H_4 B_1 R_2 V_{2-3} F_1 sehr holzreich bis 14 cm dicke Aeste.

100 cm - 250 cm Moostorf

120 cm H_5 B_2 R_2 V_{1-2} F_1

215 cm H₆ B₂ R₁₋ V₁ F₁₋

250 cm - 280 cm Caricestorf


 $265 \text{ cm H}_6 \text{ B}_2 \text{ R}_{1-} \text{ V}_1 \text{ F}_0$

280 cm H₅ B₁ R₀₋ V₀ F₀ tonig

280 cm Lehm mit Sand

- a. Lehm mit Sand. Die Moräne ist nicht angebohrt worden, da es nicht von Wichtigkeit ist, die Mächtigkeit der Lehmschicht zu wissen und diese sich durch Pollenarmut auszeichnet.
- b. Caricestorf. Diese braunrote Schicht enthält neben zahlreichen Eriophorum-Fragmenten (Stengel und Scheiden) viele Reste von Sphagneenstämmehen und Blättehen, daneben natürlich den verzeichneten Waldbaumpollen.
- c. Moostorf. (Sphagneto-Eriophoretum.) Hier herrschen wieder Rhizome und Oberhautfragmente von Eriophorum, sowie Reste von Sphagnum-Stämmchen vor. Sehr zahlreich sind auch hier die Mycelfäden höherer Pilze. Daneben finden sich Pollentetraden von Ericaceen, Pollen von Myriophyllum und Nuphar luteum. Eine Desmidium spec. konnte nicht näher bestimmt werden, ebenso nicht eine Chara-Oospore.
- d. Phragmitestorf mit massenhaft Schilfrhizomen und Stengelfragmenten, die als flach zusammengedrückte, helle Reste sehr gut erkannt werden. Sehr zahlreich sind Aeste von Abies, oft bis 15 cm dick. Daneben verzeichnet das Fundprotokoll Fragmente von Cyperaaceen (Pusteln) Sporen und Reste von Moosen, sowie Pollen der gelben Seerose.
 - e. Abraum. Diese Schicht wurde nicht näher untersucht.

Wenden wir uns nun dem Pollenbefund zu, den uns die mikroskopische Analyse der elf Torfproben lieferte (Diagramm Abb. 7).

In der Grundprobe ist noch eine deutliche Zunahme der Birkenkurve wahrzunehmen. Dann setzt das Kiefermaximum ein mit 91 und 90%, der übrige Teil kommt der Birke zu. Der Haselanteil steigt langsam aber stetig, sie bringt es aber in keinem Spektrum zur Dominanz, ihr grösster Prozentwert ist 29%. Wahrscheinlich ist die Probe, die das Haselmaximum enthalten würde, bei der Probeentnahme verfehlt worden. Es ist dies die einzige Untersuchung, in der kein deutliches Vorherrschen der Hasel, sondern nur ein schwacher Anstieg der Kurve zu verzeichnen ist. Nach diesem nimmt die Coryluskomponente wieder ab, die Kiefernkurve wird von der des Eichenmischwaldes überholt. Dieser hat nun die ausgeprägte Führung übernommen mit 68%. In den Proben ist neu die Buche erschienen, die stets steigende Werte zu verzeichnen hat und den Eichenmischwald überflügelt, um es zum ausgesprochenen Buchenmaximum zu bringen. Während dieser Zeit ist die Tanne neu in die Zählung hineingekommen, ihre Kurve zeigt einen rapiden Anstieg, schneidet die Buchenkurve und hat in der obersten Probe ihr Maximum. Zu dieser Zeit ist die Fichte eingewandert und verzeichnet einen Anteil von 6%. Dieses Tannen-Buchenspektrum ist wie in den vorigen Fällen der Abschluss der Waldentwicklung.

Wir erkennen also wieder die folgenden Phasen der Waldgeschichte:

- 1. Phase der Kiefer (+ Birke)
- 2. , der Kiefer (+ Hasel)
- 3. , des Eichenmischwaldes (+ Buche)
- 4. " der Buche
- 5. , der Tanne (+ Fichte).

Pfahlbau Robenhausen am Pfäffikersee (Kt. Zch.) 543 m ü. M.

Im mächtigen Ried von Robenhausen zwischen dem Kemptnerbach, der den Pfäffikersee speist und der Aa, dem Ausfluss dieses Sees wurden 1858 von Jakob Messik ommer die dortigen Pfahlbauten entdeckt. In unermüdlicher Arbeit wurde die Station ausgebeutet, leider in wenig wissenschaftlicher Weise. Es wurde den einzelnen Fundschichten keine besondere Beachtung geschenkt und die reichen Funde wurden weit herum verkauft und liegen heute in verschiedenen Museen zerstreut. Doch liess sich noch feststellen, dass drei verschiedene Kulturschichten vorhanden waren. Die beiden unteren, nur durch eine wenig mächtige Torfschicht voneinander getrennt, gehören auf Grund der Funde ins mittlere oder Voll-Neolithikum, während die oberste in den Anfang der Bronzezeit (Bronze 1) zu setzten ist.

An einer noch unberührten Stelle im Ried, aber doch im Bereiche der Station wurde die Bohrung vorgenommen. Es ergab sich dabei nachfolgender Schichtwechsel:

```
0 cm — 20 cm Abraum
```

20 cm - 140 cm Phragmitestorf

bei 60 cm H_3 B_1 R_2 V_0 F_1 bei 80 cm H_4 B_2 R_1 V_1 F_0

140 cm - 145 cm Kulturschicht mit verkohlten Resten

145 cm — 185 cm Caricestorf H_5 B_{1-2} R_2 V_0 F_{1-2}

Lehm

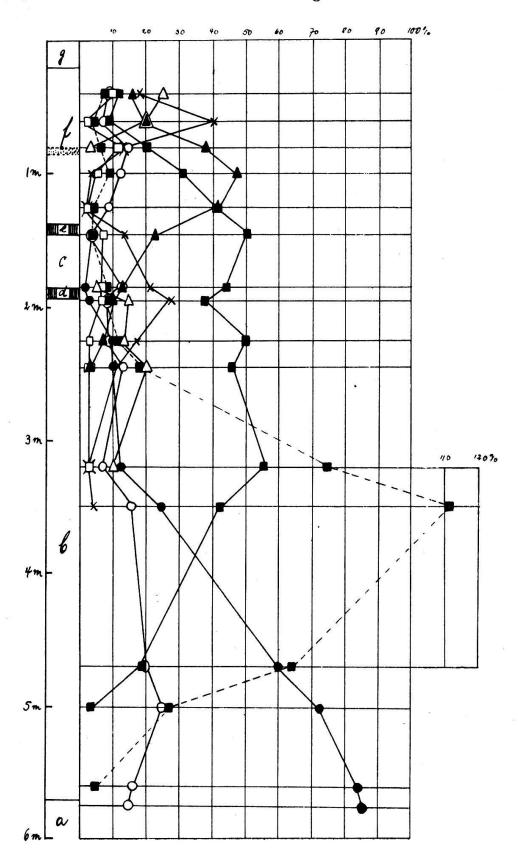
185 cm — 190 cm Kulturschicht mit verkohlten Resten

190 cm - 570 cm Seekreide

570 cm

a. Lehm.

b. Seekreide. Diese Ablagerung schwankt zwischen 1 und


7 m, wie ich an einigen anderen Bohrungen feststellen konnte. Es finden sich darin zahlreiche Molluskenschalen, bei deren Bestimmung ergaben sich dieselben Arten wie in den früher erwähnten Seekreideablagerungen. Daneben noch Desmidiaceenhälften.

- c. Caricestorf. Neben den zahlreichen Radizellenpusteln der Cyperaceen fanden sich noch Pollen von Typha sowie Farnsporen (Dryopteris, Polypodium, Athyrium filix femina). Im Kontakt mit der untern und obern Kulturschicht waren die Proben etwas sandig.
- d. und e. Kulturschichten, die den von den Archaeologen bestimmten beiden untern Fundschichten entsprechen dürften, festgestellt, während die oberste nicht konstatiert werden konnte. Ich habe sie aber doch nach Angaben von Dr. Viollier ins Profil eingetragen als Schicht III. Die pflanzlichen Funde hat Neuweiler genau bestimmt, die Liste findet sich bei Messikommer (1913).
- f. Phragmitestorf. Hier überwiegen die Schilfresten, die zum Teil schon makroskopisch erkennbar sind. Ausserdem finden sich dieselben Pflanzenresten wie im vorigen Torf vor.
 - g. A braum. Mit den rezenten pflanzlichen Rhizomen.

Bei einigen weiteren Bohrungen konnte ich den gleichen Schichtwechsel verfolgen.

Als Ergebnis der mikroskopischen Durchsicht der Proben ist umstehendes Pollendiagramm (Abb. 8) konstruiert, das uns folgenden Entwicklungsgang veranschaulicht:

Bei einem ausgesprochenen Vorherrschen der Kiefer setzt die Untersuchung ein. Pinus 85%, Betula 15%. In der folgenden Probe erscheint die Hasel, die nun einen überraschend schnellen zunehmenden Anteil in den Pollenspektren zu verzeichnen hat. In der Probe 350 cm notieren wir mit 111% Corylus das Haselmaximum. Weniger rasch aber auch stetig ist der Eichenmischwald gestiegen, er überholt bald den Haselgehalt, der einen raschen Abfall zeigt. Wir bemerken nun eine deutliche Dominanz des Eichen misch waldes mit 41—56%. Während dieser Zeit erscheinen neu in der Zählung die Fichte, Tanne, Buche und Erle. In diese Eichenzeit fallen die beiden Kulturschichten. Wir erhalten also hier eine neue Stütze für die Ansicht, dass während des Voll-Neolithikums der Eichenwald unser hauptsächlichster Waldbildner gewesen ist. Sehr interessant sind das Verhalten der Fichte und der Tanne während dieser Zeit.

Wir finden beide vor dem ersten Auftreten der Buche, und zwar überwiegt anfänglich mit 10-20% die Fichte, verschwindet aber beim Anstieg der Tannenkurve, die mit 27-21% sehr deutlich zu erkennen ist. Das Erscheinen und Vorherrschen der Fichte vor der Tanne, das Zunehmen der Tannenprozente vor der Buche wird uns verständlich beim Studium der Moore der obern Stufe des Mittellandes, zu denen das nur ca. 20 km entfernte Lautikerried bei Hombrechtikon gehört (siehé Seite 72), und der Moore der Voralpen (siehe dort). Diesen Ergebnissen ist zu entnehmen, dass in den betreffenden Höhenlagen an die Stelle des Eichenmischwaldes die Fichte getreten ist, eine Erscheinung, die sich auch noch im Diagramm vom Lautikerried (Abb. 15) auswirkt. In unserer Untersuchung von Robenhausen ist das Erscheinen der Fichte zur Zeit des Eichenmischwaldes höchst wahrscheinlich auf Ferntransport zurückzuführen, da ein solcher das Aatal hinunter sehr gut denkbar ist.

Der übrige Verlauf der Waldentwicklung zeigt uns dann noch ein schönes Buchen maximum mit 47% Fagus, während die andern Komponenten des Pollenniederschlages nur bis 22% ausmachen. In den Anstieg der Tannenkurve bei fallenden Buchenprozenten ist die oberste Kulturschicht III zu setzen. Wir ersehen daraus, dass für den Anfang der Bronzezeit die Zunahme der Tanne an der Waldeszusammensetzung charakteristisch ist. Die Buche wird dann von der Tanne überholt, die Fichte zeigt ebenfalls einen deutlichen Anstieg, das Diagramm schliesst wieder mit dem Tannen-Fichten-Buchenspektrum.

Böndlerstück bei Wetzikon (Kanton Zürich) 530 m ü. M.

Südlich von Wetzikon, zwischen der Bahnlinie Wetzikon—Bubikon im Osten und dem Weiler Böndler im Westen liegt das Moor «Böndlerstück» in einer Meereshöhe von 530—550 m. Das Moor ist stark abgebaut. Auf den alten Torfstichen zeigt sich deutlich eine Uebergangsvegetation zu einem schwach entwickelten Hochmoor. Die Uebergangsfacies ist hier vertreten durch: Carex limosa, C. chordorrhiza, C. rostrata, Scheuchzeria pal., Lycopodium inundatum, Rhynchospora alba, R. fusca. Das sich entwickelnde Hochmoor erkennt man an der Moosdecke aus Sphagnum subsecundum, Sph. medium,

Calliergon trifarium, Aulacomnium palustre, der Krautschicht bestehend aus Carex chordorrhiza, C. heleonastes, C. limosa, C. echinata, C. rostrata, Scheuchzeria palustris, Rhynchospora alba, Comarum palustre, der Strauchschicht aus Calluna vulgaris usw. Als seltener Torfmoorzeuge sei noch Dryopteris cristata erwähnt.

Am südlichen Rand des Moores, wo noch ein ungestörtes Profil ist, kann die ganze Schichtfolge beobachtet werden:

0 cm — 30 cm Abraum

30 cm - 100 cm Moostorf H₃ B₁ R₁ V₀ F₀

100 cm - 185 cm Trifariumtorf

bei 120 cm H_4 B_{1-2} R_1 V_{2-} F_0

bei 180 cm H_6 B_2 R_1 V_0 F_0

185 cm — 227 cm Lebertorf

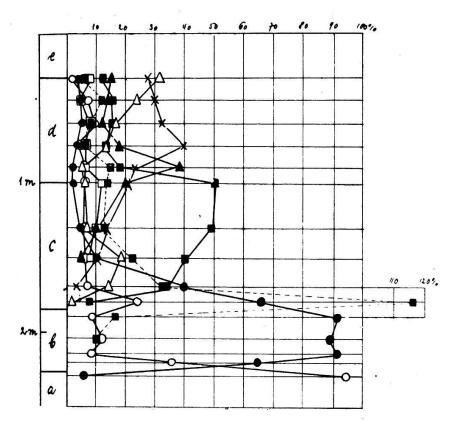
227 cm

Lehm

a. Lehm. Zäher Glaziallehm.

b. Le bert orf. Dieser 42 cm mächtigen Lebertorfablagerung am Rande des Moores entspricht in der Mitte eine, um eine Seekreide-Schicht vermehrte Ablagerung. Es finden sich zahlreiche Molluskenschalen, Rhizomreste von Equiseten, Fragmente von Phragmites und einige Sphagnum- und Hypnum-Epidermiszellverbände. Schröter (1904) erwähnt aus der Mitte des Moores Früchte von Tilia grandifolia und Blattreste von Fagus silvatica aus den Lebertorfschichten. Die Tilia-Früchte fallen in die Eichenmischwaldzeit (siehe Diagramm) und da wir annehmen dürfen, dass in der Mitte des Moores sich noch Lebertorfschichten finden, die schon dem älteren Moostorf in den Randpartien des Moores entsprechen, so können wir auch die Funde der Fagus-Blätter leicht erklären, da die Buche hier ziemlich früh eingewandert ist.

- c. Trifarium torf. Diese Torfart liegt in den mittleren Teilen des Moores frei an der Oberfläche zufolge der starken Torfnutzung, sie ist leicht erkenntlich durch die vielen Calliergon trifarium-Aestchen. Daneben fanden sich zahlreiche Cyperaceen-Fragmente, Gramineen-Reste und -Pollen.
- d. Moostorf. In dieser Schicht können wir wie im Krutzelried eine deutliche holzführende Schicht beobachten, bei 120 cm. Bei der mikroskopischen Durchsicht der Proben fanden sich noch einige Cyperaceen-Radizellen; zahlreiche Sphagnum-Fragmente und Sporen von Lycopodium spec.


e. Abraum. Diese Schicht ist ziemlich mächtig, da hier die Oberfläche schon zu kultiviertem Wiesboden umgewandelt worden ist.

Der Entwicklungsgang dieses Moores, das aus einem ehemaligen offenen Waldsee durch Ausbildung eines Rasenmoorgürtels entstanden ist, zeigt uns folgende höchst interessante Verhältnisse (siehe Diagramm Abb. 9).

Die Moorbildung setzt ein zur Zeit der Vorherrschaft der Birke mit 93% Betula gegenüber 7% Pinus. Der nun folgende Abfall der Birkenkurve ist ganz analog wie im Diagramm des Krutzelriedes, was auch zu erwarten ist, da die beiden Moore nur 20 km von einander entfernt liegen.

Abb. 9.

Diagramm Böndlerstück bei Wetzikon

Es folgt nun die ausgesprochene Dominanz der Kiefer mit 89 bis 91%, den Rest macht die Birke aus. Die Hasel wandert in die Föhrenwälder als Unterholz ein und hat anfänglich einen Anteil am Pollenspektrum von 10—17%. Sie verzeichnet dann aber wie in allen übrigen Mooren des schweizerischen Mittellandes auch hier einen rapiden Anstieg, um mit 116% das Haselmaximum zu erreichen. In die Haselbestände wandern neu ein die Komponenten

des Eichenmischwaldes, die Fichte und später die Tanne. erstern tritt zuerst die Linde auf und wird dann begleitet von der Eiche und der Ulme. Diese Pollenprozente überwiegen nun, wir haben die Periode des Eichenmischwaldes. Das frühe Auftreten der Fichte, das vor der Tanne und der Buche stattfindet, ist Die Fichte erhält wie in den Unterhier sehr ausgesprochen. suchungen von Robenhausen einen beträchtlichen Anteil von 14 bis 19%, wird dann aber von der Tanne überholt. Hier spiegeln sich schon deutlich die Verhältnisse, die wir in den Mooren des alpinen Vorlandes treffen. Da das Lautikerried (obere Stufe der Moore des Mittellandes), das Böndlerstück bei Wetzikon, das Ried von Robenhausen und das Krutzelried in gerader Linie und zudem die drei letztern im Glattal liegen, so haben wir hier ziemlich sicher eine Erscheinung des Ferntransportes der Picea- und Abies-Pollen das Glattal hinunter bis in die Umgebung von Robenhausen. Im Krutzelried im nördlichen dieser Moore wirkt sich diese Erscheinung nicht mehr aus. Diese Erklärung liegt viel eher auf der Hand als die einer klimatischen Begünstigung dieser Bäume, denn dann müsste sich das frühe Auftreten der Fichte und Tanne vor der Buche weiter herum bemerkbar gemacht haben, nicht nur in den von S-N verlaufenden Tälern (siehe auch Hallwilersee).

Mit der Buche wandert zur Eichenmischwaldzeit noch die Erle ein. Die Buche überholt die Tannenprozente und nachher auch diejenigen des Eichenwaldes, wir haben das Ueberwiegen der Buche im Waldbild, deren Maximum mit 39% Fagus ein deutliches ist gegenüber 23% Abies, 18% Eichenmischwald und dem noch bleibenden Rest von 20%, bestehend aus Alnus, Betula, Picea und Pinus. Das Unterholz ist mit 15% Corylus vertreten. Der noch bleibende Verlauf der Waldentwicklung zeigt uns einige Tannenspektren, die vom Fichtenspektrum abgelöst werden. Dieses letztere lässt aber schon die künstliche Ausbreitung der Picea durch den Menschen erkennen. Die 6 Phasen in der postglazialen Waldgeschichte lassen sich auch hier deutlich herausschälen:

- 1. Phase der Birke
- 2. " der Kiefer
- 3. " der Hasel
- 4. , des Eichenmischwaldes (+ Picea + Abies)
- 5. .. der Buche
- 6. , der Tanne und Fichte.

Pfahlbau "Riesi" am Hallwilersee (Kt. Aargau) 445 m ü. M.

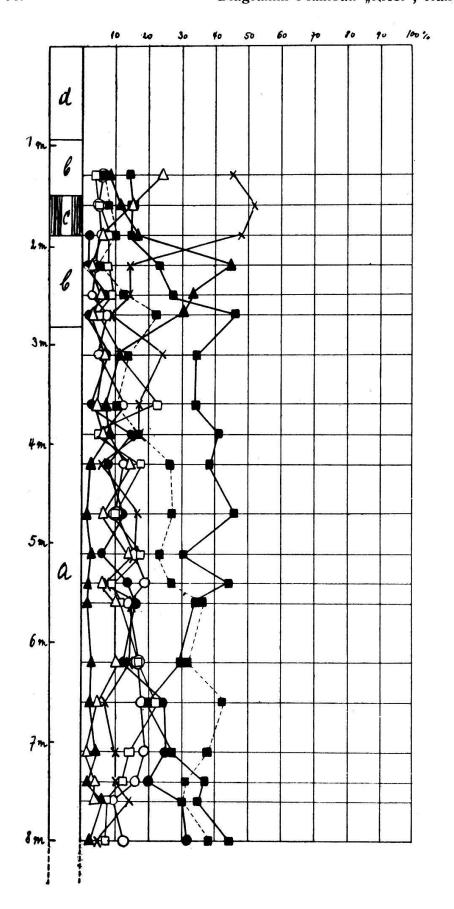
Am Ausfluss der Aa aus dem Hallwilersee im mächtigen Verlandungsried findet sich das Moordorf «Riesi». Es hat durch seine reichen bronzezeitlichen Funde eine gewisse Berühmtheit erlangt. Vor kurzer Zeit erschien in einer Arbeit von Härry (1925) ein Pollendiagramm, das Troll in München aus ihm zugesandten Proben konstruiert hat. Seine Ergebnisse stehen aber in keinem Zusammenhang mit meinen Resultaten, noch mit denjenigen aus den benachbarten Gebieten, aus den badischen und württembergischen Mooren. So machte ich eine Nachprüfung. Als Schichtfolge fand ich

0 cm — 30 cm Abraum

 $30~\mathrm{cm}~-~95~\mathrm{cm}$ Caricestorf

bei 50 cm H_3 B_{1-2} R_2 V_0 F_0

 $95~\mathrm{cm}~-~285~\mathrm{cm}$ Phragmitestorf


bei 150 cm H_{3-4} B_{1-2} R_2 V_{0-1} F_0

bei 250 cm H_4 B_2 R_2 V_{0-1} F_0

285 cm - 800 cm Seekreide.

Die Bohrung wurde am Rande der Siedelung gemacht, etwa 200 m von der rekonstruierten Pfahlbauhütte entfernt, an einer Stelle, wo das Profil noch ungestört ist.

- a. Seekreide. An der Bohrstelle wurde nach 525 cm Seekreide der Untergrund noch nicht erschlossen. Härry gibt als Mächtigkeit dieser Schicht 12 m an, was sich aus dem Diagramm leicht erkennen lässt, denn bei 8 m Tiefe haben wir immer noch die Eichenmischwaldzeit. Die Konchylien und Algen aus den Seekreideablagerungen des Hallwilersees sind von Brutschi (1925) eingehend studiert worden. Aus der Ausdehnung dieser Ablagerungen lässt sich die einstige Ausdehnung des Sees rekonstruieren, der sehr weit ins Land hinein gereicht hat.
- b. Phragmites, die zum Teil schon makroskopisch erkennbar sind. Daneben Pustelradizellen von Cyperaceen, Pollen von Gramineen und Cyperaceen, Sporen von Athyrium filix femina, sowie vereinzelte Eriophorum-Fragmente.
- c. Kulturschicht. Nach Bosch (1924) findet sich die Siedlung in 120—280 cm Tiefe, die schönsten Funde wurden etwa in 230 cm Tiefe gemacht. Da die Bohrung gegen das Ufer hin ausgeführt

wurde, so können wir eine dieser Fundschicht entsprechende Zone von 150-200 cm im Profil des Diagrammes einzeichnen.

d. Caricestorf. Diese Schicht ist sehr pollenarm, da ihre Bildung relativ schnell vor sich gegangen sein muss, durch rasche Verlandung. Daher wurden hier nur wenige Proben untersucht.

Im Pollendiagramm (Abb. 10) zeigt uns die unterste Probe die Vorherrschaft des Eichenmischwaldes. Interessant ist das sehr frühe Auftreten der Tanne und der Buche. Die gleiche Beobachtung hat auch Härry laut einem Zeitungsausschnitt der «Neuen Zürcher Zeitung» vom 18. Januar 1927 gemacht. In den untersten Schichten der Seekreide findet er ein Birkenspektrum mit 69 % Betula, 21 % Pinus und 10 % Salix. Rechnen wir, wie es allgemein üblich ist, die Weiden zum Unterholz und berechnen deren Prozente getrennt von der Waldbaumpollensumme, so erhalten wir eine ausgesprochene Birkenperiode. Die Birke nimmt nun ab und an ihre Stelle tritt die Föhre. Nun notiert er schon das Auftreten der Eiche und Erle neben demjenigen der Hasel, die auch hier eine mächtige Ausbreitung gehabt haben muss. Härry konstatiert das Haselmaximum mit 221 % Corylus. Sind diese Prozente wie der oben erwähnte Weidenanteil mit in die Waldbaumpollensumme gerechnet, so ergibt sich nach Umrechnung auf die allgemein übliche gesonderte Darstellung der Hasel- und Weidenprozente ein noch grösserer Haselanteil, der sicher zu gross ist. Es ist in diesem Falle wohl möglich, dass sich ein Teil eines Haselkätzchens oder eine Ausschwemmung von Coryluspollen in diesen Proben konserviert hat, eine Erscheinung, die ich auch schon konstatierte, und die durch Nachprüfung vermieden wird. Nun folgt in den oben genannten Untersuchungen der Zeitraum des Eichenmischwaldes, zu dem unsere Ergebnisse einsetzen. Wir finden schon in der folgenden Probe das Auftreten der Fichte und haben somit schon alle durch die Pollenanalyse wahrnehmbaren Waldbäume. Vergleichen wir die Spektren mit solchen aus der Eichenmischwald-Periode anderer Moore des Mittellandes, so erkennen wir, dass während dieser Zeit eine äusserst intensive Ablagerung von Seekreide stattgefunden haben muss; das Vorherrschen der Tanne vor der Buche deutet einen möglichen Ferntransport aus den benachbarten Voralpenmooren an, der das Aatal hinunter stattfinden konnte. Die Fichtenprozente sind zum Teil von den

Tannenprozenten nicht stark verschieden, was auch den Ferntransport andeutet.

Nach der hier sehr lang dauernden Epoche des Eichenmischwaldes folgt die Dominanz der Buche mit 45% Fagus. In diesen Abschnitt fallen die unteren Schichten der Moorsiedelung, also in den Uebergang Neolithikum-Bronzezeit. Die massgebenden Funde aber finden sich in Schichten, die der Tannen vorherrschaft entsprechen, die hier sehr ausgesprochen ist. Da hier eine starke Moorbildung stattfand, findet sich diese Phase während eines längeren Abschnittes sehr deutlich ausgeprägt, nicht nur in einer Probe, wie in den meisten übrigen Ergebnissen der Moore des Mittellandes. Wir finden hier eine sehr wichtige Stütze in der Datierung des postglazialen Waldbildes: Zur Bronzezeit herrschte bei uns die Tanne vor und die Fichte beginnt sich auszubreiten. Zu den gleichen Resultaten ist auch Härry gelangt. Den weitern Verlauf der Entwicklung habe ich nicht verfolgt wegen der Pollenarmut der obersten Torfschichten, aus denen sich nur wenig sichere Pollenspektren konstruieren lassen.

Pfahlbau Burgäschisee (Kanton Solothurn) 470 m ü. M.

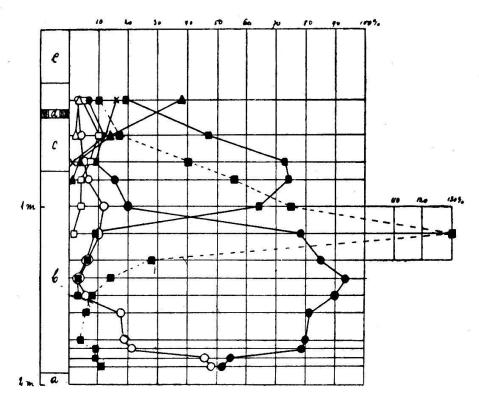
Da sich am Burgäschisee eine bekannte Pfahlbaustation vorfindet, so stattete ich auf meiner Frühjahrsexkursion 1926 diesem kleinen See einen Besuch ab. Herr Professor Dr. Tatarinoff in Solothurn hatte die Freundlichkeit, mir über die Lage der Station Aufschluss zu geben, sodass das Profil von einer Stelle stammt, wo noch nicht gegraben wurde, die aber doch im Bereich der Station liegt. Ich sammelte 50 m vom Nordufer entfernt 15 Proben und erkannte folgenden Schichtwechsel:

0 cm — 30 cm Abraum

30 cm - 80 cm Caricestorf H_4 B_1 R_{1-} V_0 F_0

80 cm — 193 cm Seekreide

193 cm Lehm


a. Lehm.

b. Seekreide. In dieser Schicht sind folgende Molluskenarten bestimmt worden: Limnaea ovata, Planorbis carinatus, P. albus, Bythinia tentaculata, Valvata alpestris, Sphaerium corneum, Pisidium fontinale.

- c. Caricestorf. Bei der mikroskopischen Durchsicht fanden sich stets neben den häufigen Pusteln und Eriophorumfragmenten Sporen von Farnen (Dryopteris, Athyrium filix femina), sowie Typhapollen.
- d. Nach mündlicher Mitteilung von Prof. Dr. Tatarinoffliegt die steinzeitliche Kulturschicht in einer Tiefe von 45-50 cm.
 - e. Abraum.

Abb. 11.

Diagramm Pfahlbau Burgäschisee.

Das Pollendiagramm (Abb. 11) zeigt folgenden Verlauf der Waldgeschichte: In den untersten Proben bemerken wir noch einen deutlichen Birkenanstieg, Betula erreicht beinahe den Anteil von Pinus am Pollenspektrum. Hierauf haben wir zunehmenden Kieferngehalt bis zum Kiefern maxim um mit 94% Pinus, während sich der Rest von 6% auf die Birke und den Eichenmischwald verteilt. Die Haselkurve zeigt nun wieder ihren steilen Anstieg bis zum Corylusmaximum mit 130%. Hier erscheint neu die Erle. Auf die kurze Dominanz der Hasel folgt der Eichen misch wald, der nun längere Zeit die Vorherrschaft führt. Neu sind dabei zu verzeichnen die Buche, die Tanne, die Fichte. In die Zeit des abnehmenden Eichenge-

haltes und der zunehmenden Buchenprozente fällt die Kulturschicht des Pfahlbaues Burgäschi. Das Waldbild des Neolithikums erfährt hier eine neue Stütze. Beim Vorherrschen der Buche in der obersten Probe erkennen wir noch den schönen Tannenanstieg und das Erscheinen der Fichte, sodass sich dieser Entwicklungsgang wieder in allen Phasen an die übrigen Ergebnisse anschliesst.

Pfahlbau Wauwil (Kanton Luzern) 505 m ü. M.

Durch den 20—30 m hohen Endmoränenzug Egolzwil-Ettiswil wurde der Wauwilersee abgedämmt, der heute völlig verlandet ist. Durch die mächtigen Seekreideablagerungen ist seine ehemalige Ausdehnung leicht zu erforschen und ist auf über 470 ha (nach S c h r öter (1904) geschätzt. Das Gebiet dieses ehemaligen Sees ist berühmt geworden durch die Entdeckung und Ausgrabung der Pfahlbauten durch Johannes Meyer in Schötz. Der Entdecker und unermüdliche Forscher hat seine Würdigung durch die eingehende Arbeit von E. Scherer (1924) erfahren. Die pflanzlichen Funde sind von dem besten Kenner der botanischen Pfahlbaufossilien, E. Neuweiler (1924), bestimmt und beschrieben worden.

Beim Pfahlbau Meyer am Rand des ehemaligen Sees ergab sich folgendes Profil:

180 cm Torf 320 cm Seekreide

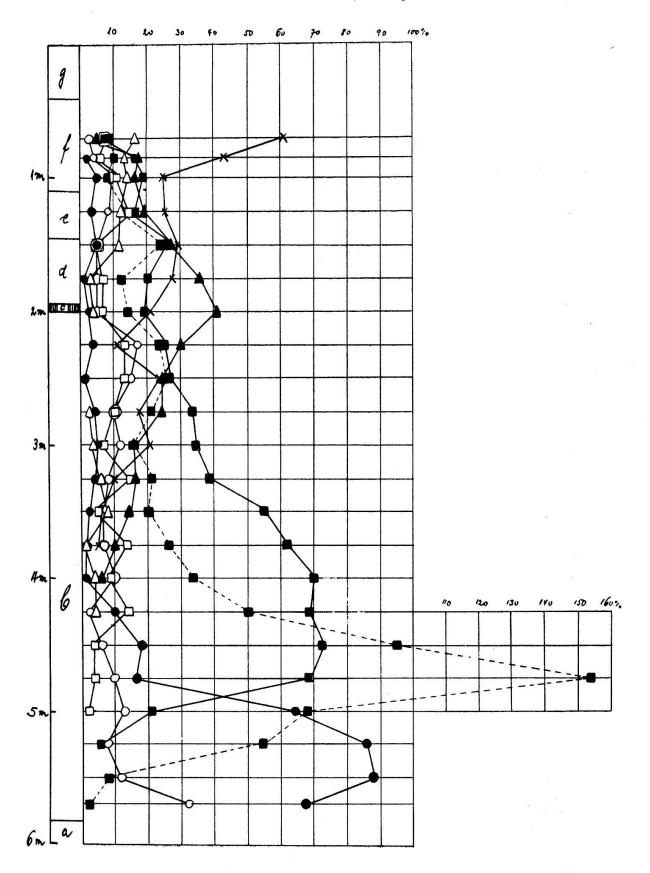
Die Probenentnahme wurde weiter östlich vorgenommen im Moorgebiet Amrein bei Punkt 504 (Torfhäuschen), ca. 30 m vom Ronbach (Kanal) nördlich und ca. 170 m von dessen Brücke östlich entfernt. Diese Stelle gehört in den Bereich des Pfahlbaues Schötz I, der nach den neueren Untersuchungen der beiden Basler Forscher Paul und Fritz Sarasin als zum mittleren und jüngeren Neolithikum gehörig erkannt wurde.

Aus 25 Proben wurde der folgende Schichtwechsel erkannt:

0 cm — 40 cm Abraum 40 cm — 110 cm Caricestorf bei 50 cm etwas verkohltes Holz bei 70 cm H_3 B_1 R_2 V_0 F_0

```
110 cm — 145 cm Equisetumtorf H_4 B_{1-2} R_{1-2} V_0 F_0 145 cm — 190 cm Phragmitestorf H_5 B_1 R_2 V_{0-1} F_0
```

190 cm - 200 cm Kulturschicht


200 cm - 587 cm Seekreide

587 cm Lehm

- a. Lehm. Zäher, blau-grüner Glaziallehm, der auf «Glassand» aufruht, welcher in der Glashütte Wauwil verwertet wird.
- b. Seekreide. Diese 387 cm mächtige Ablagerung ist sehr reich an Molluskenschalen, von denen ich jedoch keine neuen Arten als die bisherigen bestimmen konnte (siehe Mooswangerried, Buhwil usw.). Die zahlreichen Pisidien konnte ich nicht einwandfrei bestimmen. Daneben fanden sich noch einige Reste von Cyperaceen und Gramineen, Pollen und Blattfragmente von Nymphaea und Nuphar luteum, und von Diatomeen Navicula spec.
- c. Kulturschicht, Am Kontakt Seekreide-Torf befindet sich die Kulturschicht, was durchwegs in Scherer's Arbeit erwähnt wird. Hinsichtlich der Pfahlbauten (Packwerkbauten, pflanzliche und tierische Funde) verweise ich auf die erwähnte Arbeit.
- d. Phragmitestorf. Diesen Proben kommt ein Ueberwiegen von makroskopisch wie mikroskopisch leicht erkennbaren Schilfresten (Radizellen) zu, daneben Reste von Eriophorum vaginatum, Sporen von Equisetum und Athyrium filix femina, Haare von Ceratophyllum, Pollen von Typha.
- e. Equisetum torf. Hier herrschen die Reste der Schachtelhalme vor. Die schwarzen einzelnen Glieder sind schon bei der Probenentnahme aus der Bohrerkanne gut zu erkennen. In der einzigen durchgesehenen Probe aus dieser Torfart fanden sich weiter vor: Reste von Eriophorum vaginatum und Sphagnum-Arten, sowie Farnsporen und Blattreste von Nymphaea und Nuphar luteum.
- f. Caricestorf. Die obersten Proben zeigen ein reiches Vorkommen an Pusteln, an *Carices*rhizomen, an Farnsporen und *Erio*phorumresten, ähnlich dem Equisetumtorf.
- g. A b r a u m. Zufolge guter Entwässerung und reichlicher Streuenutzung ist diese Schicht recht mächtig.

Die postglaziale Waldgeschichte lässt bei Betrachtung des Diagrammes (Abb. 12), das aus den 22 Proben konstruiert wurde, folgende Phasen erkennen:

Eine erste Phase der Kiefer mit einem prächtigen Kiefermaximum von 88% Pinus, 12% Betula und 8% Corylus als Unterholz. Die Birkenkurve zeigt in ihrem untersten Verlauf noch einen deutlichen Anstieg, der die vorausgehende Birkenperiode andeutet. Die Moorbildung hat hier etwas später eingesetzt. Der rasche Anstieg der Coryluskurve leitet über zur zweiten Phase der Hasel, in der Corylus mit 157% weitaus überwiegt. Der Verlauf der Haselkurve ist auch in diesem Diagramm sehr typisch. Auf den hohen Kulminationspunkt, der nach einem rapiden Anstieg erreicht wird, folgt ein ebenso rascher Abfall der Kurve. Während dieser Periode ist der Eichenmischwald mit stets steigenden Prozenten vertreten und zwar ist es auch wieder die Linde, die anfänglich den grössten Anteil hat. Die Kurve bildet die dritte Phase des Eichenmischwaldes mit einem Anteil von 55-72% am Gesamtwaldbild. Während dieser ausgedehnten Eichenzeit erscheinen die Erle, die Fichte, die Buche und die Tanne, und zwar erscheint hier die Fichte vor der Tanne. Sie wird aber von dieser bald überholt und verschwindet sogar gegen den Schluss der Eichenperiode und fehlt zu Anfang der Buchenzeit. Erst beim Höhepunkt der Buchenentwicklung erscheint die Fichte wieder im Waldbild mit stets zunehmendem Anteil, wie in den übrigen Mooren des Mittellandes, eine Erscheinung, die ich später besprechen werde. Schröter (1904) hat ebenfalls in den Seekreideproben Picea-Pollen gefunden neben solchen von Tilia, Corylus, Alnus und Betula, sowie Lindenfrüchte, die den Eichenmischwald andeuten, er hat aber diesen Funden keine weitere Beachtung geschenkt. Von den Laubbäumen tritt die Buche bald stark hervor. Sie schneidet die Eichenmischwaldkurve, wir haben die vierte Phase der Buche mit 41% Fagus im Höhepunkt der Kurve. In diese Periode fällt die Kulturschicht der Pfahlbaustation. Von den Archaeologen wurde sie als mittleres und jüngeres Neolithikum erkannt und wir sehen aus dem Waldbild, dass diese Zeit bis zur Dominanz der Buche reichte. Erst mit dem reichen Auftreten der Tanne gelangen wir ins Zeitalter der Bronze. In unserm Profil ist der Anstieg der Tannenkurve recht deutlich, wir haben die letzte Phase der Tanne-Buche-Fichte, wobei die Tanne die grössten Prozente zu verzeichnen hat, die Fichte ist erst im Zunehmen begriffen. Diese Verhältnisse leiten in unser gegenwärtiges Waldbild über.

Pfahlbau Moosseedorf bei Bern 524 m ü. M.

Am Ausfluss der Urtenen aus dem kleinen von quartären Schottern umrahmten Seedorfsee entdeckte um die Mitte des vorigen Jahrhunderts J. Uhlmann, Arzt in Münchenbuchsee den Pfahlbau Moosseedorf. König (1924) hat dessen Lebenswerk in einer Biographie eingehend gewürdigt und die Urgeschichte dieser Gegend neuerdings (1926) beschrieben. Auf diese Arbeit werde ich im letzten Abschnitt der Klimaänderungen eintreten.

Die Station ist in einem mächtigen Ried gelegen, in der von Endmoränen der Rückzugsphase der Würm-Eiszeit gebildeten Mulde des Dorfsees. Heute ist von einem Moor nichts mehr zu sehen, da das ganze Moor, einst ein prächtiger Verlandungsgürtel von *Phragmites*, melioriert worden ist. Nur noch eine schmale Uferzone direkt am See zeigt ein kleines Röhricht von *Phragmites* mit *Typha*, *Carex elata*, *Nymphaea*, *Nuphar luteum* und andern Verlandern.

Am Rand der Siedelung, wo noch nicht gegraben worden ist, etwa 12 m vom Bach und 80 m vom Ufer entfernt wurde eine vollständige Probenserie entnommen von insgesamt 55 Proben. Es liess sich dabei folgendes Profil verfolgen:

0 cm — 70 cm Kultivierter Wiesenboden

70 cm - 155 cm Caricestorf H_{2-3} B_1 R_2 V_0 F_0

155 cm — 165 cm obere Kulturschicht mit verkohltem Holz

190 cm — 200 cm untere Kulturschicht mit verkohltem Holz

165 cm — über 800 cm Seekreide

Der Untergrund (Lehm) wurde nicht erreicht.

a. Seekreide ergibt sich, dass der postglaziale See ehemals eine weit grössere Fläche bedeckte mit einem höhern Niveau als dem heutigen. Wir erkennen die einstige Ausdehnung schon am morphologischen Bild der durch Anschwemmung entstandenen Terrassen.

b. Kulturschichten. In der Arbeit von Gummel (1923) wird die Fundschicht von 100-210 cm angegeben, ich habe aber nur die

selbst konstatierten Schichten eingetragen. Die pflanzlichen Funde hat Neuweiler bestimmt, die Liste findet sich in der Dissertation von Gummel (1923).

- c. Carices torf. Es fanden sich reichliche Schilfrhizome und Blattfragmente, *Carices* resten, Pollen von Typha, Samen von *Menyanthes* und einige *Equisetum* sporen.
- d. Abraum. Zufolge der tiefen Dränage ist der kultivierte Boden sehr mächtig, und die letzte untersuchte Probe stammt aus 110 cm Tiefe.

Das Pollendiagramm (Abb. 13), aus den Resultaten des Zählprotokolles aufgestellt, zeigt uns folgendes Bild: Nach einem geringen Birkenanstieg folgt das ausgesprochene Kiefermaximum mit 81% Pinus und 19% Betula. Wie in den übrigen Entwicklungsfolgen zeigt nun die Hasel, die in der nächsten Probe erscheint, eine äusserst rapide Zunahme ihres Anteils in den Pollenspektren, bis wir mit 150% Corylus das eindruckvolle Haselmaximum haben. Die Kurve ist sehr symmetrisch, nach ihrem Kulminationspunkt fällt sie eben so rasch, wie sie gestiegen ist. Die Vorherrschaft übernimmt der Eichenmischwald, der zu beträchtlichen Werten gelangt von 60-81%. Wie in den meisten untersuchten Mooren ist es auch hier die Linde, die als erste Komponente des Eichenmischwaldes auftritt, dann folgen Ulme und Eiche. Neu kommen in die Zählung während der Eichenzeit die Erle, die Tanne und die Buche. Nach einem kleinen Anstieg der Haselkurve fällt diese auf geringe Prozente hinab. Die Buche hingegen verzeichnet stets grössere Werte, überholt den Eichenmischwald und verzeichnet mit 40% das Buchenmaxim u m. In den Zeitabschnitt, wo die Buche zur Vorherrschaft gelangt, fällt die erste Fundschicht von verkohltem Holz, so dass wir annehmen können, die Station Moosseedorf sei in spätneolithischer Zeit besiedelt worden. In die Zeit der vorherrschenden Buchenwerte fällt die obere Fundschicht, die nach ihren reichen archaeologischen Funden in das Ende des Neolithikums und den Anfang der Bronzezeit (Bronze 1) zu setzen ist. Diese Stellung der Station passt ausgezeichnet in unser postglaziales Waldbild. Wir finden hier also eine neue Stütze (siehe Niederwil S. 22) für die Annahme, dass das neolithische Zeitalter bis zur Vorherrschaft der Buche gereicht hat. Zwischen den beiden Kulturschichten konnte ich in der Torfprobe ein spärliches Auftreten von Fraxinus-Pollen konstatieren. Ich glaube

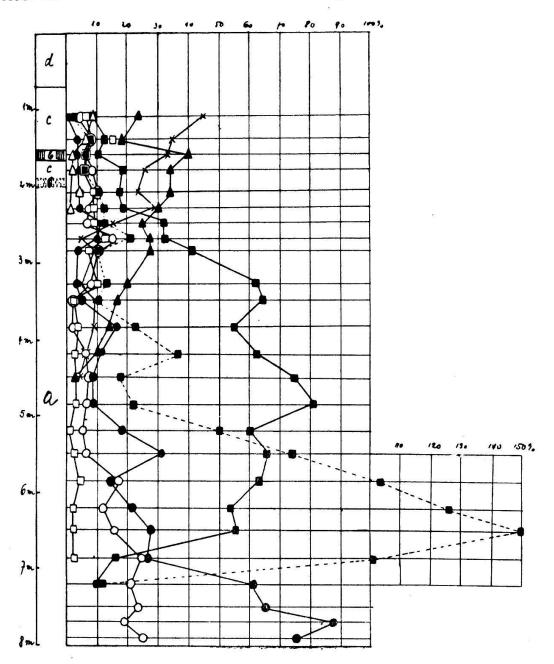
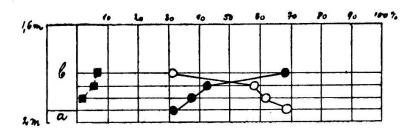



Diagramm Schönbühl-Urtenen

daraus schliessen zu können, dass wenn wir durch die Pollenanalyse die Fraxinus-Pollen nicht zu fassen vermögen, oder nur ganz vereinzeltes Auftreten konstatieren können, wir doch annehmen dürfen, dass die Esche keinen integrierenden Bestandteil des Waldbildes ausmachte zur Zeit des Neolithikums und der Bronze. Auf das Buchenmaximum folgt der deutliche Anstieg der Tannenkurve. Mit dem Pollenspektrum der Buche-Tanne-Fichte schliesst die Untersuchung, die sich in allen Teilen an die übrigen Ergebnisse anschliesst.

Da der Untergrund des Moores mit 8 m Bohrung nicht erreicht wurde, sammelte ich einige Proben bei einer weiteren Bohrung. Diese wurde weiter landeinwärts gemacht, wo die Mächtigkeit der Seekreide eine geringere ist. Im Grundstück von Herrn Dr. Koen ig in Schönbühl-Urtenen ergab sich das folgende Profil:

0 cm — 80 cm Torf 80 cm — 195 cm Seekreide 195 cm Lehm

Die mikroskopische Durchsicht ergab folgende Pollenspektren der einzelnen Proben, die aus den unteren Teilen der Seekreide stammen:

TABELLE 1.

No.	Tiefe	Pinus		Bet	ula	PF	Total	Cor	ylus	Salix	
4 3 2 1	180 cm 185 " 190 " 196 "	94 84 40 42	°/ _° 69 42 38 31	44 116 64 94	°/ ₀ 31 58 62 69	138 340 104 250	138 340 104 136	18 12 2 1	°/° 7 6 2 1	1 2 -	1 2

Wir können somit unsere Untersuchung der Pfahlbaustation Moosseedorf vervollständigen. Zu Beginn der Moorbildung, die in unserem Profil durch die Ablagerung von Seekreide ausgedrückt ist, herrschte die Birke vor mit prozentualen Anteilen von 69—58% gegenüber 31—42% Föhre und einem geringen Unterholzwuchs aus Corylus und Salix von höchstens 6% Anteil am Pollenniederschlag. Mit der Ausbreitung der Kiefer nimmt dann die Vorherrschaft der Birke ab. Wir haben die beginnende Kiefern-Periode, zu der die Untersuchung am Pfahlbau Moosseedorf einsetzt.

Zusamenfassung der Moore des Mittellandes.

Zu Beginn der Moorbildung sind im Mittelland nur Birke und Kiefer nachweisbar. Unter ihnen hat die Birke die unbedingte Vorherrschaft gehabt, wir haben die fast reine Birkenzeit. (Siehe Tabelle 2). Diese Periode ist allerdings nur in 5 Mooren sehr typisch nachweisbar, in 3 weiteren erreicht die Kiefer nicht mehr als 50 % des Waldbildes, diese Moore haben mit ihrer Bildung erst nach dem Höhepunkt der Birkenzeit eingesetzt. In den übrigen Resultaten ist diese Zeit nur durch einen mehr oder weniger deutlichen Anstieg der Birkenkurve angedeutet. Das Alter dieser Periode ist sicher palaeolithisch (Magdalénien). Eine Stütze dafür lieferten uns die zoologischen Funde an den palaeolithischen Stationen im Schaffhauser Becken (siehe Krutzelried, Seite 14). Hier fanden die Schaffhauser Forscher v. Mandach und Sulzberger in reichem Masse den Halsbandlemming vor, der heute im hohen Norden in dem Dryasgestrüpp sehr häufig ist. Im Krutzelried und im Egelsee bei Frauenfeld sind reichlich makroskopische Reste von Dryas octopetala (Blätter) in Horizonten gefunden worden, deren Pollenanalyse das Birkenmaximum ergab. Wir haben hier sicher eine Parallele anzunehmen und wir dürfen die Birkenzeit ins Magdalénien setzen.

Der Anteil der Kiefer wird nun rasch grösser und wir kommen in die reine Kiefernzeit (siehe Tabelle 3). Diese ist in allen untersuchten Mooren zu konstatieren gewesen. Ob Pinus montana oder ihre heutige Unterart der Voralpen P. uncinata, die teilweise auch ins Mittelland heruntersteigt, schon damals vorkam, bleibt noch eine offene Frage. Auch ist es fraglich, ob es schon eine zusammenhängende Walddecke gab, die Pollendichte gibt darüber, wie schon früher erwähnt, kein verlässliches Kriterium ab. Dem mächtigen Anteil der Föhre in den untersten Pollenspektren stehen nur ganz geringe Prozentzahlen der Birke und der Hasel gegenüber, was in Tabelle 3 deutlich zu erkennen ist. Alle andern Baumarten müssen erst in späterer Zeit in das Gebiet gelangt oder zum mindesten dort häufiger geworden sein. Die ersten niedrigen Prozente können auch von Ferntransport herrühren, so dass wir also mit Recht von einer Kiefernzeit sprechen können. Diese ausgesprochene Waldarmut ist durchwegs charakteristisch für das früh-postglaziale Waldbild.

TABELLE 2. — Birkenperiode der Moore des Mittellandes.

Pfahlbau Moossee- dorf	524 m	0/0	69	31	_	I
Pfahlbau Burg- æschi	470 m	0/0	848	52	=	
Böndler- stück	530 m	0/0	93	7	I	
Moos- wanger Ried	268 ш	0/0	43	22	;	
Buhwil	480 m	0/0	43	27		
Pfahlbau Niederwij	412 m	0/0	88	18	I	l
Pfahlbau "Weiher"	456 m	0/0	91	6	4	6
Krutzel- ried	450 m	0/0	88	-	1	9
			Betula	inus	Corylus	Salix

TABELLE 3. — Kiefernperiode der Moore des Mittellandes.

Pfahlbau Moossee- dorf Pfahlbau	m 524		78 81				
Wauwil Pfahlbau Burg-	m 505		78		_		
æschi Böndler-	m 470						
stück Pfahlbau	m 530		5				
Roben- hausen	m 543		88				
Eschli- kon Moos-	220	0/0	5	6	1	9	CI
wanger Ried	1 568 ш	0/0	&	12	-	7.0	1
Buhwil	480 m	0/0	22	25	1	13	1
Pfahlbau Niederwil	412 m	0/0	88	7	-	4	1
Pfahlbau "Weiher"	456 m	0/0	77	33	1	9	-
Krutzel- ried	450 m	0/0	8	20	1	9	ν.
		Accessor	•	•		•	•
			•	•	멀	٠	٠
			•		hwa	•	•
			s S	•	misc	· S	
			Pinus	Betula	Eichenmischwal	Corylu	Salix

Ob wir nun das äusserst rapide Zunehmen der Haselausbreitung auf ein wärmeres, trockenes Klima zurückführen können, darüber haben wir noch keine Anhaltspunkte. Tatsache ist nur, dass diese Ausbreitung rasch vor sich gegangen sein muss, wie der steile Anstieg der Haselkurve zeigt, der zu dem markanten Corylusmaximum führt. In diesem Gipfelpunkt übertrifft die Menge des Haselpollens die Gesamtsumme aller übrigen Waldbäume bei weitem, wir haben Prozente von 100-153, mit einer einzigen Ausnahme des Eschlikoner Torfmoores, wo nur ein deutlicher Anstieg der Kurve zu verzeichnen ist. Doch ist es möglich, dass das Maximum in einer Probe zwischen den untersuchten Proben zu finden wäre, da in dem benachbarten Mooswangerried bei Sirnach das Haselmaximum sehr ausgeprägt ist. Wir haben die Haselzeit (siehe Tabelle 4). Das überwiegende Auftreten des Haselstrauches führt zu der Annahme, dass dieser nicht nur als Unterholz in den Kieferwäldern vorgekommen sein muss, sondern dass er grösstenteils eigene reine Bestände gebildet hat. Die grosse Pollenmenge kann in keiner Weise aus dem lokalen Vorkommen auf den Mooren selbst erklärt werden. Die weitern Untersuchungen der alpinen Moore werden dann zeigen, ob die ganze Verbreitung der Hasel sicher auf ein wärmeres Klima als das heutige zurückzuführen ist. Erst wenn wir höhere vertikale Verbreitungsgrenzen nachweisen können, als die heutigen und Ferntransport des Pollens nicht in Frage kommen kann, wird diese Annahme als gesichert gelten können.

Im Verlauf der Haselzeit gewinnen nun die Komponenten des Eichenmischwaldes grössere Ausbreitung, soweit die erstern niedrigen Prozente auch hier nicht von Ferntransport herrühren. Bald nach dem Haselmaximum überwiegt der Pollen des Eichenwaldes und leitet in die folgende Periode über, in die Eichen misch waldzeit (Tabelle 5). Die Einwanderung ist nicht ganz einheitlich, in den meisten Fällen verzeichnet die Linde anfänglich den grössten Anteil, was auch Stark (1925) für die badischen Bodenseemoore nachgewiesen hat, in einigen Fällen ist es zuerst die Ulme, die überwiegt. Dann überflügelt die Eiche ihre beiden Konkurrenten und verzeichnet dauernd den grössten prozentualen Anteil, ein gemeinsamer Zug aller Moore des Mittellandes. Wenn wir die Tatsache der geringen Pollenproduktion von Quercus berücksichtigen, so muss eine mächtige Ausdehnung der Eichenforste bestanden haben, denen

TABELLE 4. — Haselperiode der Moore des Mittellandes.

Pfahlbau Moossee- dorf	524 m	0/0	150	78	54	18	1	ı	1		
Pfahlbau Wauwil	505 m	0/0	157	21	69	10	1		1	ľ	
Pfahlbau Burg- æschi	470 m	0/0	130	79	11	10	1	l	1	1	
Böndler- stück	530 m	0/0	116	29	œ	23	-	I	I		
Pfahlbau Roben- hausen	543 m	0/0	111	25	42	17	l	10	2	3	
Eschli- kon	270 m	c/ ₀	83	20	09	12	7	1		16	e
Moos- wanger Ried	568 ш	o / ₀	138	36	34	29	-	1	1	1	•
Buhwil	480 m	0/0	107	33	42	24	-			1	
Pfahlbau Niederwil	412 m	0/0	150	27	4	27	-	I	I	I	
Pfahlbau "Weiher"	456 m	0/0	143	61	12	27	ı	I		15	
Krutzel- ried	450 m	0/0	149	37	48	15	ı	l	I	4	•
			Corylus	Pinus	Eichenmischwald	Betula	Fagus	Picea	Abies	Salix	

TABELLE 5. — Eichenmischwaldperiode der Moore des Mittellandes.

	Salix	Corylus	Picea	Abies	Alnus	Betula	Pinus	Fagus	Eichenmischwald			
	1	29	ı	I	ω	Οī	4	_	87	%	450 m	Krutzel- ried
	7	31	ı	_	OI	12	1	Οī	76	0/0	456 m	Pfahlbau "Weiher"
	7	9	ω	4	SI	9	2	13	67	0/0	412 m	Pfahlbau Niederwil
	6	17		1		10	6	7	77	%	480 m	Buhwil
d	9	25	-		1	15	9	00	67	o/o	568 m	Moos- wanger Ried
	∞	13	I	2		1	ω	15	88	0/0	570 m	Eschli- kon
	4	4	ı	13	7	4	4	22	50	0/0	543 m	Pfahlbau Roben- hausen
	1	14	6	21	12	6	ω	20	8	٥/٥	530 m	Böndler- stück
2	ı	40	-	2	∞	4	9	ω	73	0/0	470 m	Pfahlbau Burg- æschi
	1	27	6	16	10	10	=	-	46	%	445 m	Pfahlbau "Riesi"
	1	50	4	1	1	14	ω	10	2	0/0	505 m	Pfahlbau Wauwil
	1	23	I	I	ω	7	9	1	81	0/0	524 m	Pfahlbau Moossee- dorf

noch Linde und Ulme beigesellt waren, Wälder, die in einer solchen Zusammensetzung bei uns heute sehr selten sind.

Sicher orientiert sind wir über das Alter dieser Periode. In die Zeit des Eichenmischwaldes fallen nämlich zahlreiche vollneolithische Pfahlbaustationen, so Niederwil, Thayngen, Robenhausen. Die grosse Anzahl neolithischer Pfahldörfer überdauerte einen langen Zeitraum, was auch die lange Eichenzeit dokumentiert. Die Untersuchung der pflanzlichen Funde der Pfahlbauten haben auch zu einem Bild des damals herrschenden Waldes geführt. Neuweiler (1910) kommt zu folgendem Resultat: « Von der jüngern Steinzeit bis zum Mittelalter drücken die Laubhölzer dem Walde des Mittellandes das Gepräge auf mit Eiche, Esche, Buche und Ahorn als Hauptholzarten. Der Wald war reichlich durchsetzt von der Weisstanne und auch von der In Uebereinstimmung mit den biologischen Eigenschaften waren Fichte und Kiefer ganz seltene Bäume, » Dieses ganz auf qualitative Untersuchungen begründete Bild stimmt mit dem pollenanalytischen Bild gut überein, nur Ahorn-, Taxus- und Eschenpollen sind zufolge ihres geringen Erhaltungsgrades durch die Pollenanalyse nicht fassbar oder ganz spärlich, sie haben auch höchst wahrscheinlich dem Waldbild kein ausschlaggebendes Gepräge verliehen.

Die fünfte Periode ist durch die Ausbreitung der Buche charakterisiert, bei anfangs noch andauernder Vorherrschaft des Eichenmischwaldes. Die Buche bringt es dann zu einem ganz ansehnlichen Maximum, wie die umstehende Tabelle (6) zeigt, sodass wir von einer Buch en zeit sprechen dürfen. Die Untersuchung von Pfahlbaustationen, speziell der klassischen Orte Wauwil, Moosseedorf und Niederwil bei Frauenfeld haben gezeigt, dass diese Periode in ihren Anfängen noch neolithisch ist. Die Steinzeit reicht also von der Vorherrschaft des Eichenmischwaldes bis zur Dominanz der Buche.

Der nun folgende Gang der Entwicklung ist nicht mehr ganz einheitlich. Es kämpfen Buche, Tanne und Fichte um die Führung, wobei letztere allerdings mit nur kleinen Prozenten beteiligt ist, mit Ausnahme der Voralpenmoore. Man nennt daher diese letzte sechste Periode die Buchen-Tannenzeit. Diese hält bis zum Schluss der Torfbildung an und ist der Uebergang in unsere rezente Waldzusammensetzung. In wie weit die Ausbreitung der Fichte auf künstliche Weise zurückzuführen ist, das müssen erst spätere Untersuchungen zeigen. Die Pollenanalysen der Proben aus der bekannten

TABELLE 6. — Buchenperiode der Moore des Mittellandes.

	Salix	Corylus	Picea	Pinus	Alnus	Betula	Abies	Eichenmischwald	Fagus			
	ω	12	l	သ	4	6	Ë	20	56	0/0	450 m	Krutzel- ried
		12	4	1	12	∞	13	17	46	%	456 m	Pfahlbau "Weiher"
	I	13	1	I	Ot	6	10	26	52	0/0	412 m	Pfahlbau Niederwil
	4	4	_	l	7	1	Sı	24	53	0/0	480 m	Buhwil
*	4	4	ω	4	ω	1	4	26	49	°/ _°	568 m	Moos- wanger Ried
	∞	3	1	-	4	14	10	25	16	°/°	570 m	Eschli- kon
	CI	9	I	ı	15	12	51	21	47	o/o	543 m	Pfahlbau Roben- hausen
,	ı	15	57	ω,	6	6	23	18	33	%	530 m	Böndler- stück
	ı	10	ω	7	4	ω	16	29	88	°/°	470 m	Pfahlbau Burg- æschi
	2	14	4	ω	7	4	14	23	\$	0/0	445 m	Pfahlbau "Riesi"
a a	2	14	4	သ	7	Сī	29	19	41	0/0	505 m	Pfahlbau Wauwil
nt of the second	Î	6	2	4	7	ω	34	10	40	0/0	524 m	Pfahlbau Moossee- dorf

Bronzestation «Riesi» am Hallwilersee hat ergeben, dass der Anstieg der Tannenkurve in die Zeit der Bronze fällt. Der Schnittpunkt der Buchenkurve mit der der Tanne zeigt uns ziemlich genau den Anfang der Bronzezeit. Diese Datierung ist höchst interessant und wichtig. Das chronologische Schema von Gams-Nordhagen (1923) stimmt nicht genau, wenn sie das Neolithikum mit dem Eichenmischwald abschliessen, es gehört im schweizerischen Mittelland noch die Buchenperiode dazu. (Siehe Abschnitt Hauptergebnisse.)

b) Obere Stufe.

Pfahlbau Schmiedmoos bei Thierachern (Kt. Bern) 630 m ü. M.

Südlich von Thierachern bei Thun beim Weiler Wahlen zieht sich dem Wahlenbach entlang das Schmiedmoos in einer mittleren Meereshöhe von 630 m. Der Torfabbau ist heute nur noch gering. Das ganze Ried ist melioriert worden und dient zur Streuenutzung. Da man hier zahlreiche Artefakte einer Station aus der Bronzezeit fand, so sammelte ich eine Probeserie, um einen weitern Anhaltspunkt zur Datierung der postglazialen Waldentwicklung zu erhalten.

Als Schichtfolge fand ich ungefähr in der Mitte des Moores:

```
0 cm — 25 cm Abraum
```

25 cm - 82 cm Caricestorf bei 70 cm H_4 B_{1-} R_2 V_0 F_0

82 cm - 134 cm Equisetumtorf bei 120 cm H_3 B_{1-2} R_2 V_0 F_0

134 cm — 270 cm Phragmitestorf

bei 150 cm H₅ B₁ R₂ V₀ F₀ mit viel Phragmites resten

bei 170 cm H_6 B_{1-2} R_{1-2} V_0 F_0

bei 250 cm H_4 B_{1-2} R_{1-2} V_0 F_0

270 cm - 325 cm Bruchwaldtorf

bei 285 cm $\rm H_{3-4}~B_{1-2}~R_{1-2}~V_{1-2}~F_0$

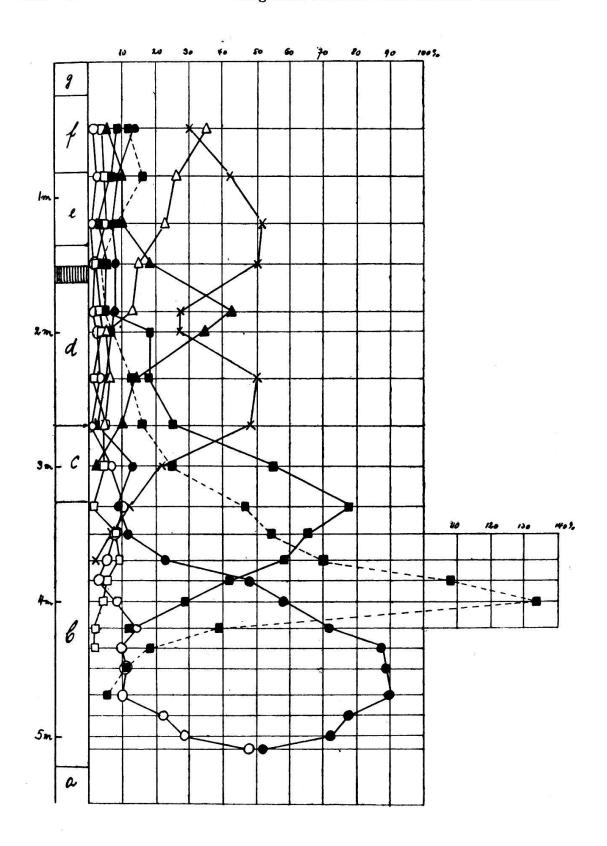
bei 300 cm V

325 cm — 523 cm Seekreide

523 cm Lehm

a. Lehm.

b. Seekreideschichten vom Mooswangerried, Buhwil, etc.: Valvata alp., Limnaea ovata, Bythinia tentaculata, diverse Pisidium spec. und


andere. Daneben kommen noch zahlreiche Desmidiaceen-Hälften vor, die ich nicht näher bestimmen konnte.

- c. Bruch wald torf Diese Torfart ist makroskopisch erkennbar an ihrem reichen Holzgehalt. In 300 cm Tiefe war dieser V_2 . Die mikroskopische Analyse liefert uns als Konstituenten ausser Betula und Alnus, deren Pollen zahlreich sind, noch Carices und Phragmites, die durch reichliche Pustelradizellen und Pollen vertreten sind.
- d. Phragmitestorf. Schon bei der Probenentnahme aus der Bohrerkanne erkennt man das häufige Vorkommen der plattgedrückten Rhizomteile des Schilfs, die als helle Reste aus dem dunkelroten stark humifizierten Torf herausleuchten. Es finden sich weiter zahlreiche *Cyperaceen*-Radizellen, deren Arten aber nicht näher bestimmt werden konnten.
- e. Equisetum torf. Wir notieren das reiche Vorkommen der pechschwarzen Rhizome und Gliederteile von Equisetum spec. Nach Schröter (1904) ist es E. limosum (\pm E. heleocharis). Die Cyperaceen-Resten und die Sporen von Athyrium filix femina fehlen in keiner Probe.
- f. Caricestorf, gekennzeichnet als grobfaserige-rote Schichten. Im mikroskopischen Bild erkennen wir die zahlreichen Pustelradizellen von *Cyperaceen* und einzelne *Filices*-Sporen.

g. Abraum.

Aus dem Pollendiagramm (Abb. 14), das aus den Ergebnissen der 21 untersuchten Proben konstruiert ist, ersehen wir folgenden interessanten Verlauf der Waldentwicklung:

Zur ausklingenden Birkenzeit, als die Kiefer die Birkenbestände durchsetzte und ihren Anteil überflügelte, setzt unsere Untersuchung ein. Der Föhrenanteil ist um einige Prozente grösser als der der Birke, wir erkennen hier gut, dass eine Periode der Birke derjenigen der Föhre vorangegangen ist. In den folgenden Spektren ist nun der Pinus-Anteil ausschlaggebend am Charakter des Waldbildes, das wir als reine Kiefern-Periode bezeichnen dürfen, da 88–90% Pinus nur 11–10% Betula und 2% Alnus gegenüber stehen. Das Unterholz dieser Föhrenhorste ist aus Corylus und Salix zusammengesetzt, von denen aber letztere nur einen ganz geringen Anteil nimmt, während der Haselstrauch mit 6–18% vertreten ist. Neu sind die Erle und der Eichenmischwald vertreten, wobei letzterer mit

der Einwanderung der Linde beginnt. In der Lücke zwischen der fallenden Kiefernkurve und den wachsenden Eichenmischwaldprozenten verzeichnet die Coryluskurve ihren überragenden Kulminationspunkt bei 134%, so dass wir von einer ausgesprochenen Hasel-Periode sprechen können, in der die Hasel nicht nur das Unterholz der Kiefernforste war, sondern dass diese auch eigene Bestände gebildet hat. Die Eichenmischwaldprozente nehmen nun mächtig zu, während die Kiefernkurve und diejenige der Hasel stetig fallen und in der Probe 330 cm konstatieren wir das Eichenmischwaldmaximum mit 77% als Summe von Eichen- und Ulmenpollen, wobei die Eiche den grössten Anteil hat. Die Tanne ist während dieser Periode eingewandert und beginnt bald eine ausschlaggebende Rolle an der Zusammensetzung der Pollenspektren zu spielen. Neu erscheinen am Schluss der Eichenzeit die Buche und nach ihr die Fichte. In der Folgezeit überwiegt die Tanne im Waldbild. Bis zum Abnehmen der Eichenkurve hatten wir den Entwicklungsgang wie eines Moores des schweizerischen Mittellandes, nun aber macht sich der Einfluss der Nähe der Voralpen bemerkbar. In Höhen über 800 m ist das Haselmaximum gefolgt von einer Fichtenzeit, die ihrerseits wieder von der Tanne abgelöst wird. In unserem Diagramm vom Schmiedmoos haben wir nun beide Entwicklungstypen kombiniert, indem die von den Voralpen eingewanderte Tanne den Eichenmischwald verdrängt. Während dieser Vorherrschaft der Tanne gewinnt die Buche an Ausbreitung und verzeichnet in zwei Pollenspektren eine deutliche Dominanz, mit 35% und 42% gegenüber den Anteilen der übrigen Komponenten von 27% beziehungsweise 27% Abies, 18% beziehungsweise 5% Eichenmischwald, 5% beziehungsweise 13% Picea, 7% beziehungsweise 8% Pinus, 4% beziehungsweise 3% Alnus und 4% beziehungsweise 2% Betula. Der Unterwuchs der Buchenbestände ist durch 7% beziehungsweise 4% Corylus vertreten.

Die Verhältnisse in der Zusammensetzung des Waldbildes der Umgebung ändern sich nun wieder zu Gunsten der Tanne auf Kosten der Buche. Die Fichte gewinnt stark an Ausbreitung. In diese Zeit der sich ausbreitenden Tannenwälder fällt die Kulturschicht der Bronzestation im Schmiedmoos. Wir haben hier also eine Stütze des Resultates des Moordorfes «Riesi» am Hallwilersee, dass die Tannenwälder, die nach der Buchenperiode sich ausbreiten, bronze-

zeitlich sind und dass deren Maximum in die Eisenzeit (Hallstattien) überleitet.

Die oberste untersuchte Torfprobe zeigt uns ein Pollenspektrum, das in unser rezentes Waldbild überleitet. Fichte und Tanne sind die ausschlaggebenden Waldbäume, während der Anteil der übrigen Laub- und Nadelhölzer ein ungefähr gleich grosser ist und sich unter 10% bewegt. Nur die Kiefer verzeichnet mit 13% einen höheren Prozentsatz. Der Haselstrauch ist mit 12% vertreten.

Diesen «kombinierten Entwicklungsgang», bei welchem die Verhältnisse des Mittellandes und der Voralpen ineinander übergreifen, finden wir auch in den beiden folgenden Mooren vor.

Tellenmoos bei Escholzmatt (Kanton Luzern) 850 m ü. M.

Zwischen Schüpfheim und Escholzmatt, 3 km von letzterem östlich entfernt, liegt in einem Talboden von 800-900 m in einer mittleren Höhe von 850 m das Tellenmoos. Der Talboden ist stark vermoort, was dieser Flurname, sowie Namen benachbarter Gebiete wie Moosmatte, Feldmoos, Mösli und andere beweisen. Das Moos umfasst etwa 7 Hektaren. Der östliche Teil ist stark abgetorft und dient zur Streuenutzung. Auf den alten Moosfluren finden sich grosse Polytrichum strictum-Polster. Am Südrand des Moores steht ein kleiner Wald aus Sumpfföhren (P. uncinata). Die Mitte des Moores und der nördliche Rand gegen die Siedelungen lässt den Hochmoorcharakter an den zahlreichen Kolken erkennen. Da es zum Teil verlandete, wenig tiefe Torfgruben sind, so sind sie mehr oder weniger regelmässig begrenzt, im Gegensatz zu den natürlichen Kolken der Hochmoore. Wir konstatieren eine üppige Eriophorum vaginatum-Entwicklung und prächtige Sphagnum-polster (Sph. medium, Sph. cuspidatum). Trichophorum alpinum ist etwas eingestreut. Die Randpartien des Moores, ein Flachmoor, bestehend aus einem Molinietum, sind schon kultiviert zu Kartoffel-, Hafer- und Roggenäckern.

Etwa 50 m südlich der Strasse zum Hof «Oberes Tellmoos», in der Kolkregion ergab sich folgender Schichtwechsel:

0 cm - 30 cm Abraum

30 cm — 95 cm Sphagnumtorf

bei 50 cm H_{4-5} B_{1-2} R_{1-2} V_{1-2} F_{0-1} bei 85 cm H_{5} B_{2} R_{1} V_{1} F_{0}

95 cm - 155 cm Caricestorf bei 100 cm H_3 B_2 R_2 V_0 F_0

155 cm — 190 cm Sphagnumtorf bei 170 cm $H_6 B_{1-2} R_{0-1} V_0 F_{0-1}$

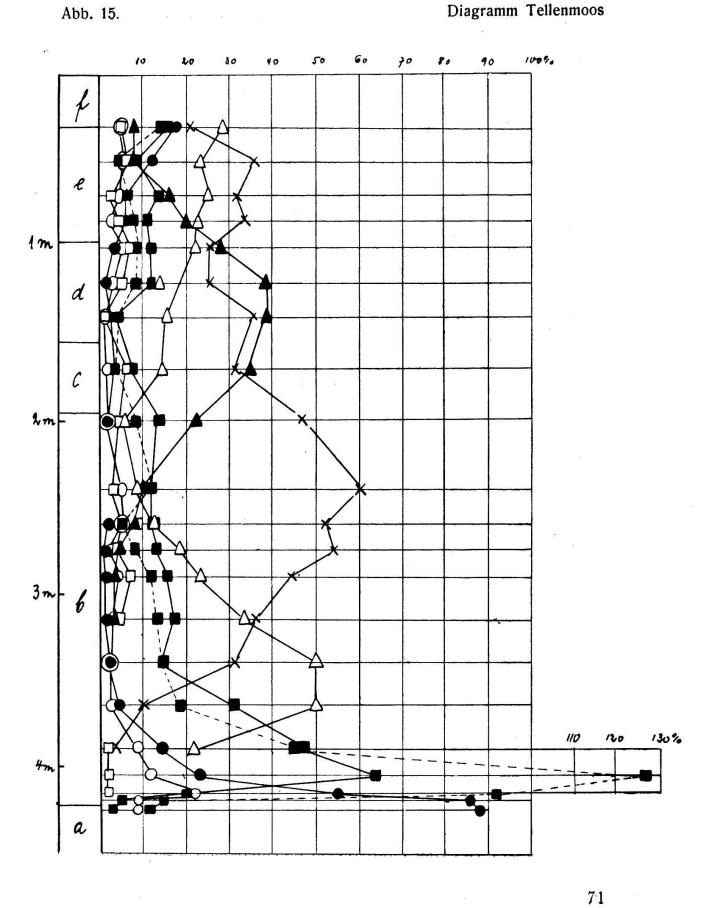
190 cm - 423 cm Caricestorf

bei 220 cm H_{3-4} B_{1-2} R_2 V_0 F_0

bei 275 cm H_4 B_{1-2} R_2 V_0 F_0

bei 340 cm H_5 B_1 R_1 V_0 F_0

423 cm Lehm


a. Lehm. Die Mächtigkeit dieser Schicht wurde nicht näher untersucht.

b. Caricestorf. In dieser 233 cm mächtigen Ablagerung herrschen im mikroskopischen Bild die Cyperaceen-Radizellen vor. Es finden sich daneben noch Pollen von Gramineen und Cyperaceen, von Myriophyllum spec., Sporen von Lycopodien und Athyrium filix femina, sowie einige Charasporen. In den obersten Schichten konstatiert man schon das Auftreten von Ericaceen-Tetraden, von einzelnen Eriophorum-Fragmenten und Sphagnumsporen, die das sich entwickelnde Hochmoor andeuten.

- c. Sphagnumtorf, mit zahlreichen Fragmenten von Sphagnum-Blättchen und -Aestchen, Sporen von Moosen und Bärlappgewächsen, Resten des scheidigen Wollgrases.
- d. Carices torf. Wie in b. reichliches Vorkommen von Carices und Gramineenresten und -Pollen, nebst Sporen von Athyrium filix femina und Dryopteris spec. In den oberen Lagen beginnen die Sphagnum-Fragmente und Sporen.
 - e. Sphagnumtorf wie c.
 - f. Abraum.

Aus 21 analysierten Torfproben ergab sich folgendes Bild der postglazialen Waldentwicklung für diese Gegend von 800—900 m (Abb. 15).

Die Moorbildung setzte ein zur Zeit der Kiefern wälder. Wir haben in den untersten Proben ausgesprochene *Pinus*-Spektren mit 88% und 87% Pinus gegenüber 9% bzw. 10% *Betula* und dem restlichen Anteil von 4% bezw. 3% des Eichenmischwaldes. Diese letzten Prozente deuten darauf hin, dass wir schon in der ausklingenden Kiefernperiode sind. Es folgt nun der Haselanstieg. Mit 127% *Corylus* ist das Haselmaximum erreicht. Wir erkennen auch hier die

deutlich symmetrische Coryluskurve mit ihrem ausgeprägten Kul-Von den Waldbäumen kommt dem Eichenminationspunkt. mischwald der grösste Anteil zu. Es ist die Linde, die zuerst eingewandert ist, gefolgt von der Ulme und Eiche. In der folgenden Probe ändern sich die Verhältnisse: Die Tanne und Fichte erscheinen, während der Eichenmischwald zurückgeht, wie auch im Unterholz der Haselstrauch. Von den Koniferen übernimmt nun die Fichte die Führung, wir haben in 2 Spektren das Fichtenmaximum, das für die Voralpenmoore charakteristisch ist. Alle Waldbäume verzeichnen stets fallende Werte auf Kosten der Tanne, die in stetem Anstieg die Fichte überholt und zur folgenden Phase des Tann en waldes überleitet. Diese Periode ist, wie wir später bei Behandlung der Moore der Voralpen sehen werden, überall stark ausgebildet und dauert während eines langen Zeitabschnittes an. Die Funde von mächtigen Tannenstämmen, die Schröter (1904) anführt, lassen sich durch diese Tatsache gut erklären. Neu ist die Buche eingewandert, deren Anteil ein stets wachsender ist. Nach dem Schnittpunkt der Tannenkurve mit derjenigen der Buche kommen wir in den Abschnitt, da die Buche dominiert. Die Phase findet sich sowohl in den Mooren des Mittellandes als auch in denjenigen der Voralpen. Der nun folgende Verlauf der Kurven ist in beiden Entwicklungsgängen der gleiche. Auf die Vorherrschaft der Tanne folgt die Ausbreitung der Fichte. Die Föhrenkurve zeigt ebenfalls einen deutlichen Anstieg, was vom Föhrenbestand auf dem Moor selbst herrührt. Wir erkennen, dass sich das entwickelnde Hochmoor, auf dem sich schliesslich ein Wald von Hakenföhren (P. uncinata) ansiedelt, auch im Pollenspektrum auswirkt. wird durch den Einfluss der moorbewohnenden Bäume hier keine Trübung der Resultate hervorgerufen. Die Waldzusammensetzung der weitern Umgebung des Moores spiegelt sich hier fehlerlos.

Lautikerried bei Hombrechtikon (Kt. Zürich) 510 m ü. M.

Im Zürcheroberland liegt rechts der Strasse von Hombrechtikon nach Grüningen der Lützelsee. Er liegt in einer Mulde eingebettet, deren grösster Teil vom Lautikerried eingenommen wird. Die Vegetation des Moores wie die Algenflora des Lützelsees ist von Waldvogel (1900) beschrieben worden; ich verweise auf seine Angaben.

Aus 18 Proben ergab sich der stratigraphische Aufbau des Moores als folgender:

0 cm - 45 cm Abraum.

45 cm — 155 cm Caricestorf 70 cm H_{3-4} B_2 R_2 V_0 F_1 130 cm H_4 B_2 R_{1-2} V_0 F_1

155 cm — 225 cm Lebertorf

225 cm - 265 cm Seekreide

265 cm — cm Lehm.

a. Lehm. Dieser zähe Alluviallehm ist nicht bis zu dessen Grund durchbohrt worden, nach Waldvogel beträgt die Mächtigkeit 30-40 cm.

b. Seekreide. Am Bohrpunkt beträgt diese Schicht 40 cm, gegen den See zu ist diese wahrscheinlich noch beträchtlicher. Das Vorkommen von Seekreide ca. 200 m vom heutigen Seeufer entfernt, stützt die Ansicht, dass der See einst eine drei bis vier Mal grössere Fläche einnahm als heutzutage. An Konchylien kommen häufig vor: Planorbis marginatus, Bythinia tentaculata, Valvata cristata, Sphaerium corneum.

c. Lebertorf. 70 m. In dieser Schicht fand Waldvogelbei seinen zahlreichen Grabungen viele Holzresten, Samen und Früchte von Waldbäumen, zum Beispiel von:

Abies pectinata Alnus incana
Picea excelsa Corylus avellana

Pinus silvestris Salix alba Quercus pedunculata Tilia ulmifolia

Taxus baccata Acer pseudoplatanus Fagus silvatica Rhamnus frangula.

Betula pubescens

Vergleichen wir damit die Funde der pollenanalytischen Durchsicht der Proben, so ersehen wir deutlich, dass mit Ausnahme von Taxus, Acer und Rhamnus alle obigen Bäume bei der Pollenanalyse erfasst wurden. Die oben genannten Hölzer, die bei der mikroskopischen Durchsicht nicht erschienen, zeichnen sich, wie an anderer Stelle besprochen wurde, durch geringe Erhaltungsfähigkeit ihres Pollens aus. Sonst stimmt das von Waldvogelauf Grund quantitativer Holzuntersuchungen erhaltene Bild mit dem durch die mo-

derne Pollenanalyse rekonstruierte aufs beste überein, die fehlenden Waldbäume haben sicher nur eine untergeordnete Stelle in der Waldzusammensetzung eingenommen.

In diesem Lebertorf fand er *Trapa natans*, die in einer 30 bis 40 cm mächtigen Schicht vorkam, in einer Tiefe von 2,6 bis 2,9 m. In der Sammlung des botanischen Museums der Eidgenössischen Technischen Hochschule finden sich diese Fossilien, die als *Trapa natans* var. *subcoronata* Nathorst bestimmt worden sind. Es ist natürlich ausgeschlossen, dass bei Bohrungen sich eine *Trapanuss* ausgerechnet in die Bohrkanne hinein « verirrt ». Als weitere Fossilien sind noch zu erwähnen: Samen von *Potamogeton natans*, sowie Pollen der gelben Seerose. Kieselalgen konnten nur als *Navicula* spec. bestimmt werden.

- d. Caricestorf. 140 cm. Es herrschen vor allem die Radizellen vor, daneben sind zu erwähnen Fragmente von *Cyperaceen*, Sporen von Farnkräutern, Equiseten und Moosen.
- e. Abraum. Aus dieser subrezenten Schicht wurden keine Proben mehr entnommen, da zufolge eines raschen Moorwachstums (Verlandungszone) der Torf sehr pollenarm ist und der geringe Pollenniederschlag, der noch vorhanden ist, nur unvollständig sedimentiert ist.

Die Torfausbeute ist sehr gering, der grösste Teil des Riedes wird zur Streuenutzung verwendet, da das Moor stark melioriert ist.

Betrachten wir nun das Pollendiagramm (Abb. 16), das aus den Ergebnissen des Zählprotokolles entstanden ist, und das einen höchst interessanten Verlauf der Waldbaumkurven zeigt, indem sich die Baumfolge der Moore des Mittellandes und der Voralpen im selben Diagramm erkennen lässt.

Bei Beginn der Moorbildung herrschte ein ausgeprägtes Kiefernmaximum mit 73 % Pinus. Vergleichen wir die 27 % Betula mit dem Birkengehalt der nächstfolgenden Probe (13 %), so lässt sich ein deutlicher Anstieg der Birkenkurve konstatieren. Dieses Verlandungsmoor hat sich also erst nach der reinen Birkenzeit zu bilden begonnen. Es folgt nun mit einem rapiden Anstieg die Hasel, die in Probe 250 cm das Hasel maximum verzeichnet. Während dieser Zeit überwiegt von den Waldbäumen weitaus der Eichenmischwald. Von seinen Komponenten ist hier zuerst die Linde erschienen, gefolgt von der Ulme und der Eiche. Wir finden also zuerst die Ein-

wanderungsfolge, wie wir sie in den Mooren des Mittellandes haben. Neu erscheinen Erle, Tanne und Fichte, wovon die letztere rasch zur Dominanz gelangt und eine deutliche Fichtenzeit bildet. Das Fichtenmaximum, dem wir bei der Behandlung der Voralpenmoore begegnen werden, ist an Stelle des Eichenmischwaldes getreten. Hier in der Grenzzone, wo sich beide Waldbilder berühren, erschien zuerst der Eichenmischwald aus dem näher gelegenen Mittelland, der aber von der Fichte, die von den Voralpen in das höhere alpine Vorland vordringt, überholt wurde und nachher seine Vorherrschaft wieder an erstern zurückgeben musste, wie das das Pollenspektrum der Probe 170 cm zeigt. Hier haben wir das Eichenmischwaldmaximum, mit 31 % des letztern bei 20 % Picea, 17 % Abies, 10 % Fagus, 4 % Pinus, 6 % Betula, 12 % Alnus und 14 % Corylus. Die weitere Entwicklung ist dahin zu charakterisieren, dass die Buchenkurve nun einen Anstieg bis zum Buchen maximum in der Probe 110 cm zeigt. Während der Zunahme der Buchenprozente beobachten wir eine steigende Tannenkurve, die in der Probe 150 cm mit 30 % Abies nahe an den Buchenanteil mit 32 % Fagus reicht. Hier spiegeln sich die Verhältnisse der Voralpen wieder, wo auf die Vorherrschaft der Fichte die der Tanne folgt, um dann von der Buche überholt zu werden. Den Schluss der Entwicklung bildet auch hier der Tannenanstieg, wie in den Mooren des Mittellandes. Die Fichte gewinnt neuerdings an Ausbreitung, wir haben das Tannen-Fichten-Buchen-Spektrum.

Zusammenfassung der Moore der obern Stufe des Mittellandes.

Ueberblicken wir die drei Diagramme, so erkennen wir unschwer die grosse Uebereinstimmung in der Entwicklung der Waldzusammensetzung. Wir können leicht die folgenden Phasen herauslesen, die uns nach Behandlung der Voralpenmoore noch mehr verständlich werden.

Die Birkenphase, der wir bei den Mooren des Mittellandes begegnet sind, ist hier in keinem der Diagramme scharf ausgebildet. Nur bei Beginn der Moorbildung im Schmiedmoos bei Thierachern zeigt die Birkenkurve in ihrem untersten Verlauf noch einen deutlichen Anstieg. Die Entwicklung dieses Moores mag in der Zeit eingesetzt haben, wo die sich mächtig ausdehnenden Kiefern die Birken verdrängten, wo der Existenzkampf sich allmählich zu Gunsten der kräftigern Föhre entschied. Das unterste Pollenspektrum verzeichnet noch 48 % Betula gegenüber 52 % Pinus.

In den beiden übrigen Mooren beginnt die Untersuchung zur Zeit der Vorherrschaft der Kiefer, die eine unbedingte ist, wie aus der untenstehenden Tabelle ersichtlich ist:

TABELLE 7.

		855 m	510 m
	°/o	°/o	%
Pinus	90	88	78
Betula	10	9	27
Eichenmischwald	-	3	
Corylus	6	12	12
Salix	3		-

Der Anteil der Birke ist auf 9 %, 10 % beziehungsweise 27 % gesunken.

Ins Unterholz ist die Hasel eingewandert, die noch geringen Anteil hat, bis höchstens 12 %. Die Weide konnte nicht in allen Mooren nachgewiesen werden. Während dieser Periode beginnt sich nun der Haselstrauch stark auszubreiten. Vom geringen Anteil am Unterwuchs nimmt er zu bis zu eigenen mächtigen Beständen, deren Pollenspektren die Dominanz von Corylus mit 89 bis 134 % dokumentieren. Wir sind in der Haselperiode.

TABELLE 8.

					Pfahlbau Schmied- moos 630 m	Tellenmoos 855 m	Lautiker- ried 510 m
				1	°/o	0/0	o /o
Corylus	•	•	٠	.	134	127	89
Eichenmischwald					28	63	38
Pinus					58	23	54
Betula		•			9	12	8
Alnus				.	5	2	
Salix	•					_	3

Die Komponenten des Eichenmischwaldes und die Erle erscheinen neu in der Zählung. Von ersteren ist es die Linde, deren Pollen zuerst konstatiert wird, erst nachher notiert man Eichen- und Ulmen-Pollen. Ihre Anteile wachsen stetig, diejenigen der Erle halten sich im ganzen Verlauf der Entwicklung ungefähr auf gleicher Höhe, die von 2 bis 10% schwanken.

Während der maximalen Ausbreitung der Hasel verzeichnet der Eichenmischwald im Tellenmoos schon seine grösste Entfaltung. Ziehen wir die geringe Pollenproduktion der Eiche und Linde in Betracht, so erkennen wir an den berechneten 63 % eine mächtige Ausdehnung der Eichenforste. Auch in den übrigen Mooren zeigen die Eichenprozente eine grosse Zunahme, die zur Phase des Eichen-mischwalden berechnetet.

TABELLE 9.

1								200	Pfahlbau Schmied- moos 630 m	Tellenmoos 855 m	Lautiker- ried 510 m
									0/0	°/o	°/o
Eichen	m i	sc	h	v a	1 d				67	63	38
Pinus .		•		•					9	23	20
Betula .									10	12	14
Alnus .						3.0			2	2	9
Picea .	٠				•				_		16
Abies .									12	_	3
Corylus	•		•				•		47	127	45
											85

Diese Periode ist, wie die obenstehende Tabelle zeigt, in allen drei Mooren deutlich entwickelt. Nur ihre Stellung im Diagramm, im Verlauf der Waldentwicklung, ist nicht eine ganz einheitliche. Im Tellenmoos bei Escholzmatt fällt diese Phase in die Zeit der vorherrschenden Haselbestände und im Lautikerried in die Zeit, wo der Anteil des Haselstrauches stetig abnimmt. Da das erstere Moor in einem Tal liegt, das in der Voralpenregion beginnt und sich gegen das Mittelland ergiesst, so erhalten wir hier ungefähr in der Mitte in der Höhenlage von 850 m einen Uebergangstypus der Waldentwicklung. Von den höhern Lagen sind die Nadelholzpollen möglicherweise heruntergeweht worden und von den Wäldern des Mittellandes her findet die Einwanderung der Laubbäume statt. Der Einfluss der

höheren Lagen macht sich noch im Lautikerried sehr bemerkbar. In diesem Moor im Zürcheroberland fällt die Einwanderung und Ausbreitung des Eichenmischwaldes ebenfalls in die Haselperiode, während dann beim Zurückweichen des Haselstrauches die Fichte dominiert, was ja in diesen beiden Mooren deutlich erkennbar ist. Da das Schmiedmoos bei Thierachern in einem Tal liegt, das nur durch einen sanften Moränenwall vom breiten Tal der Aare getrennt ist, so finden wir hier noch die Verhältnisse des Mittellandes vor, indem es der Eichenmischwald zur unbedingten Vorherrschaft bringt.

Der nun folgende Verlauf der Kurven zeigt uns die Ausbreitung der Tanne. Im Schmiedmoos erreicht sie nach dem Eichenmischwald und im Tellenmoos nach der Fichte die Dominanz in der Waldzusammensetzung, mit Ausnahme des Lautikerriedes, wo der Eichenmischwald erneut vorherrscht, wie in den Mooren der untern Stufen des Mittellandes. Wir ersehen daraus, wie die Lage des Moores den Entwicklungsgang bestimmt. In diesem letztern Falle ist das Moor ganz in die untere Stufe vorgelagert und die Einwanderung aus dieser Zone überwiegt. In den beiden andern Mooren haben wir ausgesprochene Tannenspektren, mit 50 % Abies im Schmiedmoos und 60 % Abies im Tellenmoos, 14 % bezw. 10 % Fagus, 18 % bezw. 12 % Eichenmischwald, 7 bezw. 9 % Picea und den noch verbleibenden Prozenten bestehend aus Alnus, Pinus und Betula. Der Haselstrauch ist noch mit 13 % bezw. 10 % vertreten. In diese Periode fällt die Einwanderung der Buche. Dieser Waldbaum gewinnt grosse Ausbreitung und wird zum bestimmenden Vertreter der Waldzusammensetzung. Wir haben die Buchenperiode.

TABELLE 10.

					Pfahlbau Schmied- moos 630 m	Tellenmoos 855 m	Lautiker- ried 510 m
					0/0	0/0	°/ o
Fagus		•			42	39	44
Abies		•	•		27	26	18
Picea			:•		13	14	7
Eichenmischwald			•		5	12	17
Alnus		2.42			3	5	7
Pinus		•		•	8	1	3
Betula		•			2	3	4
Corylus		60 - 0	•		4	8	7

In allen drei Mooren ist die Vorherrschaft der Buche eine ausgesprochene mit 39 bis 44%. Von den übrigen Komponenten des Waldbildes verzeichnet die Tanne den grössten Anteil, die nach der Buche die Dominanz erhält. Die Tannen-Fichten-Buchen-ber uch en - Buch en - periode, die für die Moore der Voralpen wie des Mittellandes bezeichnend ist, bildet auch hier den Abschluss der Entwicklung. In die Zeit der Tannenvorherrschaft fällt die Kulturschicht der Bronzestation vom Schmiedmoos bei Thierachern. Wir haben hier eine neue Stütze der Ansicht, dass das Zeitalter der Bronze in die Periode der Tannenforste fällt. Die obersten Spektren zeigen übereinstimmend die Ausbreitung der Fichte, wie wir sie in der untern Stufe der Moore des Mittellandes gesehen haben.

B. Moore der Voralpen.

Einsiedler Moor 890 m ü. M.

Oestlich von Einsiedeln dehnt sich ein mächtiges Plateau längs der Sihl aus, das von zahlreichen Hochmooren eingenommen ist. Es liegt in einer durchschnittlichen Höhe von 880 bis 920 m und deckt nach Düggeli (1903) eine Fläche von ca. 12 km². Auf kalkreichem Glazialton hat sich eine mächtige Torfschicht entwickelt. Da diese ausgedehnten Torflager der Bevölkerung einen der wichtigsten Brennstoffe liefern, so hat ein gewaltiger Abbau eingesetzt, der seinen Höhepunkt wohl in den Kriegs- und Nachkriegsjahren erreichte. Dadurch ist die einheimische Flora zum grössten Teil vernichtet worden. Diese Hochmoore waren bis vor kurzem ein Paradies für die Botaniker, sie bargen eine Reihe seltener nur hier vorkommender Pflanzen, die Zeuge waren von der Gletscherzeit, die einst auch in dieser Gegend geherrscht hat. Heute jedoch sind diese Relikte nur noch in einer kleinen Reservation in wenigen Exemplaren zu finden.

Nach Düggelis Angaben ist bei Hühnermatt-Einsiedeln das mächtigste Torflager zu finden. Bei der 3 m mächtigen Torfwand ergab sich bei der Probenentnahme der folgende Schichtwechsel: 0 cm - 25 cm Abraum

25 cm - 175 cm Eriophorumtorf bei 40 cm $H_{.5}$ B_{1} R_{2-3} V_{0} F_{2} bei 150 cm H_{6} B_{1} R_{2-3} V_{0} F_{2-3}

175 cm — 210 cm Sphagnumtorf

210 cm - 225 cm Caricestorf bei 220 cm H_{4-5} B_1 R_{2-3} V_0 F_1

225 cm - 250 cm Sphagnumtorf bei 225 cm H_5 B_1 R_1 V_2 F_0

250 cm - 340 cm Caricestorf bei 290 cm H_5 B_1 R_{2-3} V_{1-} F_1

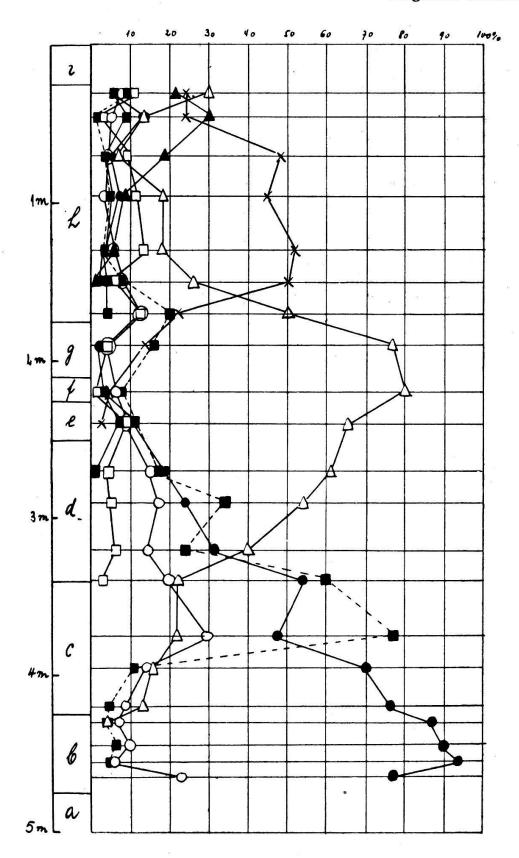
340 cm — 425 cm Sphagnumtorf bei 350 cm H_5 B_1 R_1 V_0 F_0 bei 400 cm H_6 B_1 R_1 V_0 F_0

425 cm - 475 cm Caricestorf

475 cm - cm Lehm.

Das von Düggeli angegebene Profil östlich Hühnermatt stimmt mit obigem gut überein, seine angegebene Torfmächtigkeit, 5,25 m, habe ich allerdings an meiner Bohrstelle nicht erhalten. Die Schichtfolge gibt Zeugnis von dem «Kampf zwischen Hoch- und Flachmoor», wie Düggeli anführt.

- a. Lehm. Die Mächtigkeit dieses zähen grauen Lehms wurde nicht bestimmt. Sie soll sehr verschieden sein, nach Düggelikann das Lehmlager schwanken zwischen 0,2 bis 4 m.
- b. Caricestorf. In dieser untersten Schicht fanden sich vorwiegend *Phragmites* und *Equisetum*reste, sowie gegen die obern Schichten einige *Sphagnum*fragmente und *Ericaceen*tetraden.
- c. Sphagnum torf. Hier herrschen die Sphagnumfragmente vor (Blättchen, Aestchen und Sporen).
- d. Caricestorf. Diese 90 cm mächtige Schicht ist gekennzeichnet durch das Vorherrschen der Pustelradizellen und Rhizome von Cyperaceen, sowie makroskopische Phragmites- und Equisetumresten. Samen von Menyanthes und Pollen der gelben Seerose habe ich weiter bestimmt. Ein genaues Fundverzeichnis findet sich bei Neuweiler (1901).
 - e. Sphagnumtorf. Wie unter c, mit vielen Holzresten.
 - f. Caricestorf. Wie unter d.
 - g. Sphagnumtorf. Wie unter c.
- h. Eriophorumtorf. Vorwiegend aus den gut kenntlichen Schichten des Wollgrases bestehend, mikroskopisch deutliche Reste von Oberhautzellen, daneben noch einzelne *Sphagnum*fragmente.


i. Abraum. 25 cm.

Im « Totmeer » wurde eine weitere Bohrung vorgenommen. Es ergab sich ein ganz analoger Schichtwechsel, und ebenfalls ein holzführender Horizont.

Wenden wir uns nun dem Pollenbefund zu. Das Diagramm (Abb. 17) lässt folgenden Entwicklungsgang erkennen.

Bei Beginn der Moorbildung im Einsiedler Hochtal der Sihl konstatieren wir ein ausgesprochenes Vorherrschen der Kiefer. Die zweitunterste Probe enthält mit 93 % Pinus das Kiefermaxim u m. Daneben kommen noch 7 % Betula und 4 % Corylus vor. Wir sehen in diesem Voralpenmoor die typische Waldarmut, die wir durchgehend bei Beginn der Entwicklung konstatieren können. Die Birkenkurve zeigt in ihrem untersten Teil einen Anstieg, was die vorangehende Birkenphase ahnen lässt, die in die Glazialzeit überleitet, von der einige pflanzliche Relikte uns bis vor kurzem Zeugnis gaben in diesem Hochmoorgebiet. Sehr früh erscheint hier die Fichte. Die Haselkurve zeigt wie in den Mooren des Mittellandes eine rasche Zunahme bis zum Haselmaximum. Inwieweit das Vorherrschen dieses Haselstrauches auf ein wärmeres Klima (Klimaoptimum) schliessen lässt, darüber können erst weitere Untersuchungen in den Voralpen und alpinen Mooren Aufschluss geben, da ein Ferntransport nicht ausgeschlossen ist.

Beim Zurückweichen der Haselkurve bemerken wir ein zweites, doch nicht so ausgesprochenes Kiefermaximum. Dann erobert sich die Fichte andauernd die Vorherrschaft. Der Eichenmischwald, der im Mittelland auf die Hasel folgt, ist mit nur geringen Prozenten vertreten, an seine Stelle ist die Fichte getreten. In der Probe 220 cm ist das Fichtenmaximum zu vermerken mit dem typischen Pollenspektrum: Picea 80 %, Betula 6 %, Abies 5 %, Pinus 4 %, Eichenmischwald 3 %, Alnus 2 % und Corylus 8 %. Während der Fichtenperiode sind die Waldbäume Alnus und Abies neu erschienen. Letzterer nimmt nun stets grössern Anteil an der Waldzusammensetzung, überholt schliesslich die Fichte und in der Probe 130 cm haben wir das Tannenmaximum, mit 51 % Abies bei einem Prozentgehalt der übrigen Komponenten: Picea 28 %, Betula 8 %, Alnus 6 %, Eichenmischmald 4 %, Pinus 2 %, Fagus tritt mit 1 % neu hinzu, die Hasel meldet 8 %. Die Tanne hat nun die ausgeprägte Vorherrschaft von der Fichte übernommen. Nur langsam erhält die

Buche grössern Anteil, um es in Probe 45 cm zur Dominanz zu bringen, die allerdings auf dieses eine Pollenspektrum beschränkt ist; denn in der folgenden Probe ist die Tanne wieder führend geworden, wodurch das Diagramm zu den jetzigen Waldverhältnissen überleitet, die Fichte zeigt dabei einen erneuten Anstieg; wir haben als Abschluss das Tannen-Fichten-Buchenspektrum.

Es lassen sich im Entwicklungsgang folgende Phasen herauslesen:

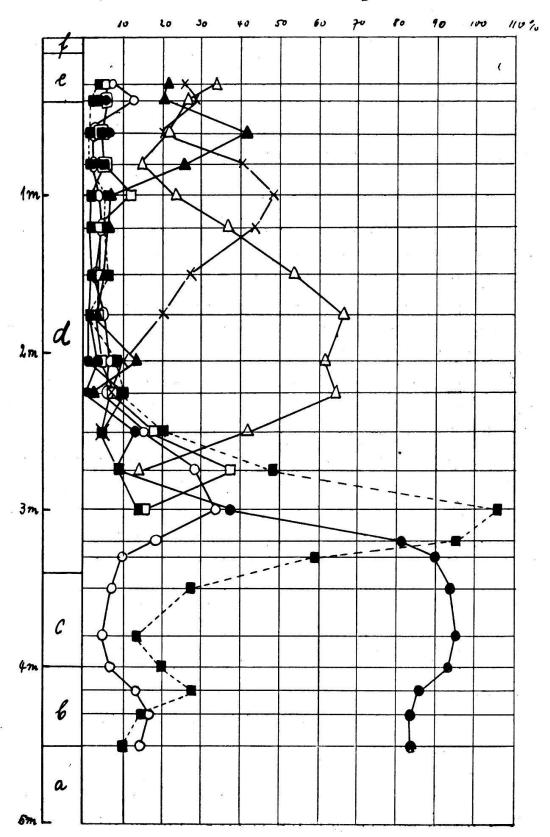
Erste Phase der Kiefer (+ Birke + Hasel)
Zweite Phase der Hasel (+ Kiefer)
Dritte Phase der Fichte
Vierte Phase der Tanne
Fünfte Phase der Buche (+ Tanne + Fichte)
Sechste Phase der Fichte-Tanne.

Moor von Altmatt-Rothenthurm 930 m ü. M.

Das Hochtal der Biber von Rothenturm bis Altmatt ist ein ausgedehntes Hochmoor. Bisweilen findet sich hier die «Hakenföhre», eine Abart der Bergföhre Pinus montana var. uncinata zu lichten Gestrüppen vereinigt vor, die von ihren höhern Lagen hier herunter gestiegen ist. Der Rand des Moorgebietes ist mit jungen Fichtenwäldern geschmückt, die hier vom Menschen eingebürgert wurden auf Kosten der Tanne. Nach den Angaben von Früh und Schröter (1904) ist die Mächtigkeit des Torfes sehr schwankend von kaum einem Meter bis 5 Meter, das als bisher grösstes Ausmass eines Torflagers der Schweiz angesehen wird. Der Torf ist zufolge des Gehaltes an Wollgras-Scheiden ein schlechter Brenntorf. Daher ist die Torfausbeute im Gebiete von Altmatt nur noch eine geringe. Das Moor wird zum grössten Teil nur als Streueried benutzt. Früher wurde (nach Neuweiler 1901) der Torf im grossen als Streutorf ausgebeutet. Nachdem die Ausbeute aber aufgegeben wurde, ist der Preis des Torfes bedeutend gesunken, und nur noch einige verlassene mächtige Torfstiche erinnern an die ehemalige grosse Torfnutzung.

In der Nähe des grossen «Kuscheln»-Gestrüppes (Hakenföhre) im sogenannten «Weiherried» entnahm ich die Probenserie.

Der stratigraphische Abbau war folgender:


340 cm — 400 cm Caricestorf, bei 350 cm H_4 B_{1-2} R_2 V_0 F_1 400 cm — 450 cm Trifariumtorf, bei 420 cm H_6 B_{1-2} R_1 V_0 F_0 450 cm Lehm mit Sand

Durch weitere Bohrungen ergab sich dieses Profil als das mächtigste, da an andern Stellen die Torfschicht geringer als drei Meter war. An diesen Stellen wurden keine Proben entnommen.

- a. Lehm. Dieser graue, zähe Lehm ist stark kiesig. Er wurde nicht bis auf den Glazialschutt durchbohrt. Nach Neuweiler ist seine Mächtigkeit über 1 m.
- b. Trifarium torf. Diese 50 cm mächtige Schicht besteht der Hauptmasse nach aus *Calliergon trifarium*, das schon makroskopisch leicht erkennbar ist.
- c. Carices torf. Das Hypnetum geht über in ein fast reines Caricetum mit ausschliesslich Cyperaceenradizellen.
- d. Eriophorum torf. Diese Torfart ist hier überaus mächtig, volle drei Meter werden davon eingenommen. Bei ca. 150 cm Tiefe ist das Vorherrschen der Wollgrasscheiden so stark, dass den Bauern das Torfstechen durch diesen sogenannten «Lindbast», wie sie die *Eriophorum*scheiden nennen, derart erschwert wird, dass der Torf wagrecht abgebaut werden muss, da an dem grossen Filz ihre Spaten nur abgleiten und nicht zu fassen vermögen. Als Beimengen sind zu erwähnen *Ericaceen*-Pollentetraden, *Typha*pollen und nach oben reichlichere Moosreste.
- e. Sphagnumtorf. Diese 30 cm mächtige Schicht lässt nun deutlich das Hochmoor erkennen.

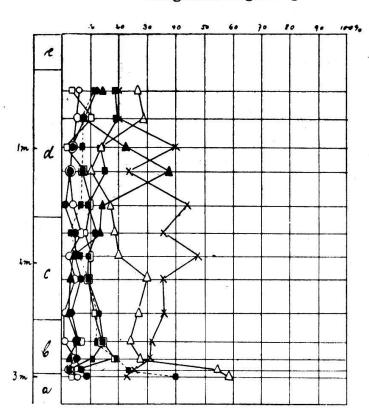
f. Abraum.

Die Pollenanalyse der Torfmoore hat folgendes Bild ergeben: (siehe Diagramm Abb. 18). Die untersten Proben zeigen ein Vor-

herrschen der Kiefer mit 85-95 % Pinus, der Rest ist Birke. Daneben tritt einzig noch die Hasel als Unterholz auf. Wir sehen also auch hier zur Zeit der Moorbildung eine grosse Waldarmut. Die Verhältnisse ändern sich nun zu Gunsten der Hasel, nach einem prächtigen Anstieg notieren wir in der Probe 300 cm das Haselm a x i m u m mit 106%. Dieses Maximum ist ganz analog denen der Moore des Mittellandes. Die Erle ist hier erstmals erschinen. Auf die Ursache dieser Haselperiode können wir hier noch nicht eintreten, da wir dies erst durch mehrere Untersuchungen gesichert wissen müssen. An die Stelle der Hasel tritt nun hier wieder die Fichte, die bald dominiert mit 61-66 %. Im Verlaufe dieser Fichtenperiode erscheinen neu die Pollen der Tanne und der Buche. Die Eichenmischwaldprozente sind ganz gering, die Fichte hat ihre Stelle übernommen, wird aber im weitern Verlauf der Entwicklung von der Tanne überholt. In der Probe 100 cm haben wir das Tannenmaximum mit 49 % Abies, während die übrigen Baumarten mit Prozentsätzen unter 25 % vertreten sind. Für kurze Zeit tritt auch hier an Stelle der Tanne die Buche führend hervor. Die Buchendominanz ist jedoch nur auf eine einzelne Probe beschränkt. Dann überholen Tanne und Fichte die Buche wieder und leiten in das rezente Waldbild über. Der Entwicklungsgang des Moores lässt sich in folgende Phasen gliedern:

Erste Phase der Kiefer (+ Hasel + Birke)
Zweite Phase der Hasel (Kiefer + Birke)
Dritte Phase der Fichte (+ Tanne)
Vierte Phase der Tanne (+ Fichte + Buche)
Fünfte Phase der Buche (+ Tanne + Fichte)
Sechste Phase der Fichte-Tanne,

Diese deutlich zeitlich getrennte Einwanderungsfolge der Waldbäume ist also hier aufs beste zu sehen. Schröters (1904) Ansicht von dem plötzlichen Auftreten der Waldbäume und Dügge-lis Meinung des Fehlens einer bestimmten Entwicklungsreihe im Aufbau der Torflager von Einsiedeln und Altmatt-Rothenturm in eine Birken-Föhren-Eichen-Fichtenzone analog den nordischen Torflagern erfahren hier also eine Korrektur.


Moore auf dem Zugerberg.

Der vordere Geissboden 935 m ü. M.

Hinter dem voralpinen Landeserziehungsheim Zugerberg ob Zug dehnt sich als ein ca. 12 Hektaren messendes Band von etwa 700 m Länge und 120—200 m Breite das Moor «Vorderer Geissboden» aus. Er liegt in einer mittleren Meereshöhe von 935 m, und ist im Süden durch zwei schwache Stirnmoränen vom Schafboden abgegrenzt. In den Nachkriegsjahren wurde das Moor stark abgebaut, so dass heute nur noch im südlichen Teil einige spärliche Reste von der ehemaligen Hochmoordecke erhalten sind mit einem schwach entwickelten Pinetum (P. uncinata) und zahlreichen Sphagneen, Oxycoccus, Vaccinium uliginosum, Calluna, Eriophorum vaginatum, Molinia u. a. An dieser Stelle ergab sich bei der Bohrung folgendes Profil:

Nach Schröter (1904) erreichte der Torf am Nordrande die grösste Mächtigkeit, so dass hier am südlichen Teil uns nicht die ganze Moorfolge erhalten ist, was sich deutlich am pollenanalytischen Bild (Abb. 19) auswirkt.

- a. Glaziallehm. Die Mächtigkeit des Lehms wurde nicht erbehrt, er liegt nach Schröter (1904) auf Moräne auf.
- b. Trifarium torf. Es überwiegen schon makroskopisch bei der Probenentnahme erkennbar die Reste von Calliergon trifarium. Daneben finden sich zahlreiche Cyperaceenreste und einige Menyanthessamen. Die untersten Proben sind noch stark von Mineralsplittern durchsetzt.
- c. Caricestorf. Es ist ein gleichförmiger Radizellentorf, in dem die Pustelradizellen der *Cyperaceen* und *Gramineen* vorwiegen. Neben *Phragmites*-Rhizomen sind noch einige Farnsporen zu ver-

zeichnen. Die obersten Schichten führen schon vereinzelte Eriophorum- und Sphagnumfragmente.

d. Sphagnum - Eriophorum torf. In diesen grobfilzigen bis fein-dünn geschichteten (in den untersten hoch humifizierten) Strata notieren wir das reiche Vorkommen der Reste des scheidigen Wollgrases und zahlreicher *Sphagneen*, sowie deren Sporen. Daneben finden sich viele *Ericaceen*-Tetraden, durchwebt von braunen Mycelien.

e. Abraum.

Wir sind in der ausklingenden Fichtenzeit bei Beginn der Torfbildung am Südrand des Moores, woraus wir aber nicht schliessen können, dass die Moorbildung überhaupt erst zu dieser Zeit eingesetzt hat. Die mächtigen Torflager aus der Mitte des Moores, die uns Zeuge des ganzen Entwicklungsganges des postglazialen Waldbildes auf dem Zugerberg sein könnten, sind uns zufolge des umfassenden Abbaues nicht mehr erhalten. Das unterste Pollenspektrum zeigt uns die Dominanz der Fichte mit 58% Picea, ihr am nächsten kommt die Tanne mit 23%, die übrigen Komponenten der

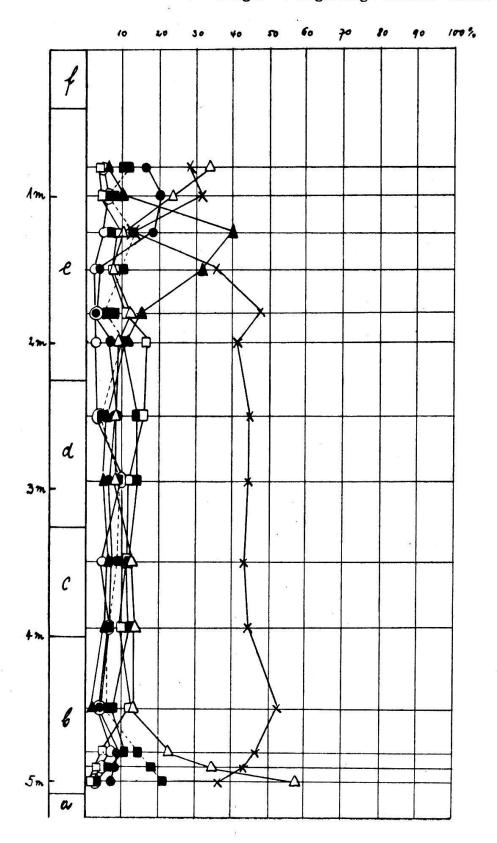
Waldbaumpollensumme verzeichnen einen Anteil unter 10%; die Kiefer 9%, die Birke 6% und die Erle 4%. Der vorherrschenden Fichte am nächsten kommt der Haselstrauch mit 40%, der mit seiner fallenden Kurve, eine der Fichtenperiode vorausgehende Haselzeit andeutet, die wir aus allen übrigen Voralpenmooren kennen.

Die Tanne gewinnt nun stark an Ausbreitung und erobert sich die Vorherrschaft, wir haben wie in dem Diagramm vom Stauffenmoos bei Heimenschwand die lang andauernde Tannenphase. Zu Anfang dieser Periode kommt der Fichte noch der grösste Anteil der übrigen Waldbäume zu, dann aber erhält die Buche, die kurz vor dem Schnittpunkt der Fichtenkurve mit derjenigen der Tanne zum ersten Mal auftritt, stets grössere Werte. Sie überflügelt die Abies-Prozente und leitet über zur Buchenzeit. Diese ist hier aber auch nur in einem einzigen Spektrum deutlich zu konstatieren. Rechnen wir aber damit, dass die Nadelhölzer eine weit grössere Pollenproduktion aufweisen, als die Laubbäume, so erkennen wir in allen Diagrammen eine grossartige Verbreitung der Buche. Nach ihr kämpfen die Tanne und die Fichte um die Vorherrschaft im Waldbild, wobei die letztere in den obersten Spektren die grösste Ausbreitung hat. Diese Tannen-Fichten-Zeit bildet wiederum den Uebergang in das rezente Waldbild.

Der hintere Geissboden 970 m ü. M.

Das südlichste der drei Moore auf dem Zugerberg, die durch langgestreckte Seiten- und kurze Stirnmoränen voneinander abgegrenzt werden, ist der hintere «Geissboden», eine gegen 80 Hektaren messende Fläche. Die Untersuchung wurde im nördlichen Teil dem «Eigenried» vorgenommen. Im südöstlichen Teil ist noch ein kleines Hochmoorfragment erhalten, das von Schröter (1904) beschrieben wird. Die Bohrung wurde an einem Torfauslegeplatz vorgenommen, in der Nähe der über 3 m hohen Torfwände. Die Oberflächenvegetation ist eine rostbraune Decke aus Polytrichum strictum und Ceratodon purpureus, die Moostundra, die die nackten Torfplätze besiedelt. Ausserdem fanden sich das scheidige Wollgras (Eriophorum vaginatum) und zahlreich das Besenried (Molinia

coerulea), wodurch die zerstörte Hochmoorvegetation noch schwach angedeutet wird. Bei der Probenentnahme beobachtete ich:


0 cm — 40 cm Abraum

325 cm — 400 cm Caricestorf bei 380 cm H_5 B_2 R_2 V_0 F_0

a. Lehm. Der Untergrund des Glaziallehms wurde nicht angebohrt.

b. Trifarium torf. Die Blätter von Calliergon trifarium sind gut erhalten und leicht erkennbar, daneben finden sich reichlich Radizellen von Cyperaceen und Gramineen, in den basalen Schichten noch sehr viel Mineralsplitter, wodurch die mikroskopische Durchsicht erschwert wird.

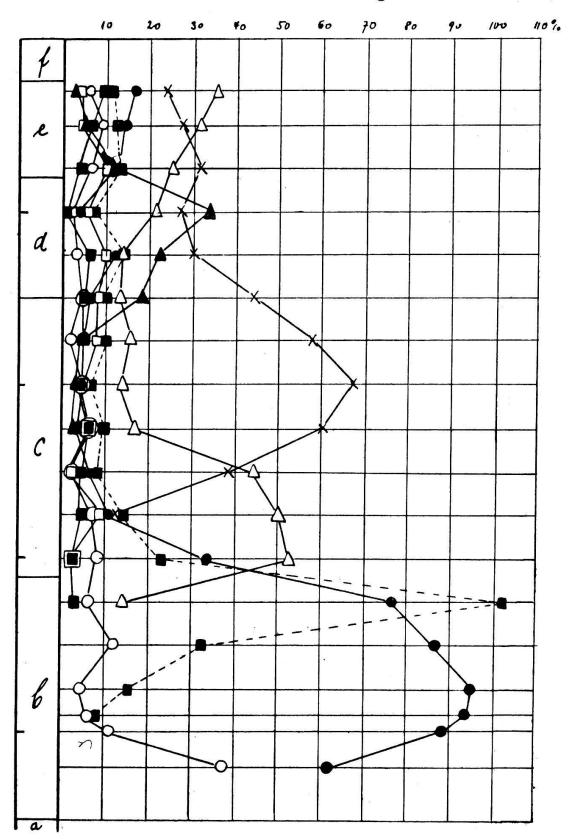
- c. Caricestorf. Makroskopisch finden sich die Reste des Schilfs und zahlreiche Würzelchen von *Cyperaceen* und *Gramineen*. Mikroskopisch erkennen wir Pustelradizellen und Pollenkörner, Sporen von *Filices* und Pollen von *Typha*. Der Gehalt an Mineralsplittern ist sehr gering.
- d. Bruchwaldtorf. Mit häufigen Holzresten. Das mikroskopische Bild ist dasselbe wie unter c. In den obern Schichten erscheinen schon die Reste von Eriophorum und von Sphagneen.
- e. Sphagnum-Eriophorumtorf. Diese 185 cm mächtige Hochmoor-Ablagerung ist gekennzeichnet durch die groben Blattscheiden und Wurzeln des scheidigen Wollgrases und durch die guterhaltenen Stämmchen und Blätter von Sphagneen, eine Unzahl von diese Torfart charakterisierende Mycelien, Sporen von Sphagneen sowie Pollentetraden von Ericaceen. In den basalen Strata finden sich noch Radizellen und zahlreiche Farnsporen.

f. Abraum.

Wie in der Untersuchung des vordern Geissbodens», so sehen wir auch hier im südlichsten Moorbecken des Zugerberges, dass die Torfbildung zur Fichtenzeit (siehe Abb. 20) einsetzte. Da an der Bohrstelle die Lehmschicht mächtig ist, so entspricht das unterste Pollenspektrum nicht dem Waldbild in früh-postglazialer Zeit, sondern ist, wie der Vergleich mit den Ergebnissen der übrigen Voralpenmooren im folgenden Abschnitt zeigt, ein mehr vorgeschrittenes. Auf diese ausklingende Phase folgt die starke Ausbreitung der Tanne, die zur ausgesprochenen Tannenperiode überleitet. Zu Anfang dieser Epoche wandert die Buche ein. Alle übrigen Komponenten sind schon im Pollenspektrum vertreten, die Hasel zeigt abnehmenden Anteil, um sich dauernd unter 10% während der Tonnenzeit zu halten, die Kiefer und die Birke zeigen in ihren Werten nur geringe Schwankungen, die sich unter 10% bewegen. Die Erlenkurve ist ebenfalls ziemlich gleichförmig und schwankt zwischen 5-10%. Von den Komponenten des Eichenmischwaldes, die zusammen einen Anteil von 6-14% haben, ist es die Linde, die zuerst erschienen ist und die grössten Prozentwerte verzeichnet. Die Fichte, deren anfängliche Vorherrschaft an die Tanne übergegangen ist, hält sich dauernd auf 14-9%.

Nach der Dominanz der Tanne, während der sich in diesem Teil des Moores eine über 3 m mächtige Torfablagerung gebildet hat, kommt der Buche die führende Rolle im Pollenspektrum zu, wir sind in der Buch en zeit. Das Pollenspektrum verzeichnet mit 40% Fagus ihre deutliche Vorherrschaft gegenüber den übrigen Waldbaumprozenten: Pinus 18%, Abies 12%, Picea 10%, Alnus 9%, Eichenmischwald 7%, Betula 4%. Der nachfolgende Verlauf der Kurven im Diagramm zeigt uns die Tannen-Fichtenperiode, wobei letztere in der obersten Probe die grösste Ausbreitung zeigt. Damit haben wir wieder den Uebergang in unser rezentes Waldbild.

Wachseldornmoos bei Heimenschwand (Kt. Bern). 1005 m ü. M.


Das Hochland von Heimenschwand, ein von Wallmoränen bedecktes Gebiet der subalpinen Molasse ist mit zahlreichen Mooren bedeckt, die in einer Meereshöhe von 910—1020 m liegen. Die Strasse

von Schwarzenegg nach dem Weiler Wachseldorn führt an den zahlreichen Torfhütten des Wachseldornmoores vorbei. Dieses Moor bedeckt eine 250 m breite und 80 m lange, ca. 19 ha grosse Fläche, die von einem Rottannenwald umschlossen ist. Zufolge des energischen Abbaues ist das Moor fast vollständig zerstört. Viele Aufschlüsse zeigen schon den Moränenschutt. Schröter (1904) schreibt: «Nur an 2 Stellen ist der Hochmoorwald erhalten, so am Südostrand mit 0,8—1 m hohem Blaubeergestrüpp von Vaccinium uliginosum und mehr als 1 m hohen Stöcken des Besenriedes (Molinia).» Die über 6 m hohen Sumpfföhren sind in einem sehr feuchten Untergrund eines Eriophoreto-Paucicaricetums. An dieser Stelle wurde die Bohrung vorgenommen und der folgende Schichtwechsel notiert:

- a. Lehm. Der Moränenschutt auf dem diese Schicht ruht, wurde nicht erreicht.
- b. Caricestorf. In dieser 142 cm mächtigen Schicht finden sich sehr häufig die Pustelradizellen von Cyperaceen und Gramineen, Pollen von Carices, Epidermisfragmente von Phragmites neben vereinzelten Sporen von Filices. Schröter (1904) erwähnt neben dem Pollen von Betula auch den von Picea, was für die obersten Schichten gut stimmt, wie das Diagramm mit der steigenden Fichtenkurve zeigt.
- c. Bruch waldtorf mit reichlichen Holzresten. Die Radizellen überwiegen noch, daneben finden sich häufig Gramineen-Pollen und Phragmites-Fragmente. Die Holzresten sind nach Schröter (1904) solche der Rottanne (Picea), die er in gleicher Tiefe gefunden hat. Dieses Ergebnis stimmt mit dem Pollenspektrum dieser Tiefe gut überein, welches das Picea-Maximum verzeichnet. Diese Ablagerung ist zufolge des geringen Wassergehaltes ein guter Brenntorf.

- d. Equisetum torf mit den pechschwarzen Rhizomen von Equisetum spec. als Leitfossilien. Daneben spärliche Pustelradizellen.
- e. Radizellentorf mit einzelnen Eriophorum vaginatum-Kesten. Die mikroskopische Analyse zeigt neben den Pustelradizellen die Epidermisfragmente des scheidigen Wollgrases. Ericaceen-Tetraden, Sphagnumreste und -Sporen zeigen uns das sich entwickelnde Hochmoor an.
- f. Abraum. In den Randpartien des Moores ist der Torfboden zu kultiviertem Ackerland mit Katoffel-, Kohl- und Haferkulturen umgewandelt worden.

Zu Anfang der Moorbildung (Abb. 21) begann sich der Kieferwald auszubreiten. Der Anstieg der Birkenkurve in ihrem untersten Verlauf deutet noch die vorausgegangene Vorherrschaft der Birke an, auf die auch hier die Dominanz der Kiefer folgt. Mit 88-95% Pinus haben wir ausgesprochene Föhrenspektren, die restlichen Prozente stammen von der Birke. Zur Zeit des Kiefermaximums wandert die Hasel ein und verzeichnet einen schnell wachsenden Anteil an den Pollenspektren. In der Probe 325 cm notieren wir das Haselmax i m u m mit 102% Corylus. Der Kieferanteil ist auf 77% gesunken, der der Birke beträgt 7%. Neu sind erschienen die Fichte mit 14% und von den Komponenten des Eichenmischwaldes die Linde mit 2%. Wie in den bisher betrachteten Diagrammen finden wir auch hier eine symmetrische Coryluskurve, auf einen rapiden Anstieg folgt ein ebenso rascher Abfall des Haselanteils. Der Kulminationspunkt cer Kurve ist in der Mitte. Die Eichenmischwaldprozente sind in den Voralpenmooren stets ganz geringe, in diesem Diagramm betragen sie in keinem Spektrum mehr als 10%. An seine Stelle tritt die Fichte, die den ausschlaggebenden Anteil an der Waldzusammensetzung ausmacht. Wir erkennen deutlich nach den ausgedehnten Haselbeständen das Ueberwiegen der Fichte, die die Hälfte der Pollensumme bestreitet. Während dieser Periode ist die Erle eingewandert, sie hat aber stets nur ganz geringe Prozentwerte zwischen 2-1%. Die Tanne, die ebenfalls neu erscheint, erobert sich rasch die Vorherrschaft, die sie sich während einer längeren Periode der Entwicklung behauptet. Wie sind in der Tannenzeit. Diese beiden Abschnitte entsprechen dem Eichenmischwald des Mittellandes und lassen ebenfalls ein starkes Moorwachstum erkennen, worauf wir

später noch näher eintreten werden. Die Buche wandert zur Zeit der Tannenvorherrschaft ein. Vergleichen wir ihr erstes Auftreten hier mit demjenigen in den Mooren des Mittellandes, so ersehen wir, dass sie in den höhern Lagen später erscheint. Eine Erscheinung, die auf ihren Einwanderungsweg schliessen lässt. Die führende Rolle in der Zusammensetzung der Spektren übernimmt nun die Buche, wir kommen in die folgende Periode: die Buchen zeit. Wie wir bisher gesehen haben, erstreckt sich diese Phase nur über einen kurzen Abschnitt der Entwicklung. An ihre Stelle treten die Tanne, die ihrerseits von der Fichte überholt wird. Der Anstieg der Kiefernkurve in ihrem obersten Verlauf zeigt uns den Hochmoorwald, das Pinetum, an. Wir können auch hier den Entwicklungsverlauf des postglazialen Waldbildes in die folgenden Phasen zusammenfassen:

Erste Phase der Birke + Kiefer
Zweite Phase der Kiefer
Dritte Phase der Hasel
Vierte Phase der Fichte | Phase des EichenmischFünfte Phase der Tanne | waldes im Mittelland.
Sechste Phase der Buche
Siebte Phase der Fichte-Tanne.

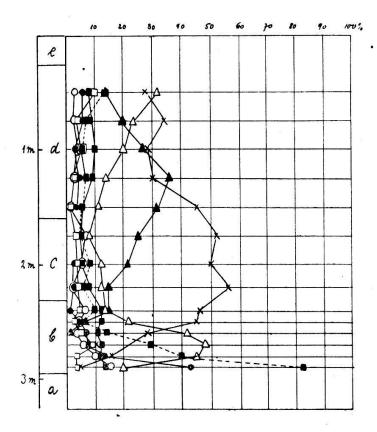
Stauffenmoos bei Heimenschwand (Kt. Bern) 1010 m. ü. M.

Vom Wachseldornmoos gelangt man in westlicher Richtung in das ca. 1 km gegen Heimenschwand entfernt liegende Stauffenmoos. Es umfasst nach Schröter (1904) etwa 20 Hektaren und ist stark abgebaut. Der östliche und nördliche Teil sind zu Mattland oder Ackerboden umgewandelt. Nur am Westrand sind noch einige Reste der ehemaligen Hochmoorvegetation erhalten, Vaccinium uliginosum, Sphagnum cymbifolium, Trichophorum caespitosum, verlandete Torflöcher von Carex fusca und Torfgräben voll Sphagnunm cuspidatum. Die Schichtfolge an der Bohrstelle ist:

```
0 cm — 25 cm Abraum

25 cm — 160 cm Sphagnum-Eriophorumtorf

bei 90 cm H_5 B_{1-2} R_2 V_0 F_1


bei 150 cm H_6 B_{1-2} R_2 V_0 F_{1-2}
```

160 cm — 230 cm Bruchwaldtorf bei 200 cm H_5 B_{1-2} R_2 V_{1-2} F_0 230 cm — 290 cm Caricestorf bei 274 cm H_6 B_{1-2} R_2 V_2 F_0 296 cm Lehm mit Sand

- a. Lehm. Diese sandige Lehm-Ablagerung wurde nicht näher untersucht.
- b. Caricestorf. Wir finden darin stark vertorfte Reste von Wurzeln und Pustelradizellen von Cyperaceen und Gramineen, sowie Pollen von Arten dieser Familien, Sporen von Filices und schon Eriophorum vaginatum-Fragmente und vereinzelte Sphagnum. Sporen, die auch Schröter (1904) erwähnt: «Es sind Reste eines Caricetums, hoch interessant durch das frühe Auftreten des scheidigen Wollgrases». Diese Torfart ist makroskopisch durch ihren reichlichen Holzgehalt ausgezeichnet. Schröter (1904) hat die Holzreste, die an den hohen Torfwänden zutage treten als Rot-Tannenholz (Picea) bestimmt. Die holzführende Schicht fällt wie im benachbarten Wachseldornmoos nach dem Pollenbefund in die ausgesprochene Fichtenzeit. Es decken sich hier das makroskopische und das mikroskopische Ergebnis.
- c. Bruch wald torf. Wie in der vorigen Torfart erkennen wir noch zahlreiche Pustelradizellen von *Carices* oder *Gramineen*, Sporen von *Filices*, sowie vereinzelte *Eriophorum vaginatum*-Reste sind noch zu verzeichnen.
- d. Sphagnum-Eriophorumtorf, der das Hochmoor erkennen lässt, dessen Oberfläche heute zum grössten Teil zerstört ist. Die Radizellen und Pollen der Carices und Gramineen treten im mikroskopischen Bild zurück, an ihre Stelle sind die häufigen Sphagnum- und Eriophorum vaginatum-Fragmente, die Sphagnum-Sporen und Ericaceen-Tetraden getreten.
- e. Abraum. Die Mächtigkeit dieser obersten Schicht schwankt sehr, je nach dem Grad der Umwandlung der Oberfläche in Weidland oder tiefgründigeren Ackerboden.

Die pollenanalytische Untersuchung der Torfproben entwickelt uns folgenden Gang der Waldgeschichte für die Umgebung des Stauffermooses (Abb. 22):

Wir waren in der Haselzeit, als die Torfbildung an diesem Punkte einsetzte. Da die Lehmablagerung eine mächtige ist, so entspricht ihrer Bildung eine geraume Zeit, und wir dürfen als sicher annehmen, dass der Vorherrschaft der Hasel auch hier diejenige

der Kiefer vorausgegangen ist, wie wir im Diagramm (Abb. 21) des nur ein km entfernten Wachseldornmoores gesehen haben, wo sich als erste Phase der Waldentwicklung noch die der Kiefer mit einem deutlichen Birken-Anstieg andeutet. Die Untersuchung von Torfproben an den Randpartien, wo Torfschichten der Lehmablagerung in der Mitte des Moores entsprechen, wird zweifellos diese Annahme bestätigen. Im untersten Pollenspektrum dominiert der Haselstrauch mit 83%. Unter den Waldbäumen hat die Kiefer mit 42% den grössten Anteil, ihr am nächsten kommt die Fichte, die schon 20% verzeichnet. Dann folgen die Birke und der Eichenmischwald mit 15% bezw. 14%. Den Rest bestreiten die Tanne mit 5%, die auch schon eingewandert ist, und die Erle mit 4%. Schröter (1904) erwähnt aus den untersten Torfproben Pollen Picea, Tilia, Betula, Abies, Alnus, und schreibt: «Bemerkenswert sind die Beweise von der frühen Gegenwart verschiedener Laubbäume der Umgebung». Diese Erscheinung können wir in den Voralpenmooren durchgehend machen, dass die Laubbäume mit Ausnahme der Buche schon zur Haselzeit eingewandert sind, während letztere erst zur Zeit der Vorherrschaft der Fichte zum ersten Mal auftritt.

Die Haselkurve zeigt nun ihren rapiden Abfall, den wir vor allen bisherigen Ergebnissen her kennen und der führende Anteil im Waldbild geht über an die Fichte. In diese Periode fällt die Holzschicht in 274 cm Tiefe, die schon Schröter (1904) erwähnt hat. Die gleiche Erscheinung konstatieren wir auch im Wachseldornmoos, in den Mooren von Einsiedeln und Altmatt-Rothenturm eine Erscheinung, auf die wir noch eintreten werden. tritt ganz zurück, während die Tanne an Ausbreitung gewinnt. Im Spektrum, in dem sich der Anteil der Tanne dem der Fichte nähert, kurz vor dem Schnittpunkt der beiden Kurven erscheint zum erstenmal die Buche. Die Tanne überholt nun die Fichte und erhält die ausgesprochene Dominanz, wir sind in der Tannenzeit. Waldbäume mit Ausnahme der Fichte und der Buche machen in der Pollensumme nur Beträge unter 10% aus, erstere anfänglich noch 13-12%, während die Buche kräftig ins Waldbild vordringt. Sie erobert sich nach einem stetigen Anstieg ihrer Kurve die Vorherrschaft, wir notieren die Buchenzeit. Diese ist in unserem Diagramm nur in einer Probe zu erkennen, nachher kämpfen die Tanne und die Fichte um die Vorherrschaft, während die Buche als waldbildender Bestandteil zurücktritt. Diese letzte Phase der Tanne-Fichte, wobei letztere im obersten Pollenspektrum die grösste Ausbreitung verzeichnet, bildet auch hier den Abschluss der Waldgeschichte und den Uebergang in das rezente Waldbild,

Zusammenfassung der Moore der Voralpen.

Die Untersuchung der einzelnen Moore setzt zu verschiedenen Stadien der Entwicklung des Waldbildes ein. Eine Verbreitung der Birke zu Anfang der Moorbildung lässt nur das Wachseldornmoor bei Heimenschwand erkennen, deren unterstes Pollenspektrum einen beträchtlichen Anteil der Birke zeigt, der die vorausgegangene Birkenphase andeutet. Dann folgt die Kiefernperiode, die in der Hälfte der untersuchten Moore zu konstatieren ist.

TABELLE 11. - Kiefernperiode der Moore der Voralpen.

	200	#C	٠			W	Einsiedeln 890 m	Altmatt- Rothenturm 930 m	Wachsel- dornmoos 1005 m
	8. 338333 				 Crest extra		0/0	°/o	°/o
Pinus	1.0	2.0				•	93	95	95
Betula .	•	٠		٠		•	7	5	5
Corylus							4	13	16

Dem überwiegenden Anteil der Föhre stehen nur geringe Birkenprozente gegenüber. Ins Unterholz ist der Haselstrauch eingewandert. Wir erkennen auch in den Voralpenmooren zu Beginn der Moorbildung eine ausgesprochene Waldarmut.

Die starke Ausbreitung des Haselstrauches, der von der Unterholzkomponente mit geringen Werten zum ausschlaggebenden bestandbildendem Strauch anwächst, führt uns in die Haselperiode. (Tab. 12.)

TABELLE 12. — Haselperiode der Moore der Voralpen.

	Einsiedeln 890 m	Altmatt- Rothenturm 930 m	Wachsel- dornmoos 1005 m	Stauffen- moos 1010 m
All II	º/o	°/o	º/o	°/o
Corylus	77	106	102	83
Pinus	48	38	77	42
Picea	21		14	20
Betula	30	33	7	15
Alnus	0,5	15	_	4
Eichenmischwald .	0,5	14	2	14
Abies	_		s ====	5

Neben der Kiefer, die stark zurückweicht, sind als Nadelhölzer die Fichte und im Stauffenmoos schon die Tanne eingewandert. An Laubhölzern verzeichnen wir das Auftreten der Erle und des Eichenmischwaldes, in letzterem ist es die Linde, die sich zuerst angesiedelt hat. Die Haselkurve, die ihren Kulminationspunkt bei 77 bis 106 % verzeichnet, zeigt auch in den Voralpenmooren einen sehr symmetrischen Verlauf. Auf die fast plötzliche starke Ausbreitung folgt eine ebenso rasche Abnahme, an Stelle der Hasel gewinnt die Fichte

an Boden. Diese Entwicklungsphase ist nun in allen sechs Mooren zu erkennen.

TABELLE 13. —	Fichtenperiod	e der Moore	der Voralpen.
---------------	---------------	-------------	---------------

	Ein- siedeln 890 m	Altmatt- Rothen- turm 930 m	Vord. Geiss- boden 935 m	Hint. Geiss- boden 970 m	Wachsel- dornmoos 1005 m	tion in the state of the state
	°/o	°/ o	°/o	°/o	0/0	°/o
Picea	80	66	58	48	50	47
Abies	5	20	23	36	12	10
Pinus	4	2	9	7	16	8
Betula	6	4	6	3	8	6
Eichen-	2007200	2005				
mischwald	3	2	-	4	5	13
Alnus	2	2 3	4	2	9	9
Fagus	-	3	2 000-0	-	_	
Corylus	8	2	-	21	13	29

In den Mooren des Mittellandes ist es der Eichenmischwald, der die Vorherrschaft im Waldbild von der Hasel übernimmt. In den Voralpen ist es durchgehend die Fichte, die eine der Haselperiode folgende Entwicklungsphase ausmacht. Ihre Dominanz mit 47 % bis 80 % ist eine deutliche. Der Eichenmischwald erreicht nur sehr geringe Werte, die im Maximum 13 % betragen (Stauffenmoos). Die übrigen Laubhölzer verzeichnen Werte von 3 bis 9% für die Birke und 2 bis 4 % für die Erle (bezw. 9 % im Stauffenmoos). Die Tanne erscheint während dieser Phase und kommt mit ihrem stets wachsendem Anteil der Fichte am nächsten. Sie erobert sich die Dominanz, wir sind in der folgenden Periode der Tanne (Tab. 14).

In diesem Waldbild finden wir nun schon alle Waldbäume vertreten, die von der Pollenanalyse erfasst werden können. Die Buche ist in dieser Zeit neu erschienen (im Moor von Altmatt-Rothenturm schon zur Fichtenperiode); vergleichen wir ihr erstes Auftreten mit demjenigen in den Mooren des Mittellandes, so erkennen wir hier eine Verspätung, die auf die Einwanderungswege der Buche schliessen lässt. Den Tannenprozenten am nächsten kommen zunächst noch die der Fichte. Die Werte der Kiefer und der Birke sind gleich geblieben wie in der vorangegangenen Phase, ebenso die des Eichen-

TABELLE 14. — Tannenperiode der Moore der Voralpen.

	Ein- siedeln 890 m	Altmatt- Rothen- turm 930 m	Vord. Geiss- boden 935 m	Hint. Geiss- boden 970 m	Wachsel- dornmoos 1005 m	Stauffen- moos 1010 m
	°/o	o /o	°/o	° /o	°/o	°/o
Abies	51	49	48	52	68	56
Picea	18	24	20	14	14	12
Pinus	3	2	5	6	4	3
Betula	6	4	3	5	4	3
Eichen-						
mischwald	3	2	9	8	3	8
Alnus	13	12	10	13	4	4
Fagus	6	7	4	2	3	14
Corylus	3	6	6	7	6	6
Salix) 	.1.		<u></u>		-

mischwaldes. Das Unterholz besteht zur Hauptsache aus der Hasel, der sich noch die Weide zugesellt. Die Erle verzeichnet eine deutliche Zunahme, wir haben Werte von 4 bis 13 %, in der Mehrzahl über 10 %, während zur Fichtenzeit der mittlere Anteil der Erle nur 4 % betrug. Die Buche ist anfänglich nur spärlich vertreten, sie gewinnt aber stetig an Ausbreitung, bis sie in der Buchenzeit die führende Rolle im Waldbild übernimmt.

TABELLE 15. — Buchenperiode der Moore der Voralpen.

	Ein- siedeln 890 m	Altmatt- Rothen- turm 930 m	Vord. Geiss- boden 935 m	Hint. Geiss- boden 970 m	Wachsel- dornmoos 1005 m	Stauffen- moos 1010 m
	°/o	0/o	o/o	°/o	0/0	o /o
Fagus	30	41	38	· 40	35	37
Abies	25	20	2 3	12	28	30
Picea	13	21	10	10	21	13
Pinus	13	5	3	18	5	5
Eichen				SI.		
mischwald	9	5	15	7	1	9
Betula	6	4	3	4	4	3 .
Alnus	4	4	- 8	9	7	3
Corylus	2	2	8	12	7	7

Auf die Tannenforste sind also in den Voralpen die Buchenwälder gefolgt, die in den Mooren des Mittellandes den Eichenmischwald abgelöst haben. Ihre Dominanz ist eine recht deutliche, wenn auch nicht so überwiegende wie in den Maxima der vorangehenden Perioden, je ärmer das Waldbild war, um so schärfer waren die einzelnen Kulminationspunkte zufolge der geringen Konkurrenz der Waldbäume ausgeprägt. Bei der reichen Waldzusammensetzung ist dagegen der Kulminationspunkt der Buchenkurve nicht mehr ein über die andern Kurven hoch erhabener. Ziehen wir die geringe Pollenproduktion der Buche gegenüber den Nadelhölzern in Betracht, so erkennen wir, dass erstere eine grossartige Verbreitung gehabt haben muss. Dem Anteil der Buche nahe kommen die Tanne, die durch sie abgelöst wurde und die Fichte. Diese verzeichnet wieder grössere Ausbreitung als während der Tannenzeit. Die übrigen Waldbäume figurieren unter 10%.

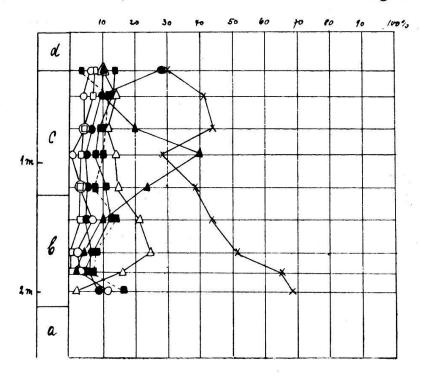
Der nun folgende Verlauf der Baumkurven zeigt die Konkurrenz der Tanne mit der Fichte. Zuerst ist es die Tanne, der der grösste Anteil am Pollenniederschlag zukommt, nachher gewinnt die Fichte dauernd die Vorherrschaft, was auch im heutigen Waldbild zu erkennen ist.

C. Moore des Jura.

Moor von Bellelay (Kanton Bern) 935 m ü. M.

Das ca. 65 Hektaren grosse Moor wird durch die Strasse Tavannesle Fuet-Bellelay in zwei Teile zerlegt. Oestlich der Strasse ist nach
Schröter (1904) ein deutlich über dem umgebenden Flachmoor
gewölbtes, etwa 450 m breites Hochmoor mit einem reinen Pinetum
(P. uncinata) innerhalb eines typischen Sphagneto-Eriophoreto-Vaccinietums mit Oxycoccus, Aulacomnium und kleinen von Sphagnum
plumosum erfüllten Torflöchern, während trockene Zeugen mit Polytrichum-Tundren bekleidet sind. Westlich der Strasse erstreckt sich
das Moor ca. 1,7 km nach Westen. In diesem Teil wurde es stark

abgebaut, wovon die ausgedehnten treppenartigen Torfstiche Zeuge sind. Im südlichen Teil ist noch ein Rest der Hochmoor-Vegetation erhalten geblieben. In einem kleinen Pinetum (P. uncinata) mit Betula pubesceus finden wir eine Hochmoorgesellschaft, bestehend aus Vaccinium uliginosum, Calluna vulgaris, Sphagnum cymbifolium, Aulacomnium und Eriophorum vaginatum. An dieser Stelle ergab sich bei der Bohrung folgender Aufbau des Moores:


0 cm - 30 cm Abraum 30 cm - 125 cm Sphagnum-Eriophorumtorf bei 50 cm H_4 B_2 R_{1-2} V_0 F_2 bei 120 cm $\rm H_{\scriptscriptstyle 5}$ $\rm B_{\scriptscriptstyle 1-}$ $\rm R_{\scriptscriptstyle 1-}$ $\rm V_{\scriptscriptstyle 0}$ $\rm F_{\scriptscriptstyle 0-1}$ bei 150 cm H_4 B_2 R_2 V_0 F_0 125 cm - 212 cm Caricestorf

212 cm cm Lehm.

- a. Lehm. Der Untergrund, auf dem der Glaziallehm aufruht, wurde nicht erreicht, da die Lehmschicht ziemlich mächtig ist.
- Caricestorf. In den untern Lagen ist dieser gleichförmige Radizellentorf noch reich an Mineralsplittern. Charakteristisch sind die zahlreichen Pustelradizellen von Cyperaceen und Gramineen. Daneben notiert man noch makroskopische Reste von Phragmites (plattgedrückte Rhizome), von Equisetum (pechschwarze Rhizomteile), sowie vereinzelte Menyanthes-Samen. In den obern Lagen erscheinen im mikroskopischen Bild schon die Eriophorumfragmente.
- c. Sphagnum-Eriophorumtorf. Diese mächtige Hochmoorablagerung ist durchsetzt von den Scheidenfragmenten des scheidigen Wollgrases, von Stengel- und Blattresten, sowie Sporen der Sphagneen. Als untergeordnete Bestandteile seien noch die Ericaceentetraden und die selten fehlenden Mykorrhiza-Myzelien erwähnt.
- Abraum. Zufolge des Abbaues ist diese oberste Schicht stark beeinflusst. Wo sie noch unberührt ist, lässt sie reinen, stark humifizierten Sphagnumtorf erkennen.

Die pollenanalytische Untersuchung entwickelt uns folgende postglaziale Waldgeschichte für die Umgebung dieses Moores (siehe Abb. 23).

Die Tanne herrschte vor, als die Torfablagerung begann. Da aber die Proben der Randpartie des Moores entnommen wurde, da

in den zentralen Teilen das ganze Profil durch den umfassenden Abbau zerstört ist, so setzt unsere Untersuchung nicht zu Anfang der Moorbildung ein. Welche Entwicklungsphasen der Tannenperiode vorangegangen sind, darüber geben die noch folgenden Juramoore Auskunft. Die Tannenkurve hat in dem untersten Spektrum mit 69 % ihr Maximum. Von den übrigen Waldbäumen sind vertreten: die Fichte mit 12 %, die Birke und die Föhre mit 11 % bezw. 8 %, im Unterholz erwähnen wir die Hasel mit 16%. Während die Tanne allmählich zurückweicht, gewinnt die Fichte etwas an Ausbreitung, sie erreicht jedoch nur die Hälfte des Tannenanteils in ihren grössten Pollenwerten. Die Buche ist zu dieser Zeit eingewandert und erhält stetig grössere Ausdehnung, um dann die Tannenkurve zu schneiden und die Vorherrschaft zu erlangen. Wir sind in der Buchenzeit. Nach ihrer Dominanz, die auf ein einziges Pollenspektrum beschränkt bleibt, wird die Tanne wieder zum führenden Bestandteil im Waldbild. Der Buchenanteil schwindet rasch, dagegen gewinnt die Kiefer an Boden. In dem Anstieg der Kiefernkurve macht sich sehr wahrscheinlich das einst ausgedehnte Pinetum auf dem Moor und in dessen Umgebung geltend, das uns heute nur noch in einigen Fragmenten erhalten ist.

Wir erkennen in diesem Diagramm leicht folgende Phasen der Waldentwicklung:

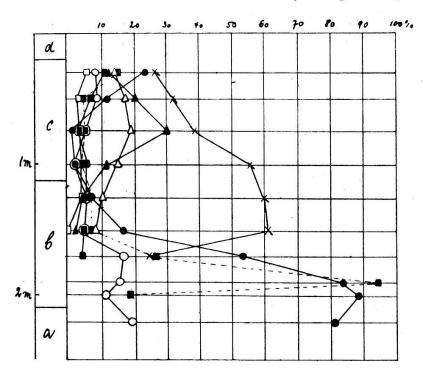
Phase der Tanne
Phase der Buche
Phase der Tanne-Buche-Fichte mit deutlichem
Kiefernanstieg.

Moor du Moulin de la Gruyère (Kanton Bern) 1000 m ü. M.

Etwa in der Mitte zwischen Tramelan und Saignelégier liegt an der Westseite der Strasse die Sägemühle « la Gruyère ». Die zahlreichen Quellen dieses Gebietes bilden den Etang de la Gruyère, dessen Abfluss zum Betrieb dieser Säge, die eine frühere Mühle ersetzt hat, verwendet wird. Der vielfach verzweigte See ist umgürtet von torfigen Ufern, welche von einem prächtigen Hochmoorwald bestockt sind: Das Moor ist wenig abgebaut. Am Boden des geschlossenen Pinetum (P. uncinata) mit eingestreuten Picea excelsa und Betula pubescens finden sich nach Schröter (1904, Seite 443) die Polster eines Sphagneto-Eriophoreto-Vaccinietums aus Sphagnum cymbifolium, Sphagnum acutifolium, Eriophorum vaginatum, Oxycoccus, Andromeda, Vaccinium uliginosum, Gestrüpp von Calluna vulgaris, und am südlichen Rande finden sich 0,5 m hohe Betula nana. Bei der Bohrung am Ufer des Sees ergab sich folgendes Profil:

0 cm — 20 cm Abraum, rezente Wurzelschicht. 20 cm — 115 cm Sphagnum-Eriophorumtorf bei 30 cm H_{5-6} B_2 R_0 V_0 F_1 bei 190 cm H_5 B_2 R_0 V_{1-2} F_{1-2} 115 cm — 210 cm Caricestorf bei 150 cm H_4 B_2 R_2 V_0 F_0 bei 205 cm H_5 B_{1-2} R_2 V_0 F_0

210 cm — Lehm.


a. Lehm.

b. Caricestorf mit den zahlreichen Pustelradizellen von Gramineen und Cyperaceen neben deren Pollen. In den Uebergangsschichten zum Lehm zahlreiche Mineralsplitter, sowie nicht näher bestimmbare Algenkolonien. Im obern Teil der 95 cm mächtigen

Ablagerung erscheinen die Reste des scheidigen Wollgrases und vereinzelte Sphagnumsporen.

- c. Sphagnum-Eriophorum torf. Diese typische Hochmoorbildung ist in ihren untern Teilen reich an den leicht kenntlichen Scheidenfragmenten von Eriophorum vaginatum, die aus dem dunklen Torf hervorleuchten. In den obern Schichten geht der Torf in ein ausgesprochenes Sphagnetum über. Im mikroskopischen Bild herrschen die Moosresten und Sporen vor. Ericaceentetraden und Pilzmycelien sind die bekannten accessorischen Bestandteile.
- d. Abraum. Diese Schicht ist durchsetzt von den Wurzeln der Hochmoorvegetation und wurde nicht mehr untersucht.

Die mikroskopische Durchsicht der Proben ergab schon ein vollständigeres Bild, als wir es im vorigen Diagramm vom Moor von Bellelay kennen gelernt haben. Das Pollendiagramm (Abb. 24) zeigt den Beginn der Torfbildung zur Zeit der Kiefer an. Die unterste Probe verzeichnet einen geringen Zuwachs der Birkenprozente, die eine vorausgegangene Birkenphase noch andeuten mögen, der wir in den Ergebnissen des Moorgebietes von les Ponts-de-Martel noch begegnen werden. Die Dominanz der Föhre ist mit 81-89 % eine ausgesprochene. Anfänglich notieren wir nur noch das Vorkommen der Birke mit 19 bis 11 %, dann wandert der Haselstrauch ins Unterholz ein. Auf einen ersten Anteil von 18 % erhält er eine ausgedehnte Ausbreitung, die uns erlaubt, von einer Haselzeit zu sprechen. Mit 95 % Corylus erkennen wir, dass die Hasel auch im Jura auf die Vorherrschaft der Kiefer gefolgt ist und eigene fast reine Bestände gebildet haben mag. Wie wir in den bisher behandelten Mooren des Mittellandes und der Voralpen gesehen haben, so verzeichnet die Haselkurve einen sehr symmetrischen Verlauf, auf den raschen Anstieg, der im deutlichen Kulminationspunkt endigt, folgt das starke Zurückweichen. An ihre Stelle tritt nochmals die Kiefer, mit allerdings geringeren Werten (54%). Neu sind die Tanne (24%) und die Linde (5 %) als Komponente des Eichenmischwaldes eingewandert. Erstere überholt den Föhrenanteil und führt uns in die folgende Phase der Tannenzeit. Zur Zeit des Maximums der Tanne wandern neu ein die Fichte, die Buche und Erle mit 8 %, 3 % bezw. 1 %. Wie wir im soeben besprochenen Entwicklungsgang des Moores von Bellelay gesehen haben, erlangt die Fichte anfänglich eine stärkere Ausbreitung, wird dann aber von der Buche überholt. Die deutliche

Kulmination der Buchenkurve lässt die Buchenzeit erkennen. Ihr Anteil aber erreicht nicht denjenigen der Tanne, sondern nähert sich ihm nur auf 9 %. Ziehen wir aber die grössere Pollenproduktion der Nadelhölzer gegenüber den Laubhölzern, speziell der Buche gebührend in Betracht, so sind wir, glaube ich sicher berechtigt, von einer Buchenzeit auch in diesem Moor sprechen zu dürfen. Der übrige Verlauf der Entwicklung ist eine Tannen-Buchenzeit mit einer Ausbreitung der Föhre und der Fichte. In diesem obersten Anstieg der Kieferkurve, deren Anteil nahe an den der Tanne reicht, erkennen wir wieder das Pinetum des Hochmoores, dem noch die Fichte beigesellt ist.

Die verschiedenen Phasen der postglazialen Waldgeschichte für den Jura sind in diesem Moor schon vollständiger ausgebildet:

Phase der Kiefer

Phase der Hasel

Phase der Tanne

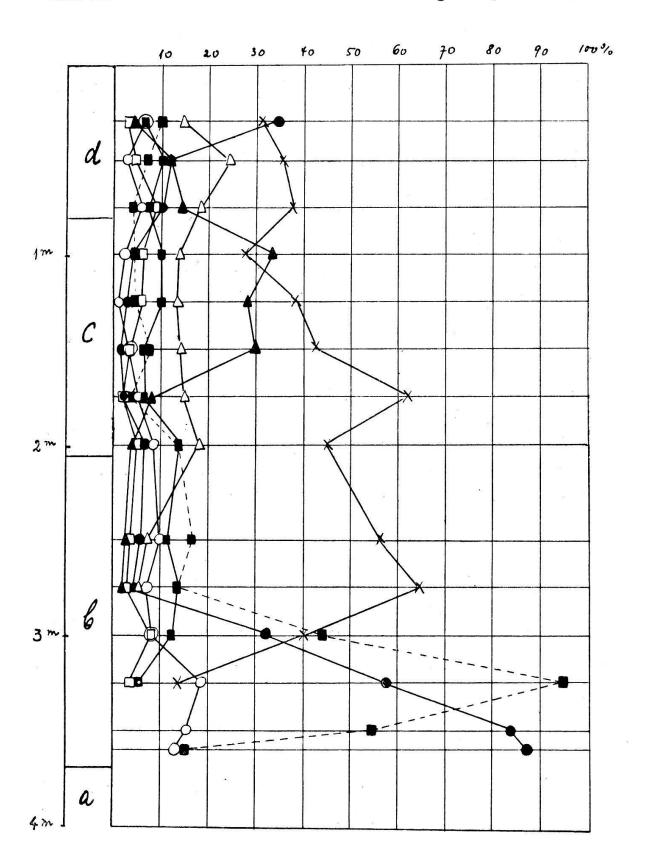
Phase der Buche

Phase der Tanne-Buche-Fichte mit deutlicher Ausbreitung der Kiefer.

La Chaux de Breuleux (Kanton Bern) 990 m ü. M.

Nördlich der Bahnlinie Tramelan - La Chaux sur Breuleux breitet sich in der flachen mit Molasse ausgekleideten Mulde von le Cernil im NE gegen les Breuleux im SW ein etwa 60 Hektaren grosses Moor aus. Die ursprüngliche Hochmoordecke ist im Osten nach Schröter (1904, Seite 444) durch einen Brand vom Jahre 1875 zerstört worden. Daher findet man dort die Betula nana nicht mehr. Während der Nachkriegsjahre hat ein gross angelegter Torfabbau eingesetzt, so dass heute nur noch spärliche Reste der einstigen Oberflächen-Vegetation erhalten sind. Im Westen haben wir noch einen krüppeligen Niederwald von kaum einem Meter hohen Sumpfföhren und zwergigen Picea excelsa. Höhere Pinus uncinata sind gehauen worden und die zahlreichen Stummel verraten, dass die Schaufel des Torfarbeiters auch hier in diesen letzten Resten bald eingreifen und vernichten wird.

Die Bohrung wurde in der Mitte des Moores vorgenommen, etwas östlich der Ecke der Gemeindegrenzen, die hier mit Stacheldraht gekennzeichnet sind. In der Nähe befindet sich noch ein ziemlich geschlossener Pinus uncinata-Bestand innerhalb eines Sphagneto-Eriophoreto-Vaccinietums mit reichlich Trichophorum alpinum. Nackte Torfflächen sind mit Polytrichum commune-Polstern bedeckt, oder von Calluna besetzt. Als Profil ergab sich:


a. Lehm. In dem (ausgelaugten) Glazialton des Rhonegletschers fanden sich weder Konchylien noch pflanzliche Reste. Seine Mächtigkeit wurde nicht erbohrt.

b. Caricestorf. Sehr stark vertorfter Radizellentorf aus Gramineen und Cyperaceen. Ausserdem sind Farnreste und Farnsporen aufzuführen. Schröter (1904, Seite 445) erwähnt Linden- und Birkenreste sowie Pollen von Picea, Pinus, Tilia und Betula. Diese Funde stimmen mit dem pollenanalytischen Ergebnis gut überein. Es ist aber möglich, dass es Abiespollen sind und keine Piceapollen, die er an erster Stelle erwähnt, und die in dieser Torfschicht sehr häufig sind.

e. Sphagnum-Eriophorumreste enthalten, wird der Torf gegen oben zu fast reinem Sphagnetum mit wenig Hochmoormycelien und einzelnen Vaccinienpollentetraden. Schröter (1904) führt als Fossilien ausserdem an: Pinusnadeln, Pollen von Picen und Betula, was mit dem Pollenbefund gut stimmt. Die Funde von Kiefernnadeln lassen sich mit der letzten Ausbreitung der Kiefer gut erklären.

d. Abraum. Diese Schicht ist an der Bohrstelle schon entfernt worden, da der Boden zur Torfausbeutung «präpariert» wurde.

Wir sind in der ausklingenden Kiefernzeit als die Torfbildung an dieser Stelle einsetzte (siehe Abb. 25). Mit 84-87% dominiert die Föhre im Waldbild gegenüber einem Birkenanteil von 16-13 %. Unterholz erscheinen Weide und Anstieg der Birkenkurve, der ein Sinken der Kiefernwerte zur Folge hat, ist hier nicht wie im benachbarten Moor du Moulin de la Gruyère nachzuweisen. Der nun folgende Verlauf der postglazialen Waldentwicklung ist dagegen genau derselbe, wie wir ihm in den schon besprochenen Mooren begegnet sind. Die Hasel gewinnt nach der Kiefer die grösste Ausbreitung, wir haben die Haselperiode, in der sie mit 95 % den grössten Anteil besitzt. sind zu verzeichnen die Tanne mit 14%, die Linde mit 3%, die Eiche mit 2% und die Erle mit 4%. Von den Komponenten des Eichenmischwaldes ist also auch hier die Linde der erste Ansiedler. Von den Waldbäumen erhält die Tanne den grössten Anteil und leitet den folgenden Abschnitt ein: die Tannenperiode. Die Dominanz der Abiesprozente ist eine lang andauernde, was auf starkes Moorwachstum schliessen lässt. Zur Zeit des Tannenmaximums verzeichnen wir die Einwanderung der Fichte und der Buche, die anfänglich mit nur geringen Anteilen am Pollenniederschlag vertreten sind. Vergleichen wir den Verlauf der Fichtenkurve mit demjenigen des Diagramms von Bellelay, so erkennen wir eine spätere

Einwanderung und langsamere Ansiedelung dieses Nadelbaumes. Der Anstieg der Fichtenkurve zur Tannenzeit ist hier nur ganz schwach angedeutet, im Gegensatz zu obiger Mooruntersuchung. Auf diese Erscheinung, die bei Behandlung der Moore von les Ponts-de-Martel noch deutlicher hervortritt, wird später noch näher einzutreten sein.

Die Vorherrschaft der Tanne geht nun über an die Buche, die in der Probe 100 cm ihr Maximum verzeichnet. Ihr am nächsten in der Zusammensetzung des Waldbildes kommt die Tanne, dann folgen die Fichte, der Eichenmischwald, die Erle, Kiefer und die Birke, sowie auch der Haselstrauch. Die Buchenzeit ist auch in diesem Moor auf eine einzige Probe beschränkt. Die Tanne überholt wieder den Buchenanteil, und die Fichte zeigt vermehrte Ausbreitung, als Uebergang in unser rezentes Waldbild. Der Anstieg der Pinus-Kurve in ihrem obersten Verlauf mag als Folge des Ueberganges der Hochmoorvegetation zum Pinuswald gedeutet werden.

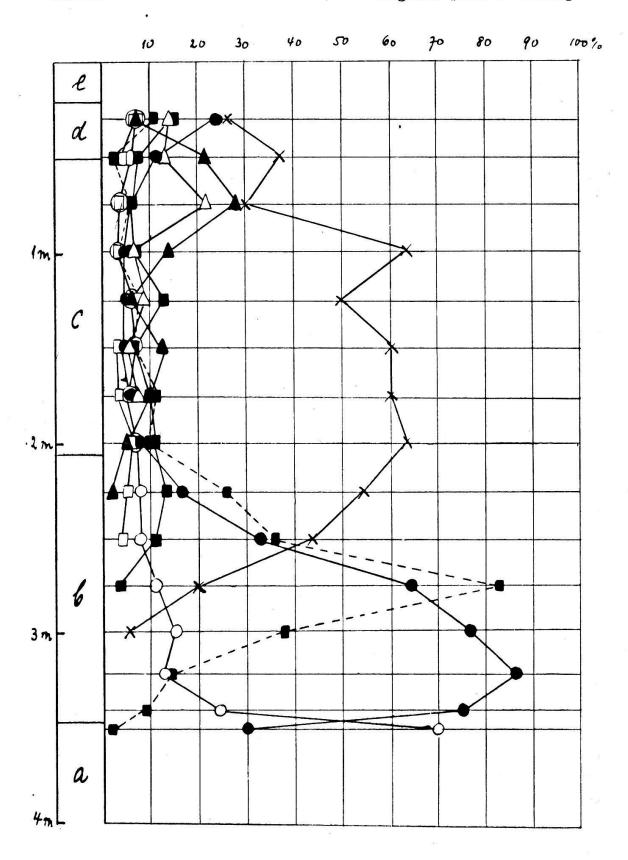
Moore von Les = Ponts = de = Martel (Kt. Neuenburg) 1000—1018 m ü. M.

Von La Chaux-de-Fonds gelangt man in südöstlicher Richtung mit der Bahn in das kahnförmige blinde Tal von Les Ponts de Martel-La Sagne. Das 18,6 km lange Tal ist auf eine Länge von annähernd 14 km von Mooren bedeckt, mit einer Fläche von ursprünglich über 17 km² (nach Schröter 1904, Seite 455). Der Rhonegletscher und lokale Eisströme haben auf den jurassischen und kretacischen Kalken, die von schwer durchlässiger Molasse bedeckt sind, ihre Moränen abgelagert. Da aber die untersten Moorbildungen, der Glaziallehm, stets mächtig ist, so wurde dieser Moränenschutt nirgends angebohrt.

Mitten durch das Moor fliesst der «Bied», ein Bach, der im Hochsommer ziemlich tief sein kann. Durch ihn wird das grosse Moorgebiet in eine westliche und östliche Hälfte geteilt. Die Bohrungen wurden einerseits in der Mitte des westlichen Gebietes «Voisinage» und im südwestlichen tiefsten und breitesten Teile «Emposieux» ausgeführt.

Moor Sous le Voisinage

Oestlich der Strasse von Les Ponts nach Martel dehnt sich das Moorgebiet sous le Voisinage aus. Zwischen diesem und dem eigentlichen Moor beobachtet man einen Streifen meliorierten Landes. Die entwässerte Moorerde eignet sich gut zur Kultur von Kohl, Kartoffeln und Hafer. Durchschnittlich 250 m vom Weiler «le Voisinage» entfernt, befinden sich mächtige Torflager, die stark abgebaut worden sind. Die Mächtigkeit beträgt 3—4 m, die Torfstiche sind über 2½ m hoch. In der südöstlichen Ecke erkennen wir an den spärlichen Resten die ehemalige Hochmoordecke. Betula nana ist stellenweise recht zahlreich mit Pinus uncinata und einem Unterwuchs aus Calluna, wenig Eriophorum vaginatum und Trichophorum caespitosum. Das Profil zeigt folgenden Aufbau:


...

a. Lehm.

b. Caricestorf. Die vielen Pustelradizellen von Cyperaceen und Gramineen deuten die Flachmoorvegetation an, die zuerst geherrscht hat. In den tiefen Proben haben wir reiche Beimengung von Mineralsplittern, und häufig Rhizome von Phagmites. In 320 cm stösst man auf Holzresten, die Schröter (1904) in entsprechenden Tiefen dieses Moores auch gefunden und als Pinusholz bestimmt hat. Der Horizont fällt in die ausgesprochene Kiefernzeit, die Bestimmung erhält ihre volle Bestätigung. In den obern Teilen dieses Torfes befinden sich zahlreiche faserige Reste, die nach Schröter Blattscheiden von Scheuchzeria palustris sind, und die Zwischenmoorvegetation dokumentieren. Die Probe aus 225 cm verzeichnet schon das Auftreten von Eriophorum-Fasern und vereinzelten Sphagnum-Resten.

- c. Sphagnum-Eriophorumtorf. Es ist faseriger, deutlich erkennbarer Hochmoortorf, mit den bisher beschriebenen Bestandteilen.
- d. Sphagnum torf. Die mächtige Ablagerung unter c. geht oben in reinen Sphagnumtorf über, der sehr hoch humifiziert ist H_{e-7} . Wir notieren bei der mikroskopischen Analyse: stark vertorfte Sphagnumfragmente, vereinzelte Epidermisreste des scheidigen Wollgrases, Hochmoormycelien, Pollentetraden von Ericaceen und Sphagnum-Sporen. Schröter (1904, Seite 461) erwähnt Pollen von Picea, P. montana, Tilia und Betula. Wie er aber den Pollen der Bergföhre von dem der Waldföhre unterscheiden konnte, darüber finden sich keine Angaben.
 - e. Abraum mit Wurzeln der rezenten Vegetation.

Die pollenanalytische Untersuchung (Abb. 26) zeigt uns, dass die Moorbildung zur Birkenzeit eingesetzt hat. Mit 70% Betula und 30% Pinus, als Unterholz 2% Corylus ist diese Periode deutlich ausgeprägt. Das unterste Pollenspektrum gehört schon der ausklingenden Birkenphase an, denn die Betulawerte nehmen nun bedeutend ab auf Kosten der Kiefer. Dieser Waldbaum erhält nun wie in allen übrigen Diagrammen eine grossartige Ausbreitung, wir haben die reine Kiefernzeit. Nach dem Maximum der Föhrenkurve konstatieren wir den starken Anstieg derjenigen der Hasel. In diese Zeit fällt die Einwanderung der Tanne. Das Pollenspektrum aus 300 cm verzeichnet: 78% Pinus, 16% Betula, 6% Abies und 38% Corylus. Die folgende Probe führt schon das Haselmaxim u m mit 83% Corylus gegenüber 65% Pinus, 20% Abies, 11% Betula und 4% des Eichenmischwaldes. Es ist hier auch die Linde, die von den drei Konstituenten des Eichenwaldes zuerst eingewandert ist. Nach der Hasel erobert sich die Tanne die Vorherrschaft in der Waldzusammensetzung, die sie während einer längern Periode beibehält. In die einsetzende Ausbreitung der Tanne fällt das erste Auftreten der Buche. Die Erle ist schon in der vorhergehenden Probe in die Zählung hereingekommen. Erst zur Höhezeit des Tannenwaldes wandert die Fichte ein. Ihr erstes Auftreten ist deutlich getrennt von demjenigen der Buche. Die Buchenprozente sind in diesem Diagramm stets grösser als die der Fichte. Auf das Tannenspektrum der Probe 100 cm mit 63% Abies folgt das der Buche mit 28% Fagus, 30% Abies, 21% Picea, 7% Eichenmischwald, je 4%

Alnus und Betula, als Unterwuchs 5% Corylus. Der Buchenanteil erreicht hier allerdings nicht ganz den der Tanne. Wenn wir aber auch hier die schon andernorts erwähnte geringere Pollenproduktion der Laubhölzer gegenüber der Nadelbäume in Betracht ziehen, so scheint es gerechtfertigt, von einer Buchenzeit zu sprechen. Nach ihr erscheint wieder die Tanne als führender Bestandteil des Waldbildes und in der obersten Probe haben wir den Anstieg der Pinus-Kurve, der das Endstadium einzelner Hochmoore, das Pinetum andeutet.

Moor von "les Emposieux" 1010 m ü. M.

Auf dem Weg von Martel-dernier nach les Emposieux gelangt man in den südlichsten mächtigsten Teil des grossen Moorgebietes. Gegen «le Bois des Lattes» wird die Torfschicht bis über 5 m mächtig. Torfwände von $3\frac{1}{2}-4$ m sind Zeugen des gross angelegten Abbaues. Am Rande des Waldes ergab sich nach zahlreichen Probebohrungen die grösste Mächtigkeit des Moores mit 5 m. Die Vegetation ist deutliches Hochmoor: Prächtig entwickelte Pinus uncinata bilden mit kleinen Betula nana den Hochmoorwald, dessen Decke aus Gestrüpp von Vaccinium uliginosum und Calluna vulgaris besteht, neben beigemengten Molinia coerulea und Trichophorum caespitosum.

Der Aufbau dieses Hochmoores ergab sich aus folgendem Schichtwechsel:

```
0 cm — 20 cm Abraum, lebende Wurzelschicht
20 cm — 105 cm Sphagnumtorf

bei 50 cm H<sub>4</sub> B<sub>1</sub> R<sub>1</sub> V<sub>0</sub> F<sub>0</sub>

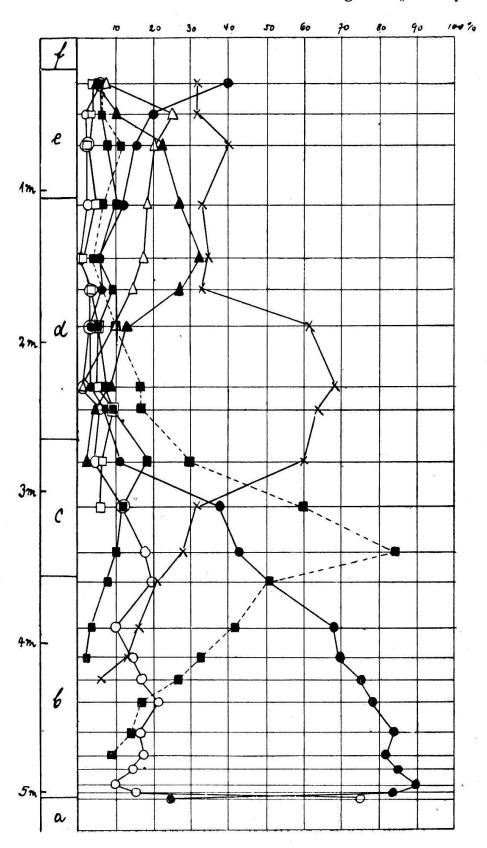
bei 90 cm H<sub>5-6</sub> B<sub>1-2</sub> R<sub>0</sub> V<sub>0</sub> F<sub>0-1</sub>

105 cm — 267 cm Sphagnum-Eriophorumtorf

bei 165 cm H<sub>4</sub> B<sub>2</sub> R<sub>1-2</sub> V<sub>0</sub> F<sub>1-2</sub>

bei 230 cm H<sub>5</sub> B<sub>2</sub> R<sub>1-2</sub> V<sub>0</sub> F<sub>1-2</sub>

267 cm — 355 cm Moostorf


bei 325 cm H<sub>6</sub> B<sub>1-2</sub> R<sub>1</sub> V<sub>0</sub> F<sub>0-1</sub>
```

a. Lehm.

- b. Caricestorf. Die untersten Proben sind noch reich an Mineralsplittern, dann aber überwiegen die Reste von Cyperaceen und Gramineen mit ihren Pustelradizellen. Makroskopisch erkennen wir die plattgedrückten Schilfrhizome. Schröter (1904, Seite 464) erwähnt aus den untersten Lagen des Radizellentorfes Zapfen und Zweige von Pinus sp. Diese Funde entsprechen der holzführenden Schicht 475 cm mit V₂ und erfahren ihre Bestimmung, die aus der Stellung im Diagramm (Abb. 27) als in die Kiefernzeit fallend ihre Bestätigung erfährt. Nach oben nehmen die zerfallenen Hypneen zu.
- c. Moostorf. Diese Torfart enthält zum grössten Teil Calliergon trifarium und Pollen von Gramineen und Cyperaceen. Schröter (1904, Seite 463) erwähnt ausser den Blättern von Betula nana, Kiefernadeln und Pollen von Pinus, Betula und Tilia. Diese Pollenfunde stimmen mit den Resultaten des Zählprotokolles überein. In den obern Proben erscheinen schon Fragmente des scheidigen Wollgrases und verschiedener Sphagneen.
- d. Sphagnum-Eriophorumtorf. Hier finden sich dieselben Fossilien, die wir schon bei den übrigen Hochmoorbildungen besprochen haben.
- e. Sphagnum torf. Nach oben geht d. in reinen, stark humifizierten Torf über mit reichen Sphagnum-Fragmenten und Sporen, Vacciniumresten und Pollentetraden, Hochmoormycelien und spärlichen Eriophorum-Ueberresten.
 - f. Der Abraum wurde nicht untersucht.

Die pollenanalytische Durchsicht dieses mächtigsten schweizerischen Torflagers zeigt uns in Abbildung 27 folgenden Entwicklungsgang des Waldbildes im Jura während des Postglazials:

Die Birke war unter den Waldbäumen der erste Besiedler. Die makroskopischen Funde wurden von Schröter (1904) als B. nana bestimmt, so dass wir wohl annehmen dürfen, dass sie der erste Ansiedler war, und sich hier bis heute halten konnte. Das Birkenmaximum ist mit 76 % ein unbestreitbares, ihm gegenüber stehen nur noch 24 % Pinus. Dann folgt die ausgesprochene Kiefern-

zeit. Sie ist in diesem Moor fast während der ganzen Bildungszeit ' des 147 cm mächtigen Caricestorfes ausgeprägt. Zur Zeit ihres Höhepunktes wandert die Hasel ein, die stets grösseren Anteil erhält. Früh stellt sich auch schon die Tanne ein, die in der ausklingenden Kiefernphase bereits mit 6 bis 17 % vertreten ist. Die Verhältnisse ändern sich nun zugunsten der Hasel, die mit 85 % in Probe 340 cm ihr überwiegendes Maximum verzeichnet. Von den Waldbäumen kommt der Kiefer noch der grösste Anteil zu mit 43 %, dann folgen die Tanne mit 29 %, die Birke mit 18 % und der Eichenmischwald mit 10 %. Letzterer ist nach der Tanne am Schluss der Kiefernperiode eingewandert und zwar war der erste Vertreter die Linde. Neu erscheint beim Zurückgehen der Haselausbreitung die Erle. Nun ist es die Tanne, die den Anteil der Kiefer und dann auch den des Haselstrauches überflügelt und die Vorherrschaft erhält. Wir sind in der Tannenzeit. Während der ersten Ausbreitung der Tanne tritt die Buche erstmals auf und gewinnt langsam aber stetig an Boden. Deutlich getrennt von der Einwanderung der Buche ist das Auftreten der Fichte, das hier erst im Höhepunkt der Tannenverbreitung erfolgt. Der Anteil der Fichte oder Rottanne bleibt dauernd unter demjenigen der Buche bis in die jüngste Zeit. Nach der ausgesprochenen Dominanz der Tanne erkennen wir die starke Zunahme der Buchenwerte, die zwar auch hier die Tannenprozente nicht über flügeln. Doch ist diese Buchenzeit deutlich ausgeprägt durch den Verlauf ihrer Kurve im Diagramm. Der noch bleibende Entwicklungsgang ist durch das erneute Vorherrschen der Tanne gekennzeichnet. Die Fichte erhält eine grössere Verbreitung in den obersten Spektren, was wohl schon auf menschlichen Einfluss zurückzuführen ist. Das oberste Spektrum zeigt uns wieder den erneuten Anstieg der Kiefernkurve, die in dieser Untersuchung ein sekundäres Maximum verzeichnet. Darin spiegelt sich der einst weite Flächen bedeckende Hechmoorwald wieder, der uns heute nur noch in einigen Stücken erhalten ist.

Wir können aus dieser vollkommenen Entwicklungsgeschichte für den Jura die folgenden Phasen herausschälen:

Erste Phase der Birke Zweite Phase der Kiefer Dritte Phase der Hasel Vierte Phase der Tanne Fünfte Phase der Buche Sechste Phase der Tanne-Fichte-Buche mit sekundärer Kiefernausbreitung

Zusammenfassung der Moore des Jura.

Als erste Phase der postglazialen Waldgeschichte des Jura erkennen wir die Birkenzeit. Sie ist in den beiden Diagrammen von Les-Ponts de Martel sehr deutlich ausgeprägt mit 70% bzw. 76% Betula. Die übrigen Pollenprozente stammen von der Kiefer. Die zahlreichen makroskopischen Funde von Birkenresten in den untersten Schichten dieser Torflager wurden von Schröter (1904) und Neuweiler (1901) als Betula nana bestimmt. Wir haben hier also eine sichere Stütze dafür, dass die Zwergbirken in früh-postglazialer Zeit eine grosse Verbreitung in den Juramooren hatten. Sie ist uns in diesen Gebieten in zahlreichen Exemplaren bis heute erhalten geblieben, während sie auf den Mooren des Mittellandes, deren Dryastone ebenfalls makroskopische Reste von B. nana führen, heute ausgestorben ist. Von den übrigen Juramooren zeigt nur noch das Moor du Moulin de la Gruyère in seiner ersten Probe einen schwachen Anstieg der Birkenkurve in ihrem untersten Verlauf.

Die Kiefer, die während der Birkenperiode eingewandert ist, beginnt sich nun mächtig auszubreiten und erlangt eine ausgesprochene Vorherrschaft, so dass wir von einer reinen Kiefernzeit sprechen dürfen.

TABELLE 16. — Kiefernperiode der Moore des Jura.

	Chaux-de- Breuleux 990 m	La Gruyère 1000 m	Le Voisinage 1005 m	Les Emposieux 1010 m
	0/υ	0/0	⁰ / ₀	0/0
Pinus	87	89	87	90
Betula	13	11	13	10
Corylus	15	18	14	
Salix	5	"	_	_

Nur im Moor von Bellelay ist uns die Kiefernzeit nicht erhalten, in den übrigen Mooren erkennen wir durchgehend das starke Ueberwiegen des Föhrenanteils. Von den Waldbäumen ist nur noch die Birke vorhanden, während ins Unterholz die Hasel eingewandert ist. Welche Kiefern-Art während dieser Periode vorherrschend war, lässt sich nicht bestimmen. Schröter (1904) erwähnt einzelne Funde von P. montana, doch sind diese so vereinzelt, dass wir noch nicht auf eine Dominanz gegenüber der Waldföhre schliessen können. Wie in den Mooren des Mittellandes und der Voralpen sind wohl auch hier beide Föhren: die Wald- und die Bergföhre nebeneinander vorgekommen. Der erste Besiedler kann wohl P. montana gewesen sein, dessen var. uncinata noch heute im Hochmoorgebiet vorkommt.

Die Haselbreitet sich nun im lichten Föhrenwald stark aus und rückt wohl vom Unterholz zu eigenen Beständen vor, wie die Pollenzahlen in der Tabelle 17 zeigen, die die Haselzeit veranschaulichen.

TABELLE	17	Hase	lperiode	der Moore	des Jura.
----------------	----	------	----------	-----------	-----------

	Chaux-de- Breuleux	La Gruyère	Le Voisinage	Les Emposieux
	990 m	1000 m	1005 m	1010 m
	0/0	º/o	º/o	°/°
Corylus	95	95	83	85
Pinus	58	84	65	43
Betula	19	16	11	18
Abies	14	_	20	29
Eichenmischwald .	5		4	10
Ainus	4	_	-	

Entsprechend der höhern Lage der Moore haben wir kein so überwiegendes Haselmaximum wie in den Mooren des Mittellandes (bis 153%), doch ist die Vorherrschaft des Haselstrauches mit 83—95% eine deutliche. Nur im Moor du Moulin de la Gruyère fällt das Haselmaximum noch in die ausklingende Kiefernzeit. In den übrigen Diagrammen konstatieren wir den grössten Haselanteil in der Lücke zwischen der fallenden Föhrenkurve und den steigenden Tannenwerten, ganz analog der Lage des Kulminationspunktes der Hasel in den Mooren des Mittellandes vor oder über dem Schnittpunkt der Kiefernkurve mit derjenigen des sich ausbreitenden Eichenmischwaldes. Schon beim Zurückweichen des Kieferanteils ist

die Tanne eingewandert und beginnt sich nun auf Kosten der Föhre und dann der Hasel stark auszubreiten. Neu ist ebenfalls die Erle erschienen. Von den Konstituenten des Eichenmischwaldes ist es die Linde, die zuerst auftritt. Die Werte dieser Pollensumme bleiben aber im Verlauf der Waldentwicklung nur ganz geringe und geben dem Waldbild kein besonderes Gepräge.

An die Stelle des Haselstrauches, dessen Vorherrschaft wie in den bisher untersuchten Mooren, eine kurze aber deutlich ausgeprägte ist, tritt nun die Tanne. Wir treten in die folgende Entwicklungsphase ein, die Tannenzeit.

TABELLE 18. — Tannenperiode der Moore des Jura.

	Bellelay 935 m	Chaux-de- Breuleux 990 m	La Gruyère 1000 m	Le Voisinage 1005 m	Les Emposieux
	o/o	o/o	o/o	o/o	0/0
Abies	66	65	61	63	69
Pinus	6	4	17	8	4
Betula	3	7	5	7	2
Picea	16	6	8	<u> </u>	2
Eichenmischwald	5	13	5	11	7
Alnus	1	3	1	6	5
Fagus	3	2	3	5	11
Corylus	7	13	7	9	16

Mit 61-69% am Gesamtpollenniederschlag bestimmt die Tanne das Waldbild. Birken und Kiefernanteil sind auf unter 10% zurückgegangen, derjenige der Erle, die in der vorhergehenden Periode erschienen ist, beträgt nicht mehr als 6%. Die Werte des Eichenmischwaldes sind auf 5-13% angewachsen. Es sind die Linde und die Eiche, die ihn vertreten, während die Ulme erst später von vereinzeltem Auftreten zu beträchtlicheren Werten dieser Pollentripelsumme anwächst. Sehr beachtenswert sind das Auftreten der Fichte und der Buche. Die Einwanderung der Fichte erfolgt im nördlich gelegenen Moor von Bellelay früher als in den weiter südlich sich befindenden Mooren von les Ponts-de-Martel. Der Unterschied der Pollenprozente 16% bezw. 2% Fichten von Picea ist ein sehr auffälliger. Auf die Möglichkeit, daraus auf die Einwanderungsrichtung schliessen zu können, werden wir im folgenden Hauptabschnitt eintreten. Gerade der umgekehrte Fall liegt vor bei der Buche. Ihre

Prozente steigen, je weiter südlich die Moore gelegen sind: Bellelay am nördlichsten 3% Fagus, Moore von Les Ponts-de-Martel am südlichsten der untersuchten Juramoore 5% bezw. 11% Fagus.

Gegen das Ende der Tannenphase erhält die Buche eine stärkere Verbreitung. Ihre Kurve zeigt deutlich eine maximale Ausbreitung. Wir haben die fünfte Entwicklungsperiode, die Buchenzeit.

TABELLE 19. — Buchenperiode der Moore des I	TABELLE	oore des Iur	e der	periode	- Buchen	ABELLE 19	TA
---	----------------	--------------	-------	---------	----------	-----------	----

	Bellelay 935 m	Chaux-de- Breuleux 990 m	La Gruyère 1000 m	Le Voisinage 1005 m	Les Emposieux
	o/o	°/o	o /o	· o/o	o/o
Fagus	40	33	30	28	32
Abies	29	28	39	30	35
Picea	14	14	19	21	18
Pinus	5	5	2	7	6
Betula	1	4	4	4	1
Eichenmischwald	8	10	3	7	6
Alnus	3	6	3	4	2
Corylus	10	3	4	5	4

Die Tabelle zeigt, dass die Buchenwerte nur in zwei Juramooren (Moore von Bellelay und la Chaux de Breuleux) das absolute Maximum im Pollenspektrum ausmachen. In den drei übrigen Mooren ist der Buchenanteil bis auf wenige Prozente dem der Tanne gleich. Ziehen wir die geringere Pollenproduktion der Laubbäume gegenüber den Nadelhölzern in Betracht, wie schon bei den Einzelbesprechungen der Diagramme erwähnt wurde, so dürfen wir von einer Buchenzeit sprechen. Während dieser Periode muss die Buche eine weit grössere Verbreitung gehabt haben, als es heute im Jura der Fall ist. Die Zusammensetzung der übrigen Waldbäume im Gesamtwaldbild ergibt sich aus der Tabelle, sie ist durchgehend eine übereinstimmende.

Der noch verbleibende Verlauf der Waldbaumkurven lässt sich nicht mehr in einzelne Phasen gliedern. Es sind die Tanne, die Fichte und anfänglich auch noch die Buche, die dem Waldbild das Gepräge geben. Ausschlaggebend ist jedoch die Tanne, sodass wir wohl am besten von einer Tannenzeit mit Ausbreitung der Fichte reden. Die Tannenwerte schwanken zwischen 32—44%, ihnen am nächsten kommt die Fichte mit 13—25%. Die Waldzusammensetzung

gibt uns den Uebergang in die heutige Walddecke der Juralandschaft. In den obersten Pollenspektren konstatiert man sodann noch einen sekundären Kiefernanstieg, der uns das Endstadium einzelner Hochmoore, das *Pinetum* wiederspiegelt. Bevor der Abbau der ausgedehnten Moore eingesetzt hat, müssen ausgedehnte Kiefernforste die Moore bedeckt haben, die der Landschaft das Gepräge gegeben haben mögen. Da wir ein riesiges Moorgebiet im Jura vor uns haben, so gibt uns der Zuwachs der Föhrenprozente keine Trübung durch «lokalen Einfluss» der moorbewohnenden Bäume, sondern spiegelt wirklich die Verhältnisse wieder, die geherrscht haben. Die Vegetation des weitern Nachbargebietes geben die Tannenprozente, die immer noch 26—32% betragen neben 10—15% Fichtenanteil.