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Is time imaginary?

EDGAR MULLER

Avenue Marc-Dufour 55
1007 Lausanne

The negative metric of the 4-Space Wave equation is
due to our measurement procedure. The 4-Space Wave
equation can be mapped onto the 4D-LAPLACE equation
by adding a quarter turn to all imaginary quaternion
coordinates.

La métrique négative de ’équation d’onde du 4-Espace
est due & notre procédure de mesure. En ajoutant un
quart de tour a toutes les coordonnées quaternion imagi-
naires, I’équation d’onde du 4-Espace peut étre projetée
sur I’équation 4D de LAPLACE.

Die negative Metrik der Wellengleichung im 4-Raum
ist eine Folge unserer Messprozedur. Durch eine Viertel-
drehung aller Imaginar-Koordinaten im Quaternion-Raum
kann die 4-Raum-Wellengleichung auf die 4D- LAPLACE-
Gleichung projiziert werden.

Introduction

HENRI POINCARE demonstrated in 1905%, that time t can be interpreted
as an imaginary fourth spacetime coordinate? ict, and that LORENTZ trans-
formations can then be mapped onto ordinary rotations of a four-dimensional
EUCLIDEAN sphere.

This subject, just briefly touched by POINCARE, was further elaborated
by HERMANN MINKOWSKI in 1908%. MINKOWSKI reformulated MAXWELL’s
equations as a set of symmetrical equations in the four variables (z,y, z,ict),

'HeNRI POINCARE, (1905-1906), "Sur la dynamique de I’4lectron" [On the Dynamics of
the Electron|, Rendiconti del Circolo Matematico di Palermo, 21: 129-176.

2wherein i2 = —1 and c is the speed of light.

SHeErMANN Minkowskl, (1907-1908), "Die Grundgleichungen fiir die elektromagnetischen
Vorginge in bewegten Kérpern" [The Fundamental Equations for Electromagnetic Pro-
cesses in Moving Bodies], Nachrichten von der Gesellschaft der Wissenschaften zu Gottin-
gen, Mathematisch-Physikalische Klasse: 53-111.
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and he redefined vector variables for the electromagnetic quantities, showing
their invariance under LORENTZ transformations. He concluded that time
and space should be treated equally, and that physical events take place in a
unified four-dimensional spacetime continuum.

Within this theory, the coordinates of a physical event in spacetime are
represented as a four-vector (¢,z,y,z). A LORENTZ boost rotates the four-
vector around a particular axis in four-dimensional space, whilst its length
remains constant The "rotation" in a plane spanned by a space unit vector
and a time unit vector, while formally still a rotation in coordinate space,
is noteworthy a LORENTZ boost in physical spacetime with real inertial co-
ordinates. The analogy with EUCLIDEAN rotations is, however, only partial,
since the radius of the sphere is actually imaginary, which turns rotations into
hyperbolic rotations.

MINKOWSKI spacetime works well for handling LORENTZ boosts in two di-
mensions spanned by a space unit vector and a time unit vector, but it fails
at handling general rotations in (ict, z,y, z), due to its insufficient distinction
between the space vectors (x,y, z) themselves. Furthermore, there seems to
be no physical reason for passing from real time to imaginary time!. The
question is, thus, whether imaginary time is a physical necessity, or whether
it is just an artifact of our measurement procedure.

Measurement

Measuring a quantity a implies dividing it by a reference quantity r of the
same nature, in order to obtain a dimensionless number (length) L, which is
amenable to treatment with mathematical tools. Related to measurement is
counting. Measurement applies to continuous quantities, where an external
reference is needed, whereas counting applies to discrete quantities, whose
discretization already provides an internal reference.

Measurement, thus, always implies a division: L = @/r, in order to determine
how many times the reference quantity r is contained in the quantity a to be
measured.

In the case of multidimensional vector quantities a = (ag, a1, ..., ay), whose
components are independent from each other, a "cartesian" approach is gen-
erally made, in which each component of a is divided by a corresponding
component of the reference vector r, and the results are summed up to obtain
the measured length L:

L:Z(GO/T’Q‘I_al/M"‘---"‘a”/’rn)-

I'The mathematical beauty of substituting a hyperbolic rotation by an ordinary rotation is
obviously not a physical reason.
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To simplify the algebraic procedure, a scale vector s is then defined, whose
components are the reciprocals of the components of the reference vector:

S = (1/1”(), ]‘/7"1, % .,1/7“71) .

The measurement result L is now obtained as the inner product of the
quantity a to be measured and the scale s which is applied: L = a - s.

Note that a reciprocal relationship exists between L and s: The
larger the scale, the smaller are the values of L, and vice-versa. As
L is a measure of a, a reciprocal relationship also exists between a
(the measured quantity) and s (the scale).

Square norm :

The scale vector s, measured at itself, should noteworthy yield the unit 1:
s+8= (8080 + 5151 + -+ 8p8,) = Y. 57 = 1. (normalization)

The quantity a, measured at the scale vector, should yield the measurement
value L : a - s = (apso + a181 + -+ + ansn) = a;8; = L. (measurement,)

From this it follows that the squares of the components of a vector a sum up
to the square of its length L : a-a = (apag + a1a1 + -+ - + anayp) = > a7 = L.
(cartesian square norm).

Composite algebras:

The cartesian square norm also exists in the three composite (complex)
division algebras, noteworthy the complex numbers, the quaternions and the
octonions. Instead of an inner product of vectors, the algebraic product of
the complex number ¢ with its conjugate complex c¢* is then used (with i =
j2=k?>=12=m? =n? = 0® = ijk = ijklmno = —1):

L*=c-c* = (z0 +iz1) - (w0 —iz1) = (23 + 2) .
L?=q. ¢ = (xo + tx1 + jr2 + kxs) - (xo — i1 — jro — kxs)
= (:L’é—km% —|—:L‘§ —1—1%)
L?=0-0" = (o + ix1 + jx2 + kx3 + lxa + mzxs + nxg + oxy)
(xo —ix1 — joo — kxs — lxg — mxs — nxe — oxy)
= (m%—{—x%—l—x%—l—m% —|—xﬁ+x§—|—x%+m%).

The cartesian square norm is a sum of positive squares, and it characterizes
EUCLIDEAN spaces of positive metric, which are required to describe physi-
cal quantities for which conservation laws apply, such as the energy, which,
according to P.A.M. DIRAC, is a sum of four positive squares?.

1p2 — (m002)2 + (pzc)® + (pye)* + (pzc)?. See Max Pranck (1906), "Das Prinzip der
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Measurement in composite algebraic number spaces:

The "inner product" measurement formula given above holds as well in
composite algebras:

a-s=(apso+ais1+ -+ ansn) :Zaisz- = L.

However, recall that there is a reciprocal relationship between the measured
quantity a and the measurement scale s. If the measured quantity a is in
EUCLIDEAN space, the measurement scale s spans necessarily a reciprocal
EUCLIDEAN space!

If therefore the measured quantity a is a quaternion ( ag +iay + jas + kas ),
the measurement scale s must be a reciprocal unit quaternion (so — sy — js2 — kss)
I' The inversion of sign in the imaginary part is necessary to make the inner
product containing only positive terms:

(ao;iaq; jaz; kas) - (so; —is1; —js2; —ks3) = (apso + a1s1 + az82 + asss)

EUCLIDEAN space versus relativistic spacetime

Conserved physical quantities must obey LAPLACE’s equation in EUCLIDEAN
) _ (1 8° o2 o2 o _ .
space: AA = (?W + 522 1 522 + 81%) A = 0. (under empty space condi-
tions)

This equation can be solved by factoring the LAPLACE operator in quater-
nion number space and integrating the resulting first-order quatemion trans-
port equations’.

The LAPLACE operator can be thought as being an inner product of the
Nabla operator with itself in a 4-dimensional ordinary space:

c Ot Oxq1 Oxa Oxs c Ot Ox1 Oxzs Oxs

or, else, as the inner product of the vectorized quaternion Nabla operator
with its quaternion reciprocal?.

AAZV-V*A:<(EQ;Z‘ 0 i J 0 ik 0 )(lg,—z 0 s —J 0 ;—k 0 ))A:O.
cot Ox1 ~ Oxs Oxs c ot ox1 Oxo oxs

Relativitdt und die Grundgleichungen der Mechanik". Verhandlungen der Deutschen
Physikalischen Gesellschaft. 8 (7): 136-141; Walter Gordon (1926). "The Compton effect
according to Schriédinger’s theory”. Z. Phys. 40. 117-133 ; Paul Dirac (1928). "The
Quantum Theory of the Electron". Proc. R. Soc. Lond. A. 117 (778): 610-624.
lEpGAaR MULLER, ,Factoring the wave equation, Bull. Soc. Frib. Sc. Nat. - Vol. 112
(2023), 106-113.
2The reciprocal of a quaternion is its complex conjugate, divided by its length. Given that
the LAPLACE equation adds up to zero, we multiply it here, for the sake of simplicity, by
its length.
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We are still staying in EUCLIDEAN Space, where physical conservation laws
apply.

On the other hand, electrodynamics and Special Relativity obey the
4-Space Wave equation: AA = (C%aa—; _ 2 o o ) A = 0, which

9z? 9z 0z
has a negative metric and spans a hyperbolic space. There is no factoring
available for the 4-Space Wave operator, unless by recurring to the matrix

method of P.A.M. DIRAC!.

The 4-Space Wave equation operator can be thought of as an inner product
of a quaternion Nabla operator with itself:

10 0 o 15} 10 0 0 0
V-VIA=AA= | —oin—iio—k | =gk A=0;
( ) ((cat’lamldaxz' 8903) (cat laml ‘78332 8333))

or, after multiplication by -1 , as the inner product of a complex Nabla
operator with itself:

(V‘V)A:AA:(<18~6 0 a).(1a'a 0 a>>A:0;

E&’aml’&rg’@mg %5’81‘1’81‘2’8303

This latter was the basis for POINCAREs postulating hyperbolic space-
time with an imaginary time coordinate ict and a negative metric
{—sTs+s 1)

For mapping the hyperbolic 4-Space onto the EUCLIDEAN space of the
LAPLACE equation, we must thus add an inversion to the quaternion’s imagi-
nary parts. This is best done by applying a quarter turn to all imaginary com-
ponents of the quaternion coordinates: ( zo — zo;x1 — iT1; 29 — jTo;x3 —
kxs ). The negative metric of the 4-Space wave equation is herewith changed
into the positive metric of the LAPLACE equation.

In POINCARESs approach, there is just a single quarter turn applied to the
time coordinate; however, the complex number space is not sufficiently large
for solving the resulting 4D-LAPLACE equation. This means that the ap-
proach only allows a description involving one time-coordinate and one space
coordinate, i.e. solving the 2D-LAPLACE equation.

Conclusion

The negative metric of the 4-Space Wave equation

2 2 2 2
(ia__ CARN )A:o
2 0t2  9x? Ox3 Ol

IP.A.M. DIRAC. The quantum theory of the electron, Proc. Roy. Soc. Lond. A., Vol.
117, is. 778, 610-624 (1928).
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is due to our measurement procedure. The 4-Space Wave equation can be
mapped onto the 4D-LAPLACE equation by adding a quarter turn to all imagi-
nary quaternion coordinates. Following POINCARE’s imaginary time approach

in the complex number space, only a two-dimensional problem can be solved,
however.
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