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Is time imaginary?

Edgar Müller
Avenue Marc-Dufour 55

1007 Lausanne

The negative metric of the 4-Space Wave equation is

due to our measurement procedure. The 4-Space Wave

equation can be mapped onto the 4D-Laplace equation
by adding a quarter turn to all imaginary quaternion
coordinates.

La métrique négative de l'équation d'onde du 4-Espace
est due à notre procédure de mesure. En ajoutant un
quart de tour à toutes les coordonnées quaternion
imaginaires, l'équation d'onde du 4-Espace peut être projetée
sur l'équation 4D de Laplace.

Die negative Metrik der Wellengleichung im 4-Raum
ist eine Folge unserer Messprozedur. Durch eine
Vierteldrehung aller Imaginär-Koordinaten im Quaternion-Raum
kann die 4-Raum-Wellengleichung auf die 4D-Laplace-
Gleichung projiziert werden.

Introduction
Henri Poincaré demonstrated in 19051, that time t can be interpreted

as an imaginary fourth spacetime coordinate2 ict, and that Lorentz
transformations can then be mapped onto ordinary rotations of a four-dimensional
Euclidean sphere.

This subject, just briefly touched by Poincaré, was further elaborated
by Hermann Minkowski in 19083. Minkowski reformulated Maxwell's
equations as a set of symmetrical equations in the four variables (x,y,z,ict),
^Menri Poincaré, (1905-1906), "Sur la dynamique de l'électron" [On the Dynamics of
the Electron], Rendiconti del Circolo Matematico di Palermo, 21: 129-176.

2wherein i2 — 1 and c is the speed of light.
3Hermann Minkowski, (1907-1908), "Die Grundgleichungen für die elektromagnetischen

Vorgänge m bewegten Körpern" [The Fundamental Equations for Electromagnetic
Processes in Moving Bodies], Nachrichten von der Gesellschaft der Wissenschaften zu Göttin-
gen, Mathematisch-Physikalische Klasse: 53-111.
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and he redefined vector variables for the electromagnetic quantities, showing
their invariance under Lorentz transformations. He concluded that time
and space should be treated equally, and that physical events take place in a
unified four-dimensional spacetime continuum.

Within this theory, the coordinates of a physical event in spacetime are
represented as a four-vector (t,x,y,z). A Lorentz boost rotates the four-
vector around a particular axis in four-dimensional space, whilst its length
remains constant The "rotation" in a plane spanned by a space unit vector
and a time unit vector, while formally still a rotation in coordinate space,
is noteworthy a Lorentz boost in physical spacetime with real inertial
coordinates. The analogy with Euclidean rotations is, however, only partial,
since the radius of the sphere is actually imaginary, which turns rotations into
hyperbolic rotations.

Minkowski spacetime works well for handling Lorentz boosts in two
dimensions spanned by a space unit vector and a time unit vector, but it fails
at handling general rotations in (ict, x, y, z), due to its insufficient distinction
between the space vectors (x,y,z) themselves. Furthermore, there seems to
be no physical reason for passing from real time to imaginary time1. The
question is, thus, whether imaginary time is a physical necessity, or whether
it is just an artifact of our measurement procedure.

Measurement
Measuring a quantity a implies dividing it by a reference quantity r of the

same nature, in order to obtain a dimensionless number (length) L, which is

amenable to treatment with mathematical tools. Related to measurement is

counting. Measurement applies to continuous quantities, where an external
reference is needed, whereas counting applies to discrete quantities, whose
discretization already provides an internal reference.

Measurement, thus, always implies a division: L a/r, in order to determine
how many times the reference quantity r is contained in the quantity a to be
measured.

In the case of multidimensional vector quantities a (ao, ai, ,an), whose

components are independent from each other, a "cartesian" approach is

generally made, in which each component of a is divided by a corresponding
component of the reference vector r, and the results are summed up to obtain
the measured length L:

L ^ ^ (a°/r0 -\- a>ijri -\- -\- anjrn)

1The mathematical beauty of substituting a hyperbolic rotation by an ordinary rotation is
obviously not a physical reason
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To simplify the algebraic procedure, a scale vector s is then defined, whose

components are the reciprocals of the components of the reference vector:

5 (Vr0, i/n, 1/rn)

The measurement result L is now obtained as the inner product of the
quantity a to be measured and the scale s which is applied: L a • s.

Note that a reciprocal relationship exists between L and s: The
larger the scale, the smaller are the values of L, and vice-versa. As
L is a measure of a, a reciprocal relationship also exists between a
(the measured quantity) and s (the scale).

Square norm :

The scale vector s, measured at itself, should noteworthy yield the unit 1:

s - s (soso + 5151 + * * * + snSn) s% 1- (normalization)
The quantity a, measured at the scale vector, should yield the measurement

value L : a - s (aoso + a\S\ + • • • + ansn) XI aisi — L. (measurement)
From this it follows that the squares of the components of a vector a sum up

to the square of its length L : a-a (aoao + a\a\ + • • • + anan) ^a2 L2.

(cartesian square norm).

Composite algebras:
The cartesian square norm also exists in the three composite (complex)

division algebras, noteworthy the complex numbers, the quaternions and the
octonions. Instead of an inner product of vectors, the algebraic product of
the complex number c with its conjugate complex c* is then used (with i2

j2 k2 I2 m2 n2 o2 ij k ijklmno —1 ):

L2 c c* (xo + ixi) (xo — txi) (xq + x\)
L2 q q* (xo + ix\ + 3x2 + ^3) (x0 - ix\ - jx2 - kx3)

(xl+xf +xl +x§)
L2 o o* (xo + ix 1 + jx2 + kx3 + 1x4 + nrix5 + uxq + ox7)

(xo — IX1 — JX 2 — kx3 — 1X4 — TUX5 — UXq — OX7)

/2, 2, 2, 2, 2, 2, 2, 2\
(scq + x1 + x2 + X3 + £4 + x5 + + £7)

The cartesian square norm is a sum of positive squares, and it characterizes
Euclidean spaces of positive metric, which are required to describe physical

quantities for which conservation laws apply, such as the energy, which,
according to P.A.M. DIRAC, is a sum of four positive squares1.

1E2 (juqc2)2 + (pxc)2 + (pyC)2 + {Pzc)2 See Max Planck (1906), "Das Prinzip der
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Measurement in composite algebraic number spaces:
The "inner product" measurement formula given above holds as well in

composite algebras:

a s (aoso + aisi + + ansn) L

However, recall that there is a reciprocal relationship between the measured

quantity a and the measurement scale s. If the measured quantity a is in
Euclidean space, the measurement scale s spans necessarily a reciprocal
Euclidean space!

If therefore the measured quantity a is a quaternion ao + ia\ Jrja2 + kas
the measurement scale 5 must be a reciprocal unit quaternion (sq — is\ — JS2 — kss)

The inversion of sign in the imaginary part is necessary to make the inner
product containing only positive terms:

(ao,iai,ja2, kas) (so, —~3S2, —kss) (aoso + aisi + <22^2 + <23^3)

Euclidean space versus relativistic spacetime
Conserved physical quantities must obey Laplace's equation in Euclidean

space: AA (fßf + ^2 + ffz + 3 0. (under empty space condi-

tions)
This equation can be solved by factoring the Laplace operator in quaternion

number space and integrating the resulting first-order quaternion transport

equations1.

The Laplace operator can be thought as being an inner product of the
Nabla operator with itself in a 4-dimensional ordinary space:

a, ^ ((ld d d d\ fid d d d \\ AAA V VA I I I I I A 0,\\c dt dxi dx 2 dxs J \c dt dx\ dx 2 dxs J J

or, else, as the inner product of the vectorized quaternion Nabla operator
with its quaternion reciprocal2.

a „ ^ „ ff1 d d d d \ fi d d d a \\ 4 nAA V V A I I
———, i ——, j -—, k-— ] I - —, — i-—, —j ——, -k-— ] ] A 0

\\c dt dx\ dx2 dxs J \c dt dx\ dx 2 dxs J J

Relativität und die Grundgleichungen der Mechanik" Verhandlungen der Deutschen
Physikalischen Gesellschaft 8 (7) 136-141, Walter Gordon (1926) "The Compton effect
according to Schrodinger's theory" Z Phys 40 117-133 Paul Dirac (1928) "The
Quantum Theory of the Electron" Proc R Soc Lond A 117 (778) 610-624

1 Edgar Muller, „Factoring the wave equationBull Soc Frib Sc Nat - Vol 112

(2023), 106-113
2The reciprocal of a quaternion is its complex conjugate, divided by its length Given that
the Laplace equation adds up to zero, we multiply it here, for the sake of simplicity, by
its length
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We are still staying in Euclidean Space, where physical conservation laws
apply.

On the other hand, electrodynamics and Special Relativity obey the
4-Space Wave equation: AA (4, ft - £, - £, - £,) A 0, which

has a negative metric and spans a hyperbolic space. There is no factoring
available for the 4-Space Wave operator, unless by recurring to the matrix
method of P.A.M. DIRAC1.

The 4-Space Wave equation operator can be thought of as an inner product
of a quaternion Nabla operator with itself:

A A f f1 d d 8 8 \ f I 8 8 d d \\ A ^(V V)A AA =((- — I-—, j ——, k —— I ——, i ——, j ——, k —— A 0,
\\cdt dx\ dx2 dx3 J \cdt 8x\ dx2 8x3 J J

or, after multiplication by -1 as the inner product of a complex Nabla
operator with itself:

vu_ AA_ / /]_d_ _d d d_\ fl_d_ _d d d_\\A_Q
V \îC öt' dxi '

dx2 ' 8x3 \ic 8t' dxi ' 8x2 '
8x3 J J

This latter was the basis for PoincarÉs postulating hyperbolic space-
time with an imaginary time coordinate ict and a negative metric

—5 +5 +5 +)•
For mapping the hyperbolic 4-Space onto the Euclidean space of the

Laplace equation, we must thus add an inversion to the quaternion's imaginary

parts. This is best done by applying a quarter turn to all imaginary
components of the quaternion coordinates: xo -8- xo,xi -8 ixi,#2 —^ jx2,^3 -8
kx3 The negative metric of the 4-Space wave equation is herewith changed
into the positive metric of the Laplace equation.

In PoincarÉs approach, there is just a single quarter turn applied to the
time coordinate; however, the complex number space is not sufficiently large
for solving the resulting 4D-Laplace equation. This means that the
approach only allows a description involving one time-coordinate and one space
coordinate, i.e. solving the 2D-Laplace equation.

Conclusion
The negative metric of the 4-Space Wave equation

J_8^_8^_d^_ 8^_\ A
c2 8t2 8x\ 8x2 8x3 J

!PAM DIRAC The quantum theory of the electron, Proc Roy Soc Lond A Vol
117, is 778, 610-624 (1928)
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is due to our measurement procedure. The 4-Space Wave equation can be

mapped onto the 4D-Laplace equation by adding a quarter turn to all imaginary

quaternion coordinates. Following PoincarÉ's imaginary time approach
in the complex number space, only a two-dimensional problem can be solved,
however.
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