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Plantes, spirales et nombres
Les plantes font-elles des maths

Chrystel Feller. Christian Mazza et Florence Yerly *

Resume : L'observation d'un tournesol ou d'une pontine de pin est

frappante : on remarque que les graines et les écailles forment des motifs
géométriques spirales très réguliers. Les scientifiques se sont intéresses à ces

structures depuis l'Antiquité, tout d'abord en les décrivant, puis en essayant
de les reproduire à l'aide de modèles mathématiques. La première partie de

cet article présente un résume historique de la recherche effectuée depuis des

siècles sur ces questions. La deuxième partie présente deux modèles
mathématiques descriptifs développés durant le XXe siècle La dernière partie est

con sacrée aux processus biologiques fondamentaux liés à la croissance des

plantes, ct présente quelques s inniUnions basées sur des modèles mathématiques

récents.

1 Introduction

La phyllotaxie est l'étude de la disposition des feuilles autour d'une tige,
des écailles sur une pomme de pin. des fleurons dans le coeur d'une marguerite,

ou des graines dans un tournesol, etc.
Adler [ADj divise l'histoire de l'étude de la phyllotaxie en trois

périodes :

- la période ancienne (jusqu'au 4e siècle).

- la période moderne (du 5e siècle jusqu'à 1970).

- la période contemporaine (de 1970 à aujourd'hui).

L'observation de l'arrangement des feuilles sur une plante remonte à

l'Antiquité : on trouve dans les oeuvres de Théophraste (370 - 285 av. J.-C.)
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et de Pline l'Ancien (23 - 79 ap. J.-C.) l'indication que les Anciens
distinguaient divers types d'arrangements et s'en servaient pour identifier les

plantes. Les représentations des plantes dans l'art grec et égyptien montrent
aussi la finesse de leur observations.

1.1 Types de phyllotaxie
Bien qu'elles soient similaires, on distingue deux types de phyllotaxie :

la phyllotaxie verticillée et la phyllotaxie spiralée [JE].

Phyllotaxie verticillée

Les feuilles sont insérées le long de la tige, par groupes contenant un
nombre déterminé // de feuilles. Autour de chaque noeud, les // feuilles sont

placées au-dessus de l'espace vide laissé par les feuilles du noeud inférieur
(phyllotaxie verticillée opposée), ou juste au-dessus des feuilles inférieures

(phyllotaxie verticillée supeiposée). La ligure 1(a) donne un exemple de

phyllotaxie verticillée opposée sur un mutant de cannabis. Dans cet exemple.
n 3 et l'angle formé par deux feuilles consécutives est constant et vaut
120

lai ih,

Figure 1 - (a) un mutant de cannabis (phyllotaxie verticillée opposée), (b)
une menthe (phyllotaxie décussée) et (c) un bégonia (phyllotaxie distique).
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La phyllotaxie décussée est un cas particulier de phyllotaxie verticillée
opposée, où les feuilles sont arrangées par groupe de deux (i.e. n 2) : ces

deux feuilles sont opposées, et l'angle formé par deux groupes de feuilles
consécutifs vaut 90°. Par exemple, la phyllotaxie associée à la menthe est de

type décussée (figure 1(b)).
Un autre cas particulier de phyllotaxie verticillée est la phyllotaxie

distique, où les feuilles sont insérées les unes après les autres (i.e. n 1), et

l'angle formé par deux feuilles consécutives vaut 180° (figure 1(c)).

Phyllotaxie spiralée

L'aloé fournit un bon exemple de phyllotaxie spiralée : le principe
d'insertion est identique à celui qu'on associe à la phyllotaxie distique, mais

l'angle d'insertion (constant) ne vaut pas 180°. il est donné par un angle fixé
0. Cet angle va jouer un rôle particulier par la suite : on l'appelle angle de

divergence. L'angle de divergence est donc l'angle typique formé par deux
feuilles consécutives en mode spirale. Il convient ici de préciser que le mode

spirale est défini pour d'autres arrangements d'éléments botaniques, comme

par exemple les fleurons disposés en spirales dans un capitule de tournesol.

KV angle de divergence

7,

(a) (b) (c)

FIGURE 2 - (a) et (b) représentent schématiquement l'apparition de deux
feuilles consécutives d'une aloè, alors que(c) est une photo d'une aloè.
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1.2 Les premiers pas dans la phyllotaxie
Les arrangements verticillés sont faciles à identifier : ils sont décrits dans

de nombreux traités de botanique à travers l'histoire. En revanche, le mode

spirale a longtemps posé problème : il était décrit comme ne présentant pas
d'ordre apparent (voir figure 3(a)). C'est le naturaliste suisse Charles Bonnet

qui, en 1754, décrit pour la première fois cet arrangement au moyen
d'une spirale tournant autour de la branche et le long de laquelle les feuilles
sont disposées régulièrement. Elle est appelée spirale génératrice (voir
figure 3(b)).

.'¦¦•

(a) • b)

Figure 3 - (a) un rameau de salix cinerea : l'ordre régissant la disposition
des feuilles ne saute pas aux yeux ; (b) un schéma où l'on a tracé la spirale
génératrice.

Deux siècles et demi avant que Bonnet ne donne la première description
de la spirale génératrice, Leonardo da Vinci (1452 - 1519) semble avoir saisi

l'ordre de la disposition spiralée ; voici la description qu'on en trouve dans

l'un de ses manuscrits : si l'on prend une feuille référence, la sixième feuille
rencontrée en remontant la branche est alignée au-dessus de la première ;

autrement dit, les feuilles sont arrangées par cycles de cinq.
En réalité, il s'agit d'une approximation, car la sixième feuille n'est pas tout
à fait alignée avec la première.
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L'astronome Johannes Kepler (1571 - 1630) a eu lui aussi une intuition

surprenante : il a été le premier à associer la phyllotaxie à une suite
de nombres particulière, la suite de Fibonacci :

F„: 1 1 2 3 5 8 13 21 34 55.

formée de la manière suivante : on démarre avec les deux premiers nombres
de Fibonacci Ff) F] 1. puis on obtient le nombre Fn+\ en additionnant les

deux nombres précédents Fn_\ et F„. i.e. on pose

Z-i F„-\ +F„.

Kepler avait constaté l'importance du nombre cinq dans le monde végétal

: comme da Vinci, il identifie, par exemple, des cycles de cinq feuilles et

remarque que les pommes ont cinq divisions pour leurs pépins. Mais cinq est

un nombre de la suite de Fibonacci, ce qui inspira à Kepler la réflexion
suivante : la capacité d'un arbre à se propager correspond à la capacité de cette
suite à .se propager elle-même. En fait, la suite de Fibonacci ne se propage
pas elle-même : ce n'est qu'une image pour dire qu'elle est une suite définie

par récurrence (chaque nouveau nombre est la somme des deux précédents).
L'intuition de Kepler anticipe de 300 ans la découverte des botanistes

allemands Karl Friedrich Schimper et Alexander Braun qui. en 1830.

remarquent que la phyllotaxie spiralée est associée à l'angle d'or et à la suite
de Fibonacci. Exprimant les angles de divergence observés comme portions
de circonférence, ils constatent que les valeurs les plus fréquemment
mesurées sont i,§.-p5 : on remarque que les numérateurs et les dénominateurs

de ces fractions sont tous des nombres de Fibonacci consécutifs
Par ailleurs, ces quotients sont des approximations du nombre <î> tel que
<p x 360e 137.5...°, qui est l'angle d'or.

Dans une plante spiralée. on appelle parastiches les spirales apparentes
formées par des feuilles adjacentes. Cette définition s'applique de même aux

spirales présentes sur les pommes de pin (ligure 4) ou dans le capitule d'un
tournesol (figure 5(a)). Nous verrons par la suite que l'on peut aussi définir
un angle de divergence pour ces exemples de structures spiralées.

En observant les deux familles de parastiches sur des pommes de pin.
Schimper et Braun remarquent que les nombres de spirales dans chacune
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Figure 4 - Sur cette pomme de pin, on compte 8 parastiches gauches (en

rouge) et 13 parastiches droites (en bleu).

de ces familles sont deux termes consécutifs de la suite de Fibonacci (voir
figure 4).

Des constats surprenants

Dans la nature, 94% des plantes spiralées ont la particularité que les

nombres de parastiches dans les sens horaire et antihoraire sont des nombres
consécutifs de la suite de Fibonacci, et l'on remarque que l'angle de

divergence (f) vaut à peu près 137.5°. qui est l'angle d'or.

Ces constats surprenants suscitent depuis lors l'intérêt de botanistes,
mathématiciens et physiciens, qui cherchent à comprendre comment et pourquoi
la nature produit majoritairement de tels arrangements.

2 Description mathématique de la phyllotaxie

Modèle planaire

La disposition régulière et spiralée des fleurons dans un capitule de
tournesol est frappante : chaque fleuron est disposé approximativement à un

angle (de divergence) approximativement constant de son prédécesseur (cf.
figure 5(a)). Par ailleurs, dans la plupart des structures végétales qui
présentent un mode spirale, cet angle est égal à l'angle d'or </> « 137.5°. Le
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présent chapitre a pour but d'exposer un premier modèle mathématique
décrivant de tels arrangements.

• •
• •

(a) (b) (c)

Figure 5 - Les fleurons d'un tournesol sont disposés le long d'une spirale
cyclotronique d'équation (2) et l'angle (de divergence) entre deux fleurons
consécutifs est d'environ 137.5°.

Cette disposition très particulière des fleurons produit un motif dont les

nombres de parastiches dans les sens horaire et antihoraire sont deux nombres
consécutifs de la suite de Fibonacci : par exemple, le tournesol de la figure
5(a) possède 21 parastiches dans un sens et 34 parastiches dans l'autre.

On commence par simplifier le problème en symbolisant les fleurons par
des billes (cf. figure 5(b)). Une possibilité de modélisation consiste à placer
ces billes une à une sur une spirale. Il s'avère que les spirales de type
cyclotronique mènent à des structures ressemblant de près à celles observées

empiriquement. En utilisant les coordonnées polaires (cf. figure 5(c)). une
telle spirale est décrite mathématiquement par une équation du type

r a9^2. a une constante.

qui exprime un rapport entre le rayon r et l'angle 0. On place donc les billes
une à une sur cette spirale de telle manière que l'angle a compris entre deux

billes consécutives soit constant, comme indiqué dans la figure 6. La figure
5(b) présente un exemple où l'angle a vaut 137.5°.

On peut ainsi considérer les structures géométriques spiralées pour
diverses valeurs de l'anele a. Un des buts de cette modélisation est d'es-
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Figure 6 - On place les billes les unes après les autres à un angle a de la

précédente.

sayer de comprendre pourquoi l'angle d'or apparaît si souvent dans la
nature. On sait qu'un tournesol a d'autant plus de chances de se reproduire que
le nombre de ses graines est grand : on pourrait donc être tenté de penser
que la nature fait en sorte que l'arrangement spirale observé empiriquement
mène à la structure la plus compacte possible, et que l'angle d'or a o
optimise l'empilement des graines dans le capitule. On peut commencer par
tester cette affirmation dans le cadre de ce modèle.

L'idée consiste à faire varier l'angle a pour trouver l'angle optimal,
divers arrangements sont représentés dans la figure 7. On trouve que ce dernier
(64% de l'espace est occupé par les billes) est égal à l'angle d'or, ce qui
confirme l'hypothèse de l'empilement optimal. Par ailleurs, on peut compter
le nombre de parastiches : on trouve ici les nombres 21 et 34. L'arrangement
ressemble de plus beaucoup au capitule de tournesol (voir figure 8).

Le deuxième meilleur taux de remplissage est obtenu pour un angle
a 99.55° (voir figure 7(c)). Pour cet angle, on dénombre 18 et 29
parastiches. qui sont deux nombres consécutifs de la suite de Lucas L„. qui est

définie par la même relation Z.„_i L„ + L„-\. mais avec Lo 1 et L\ 3.

C'est la deuxième suite la plus présente dans la nature après celle de
Fibonacci.

Modèle de phyllotaxie sur une tige

Le modèle mathématique précédent considère des arrangements planaires.

On trouve aussi de nombreux motifs spirales sur des tiges de plantes ou
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FIGURE 7 - Résultat du compactage des billes pour un angle a égale à (a)
63.7°. (b) 151.6° et (c) 99.55°. il s'agit du deuxième arrangement le plus
compact, correspondant à l'arrangement suivant les nombres de Lucas.

Résultat du stockage des billes
pour l'angle d'or

K
^vv

HÉ?

.):

Vrai totlrneîol Vril totimesol

FIGURE 8 - Comparaison entre le modèle avec les billes et un vrai tournesol.

des cactus. En 1907. le botaniste hollandais Gerrit van Iterson propose un
modèle mathématique de la phyllotaxie spiralée le long d'une tige, qui utilise
des cylindres [VI]. Dans plus de 90 c/c des cas, on peut voir que les organes
botaniques (feuilles, graines..) sont arrangés le long de deux familles de
spirales (sens horaire et antihoraire) : généralement, s'il y a n et m parastiches
dans les deux sens, alors // et /;; sont deux nombres consécutifs de la suite de

Fibonacci.
La tige est assimilée à un cylindre et les organes sont représentés par des

disques non-intersectants de rayon constant (voir figure 9). Si l'on découpe
le cylindre le long d'une ligne verticale, et que l'on déroule le cylindre, on
obtient un rectangle de longueur D. qui va représenter la tige. D correspond
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Figure 9 - Modélisation d'une tige de cactus à l'aide d'un cylindre, en
mode spirale, où les embranchements sont représentés par des disques.

en fait à la circonférence du cylindre. Les organes sont représentés par les

disques, qui ont chacun 4 ou 6 voisins, comme l'on peut le voir sur la figure
10(a). Les disques de diamètre 5 sont disposés un à un sur le cylindre, à

hauteur r constante et à distance horizontale a constante du précédent, avec
0 < a < D/2. Les disques sont donc placés périodiquement le long d'une
hélice, la spirale génératrice (voir figure 3(b) et figure 10(b)).

^OtZ
(a) Arrangement phyllotactique modélisé, avec 5 (b) Construction du modèle et spirale génératrice
et 3 spirales (en orange et vert). en noir.

Figure 10- Schéma illustrant le modèle de van Iterson

Un tel réseau est caractérisé par une paire d'entiers premiers entre eux
(m.n), qui donnent les nombres de spirales parallèles tournant dans un sens et
dans l'autre (m 5 et n 3 dans la figure 10(a)) ; ces nombres correspondent
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aussi à l'indice des disques qui sont en contact avec un disque pris comme
disque d'origine (en général Aq). Van Iterson a déterminé les équations de

tous les arrangements résultant en un couple {m.n) de spirales de contact.
Grâce au théorème de Pythagore. on peut exprimer a, r et 5 par rapport à m.n
et un paramètre. On peut caractériser un arrangement par l'un des paramètres

a.r ou Ö. Il en résulte que l'on peut représenter chaque arrangement par une

paire (r/D.a/D). i.e. comme un point dans un plan. La courbe associée aux
paires (r/D.a/D) est un arbre binaire qui possède une structure fractale :

c'est l'arbre de van Iterson. La branche unique correspondant au motif (1.2)
se partage en deux branches. l'une pour le motif (1.3). l'autre pour le motif
(2.3), etc.. (voir la figure 11

7 7.

: 3

JM

FIGURE 11 - Arbre fractal représentant les valeurs du couple (r.a) donnant

un arrangement phyllotactique (m.n). en rouge la branche des nombres do

Fibonacci, en bleu la branche des nombres de Lucas.

Au fur et à mesure de la croissance de la plante, le rapport r/D devient

plus petit. Essayons de voir ce qui se passe dans le cadre du modèle de van
Iterson. La structure géométrique ne change pas tant que l'on ne se trouve

pas sur un embranchement de l'arbre de van Iterson. Une fois arrivé à un
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tel embranchement, on doit choisir entre deux possibilités, par exemple la

paire 1.3) ou la paire (2.3). On sait que la nature choisit presque toujours la
branche de Fibonacci, i.e. opte pour la paire (2.3) au lieu de la paire 1.3). Si

ce modèle représente bien la réalité, on peut se demander comment la nature

parvient à choisir la « bonne branche ».

Pour mieux comprendre cela, on peut étudier la compacité des différentes
branches, c'est-à-dire calculer le rapport entre l'aire des disques et l'aire
totale :

Aire des disques

Aire totale
Plus l'arrangement est compact, plus l'aire occupée par les disques sera

grande, donc plus ß sera proche de 1. Il s'avère que. si l'on se trouve sur un

point d'intersection de deux branches de l'arbre, la compacité est minimale et

l'arrangement est hexagonal. Si Fon continue sur une branche, la compacité
est maximale sur celle de Fibonacci : (1.2). (2.3). (3.5). (5.8)

Conclusion

Les deux modèles exposés ci-dessus peuv ent reproduire les arrangements
phyllotactiques. Mais ils n'ont pas d'ambition explicative, il s'agit uniquement

de modèles, qui ne sont pas basés sur des faits biologiques. Les
chercheurs essaient actuellement d'expliquer les diverses phyllotaxies en utilisant
des principes ou des lois issues de la biologie et de la mécanique. Il est

cependant assez fantastique que des modèles aussi simples que ceux que nous
avons décrits mènent à des résultats si proches de la réalité.

3 L'auxine, un agent (presque) indétectable

3.1 Auxine et primordia
L'auxine (du grec avçavcù [auxano] "croître"), ou acide indole 3-

actique (IAA). est l'une des premières hormones végétales qui ait été découverte,

en 1937. Les chercheurs ont longuement soupçonné qu'elle jouait un
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(a) Meristeme de tornate (b) Fluorescence, vue d'en haut

FIGURE 12 - Les anciens primordia sont indiqués par le symbole P, les
nouveaux par I. Photos : D. Reinhardt (Université de Fribourg).

rôle fondamental pour la croissance des plantes en général. En effet, on
observe qu'une accumulation de cette molécule dans une ou plusieurs cellules
induit l'apparition d'un nouvel embryon, appelé primordium [RE]. Cependant,

la concentration d'auxine ne peut pas être mesurée directement. Les

biologistes la mesurent indirectement en utilisant l'expression d'un gène, par
fluorescence (cf. figure 12, plus la concentration d'auxine est grande, plus le

vert est clair). Les primordia déjà existants (en rouge dans la figure 12(a))
influencent le positionnement des nouveaux (en jaune).

Toute la question consiste à comprendre comment ces petites molécules
d'auxine qui se déplacent de cellule en cellule font pour s'accumuler dans
des endroits bien précis (on a vu précédemment que les nouveaux organes
botaniques sont disposés de manière très régulière, produisant ainsi les motifs

géométriques observés dans la nature). Historiquement, l'influence des

anciens primordia sur les nouveaux a été vue sous deux angles différents :

publiée en 1868, la règle de Hofmeister [HO] stipule que les nouveaux
primordia se placent dans le plus grand espace disponible, alors que le deuxième

principe propose que les anciens primordia repoussent les nouveaux. Ce dernier

principe a été testé par Douady et Couder en 1996 [DO] : les éléments

botaniques sont représentés physiquement par des gouttes d'un ferro-fluide.
Les gouttes se repoussent et on observe diverses spirales, semblables à celles

que l'on observe dans la nature. On peut aussi citer le travail mathématique
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de [KU] sur ce principe.
On a vu que le flot d'auxine et son accumulation induisent la création

des nouveaux primordia. On ne sait pas encore actuellement si les deux
principes énoncés ci-dessus (qui ne sont que des hypothèses) peuvent se déduire
des propriétés du flot d'auxine. II est cependant remarquable que quelques
travaux mathématiques basés sur ces deux principes soient capables de

reproduire les motifs géométriques observés dans la nature. Le lecteur
intéressé pourra consulter les articles mathématiques sur la question, par exemple
[KU] et [AT].

3.2 Simulation du flot d'auxine

Plusieurs modèles mathématiques proposant une modélisation de flot
d'auxine existent à l'heure actuelle (voir par exemple [SM] et |JO[). On peut
voir une simulation de l'évolution temporelle du flot d'auxine dans la figure
13.

v \r
Figure 13 - Simulation de l'évolution temporelle du flot d'auxine. Plus le

vert est clair, plus la quantité de molécules est grande.

Le flot d'auxine est polarisé, i.e. les passages de cellule en cellule sont
favorisés dans certaines directions. Cette polarisation est une conséquence de

la présence de protéines PIN qui se placent à l'interface des cellules : elles

transportent les molécules d'auxine d'une cellule à une autre. Comment font
les protéines PIN pour se placer sur les bonnes interfaces, de manière à polariser

le flot d'auxine. et ensuite de créer des sites d'accumulation d'auxine
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Les modèles mathématiques mettent en équation certains principes hypothétiques,

qui sont ensuite simulés (voir figure 14). On ne sait rien de plus à

l'heure actuelle.

HE
FIGURE 14 - Evolution temporelle du processus de transport de l'auxine
par les protéines PIN. concentration d'auxine en vert, polarisation de PIN en
rouge. Simulation R. Smith (Universität Bern) |SM].
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