
Zeitschrift: Bulletin de la Société Fribourgeoise des Sciences Naturelles = Bulletin
der Naturforschenden Gesellschaft Freiburg

Herausgeber: Société Fribourgeoise des Sciences Naturelles

Band: 113 (2024)

Artikel: Factoring the wave equation II

Autor: Müller, Edgar

DOI: https://doi.org/10.5169/seals-1056120

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 28.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-1056120
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


SFSN-FNG Bull. Soc. Frib. Sc. Nat. - Vol. 113 (2024)

Factoring the wave equation II

Edgar Müller
Avenue Marc-Dufour 55

1007 Lausanne

Summary
In a previous article [MU23] it was shown that wave equations of the form

(&t ~ Y^i=l) ^2)F 0 for 1 ^ n ^ 7 can be remapped onto the corresponding
Laplace equations of dimensions 2, 4, or 8 by a variable change to complex,
quaternion or octonion variables, and that the resulting LAPLACE equations
can be factored into a product of two first-order transport equations in C, Q, or
O, and solved according to D'ALEMBERT'S [AL47] method of characteristics.
The resulting characteristics are scaling-rotators in C, Q, or O, operating in
EUCLIDEAN space of positive metric, and giving rise to spherical harmonics.
Back-transforming yields solution functions in the hyperbolic space of the
wave equation, which has a negative metric. The solutions for dimensions
2 and 4 were presented in the previous article. In the present article, the
solution for dimension 8 is presented in detail. The solutions for dimensions
3, 5, 6, and 7 can be found by inclusion into dimension 4 or 8, respectively.

Conformai remapping and factoring of the 8D wave equation

The 8D wave equation
~fP~2 ~ 7T-2 - 7T-2 - 7T-2 - 7T-2 - tt-v ~ tt-t) E °, can be remapped\c OtZ OXlZ OX 2 Ox 2, OX4Z OX 5Z OXQZ OX Y J 1 jrjr

onto the 8D Laplace equation in Octonion space O by the transform:
{iCo —y Ct, X\ —y I X\,X2 J X2,Xs —> k Xs,X4 —>• Z X4,X5 —>• 771 X5,XQ^n Xq,X7 —>•

o X7}, with i2 j2 k2 I2 m2 n2 o2 ijklrnno —1.

Back-mapping is achieved by the reciprocal transform1:

{ct —>• Xo,Xl —>• —I X\,X2 —>• —J X2,Xs —>• —k X3,X4 —>• —I X4,X5 —>• — 771 X5,Xß —>

—n Xq, X7 ^ —o X7}

The resulting 8D LAPLACE equation,

(£% + + + + + + + tfaf)G 0>

which we rewrite in shorthand as:

lrThe reciprocal of a complex number, quaternion or octonion is its conjugate complex
quantity, divided by its length For differential operators, as will be considered m the
present context, the length is irrelevant
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(<9g + d\ + <9f + <9f + d\ + <9f + <9| + <92)G 0,

can be factored in O in two ways into a product of two octonion transport
equations:

(d2 + d\2 + d'i' + d32 + Ö42 + + 9ß2 + c^2) G

((do — id\ — jd2 — kd3 — W4 — 77185 — nd6 — 087) (80 + id4 + jd2 + kd3 + W4 + 77185 + nd6 + 06)7 G 0

(<9o — idi — jd2 — kdo — W4 — 11185 — ndo — 087) ((80 + îdi + J^2 + /cd3 + W4 + m9s + ndo + 0^7) G) 0

(do — 184 — jd2 — kd3 — W4 — 77185 — ndo ~ 087) #2=0
and

(9o2 + 9i2 + 9*22 + 932 + 942 + 952 + 962 + 972) G

((do ~\~ 184 -\- jd2 -\- kd3 -f-184 77185 ndo 087) (do — id\ — jd2 — kd% — 184 — 77185 — ndo — 087^ G 0

(<9o + 184 + jd2 + kd3 + W4 + 77185 + ^06 + 087) ((do — 184 — jd2 — kdo — W4 — 77185 ~ ndo — 087) G) 0

(80 + îdi + jd2 + /c93 + W4 + mô5 + n96 + o97) g± 0

The question arises, whether the shift of parentheses is allowed, because
the associative law does not hold in general octonion space. However, as was
shown by EMIL ARTIN, every sub-algebra spanned by only two octonions
is still associative (ARTIN'S theorem)1. The 8D-LAPLACE equation
comprises only two different octonions, i.e. the octonion differential operator and
its complex conjugate, whose imaginary part is collinear with that of the
operator, and the octonion operand. The shift of parentheses is thus allowed
and we can solve the 8D-LAPLACE equation as outlined.

The octonion differential operator is a rotational transport operator (any
octonion being a scaling-rotation operator in O). We have thus advantage,
here too, in taking the transport equations into polar coordinates.

Formulating new transport equations in polar coordinates (r, 6)2

yields:
(90 + id\ + jd2 + kds + Z94 + 5 + nd6 + od7) gi 0 yields: (do + u r

dr)(pi 0, which is satisfied by any twice differentiable function <^i(r e~- 6>),

and (do — id\ — jd2 — kds — 19a ~ knd5 — ndß — od7) #2 0 yields: (de — ur
dr)(p2 0, which is satisfied by any twice differentiate function tp2(r e-e).
Therein, u

1 (iqi + jq2 + kq3 + lq± + mq5 + nqQ + oq7)
y <??+<?!+<?i+<?!+<?i+<?§+<??

(iui+ju2 + ku3+lu4+mu5+nuQ+ou7) is a pure unit octonion. The characteristics
in this case are the octonion expressions (r e~-e) and (r e-e). The solution
is therefore a superposition of arbitrary, twice differentiate functions cpi (r
e~-e) and (f2(r e-e). Stationary waves can result from the superposition of
two opposite-rotating functions, but there is also a possibility of stationary
waves resulting from the self-interference of a single rotating function.

lrThis is evident from the following consideration an octonion has a real part and a
7-dimensional imaginary part, pointing somewhere into imaginary space Considered per
se it is just a complex number Two different octonions can thus only have two different
imaginary parts, pointing into two different imaginary directions Hence two octonions can
only span a quaternion space, which is associative

2The differential operators m polar coordinates are d/rdg + idr) and d/rdg — idr),
respectively In the following, for the sake of simplicity, we multiply them by r
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Self-interference of the solution functions:
Here again, the factors e~-e and e-e are rotating pointers, with a

periodicity in 0 of 27r. The solution functions (pi and (f2 will therefore interfere
with themselves after 27r or a multiple thereof, and eventually reinforce or
wipe out what they had written before. Stationary solutions, i.e. solutions
having a stable mean value, can thus exist if the solution functions cpi and

(f2 are periodic, with periodicities of n • 27t, wherein n 0,1, 2, 3,..., i.e. a

non-negative integer.
The complete polar representation of an octonion comprises a radius and 7

angles (r, 61,02,03,64,65,06,07)1

q (qo + m + jq2 + kq3 + lq4 + mq5 + nq6 + oq7)

||g|| (cos (0i) + u sm (0i))

008(6*1) '\

+i sm (0i) cos (6*2)

+j sm {0i) sin (02) cos (6*3)

_ +k sm(6*i) sin (02 sm(03) cos (04)
r +/ sm(0i) sin (02 sin (03 sm(04) cos(05)

+m sin (0i sin (02) sin (03 sm(04) sm(0s) cos (06

+n sin (0i) sin (02) sm(03) sm(04) sm(05) sm(06) cos (07)

y +0 sin (0i) sin (02) sm(03) sm(04) sm(05) sm(06) sm (07) y

with r \\q\\ vW Vqo + QÏ + q22+qï + ql + q\ + + ??;

01 arcos
vlklly

02 arcos (up

a u2
03 arcos —,

y \J (112 + u\ + u\ + + Uq + up) J

04 arcos —
U3

I

\^(ul +ul+ul+u26+u27)J

05 arcos
UA

I

\^{ul+ul+ul+u27))

06 arcos I
U5

and
V >/(«§+«6 +«?)/

07 arcos
Ue

VVK + ^t)/
The spherical harmonics in the solutions of the 8D Laplace's equation form

therefore a 7-dimensional manifold, because, beside the principal rotation
in 0i which we are contemplating here, there are subordinated rotations in
02> 03, 04, 05, 06? $7? a^so ^ea(i to self-interference. This seven-dimensional
manifold gives rise to quantum numbers in particle physics, which characterize
each stationary state.

Back-transformation of the variables
In view of back-transforming the variables, we first rewrite the solution

lrThe former angle 0 is now called 0\

133



SFSN-FNG Bull. Soc. Frib. Sc. Nat. - Vol. 113 (2024)

functions' arguments as a CARTESIAN vector representation:
/ r cos 6>i \

—i ui r sm6>i

—j U2 r sin 6>i

—m uq r sm6>i

—n uq r sm^i

\ —o U7 r sm6>i y

/ r cos 61 \
i u\ r sin6*i

3 U2 r sm6>i

m uq r sin 0\

n uq r sin 6>i

\ o U7 r sm6>i

The CARTESIAN coordinates span here, as do the polar coordinates, the
whole 8-dimensional space R8 of the function's arguments.

Applying the trigonometric identities cos(ce) cosh(v/—l-a) and ^-sin(ce)

j • sin(ce) k • sin(ce) I • sin(ce) m • sin(ce) n • sin(ce) o • sin(ce)
sinh(v/—1 • ol) yields for the arguments of the solution functions:

/ r cosh (\/—1 #1) \
-Ui r smh (a,n e

-U2 r smh (an 0

-U3 r smh (a,rr 0

—U4 r smh (arr 0

—Uq r smh (an 0

-Uq r smh (an 0

\ -U7 r smh (an 0

/ r cosh (\/—1 #1) \
ui r smh (a/—1 Q\)
U2 r smh (a/—1 9\)
U3 r smh {yf—1 #i)
U4 r smh (\/—1 #1)

uyj r smh (a/—1 0i)
Uq r smh (a/—1 Ol)

\ U7 r smh (v/—1 #1) /
We now apply the back-transformation {x0 ->> ct xi ->> -1 xi x2 ->> -j x2 x3 ^ -k x3},

and obtain:
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91 and

92

et r cosh (\/—1 G) \
i ui r smh (\/M 6>i

3 U2 r smh (\/M
k U3 r smh (\/M
I U4 r smh (\/—1 G

m us r smh (y/—l 6\

n uq r smh (\/M G

\ o U7 r smh (\/—1 #1) /
/ d r cosh (\/—1 6*i \

—i Ui r smh (\/—1 #i)
—j W2 r smh (\/M G)
—k U3 r smh (\/—1 #i)
—I U4 r smh (\/—1 G)

—m Ms r smh (\/M G)
—n uq r smh (\/M G)

\ —o uj r smh (\/M 6>i) /
The solution function's arguments are now again in a hyperbolic space,

corresponding to the metric (+1, —1,—1,-1,—1,-1,—1,-1) of the 8 -space.
Regardless of r, the function's arguments run always into the infinite. With
respect to the linear EUCLIDEAN space of the 8D-LAPLACE equation, the
8D-Wave equation spans a reciprocal, hyperbolic space, and has not only
travelling-wave-solutions, but also stationary solutions, reflecting stationary
states of particle physics.
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