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The massive particle as a quantum-locked
state of movement

EDGAR MULLER, CHEMIN DES BOULEAUX 14, 1012 LAUSANNE

Summary

According to the relativistic energy invariant, the rest mass my is a fourth, locked
component of movement, orthogonal to the free components p., p,, p.. From this it
must be concluded that my is a quantum-locked state of movement, determined by the
spectrum O = AY of the D 'ALEMBERT operator.

Résumé

D’apres ['invariance d’énergie relativiste, la masse au repos my est une quatriéme
composante du mouvement, verrouillée et orthogonale aux composantes p,, p,, p-, qui
a leur tour sont libres. On doit en conclure que my est un état quantique verrouillé
du mouvement, déterminé par le spectre OW = AY¥ de | 'opérateur de D’ ALEMBERT.

Zusammenfassung

Aus der relativistischen Energie-Invarianz folgt, dass die Ruhemasse my eine vierte
Komponente der Bewegung ist, verriegelt und senkrecht zu den Komponenten p, p,,
p- die ihrerseits frei sind. Man muss daraus schliessen dass mq ein verriegelter
Quantenzustand der Bewegung ist, bestimmt durch das Spektrum O = A¥ des
D ALEMBERT ‘schen-Operators.

As shown in a previous paper', physical reality is conditioned by the algebraic 2-
squares, 4-squares, and 8-squares identities. These identities are mathematical singu-
larities, which give rise to the complex numbers, the quaternions, and the octonions,
respectively. In quaternion space H, which is the physical 4-space with negative met-
ric signature (+1,-1,-1,-1), POISSON’S equation becomes a wave equationii:
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In its most general form, this wave equation represents the fundamental equation of
electrodynamics, which is the LORENTZ-invariant form of MAXWELL'’S equations:
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wherein O represents D°ALEMBERT’s operator ; A = (%, (Al,Az,A3)) the 4-poten-

tial, composed of scalar and vector potential, and | = (pc, (J1,/2,/3)) the 4-current
density, composed of charge and current.

Equation (2) reflects the structure of the relativistic energy invariant:
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If we measure distance in light-secondsiii instead of meters, ¢ equals 1, and the relati-

vistic energy invariant simplifies to: E2 — p? = my?%, or E? = my* + p*.

From this equations it is immediately evident that moment p = (px, Py, pz) and rest

mass mg are mutually orthogonal components of the total energy E, which means
that the rest mass m, is a fourth component of movement.

Whereas we experimentally know that the components of movement py, py, p. may
take arbitrary values, we also experimentally know that the rest mass my is tied to
determined discrete values, i.e. the rest masses of the known elementary particles and
of their possible compounds".

From this it must be concluded that the rest mass m; is determined by the spec-
trum’ of the D’ALEMBERT operator O
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wherein the variable W is a quaternion wave-function expressing movement in 4-
space.

In particle physics, the octonion equivalent of this formula must ultimately also be
considered:
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wherein y is an octonion wave function expressing movement in 8-space”’.
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The massive particle therefore appears as a quantum-locked state of movement in
four or eight dimensions. It has previously been shown by DIRAC that this holds for
the electron / positron in 4-space:

22

Setting the scalar A = — mﬁ;

quaternion function ¥, equation (4) goes over into the well-known KLEIN-GORDON""
equation:

and taking a scalar wave function y instead of a
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This equation was the starting point for DIRAC
nical description of the electron, which factors the operator and obtains a first-order
differential equation for the electron’s wave function:

derivation of a quantum mecha-

L (z,t
(;J’mc2 + c{a1py + azpy + “3P3)) v(z,t) =ik L (d; ). (7)

The factors o, a,, a3, and B are 4x4 matrices with the multiplicative properties
required to factor equation (6).

Equations (4) and (5) can also be factorized™ into first-order differential equations
using DIRAC’s coup, which makes the spectra of eigenvalues and the corresponding
eigenfunctions of the D’ALEMBERT operator in quaternion 4-space, and their homo-
logues in octonion §-space, accessible to calculation.
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