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Factoring the wave equation

Edgar Müller
Avenue Marc-Dufour 55

1007 Lausanne

Wave equations of the form (d2 — Y^i=i) &%)F — 0 for
1 < n < 7 can be remapped onto the corresponding Laplace
equations of dimensions 2, 4, or 8 by a variable change to
complex, quaternion or octonion variables. The LAPLACE
equations can be factored into a product of two first-order
transport equations in C, Q, or O and solved according to the
method of characteristics. The characteristics are scalmg-
rotators m C, Q, or O operating m EUCLIDEAN space and

giving rise to spherical harmonics. Back-transforming yields
solution functions in hyperbolic space of negative metric.

Introduction
JEAN LE ROND D'ALEMBERT has shown, back in 1747, that the

second-order partial differential equation (d2 — c2d2)F 0, which describes
the standing waves on a string, is reducible in R to the superposition of
a forward-running and a backward-running travelling wave, fi(x — ct) and

f2(x + ct), respectively, wherein /i and are arbitrary, twice differentiate
functions1. The arguments (x — ct) and (x + ct) are called the characteristic
variables of (d2 — c2d2)F 0. D'ALEMBERT'S method of solving this
partial differential equation is today known as the "method of characteristics
It starts with a formal factoring of the partial differential operator into a

product of lower-order partial differential operators. In the above case we
obtain:

(<t - c2dl) F ((dt + c- dx) (dt-c dx))F 0,

(dt+c- dx) ((dt - c dx) F) (dt + c- dx) fi 0 or

(,92 - c2dl) F ((dt - c dx) (dt + c dx)) F 0

(dt-c- dx) ((dt + c dx)F) (dt - c dx) f2 0.

:JEAN LE ROND D'ALEMBERT (1747) "Recherches sur la courbe que forme une
corde tendue mise en vibration", Histoire de Vacadémie royale des sciences et belles lettres
de Berlin, vol. 3, pages 214-219.
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It is easily seen that if F contains a term fi (x — ct), this term yields zero
under (dt + c dx), and that if F contains a term f2(x + ct), this term yields
zero under (dt — c dx), because of the inner derivatives. The solution is

thus a superposition of arbitrary, twice differentiate functions fi (x — ct) and

f2(x-\-ct). In other words, a superposition of forward-running and backward-
running travelling waves.

The beauty of D'ALEMBERT'S method of characteristics is its closeness

to the physical nature of the underlying phenomena which give rise to the
partial differential equation in question. Mathematics acts here as a powerful
analytical tool for revealing the physics behind the differential equation.

The method of characteristics does, however, no longer work out for higher-
dimensional wave equations, such as those occurring in electrodynamics, quantum

physics, etc., because the implied partial differential operator is not
reducible in R. Examples of 4-dimensional wave equations are:

(Id2 d2 d2 d2 \HE I — — E 0 (Electromagnetic E-wave m free space)
1 d2 d2 d2

c2 dt2 dx i2 dx 2
2 Ô

d2 d2 d2 d2

dt2 dx i2 dx 2
2 dx3

d2 d2 d2 d2

dt2 dx i2 dx 2
2 dx3

A —— — ——- — ——- — ——- A no J (Fundamental equation of electrodynamics)
\dtz dxiz dx22 dxs2 J

f
Dil> (—- —— - —— - —— J ip —m2it> (KLEIN-GORDON equation)

Comment on the Fundamental equation of electrodynamics : In natural
coordinates; A (<p, (Ai, A2, A3)) is the 4-potential, composed of scalar
potential (p and vector potential A, and J (p, (Ji, J2l J3)) is the 4-current
density, composed of charge density p and current density J.

Comment on the KLEIN-GORDON equation : In natural coordinates;
the KLEIN-GORDON equation has been factored by Paul A.M. DIRAC
in a forced way with the help of appropriate 4x4 matrices: Paul A.M.
DIRAC, (1928). "The Quantum Theory of the Electron". Proceedings of
the Royal Society A: Mathematical, Physical and Engineering Sciences. 117

(778): 610-624.

Conformai remapping and factoring of the 2D wave equation

Wave equations of dimensions 2, 4, or 8, and of the intermediate dimensions
by inclusion, can be conformally remapped onto the LAPLACE equation, by
a change to complex, quaternion, or octonion variables:

Under the change to complex variables {t -A t,x -A 1 #}, the 2D wave equation

(df — c2df) F 0 transforms noteworthy into (df + c2d2) G 0, i.e. the
LAPLACE equation.

The LAPLACE equation is reducible in C, yielding
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(d2 + c2<92) G ((dt + i c dx) (dt - i c dx)) G 0

(dt + i-c-dx) ((dt - % c dx) G) (dt + i c dx) gi 0, and

(dt + c2dl) G ((dt - i c dx) (dt + i c dx)) G 0

(dt - i c dx) ((dt + i c dx) G) (dt - t c dx) g2 0

Therein, the differential operators are complex quantities, which act as

rotational transport operators onto a complex function G, or gi or $2- Given the
rotational nature of these transport operators, we have advantage in taking
the transport equations into polar coordinates.

Formulating new transport equations in polar coordinates (r, 9)1

yields:
For (dt + i - c • dx) gi 0 : (de + i • r • dr)<pi 0

which is satisfied by any twice differentiable function tpi (r • e~% e), and

For (dt - i - c • dx) g2 0 : (de - i • r • dr)cp2 0

which is satisfied by any twice differentiable function again
because of the inner derivatives.

The characteristics are in this case the complex scaling-rotators (r • e~% e)

and (r • el 6>), which rotate in opposite sense.

The solution is therefore a superposition of arbitrary, twice differentiable
functions (pi (r • e~% e) and cp2 (r • c16>). Stationary waves can result from the
superposition of two opposite-rotating functions, but there is also a possibility
of stationary waves resulting from the self-interference of a single rotating
function.

Self-interference of the solution functions:
The factors (r • e~% e) and (r • e1 e) are noteworthy rotating pointers, having

a periodicity in 0 of 2ir. The solution functions (pi and cp2 will therefore
interfere with themselves after 2ir or a multiple thereof, and eventually
reinforce or wipe out what they had written before. Stationary solutions, i.e.
solutions having a stable mean value at each point, can thus also exist if the
solution functions (pi and cp2 are periodic, with periodicities of n • 27r, wherein
n 0,1,2,3,..., i.e. a non-negative integer. The fact of self-interference
gives insight into the appearance of spherical harmonics in the solutions of
the 2D LAPLACE equation; self-interference is a necessary consequence of
the rotational transport operators, which lock non-transitory forward- and/or
backward-rotating solution functions to periodicities of integer multiples of
27r.

lrThe differential operators m polar coordinates are {^de -\-idr) and (^de —idr), respectively

In the following, for the sake of simplicity, we multiply them by r
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Back-transformation of the variables
In view of back-transforming the variables, we rewrite the solution functions'

arguments as a CARTESIAN vector representation:

ifi (r - e~l'e) ifi (x r • cos 6; y — i • r • sin 6)

(r • el'e) ip2(x r - cos 6; y +i • r • sin6)

The CARTESIAN coordinates (x, y) span here, as do the polar coordinates
(r, 0), the whole plane R2 of the function's arguments.

Applying now the trigonometric identities cos (ce) cosh(v/—1 • ce) and i •

sin(ce) sinh(v/—1 • ce) yields:

(fi(x r • cosh(\/—1 • Ö); y —r - sinh(\/—1 • 0))

(f2(x r • cosh(\/—1 - 0); y +r - sinh(v/—1 • 0))

We now apply the back-transformation (x —>> x; y —) —iy) to the variables,
and obtain:

gi(x r • cosh(\/—1 • Ö); y +i • r • sinh(\/—1 • 0))

g2(x r • cosh(\/—1 • Ö); y —i - r - sinh(\/—1 • 0))

The function's arguments are now in a hyperbolic space of negative metric
(+1,-1), describing a hyperbolic rotation, which is confined into merely two
quadrants of the R2 plane, with the restriction (—x < y < +x).

Circular rotation Hyperbolic rotation

Instead of remaining bound to a circle of radius r, the function's arguments
in the hyperbolic space run always into the infinite, regardless of r. With
respect to the linear EUCLIDEAN space of the LAPLACE equation, the
wave equation spans a reciprocal, hyperbolic space.
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Conformai remapping and factoring of the 4D wave equation

The 4D wave equation - ^2 - ^2 - ^2) E 0, describing an

electromagnetic wave in free space, can be remapped into quaternion space Q
by the transform: {ct —) xo; xi —) 1 • xi; X2J • X2; X3 —) k • X3}.

We therewith obtain the 4D LAPLACE equation, which we rewrite in shorthand

as:

(èf + èf + è| + èf)G A2 + Ö12 + ô22 + Ö32) G 0

This latter is reducible in Q as the product of two quaternion transport
equations:

(do + d\ + d22 + d3) G ((d0 - idi - jd2 - kd3) (d0 + idi + jd2 + kd3)) G 0

(<90 + id\ + jd2 + kd3) ((d0 - idi - jd2 - kd3) G) 0

(d0 + idi + jd2 + kd3) gi 0, and

(do + ö2+ ö22 + G ((do + id\ + jd2 + kd3) (do — id\ — jd2 — kd3)) G 0

(do - idi - jd2 - kd3) ((d0 + idi + jd2 + kd3) G) 0

(do - idi - jd2 - kd3) g2 0

Here, too, the quaternion differential operators are rotational transport
operators (any quaternion being a scaling-rotation operator in Q We have thus
advantage, again, in taking the transport equations into polar coordinates.

Formulating new transport equations in polar coordinates (r, 6)

yields:
For (do + idi + jd2 + kd3) gi 0 : (de + u • r • dr) <pi 0,

which is satisfied by any twice differentiate function (pi (r • e--6*), and

For (d0 - idi - jd2 - kd3) g2 0 : (de - u-r - dr) (p2 0,

which is satisfied by any twice differentiate function cp2 (r • e-
Therein, u

1
(zq1 + jq2 + kq3) (iu\ + ju2 + ku3) is a pure

y (qi+QZ+QÏ)
unit quaternion.

The characteristics in this case are the quaternion expressions (r • e~-
and (r • e- e).

The solution is therefore a superposition of arbitrary, twice differentiate
functions (pi (r • e~- e) and cp2 (r • e- e). Stationary waves can result from the
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superposition of two opposite-rotating functions, but there is also a possibility
of stationary waves resulting from the self-interference of a single rotating
function.

Self-interference of the solution functions:
Here again, the factors e~-e and e-e are rotating pointers, with a

periodicity in 6 of 27r. The solution functions (pi and (f2 will therefore interfere
with themselves after 2tt or a multiple thereof, and eventually reinforce or
wipe out what they had written before. Stationary solutions, i.e. solutions
having a stable mean value, can thus exist if the solution functions cpi and
cp2 are periodic, with periodicities of n + 27t, wherein n 0,1, 2, 3,..., i.e. a

non-negative integer.
The complete polar representation of a quaternion comprises a radius and

3 angles (r, 0, x, Q

q (qo +iqi + jq2 + kq3)

||g||(cos(0) + u sin(0))

/ cos (0)

r +i sin(0) cos(x)
+j sin(0) sm(x) cos(G

\ +k sin(0) sin(x) sin(Ç) /
with r ||ç|| ^jql + q\ + q\ + ç|,

(£)'
X arcos (ui)

ypui+uD)
The spherical harmonics in the solutions of the 4D Laplace's equation

form therefore a 3-dimensional manifold, because, beside the principal rotation

in 6 which we are contemplating here, there are subordinated rotations
in x and in £, which also lead to self-interference. This three-dimensional
manifold gives rise to the principal, the angular and the magnetic quantum
numbers of atomic physics, where each stationary state of an electron orbit is

uniquely characterized by its combination of the three quantum numbers.
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Back-transformation of the variables
In view of back-transforming the variables, we first rewrite the solution

functions' arguments as a CARTESIAN vector representation:

Vi ('r • e 9)=^i

ip2 (r e) ip2

r • cos 6 \
—%• u\ • r • sin

—j'U2'T' sin
— k - us - r • sin# J

r • cos 6 \
i • u\ - r • sin 6

j • U2 - r • sin 6

\ k - us - r • sin 6 J

The CARTESIAN coordinates span here, as do the polar coordinates (r, 0),
the whole 4-dimensional space R4 of the function's arguments.

Applying the trigonometric identities cos(ce) cosh(v/—1-ct) and 2-sin(ce)

j - sin(ce) k• sin(ce) sinh(\/—1 • ce) yields for the arguments of the solution
functions:

<Pi

^2

/ r • cosh(v/—1 • 0) \
—u\ • r • sinh(v/—1 • 0)

—U2 - r • sinh(v/—1 • 0)

\ -Us ' r ' sinh(v/—Î • 0)

r - cosh(v/—1 • 0) \
u\ • r • sinh(v/—1 • 0)

U2 • r • sinh(v/—1 • 0)

\ us • r • sinh(v/—1 • 0) J

and

We now apply the back-transformation
{xq ct,xi —y —% x\,x2 —>• —j X2,X3 —k X3}, and obtain:

9i

92

ct • r • cosh(v/—1 • 0) \
i • u\ - r • sinh(v/—1 • 0)

j • U2 • r • sinh(v/—1 • 0)

\ k • us • r • sinh(v/—1 • 0) J

ct - r - cosh(v/—1 • 0) ^
—i • u\ • r • sinh(v/—1 • 0)

—J-U2-V- sinh(v/—1 • 0)

\ —k - us - r - sinh(v/—1 • 0) J

and
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The solution function's arguments are now again in a hyperbolic space,
corresponding to the metric (+1, -1,-1,-1) of the 4-space of Special Relativity.
Regardless of r, the function's arguments run always into the infinite. With
respect to the linear EUCLIDEAN space of the LAPLACE equation, the
wave equation of the free electromagnetic wave spans a reciprocal, hyperbolic
space. We are thus living in a reciprocal space, and has not only travelling-
wave-solutions, but also stationary solutions.
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