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De la réalité des nombres

EDGAR MULLER, Chemin des Bouleaux 14, 1012 Lausanne

Résumé

On démontre que la réalité physique est conditionnée par les identités algébriques de « 2 carrés »,
de « 4 carrés » et de « 8 carrés ». Ces identités définissent des espaces non-Euclidiens a géométrie
hyperbolique et a métrique négative. Ainsi l'identité de « 4 carrés » méne-t-elle au 4-espace H,
dans laquelle I'équation de PoisSON gouvernant le transport de matiére devient une équation
d'onde qui, dans sa forme la plus générale correspond a l’équation fondamentale de
I’électrodynamique. La géométrie hyperbolique du 4-espace H méne directement a la
transformation de LORENTZ et a la relativité restreinte.

Zusammenfassung

Es wird aufgezeigt dass die physikalische Realitdt durch die algebraischen 2-Quadrate, 4-Quadrate
und 8-Quadrate-Identititen konditioniert ist. Diese Identitdten konstituieren nichteuklidische
Rdume, mit hyperbolischer Geometrie und negativer Metrik. Die 4-Quadrate-Identitdt fiihrt in
dieser Weise zum 4-Raum H], in dem die den Materietransport beschreibende PoissoN-Gleichung
zu einer Wellengleichung wird, die in ihrer allgemeinsten Form der Grundgleichung der
Elektrodynamik entspricht. Die hyperbolische Geometrie des 4-Raumes H fiihrt in direkter
Weise zur LORENTZ- Transformation und zur speziellen Relativitat.

Summary

It is shown that physical reality is conditioned by the algebraic 2-square, 4-square, and 8-square
identities. These identities constitute non-Euclidian spaces, with hyperbolic geometry and negative
metric. In this way the 4-square identity leads to the 4-space H, in which the PoissoN equation,
governing the transport of matter, becomes a wave equation, which in its most general form
corresponds to the fundamental equation of electrodynamics. The hyperbolic geometry of the
4-space H leads directly to the LORENTZ transform and to special relativity.

1. Léinvariance directionnelle des lois de la physique

Il découle de notre expérience quotidienne, que les lois de la

. physique ne dépendent pas du lieu et de la direction. Un baton
o conserve sa longueur, indépendant de son orientation dans
I’espace. Ceci a des conséquences profondes sur la théorie
o/ |y physique.
X
5 X

L’invariance du lieu se manifeste en ce que les degrés de liberté
physiques (les coordonnées) entrent toujours comme différences
dans les formules.

L’indépendance directionnelle est liée a I’existence de scalaires
invariants. Le baton OP, de longueur r, peut étre tourné autour de
I’origine O. Ce faisant, les coordonnées (x,y) de son bout P changent.
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Cependant, selon le théoréme de PYTHAGORE, la somme des carrés x* + y* = %, et par conséquent la
longueur r du baton, restent invariants sous une rotation du biton ou du systéme de coordonnées.

2. La norme multiplicative

La physique ne se borne pas a la description de la réalité physique en soi, mais comporte également

la description de ses changements (mouvements) et interactions. Un changement (mouvement)

. . N a . ; ; i
correspond & un quotient différentiel, p.ex. % , qui exprime le changement d’une quantité

dépendante f(x) lors d’un changement de la variable indépendante x. Dans le cas de quantités
vectorielles de dimension n, la totalit¢ du changement est exprimé par la matrice de Jacobi, de

dimensionn xn:
d/0x, 0f1/0xy -« 0f,/0x;
(m)m-nm=( I )

a/0xy 0f1/0xn -+ 0fn/0xy

qui est le produit extérieur d’un opérateur vectoriel de dimension n et d’une fonction vectorielle de
méme dimension. Etant donné que le changement appartient au méme espace physique de
dimension n, ce produit extérieur de dimension n x n, pour représenter une réalité physique, doit
étre réductible sans ambiguité, ni diviseurs de zéro, a la dimension n ; en d’autres termes, il doit
exister un « produit vectoriel » a*b avec une norme multiplicative, c'est-a-dire telle que |a||b| = |a*b|
ou, ce qui revient au méme, (a-a)(b-b) = (a*b)-(a*b).

3. Les quatre espaces de nombres avec norme multiplicative

Comme A. HURWITZ I'a prouvé en 18982, il n’y a que quatre constructions mathématiques de base,
en plus de leurs isomorphes, qui possédent une norme multiplicative, & savoir 1’espace des nombres
réels R, I’espace des nombres complexes C, I’espace des nombres hypercomplexes H (quaternions)
et I’espace des nombres hyper-hypercomplexes @ (octonions). Les espaces C, H et @ sont
respectivement basés sur des singularités mathématiques, notamment les identités de 2, 4 et 8
carrés.

3.1 L’espace des nombres réels R

Pour n=1 la formule est triviale:
x)?) = (x*y)?

Elle vaut pour toute paire de nombres (X, y) € R.
3.2 L’espace des nombres complexes® C

Pour n = 2 il existe une identité de 2 carrés® :
X+ XDVE + YD) = (XoYo — X1Y1)* + (XoY: + X1¥p)?

qui peut étre exprimée comme carré vectoriel:

G () - (b, 2y

La substitution (avec i’ =-1)
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Xo=Xo0; Yo=Yo;
Xi=ix;; Yi=1iys;

donne maintenant

(x¢ — x5 —yD) = (Yo + x171)* — (X1 + %1Y0)?

ce qui correspond a un carré vectoriel a8 métrique négative:

(-xo )2 ('3’0 )2 - ( (x0Y0 + x1¥1) )2
X1 Ly1 i(xoy1 + x10)

Les nombres complexes sont associatifs: a(bc) = (ab)c, et commutatifs: ab = ba.
3.3 L’espace des nombres hypercomplexes® (quaternions) H

Pour n = 4 il existe une identité de 4 carrésﬁ,

X2+ X2+ X2+ XD (YE+YE+YE+YE) =
+(XoYo — X1Y1 — XY, — X3Y3)?
+(XoYy + X Yo + X, V5 — X3Y,)?
+(XoYo + XoY, — X Vs + X3Y5)?
+(XOY3 + X3Y0 + X1Y2 - Xzyl)z

qui peut étre exprimée comme carr¢ vectoriel:

s A (XoYo — X1 Yy — X,¥, — Xs¥a)\ 2

X1 1| _ [ (Kol + XY + XoY; — X3Y,)
X 2] | KoY + XoYy — XqYs + X3Y))
X3 Y (XoYs + X3Yy + X1 ¥, — X5Y7)

Il y a ici apparemment une coordonnée (Xo, Yo) qui se distingue des trois autres (indices 1, 2, 3). La
substitution (avec i’ = j2 =k* = ijk = -1):

Xo=X0; Yo= Yos
Xi=ix1; Yi=1iyn;
Xo=]x2; Y2=]y2
Xs=kx3; Ys3= kY3;
donne maintenant:

(g —xf —x3 —xD W —yi—vi—y3) =
+(xoYo + X1y1 + X2¥2 + X3Y3)?
—(xgy1 + X1Yo + X2Y3 — x3¥2)?
—(xoyz + %20 — X1¥3 + *3¥1)?
—(xys + X3Y0 + X1¥2 — X2¥1)?

ce qui correspond a un carré vectoriel & métrique négative:

Xo\?% /¥ \? (x0¥o + X171 + X2¥2 + x3Y3)
i.xl 1:3’1 _ i(xoyy + x1Y0 + X253 — X3¥2)
J%2 1Yz J(XoY2 + X2Y0 — X1Y3 + X3¥1)
kxs kys k(xoys + x3¥0 + %12 — X2¥1)

Contrairement aux nombres complexes, on ne peut pas faire disparaitre ici tous les signes négatifs..
Les quaternions sont associatifs : a(bc) = (ab)c, mais non-commutatifs: ab # ba.
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Ona ==K =ik=-1; fj=4i=k; jk=kj=i; ki=-ik=j.
3.4 L’espace des nombres hyper-hypercomplexes7 (octonions) O

Pour n = 8 existe l'identité de 8 carrés®

X+ X2+ X2+ X2+ X2+ X2+ X2+ X2)(YE+YEHYZ+ YR+ Y2 +YE+Y2+YP) =
+XoYo — X1Yq — XoY, — X3¥3 — XY, — Xs¥s — Xe¥s — X7Y5)?
+(XoYy — X1Ys + XY + XsYy + XY + XV, — XY, — X, Y)?
+(XoYs + X1Yo — XoVy + Xa3Yo + X Yo — XY + XeVs — X, Y,)?
+(XoVy — X, Ys — XY — XoVo + X, Vo + XY, + X Yo + X, V3)?
+(XoYs + X1Y, — Xo Vo + X3V — X Vi + XYy — XoYa + XoYs)?
+(XoYs + X1Ys + X5V, — XaYs — X, Yo + XVa + XY, — Xo11)2
+(Xo¥y — X, Y + XY + Xs¥, — X,V — XY, + XY + X, Y,)?

qui peut étre exprimée comme carré vectoriel:

Xo\ ? Yo\ . XoYo — X1Yq — KoY — X3¥3 — Xu¥, — Xs¥s — Xe¥e — Xva)\

Xl K.l (XOY1 + X1Y0 +X2Y3 - X3Y2 + X4Y5 - X5Y4 —XGY'; + X7Y6)
XZ YZ (XoYz - X1Y3 +X2Y0 + X3Y1 + X4Y6 + X5Y7 —X6Y4 - X7Y5)
X3 Y3 . (XUY3 + X1Y2 '_‘Xzyl + X3Y0 +X4Y7 — X5Y6 +X6Y5 e X7Y4)
X4 Y4 . (XOY4 . X1Y5 —X2Y6 - X3Y7 +X4Y0 + XSYI +X6Y2 + X7Y3)

YS (XOY5 + X1Y4 _X2Y7 + X3Y6 —X4Yi + XSYO _X6Y3 + X7Y2)

\};6/ \Y(,) \(XOY(, + X, Y, + Xo¥, — X3¥s — Xy Yo + XYz + XgYp — X7Y1)/
Y XoYs — Xy Y + XY + X3V, — XYz — XsYo + XY; + X5Y,)

Il y a ici apparemment une coordonnée (Xo, Yo) qui se distingue des sept autres (indices 1 a 7). La
substitution (avec i* = j* = k* =1* =m? = n* = o* = jjklmno = -1) :

Xo=xo0; Yo=Yo;
Xi=ix; Y= iY1;
Xo=jx25 Y2=]y
X3 =kxs; Yi=kys
Xa=Ixa; Ya=lys -
Xs=mxs; Ys=mys;
Xe=nxq;, Yg=nys;
X7=0X7; Y7=o0y75;

donne maintenant:

2 2

(xg — Xy — X3 :

— x5 — x5 — x5 —x¢ —x3) (¥§ — —yi—yi—-yi—-yi—yd)=
+(xoYo + x1¥1 + X2 + X33 + x4y4 + XsYs + X6Ye + X7¥7)?
—(xoy1 + X1¥0 + X2V3 — X3¥2 + X4Y5 — X5V — XY¥7 + X7¥6)*
—(Xoy2 = X1¥3 + X2Y0 + X3¥1 + XaYe + XsV7 — X6Vs — X7Y5)°
—(xy3 + X1z — X1 + X3V + X4Y7 — X5V + XeYs — X7¥a)?
—(XoYs — X1¥5 — X6 — X3V7 + Xa3Yo + XsY1 + XYz + X7¥3)°
—(XoYs + X1Va — X2¥7 + X3V — XaY1 + X5¥o — Xe¥V3 + X7)2)°
—(Xo¥s + X1¥7 + X2¥s — X3Vs — XaY2 + Xs¥3 + X6¥o — X7Y1)?
—(Xoy7 = X1V6 + X2¥5 + X3Va — XaY3 — Xs5¥z + Xe¥1 + X7Y0)?

ce qui correspond a un carré vectoriel & métrique négative:
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2
Xo\2 ;Yoo 2 (XoYo + X1¥1 + X2z + X3¥3 + X4Va + X5Ys5 + X6V + X7¥7)

ixy iy i(xoy1 + X1Yo + X2¥3 — X3¥2 + X4¥5 — X5YVs — Xe¥7 + X7Vs)
jx; j¥a J(Xoy2 — x1¥3 + X2¥0 + X314 + X4V + X5V7 — XVa — X7Y5)
kxs kys | _ k(xoys + x1Y2 — %21 + X3Yo + X4Y7 — X5V + X6V5 — X7Va)
lxy Ly, L(XoYs — X1¥V5 — X2¥6 — X3Y7 + X4Yo + Xs¥1 + X6Y2 + X7Y3)
7::;‘5 ’::}3”5 m(xoys + X1Y4 — X2¥7 + X3¥e — X4Y1 + XsYo — Xe¥3 + X7¥2)
ox: oyj \'n(on’e + X1Y7 + X2¥4 — X3Y5 — X4Y2 + X5¥3 + XeVo — x7y1))
0(x¥7 — X1Y6 + X2¥s5 + X3Y4 — X4Y3 — XsY2 + Xe¥1 + X7Y0)

Les octonions sont non-commutatifs et non-associatifs: ab # ba; a(bc) # (ab)c.

On a cependant toujours : a(ab) = (aa)b ; (ab)b = a(bb) ; a(ba) = (ab)a; (alternativité)
ainsi que les identités de MOUFANG’ : ((ab)a)c = a (b(ac)) ; ((ab)e)b = a (b(cb));
(ab)(ca) = (a(bc))a = a((bc)a).

Les régles de multiplication sont données par le diagramme de FANO'?:

P=PR=k2=C=m2=n2=0%= -1 2
i=jk=lm=on=-kj=-ml=-no

j=ki =Iln=mo= —ik = —-nl = -om

k=ij=lo=nm=—ji= —ol = —mn i
l=mi=nj =0k =—m=—jn=—ko

m=1il=0j =kn=-li=—jo= —nk
n=jl=to=mk=-1lj=—-0t =-km
o=nmi=jm=kl=—-n=-mj=—-lk . 4 m

Les trois syst¢tmes de nombres, complexes, hypercomplexes et hyper-hypercomplexes, ainsi que
tout systéme algébrique qui leur est homomorphe, sont tout aussi solidement établis que les
identités algébriques de 2 carrés, 4 carrés et 8 carrés, sur lesquelles ils sont basés ; ils ne sont, en
fait, qu’une autre facon d’exprimer ces identités algébriques.

4. L’équation de continuité

L’équation de continuité exprime la conservation d’une entité physique lors d’un transport. Dans sa
version la plus générale, elle prend la forme de la loi générale de STOKES :

fdw=fw
v av

ou, dans sa forme différentielle, celle de la loi de GAUSS :
div (0®) = p)

La quantité o y représente un flux quelconque, et la quantité p une densité de source (ou de puits).
En exprimant le flux ®» comme gradient d’un potentiel ¢’

w(x) = —grad ((p(Q)

on obtient I’équation de POISSON :

Ap@) = div grad(p(®) = —p(x)
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ou explicitement, en coordonnées cartésiennes :
3%
Mo@)= ) 7%= —p@
~ OXj
L

Les solutions de 1’équation de POISSON (ou de I’équation de LAPLACE, pour p = 0), sont des
fonctions harmoniques des coordonnées x avec des fréquences imaginaires.

4.1 L’équation de continuité dans ’espace H

L’équation de continuité dans un espace Euclidien a 4 dimensions :

9%p 3% 0% d%¢
Alp(x)) = =}
((p( )) asz axlz asz BX'32

= —p()

devient dans I’espace H, a cause de sa métrique négative (+1, -1, -1, -1),

e 0 e ¢ ¢
A X)) = - —_ —_ — X
(@(x)) oxl 9rE OxZ . B p(x)

c.a.d. une équation d’onde, dont les solutions sont des fonctions harmoniques des coordonnées x
avec des fréquences réelles. A noter que p(x) change également de signe lors de cette opération.

La grandeur ¢ dans cette équation est scalaire. Cependant, rien n’empéche de la généraliser a quatre
dimensions, tout en respectant la géomeétrie de I’espace H. On obtient par-1a directement I’équation
fondamentale de 1’électrodynamique’? :

3 (1 2?2 9 #
c? 0t? axlz axzz axgz

)A=H0]

ou 0O représente I’opérateur de d‘Alembert; A = (%. (A1, Az, Ag)) le 4-potentiel, composé des
potentiels scalaire et vecteur, et | = (pc, (J1,/2,/3)) la densité du 4-courant, composée de la charge
et du courant.

En I’absence de sources, c.-a-d. dans le 4-espace vide, I’équation de continuité¢ se simplifie en
I’équation des ondes électromagnétiques libres (avec la substitution xo = ct) :

R " e e 1d%
27 ox,% | Oxg:  CE 0T

axl

Nous sommes donc devant le constat intéressant que 1’apparition d’ondes électromagnétiques, voire
d’ondes tout court, lors d’'un mouvement physique est bien une conséquence de la géométrie
hyperbolique du 4-espace, qui a son tour découle directement et nécessairement d’une identité
algébrique, 1’identité des 4 carrés ! Voici une réponse courte et étonnante au probleme de la dualité
« onde-particule » !

En plus on y trouve aussi le fondement de la mécanique quantique : si tout mouvement physique
dans le 4-espace H prend nécessairement la forme d’une onde, avec fréquence réelle et phase, un
mouvement rotationnel ramenant 1’objet physique en lui-méme ne peut exister que pour des
fréquences discretes déterminées, ou I’onde associée au mouvement rotationnel est en interférence
constructive avec elle-méme. Autrement I’onde s’effacerait, et un tel mouvement ne pourrait
exister, si ce n’est trés transitoirement. A rappeler que le quantum de PLANCK k a précisément la
dimension physique d’un mouvement rotationnel !'*
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4.2 Conséquences de la géométrie hyperbolique de ’espace H : la relativité restreinte

Les fondements de la physique et notre expérience quotidienne veulent que la charge électrique soit
invariante et quantifiée en multiples d’une charge élémentaire, ne dépendant pas de 1’état de
mouvement du référentiel.

Nous pouvons donc postuler I’équivalence entre la charge dans un systéme en mouvement

. . axr; . ; ;
& x'= x'o(1+iug + ju, + kugy), avec u; = ;—:‘) et la charge dans un systéme stationnaire
(1]

(x):
p(x") = p(x)
et par conséquent formuler I’équivalence des Laplaciens correspondants en 4 dimensions:
Alp(x)) = Alp(x'(x))

De 1a on obtient, par évaluation, en tenant compte des dérivés intérieures selon la régle de la
chaine :

! 2.0

ax'\* 9
3o = (32) B0 + 55 V@)

Ceci ne peut étre vrai que si
(6xr)2 —1
dx -
a%xr

ce qui implique également — = 0

Sous cette condition, et partant du vecteur x’ = x'o(1 + iu, + ju, + kusg),

on obtient maintenant:
ax"\’ ax'\’
(&) =(W) (g~ — g = 21

(ax’o) o 1
o0x ¥ JA —u2 —up2 —ug?)

dxr; _ dxry i ; o aer

ﬁ = %’t‘ = ? pouri=1, 2,3, on voit qu’il s’agit du facteur de LORENTZ '*:
0

1

_(T) _ (Y2) _ (vs 2)
S -G -®)
Le facteur de LORENTZ tend vers l’infini pour des vitesses |v| s’approchant de la vitesse de la

lumiére c, au-dela il devient imaginaire. La vitesse de la lumiere est donc la vitesse maximale
possible pour le transport d’entités physiques dans le 4-espace H.

d’ou il s‘ensuit:

En substituant u; =

La relativité restreinte se présente ici comme une conséquence directe et immédiate de la
géométrie hyperbolique du 4-espace H, sous I’hypothése que la charge électrique est
indépendante du référentiel .
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Wiss. u. Georg-Augusts-Univ. Géttingen, Dieterichsche Verlags-Buchhandlung, no 2, 1887, p. 41-51. VOIGT y arriva
par une analyse des propriétés de I’équation des ondes électromagnétiques.

15 Ce fait remet en question la pertinence de I’expérience de MICHELSON et MOORLEY comme preuve de 1’absence d’un
éther luminifére. En fait, cette expérience était congue sous I’hypothése d’un espace euclidien ; cependant, dans le 4-
espace de géométrie hyperbolique avec métrique négative (+1, -1, -1, -1), elle représente un systéme inertiel. Un éther
luminifére dans la géométrie du 4-espace H ne serait par conséquent pas détectable par I’expérience de MICHELSON et
MOORLEY.
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