Zeitschrift: Fotointern : digital imaging

Herausgeber: Urs Tillmanns

Band: 6 (1999)

Heft: 4

Artikel: Kunstlicht oder Blitz?: Wie das Licht auf den Menschen wirkt

Autor: [s.n.]

DOI: https://doi.org/10.5169/seals-979202

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 29.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

beleuchtung: Kunstlicht oder Blitz? Wie das Licht auf den Menschen wirkt

Fortschritte in der Beleuchtungstechnik legen ein Überdenken gewohnter Arbeitsweisen nahe: öffnen neue Mittel und Möglichkeiten Wege zu mehr Kreativität, besserer Nutzung der Ressourcen, höherer Ergebnisgualität?

Wer Bilder macht, braucht Licht. Für Fotografen wie Filmemacher, für ihre analogen wie digitalen Techniken ist Licht die unerlässliche Voraussetzung. Aufs Motiv, die Szene, den Aufbau gerichtet, macht es die Dinge sichtbar, schafft erkennbare Hinweise auf Material- und Oberflächenbeschaffenheit, Form und Farbe.

All diese Informationen sind Informationen des Lichtes. Sie beruhen sämtlich auf selektiver Reflexion - nämlich auf Reflexion jener Lichtanteile, die nach Absorption und/oder Transmission seitens des Motivs übrig bleiben. Dabei gilt grundsätzlich: Was an Wellenlängen (= Farben) im jeweils genutzten Licht nicht enthalten ist, kann auch nicht reflektiert werden. Es bleibt unsichtbar.

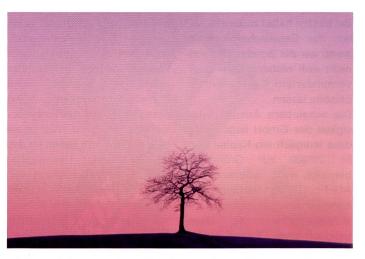
Mit der Sonne fing es

Anfangs standen fürs Bildermachen nur die Strahlen der Sonne zur Verfügung. Ihr Tageslicht gilt auch heute noch als grossartige, aber wegen ständig wechselnder Intensität schwierige Beleuchtung. Sie macht alles sichtbar, ist Grundlage unserer Farbwahrnehmung: Bei Farbtemperatur von ca. 5'600 K - und bezogen auf unser Sehen in drei Grundfarben besteht es zu ungefähr je einem Drittel aus roten, grünen und blauen Anteilen.

Doch das ist wenig verbind-

Denn während Grünanteil gewöhnlich konstant bleibt, schwanken die Rot- und Blauanteile im Verlauf des Tages wie auch in Abhängigkeit von Wetter und Jahreszeit, sorgen dafür, dass entsprechend mehr Rot oder Blau reflektiert wird: Das jeweilige Übergewicht überlagert Objektfarben, mischt sich mit ihnen und verändert sie.

So entstehen sowohl in der Landschaft als auch in unserem unmittelbaren Umfeld Farbklänge des Augenblicks, Stimmungsfarben, auf die wir ebenso unbewusst, wie bereitwillig reagieren - auf ein Übergewicht an Rot meist freundlich, auf Blau eher distanziert, oft negativ.


Zur Erinnerung: Unser Sehen ist ein komplizierter, physiologischer Vorgang, dessen einzelne Funktionen - insbesondere im Hinblick auf dadurch hervorgerufene oder damit verbundene psychologische Reaktionen - noch recht ungenügend erforscht sind. Grob gesprochen fängt das Auge Lichtreize auf, die über Nervenbahnen ans Hirn weitergeleitet und erst dort mit Hilfe von Erinnerungen zu einem «Sehbild» zusammengefügt werden.

Dieses Sehbild projizieren wir in den Raum vor uns, können uns so orientieren und sehen nur deshalb farbig, weil das Auge Lichtreize entsprechend aufgeschlüsselt weiterleitet: Die Objekte auf unserem blauen Planeten reflektieren Wellenlängen, keine Farben. Farbig wird die Welt erst durch unsere Art des Drei-Farben-Sehens. Auch die Stimmungsfarben sind Folge unserer Reaktionen auf Tageslicht, auf das wir seit den Anfängen unserer Existenz eingestellt

Tageslicht ist untrennbar Teil unserer Umwelt. Im Laufe der

dern auch visuell beurteilen konnte, gewann schende Bedeutung.

Doch dann kam der Elektronenblitz, eröffnete neue Möglichkeiten: Als in der professionellen Fotografie Farbe zum Standard wurde, traten auch Blitzanlagen ihren Siegeszug an. Der Elektronenblitz

Weltraumfarben aus dem Licht. Am westlichen Himmel ein Hauch von Rot der untergegangenen Sonne und kräftiges Blau im Schnee, Reflexion des schon nächtlichen Firmaments: gegensätzliche Stimmungswerte als Farbkontrast.

Entwicklungsgeschichte hat es viele Funktionen unseres Körpers geprägt, ist - direkt oder indirekt - Auslöser für manche unserer Psychoreaktionen. Das - und nicht seine physikalische Natur - macht Tageslicht für den Menschen zum Massstab allen Lichts.

Elektronenblitz

Trotzdem hat Tageslicht die Fotografen stets mehr geärgert als gefreut, hat terminaebundene Auftragsarbeit erschwert. Kein Wunder also, dass die Suche nach Ersatz schon früh begann. Funkenentladungen erwiesen sich als wenig brauchbar, Pulver- und auch Birnchenblitz blieben auf der Strecke. Kontinuierliches Glühlicht, bei dem man - ähnlich wie bei Tageslicht - das Motiv nicht nur sehen, sonwurde zum scheinbar problemlosen Studiolicht.

Die Vorteile liegen auf der Hand: Der Blitz setzt innerhalb Sekundenbruchteils Leuchtleistungen frei, die -Leistungsstufe um Leistungsstufe - die Ausbeute aller anderen Lichtquellen in den Schatten stellen. Mit seinem Viellinien-Spektrum ist er dem Tageslicht weitgehend angenähert, wobei allerdings in Abhängigkeit von der Leuchtzeit Unterschiede bestehen: Leuchtet der Blitz mit 1/750s oder kürzer, um schnelle Bewegungen einzufrieren. nehmen die UV- und Blauanteile seines Lichts zu Lasten von Rot und Grün zu, die Farbwiedergabe fällt entsprechend «kälter» aus. Werden pro Generator mehr als ein Blitzkopf eingesetzt, verkürzt sich bei den meisten Geräten die

Leuchtzeit abermals, der UV-, aber auch der Blauanteil steigt weiter an.

Je länger der Blitz - mit Abbrennzeiten um 1/125s leuchtet, desto besser wird die R-G-B Verteilung des Lichts und damit die Farbwiedergabe auf Taglichtemulsionen. Doch 1/125s stoppt kaum noch Bewegung, das Licht ist Sachaufnahmen für nur geeignet. Und daraus ergeben sich Aspekte, die gerne übersehen werden:

Die Leuchtzeit eines Elektronenblitzes ist stets zu kurz, um die Lichtwirkung visuell beurteilen zu können. Deshalb sind Studiogeräte mit Einstellicht ausgerüstet, das die Wirkung des Blitzes simuliert. Näherungsweise einheitliche Wirkung ist jedoch nur dann gegeben, wenn beide Lichtquellen eine gemeinsame Abstrahlfläche haben - beispielsweise in Form einer mattierten Pyrexglocke.

Blitz und Einstellicht werden derart gekoppelt, dass sich proportionale Intensitäten ergeben. Dazu wird das Einstellicht, meist eine Halogenlampe von ca. 3'200 K, zur Intensitätsregelung gedimmt, wobei die Farbtemperatur sinkt, das Licht wärmer wird. Das täuscht - unbewusste Psychoreaktion des Fotografen - eine angenehme Lichtstimmung vor, die später auf dem Bild nicht vorhanden ist. Beides ist für Sachaufnahmen wenig förderlich, die direkte visuelle Beurteilung der Blitzwirkung ist ohnehin nicht möglich. Um Führung und Wirkung des Lichts zu kontrollieren, sind Probebelichtungen auf Sofortbildmaterial nötig. Solch ein «Pola» richtig zu lesen, ist auf jeden Fall Übungssache. Ausserdem: Probebelichtungen schränken zügiges Arbeiten ein und sind teuer. Hinzu kommt:

Die Blitzbelichtung wird nur über die Blende gesteuert. Werden für Sachaufnahmen oder die Arbeit vor Ort kleine Blenden verlangt, ist grosser Aufwand angesagt. Es müssen Generatoren hoher Leistung eingesetzt, bei Stills gegebenenfalls auch kleinere Geräte mehrfach angeblitzt werden, um die nötige Leuchtleistung zu erzielen. Mehrmaliges Abblitzen führt zu Farbverschiebungen.

Jede Blitzentladung ist wie ein Schlag. Wer Blitz im zoologischen Bereich einsetzt, der weiss, dass kleine Lebewesen unter Umständen davon getötet werden. Auch Kinder erschrecken, reagieren verstört. Und selbst Profis - Fotografen wie ihre Modelle ermüden und verlieren kreative Spannkraft schneller, als esdie erbrachte Leistung rechtfertigt.

Das schmälert den wirklichen Vorteil, nämlich das gestochen scharfe Einfrieren von Bewegung, die Momentaufnahme aus dem Fluss des Geschehens, in keiner Weise: Wer in der modernen Fotografie seine stoppende Leuchtkraft braucht, für den ist Blitz unersetzlich

Und trotzdem Dauer-

Bei Dauerlicht steht dem eine Reihe von Vorzügen gegenüber. Den wichtigsten umreisst treffend WYSIWYG: What you see is what you get - was du siehst, das bekommst du.

Wo das Gestalten nach Sicht, die kreative Auseinandersetzung mit Menschen und Objekten Vorrang haben, ist der Bildermacher auf genaues Sehen bei Dauerlicht angewiesen. Wo einzig treffliches Bewerten feinster Unterschiede, das meisterliche Herausarbeiten von Oberflächensignalen den Vorstellungen des Auftraggebers gerecht werden, führt der Umweg übers Sofortbild selten zum Ziel.

Doch Dauerlicht, das hier eine wirklich brauchbare Problemlösung bietet - gibt es das? Zwei Varianten stehen zur Wahl, beide sind universell für Fotografie, Film- und Videoaufnahmen geeignet, die eine ist darüber hinaus ideal für Digital Imaging:

Halogenlicht für kühle Rechner

Da ist - als Weiterentwicklung des einst so beliebten Glühlichts - dessen moderne Variante, das Licht aus Halogenbrennern. Seit es - nun schon seit Jahren! - sowohl von Kodak als auch von Fuji die hervorragend balancierten 64T Kunstlichtfilme gibt, stellt dieses Licht auch für Fotograeine schätzenswerte, dabei noch dazu recht kostengünstige Alternative dar:

wand: Man kann mit wenigen, noch dazu samt Zubehör sehr preiswerten Leuchten Aufgaben lösen, die bei Einsatz von Blitz hohe Joule-Werte erfordern würden.

Aber natürlich hat auch Halogenlicht Nachteile: Die Brenner liefern nur ca. 37 lm pro Watt, setzen den Rest der Energie in Wärme um, die bei temperaturempfindlichen

Objekten Problemen zu führen kann – ganz abgesehen davon, dass Fotograf und Modelle bei langen Arbeitssit-

Stimmungsfarben als Bildsignale. Parfum in wechselndem Licht schon ein geringes Übergewicht von Rot stimmt fröhlich, das Licht der «blauen Stunde» dagegen eher romantisch, ein wenig frivol.

Durch sein kontinuierliches Spektrum gestattet Halogenlicht, im Rahmen der durch den Film gebotenen Möglichkeiten alle Farben fein zu differenzieren, erlaubt zudem als Dauerlicht die wahlfreie Belichtungssteuerung über Blende und Zeit. Das führt insbesondere bei Sachaufnahmen zu drastisch reduziertem Aufzungen ins Schwitzen kommen. Die R-G-B Anteile, bei Tageslicht in Drittel aufgeteilt, zeigen unterschiedliche Abstufung: Rot hat mit 50 Prozent sein deutliches Übergewicht, für Blau bleibt knapp ein Sechstel, nur Grün hält sich mit einem Drittel im normalen Bereich. Das macht technisch zwar wenig aus,

denn natürlich sind die Kunstlicht-Emulsionen entsprechend abgestimmt. Doch für den Bildermacher und seine Mitarbeiter oder Modelle, sämtlich physiologisch auf Tageslicht programmiert, ergeben sich stärkere Belastungen, die zu schnellerem Ermüden führen.

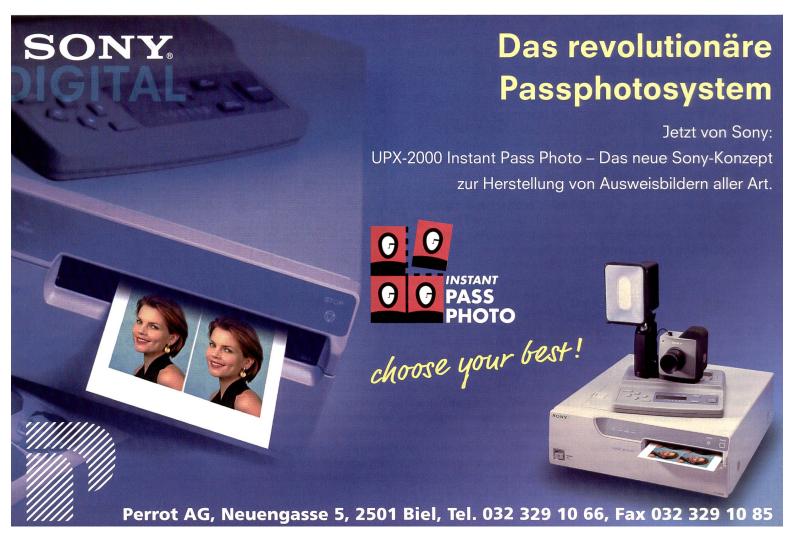
Künstliches Tageslicht

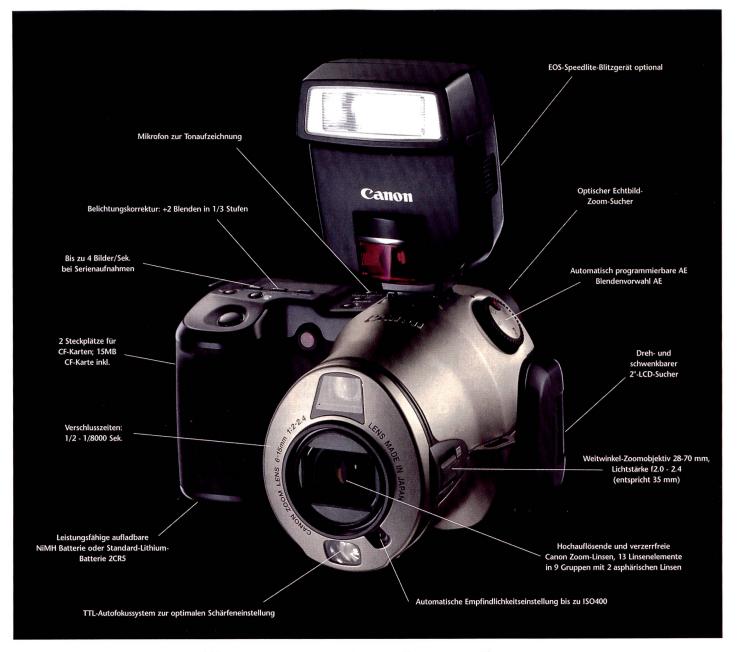
Dergleichen Nachteile kennt, wer mit dem kühlen, taglichtgleichen Leuchten aus Metallhalogen Kurzbogenlampen (z.B. HMI-Licht) arbeitet, nicht. Diese fortschrittlichsten aller künstlichen Lichtquellen strahlen ein Viellinien-Spektrum ab, das natürlichem Tageslicht von ca. 5'600 K zum Verwechseln gleicht, sich gegebenenfalls auch in beliebigem Verhältnis damit mischen lässt.

Ob Sie dieses Licht für sich oder in Kombination mit vorhandenem Tageslicht zum Aufhellen von Schatten einsetzen, Sie können sicher sein: Weder Tageslichtfilme noch die Chips digitaler Kameras erkennen einen Unterschied. Kein anderes Licht lässt sich technisch so problemlos und universell Scannerkameras – das Licht aus Metallhalogen Kurzbogenlampen, auf ca. 180 Hz stabilisiert, stimmt immer.

Da gibt es keine Rechnerei. Man führt das Licht nach

Im Licht zweier Sonnen. Mischlicht in Perfektion: Frauenschuh-Blüten im direkten Gegenlicht der Sonne, mit Metallhalogen Tageslichtleuchte nach Sicht aufgehellt: Die Wechselwirkung beider Lichtquellen vermittelt überzeugend den Augenschein von Modulation und Tiefe.


für alle Zwecke des Bildermachens einsetzen: Ob für Foto, Film, Video oder für das Digital Imaging mit Chip- oder Sicht, misst und belichtet. Die hohe Lichtausbeute der Metallhalogen Kurzbogenlampen gestattet, den gesamten Geräteaufwand relativ gering und somit auch für die Arbeit vor Ort überschaubar zu halten: Diese Lampen setzen mit rund 90 Im pro Watt fast dreimal soviel Energie in Licht um wie Halogenbrenner, entwickeln dabei entsprechend wenig an Wärme.


Und was besonders bei Personenaufnahmen, bei Porträts und der VIP-Reportage von Vorteil ist: Man arbeitet – unbelastet durch negative Einflüsse – mit Licht, auf das auch der Organismus reagiert, als wäre es echtes Tageslicht.

Metallhalogen hat nur einen Nachteil: Es ist teuer. Aber seinen Preis ist es trotzdem wert.

Fazit

Nicht die Frage, ob Blitzlicht oder künstliches Dauerlicht steht im Vordergrund, sondern eher die Entscheidung, wann welches Licht sinnvoller eingesetzt wird. Naheliegend, dass im modernen Fotostudio beides vorhanden ist – Kunstlicht und Blitzlicht. fm

1,68 Millionen Pixel und ein Zoom

(der Rest ist nur Detail)

ANWENDER.

Mit der PowerShot Pro70 eröffnet Canon der digitalen Fotografie völlig neue Perspektiven: 1,68 Millionen Pixel und ein 2.5x Weitwinkel-Zoom

(entspricht einem 28-70mm-Objektiv bei einer 35 mm-Kleinbildkamera). Die Pro70 zeichnet sich wie eine hochwertige SLR-Kamera durch ihre ausgesprochene Bedienerfreundlichkeit sowohl im Programmier- als auch im Automatik-Modus aus. Moderne Ausstattungsmerk-

male beinhalten den Blendenvorwahl-Modus und einen Blitzschuh für professionelle EOS-Speedlite-Blitzgeräte. Darüber hinaus besitzt sie eine sagenhafte Speicherkapazität: zwei CompactFlash-Steckplätze und drei Speichermodi, einschliesslich des CCD-ROW-Modus, mit dem

hochauflösende Bilder ohne jegliche Kompression gespeichert werden können. Sie können auch Bilder

.....

in der Kamera von einer Flashcard auf die andere kopieren. Und selbstverständlich ist die Pro70 Mac- und PC-kompatibel, wie Sie dies von

> einem Marktführer wie Canon erwarten dürfen. Es gibt andere Digitalkameras für Leute, die geschäftlich Bilder einsetzen; die PowerShot Pro70 ist allerdings die einzige Kamera für Personen, deren Geschäft die Bilder sind.

	einem Marktführer wie Canon erv
IE POWERSHOT PRO70.	andere Digitalkameras für Leute, o
DIE DIGITALKAMERA	
FÜR PROFESSIONELLE	einsetzen; die PowerShot Pro70 ist

Ja, senden Sie mir mehr Informationen über die neue Canon PowerShot Pro70																																
Name: H	lerr / Frau	ı* .																														. 1
Strasse:											ŀ								×		÷											. ¦
PLZ:															×		v		÷										2.1			· j
Ort:																× ×						 ×		×								. !
Telefon t	agsüber:							э. 1														 2										.
E-mail:								2									÷							×			. ,					. 1
	treffendes s chweiz) AC				tra:	sse	12	., 8	330)5	Di	etl	lik	on	, v	vw	W.	car	101	1.0	h	 	_		_	_	_ ,	_	_	_	_!	Fot

