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Plantes, spirales et nombres
Les plantes font-elles des maths ?

CHRYSTEL FELLER., CHRISTIAN MAZZA ET FLORENCE YERLY "

Résumé : L' observation d’un rtournesol ou d’une pomme de pin est frap-
pante : on remarque que les graines et les écailles forment des motifs géo-
métriques spiralés tres réguliers. Les scientifiques se sont intéressés a ces
structures depuis UAntiquité, tout d’abord en les décrivant, puis en essavant
de les reproduire a l'aide de modeles mathématiques. La premiere partie de
cet article présente un réesumé historique de la recherche effectuée depuis des
siecles sur ces questions. La deuxieme partie présente deux modeles mathe-
matiques descriptifs developpés durant le XX¢ siecle. La derniéere partie est
consacree aux processius biologiques fondamentaux lies a la croissance des
plantes, et présente quelques simulations basées sur des modeles mathéma-
tigues recents.

1 Introduction

La phyllotaxie est I'étude de la disposition des feuilles autour d une tige,
des écailles sur une pomme de pin. des fleurons dans le coeur d une margue-
rite. ou des graines dans un tournesol. etc.

Adler [AD] divise I'histoire de I'étude de la phyllotaxie en trois pé-
riodes :

— la période ancienne (jusqu au 4¢ siecle),

— la période moderne (du 5¢ siecle jusqu'a 1970).

— la période contemporaine (de 1970 a aujourd”hui).

L'observation de I'arrangement des feuilles sur une plante remonte a
I"Antiquité : on trouve dans les oeuvres de Théophraste (370 - 285 av. J.-C.)
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et de Pline I’Ancien (23 - 79 ap. J.-C.) I'indication que les Anciens dis-
tinguaient divers types d’arrangements et s'en servaient pour identifier les
plantes. Les représentations des plantes dans 1art grec et égyptien montrent
aussi la finesse de leur observations.

1.1 Types de phyllotaxie

Bien qu’elles soient similaires, on distingue deux types de phyllotaxie :
la phyllotaxie verticillée et la phyllotaxie spiralée [JE].

Phyllotaxie verticillée

Les feuilles sont insérées le long de la tige, par groupes contenant un
nombre déterminé n de feuilles. Autour de chaque noeud. les n feuilles sont
placées au-dessus de I'espace vide laissé par les feuilles du noeud inférieur
(phyllotaxie verticillée opposée). ou juste au-dessus des feuilles inférieures
(phyllotaxie verticillée superposée). La figure I(a) donne un exemple de
phyllotaxie verticillée opposée sur un mutant de cannabis. Dans cet exemple.
n =3 et I'angle formé par deux feuilles consécutives est constant et vaut
120°.

(a) (b) (c)

FIGURE | — (a) un mutant de cannabis (phyllotaxie verticillée opposée), (b)
une menthe (phyllotaxie décussée) et (¢) un bégonia (phyllotaxie distique).
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La phyllotaxie décussée est un cas particulier de phyllotaxie verticillée
opposée, ou les feuilles sont arrangées par groupe de deux (i.e. n = 2) : ces
deux feuilles sont opposées, et 1’angle formé par deux groupes de feuilles
consécutifs vaut 90°. Par exemple, la phyllotaxie associée a la menthe est de
type décussée (figure 1(b)).

Un autre cas particulier de phyllotaxie verticillée est la phyllotaxie dis-
tique, ol les feuilles sont insérées les unes apres les autres (i.e. n = 1), et
I’angle formé par deux feuilles consécutives vaut 180° (figure 1(c)).

Phyllotaxie spiralée

L’aloé fournit un bon exemple de phyllotaxie spiralée : le principe d’in-
sertion est identique a celui qu'on associe a la phyllotaxie distique. mais
I’angle d’insertion (constant) ne vaut pas 180°, il est donné par un angle fixé
¢. Cet angle va jouer un role particulier par la suite : on I'appelle angle de
divergence. L’angle de divergence est donc I'angle typique formé par deux
feuilles consécutives en mode spiralé. Il convient ici de préciser que le mode
spiralé est défini pour d autres arrangements d’éléments botaniques, comme
par exemple les fleurons disposés en spirales dans un capitule de tournesol.

¢ angle de divergence

i

(a) (b) (c)

FIGURE 2 — (a) et (b) représentent schématiquement 1’apparition de deux
feuilles consécutives d’une aloé€, alors que(c) est une photo d’une aloé.
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1.2 Les premiers pas dans la phyllotaxie

Les arrangements verticillés sont faciles a identifier : ils sont décrits dans
de nombreux traités de botanique a travers I’ histoire. En revanche, le mode
spiralé a longtemps posé probleme : il était décrit comme ne présentant pas
d’ordre apparent (voir figure 3(a)). C'est le naturaliste suisse Charles Bon-
net qui, en 1754, décrit pour la premiere fois cet arrangement au moyen
d’une spirale tournant autour de la branche et le long de laquelle les feuilles
sont disposées réguliecrement. Elle est appelée spirale génératrice (voir fi-
gure 3(b)).

(a) (b)

FIGURE 3 — (a) un rameau de salix cinerea : I’ordre régissant la disposition
des feuilles ne saute pas aux yeux ; (b) un schéma ou I’on a trac€ la spirale
génératrice.

Deux siecles et demi avant que Bonnet ne donne la premiere description
de la spirale génératrice, Léonardo da Vinci (1452 - 1519) semble avoir saisi
I'ordre de la disposition spiralée ; voici la description qu'on en trouve dans
I’'un de ses manuscrits : si ['on prend une feuille référence, la sixieme feuille
rencontrée en remontant la branche est alignée au-dessus de la premiere ;
autrement dit, les feuilles sont arrangées par cycles de cing.

En réalité, il s’agit d’une approximation, car la sixieme feuille n’est pas tout
a fait alignée avec la premiere.
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L astronome Johannes Kepler (1571 - 1630) a eu lui aussi une intui-
tion surprenante : il a été le premier a associer la phyllotaxie a une suite
de nombres particuliere. la suite de Fibonacci :

F,: 1 1 2 3 5 8 13 21 34 355..

formée de la maniere suivante : on démarre avec les deux premiers nombres
de Fibonacci F = Fy = 1. puis on obtient le nombre F, .| en additionnant les
deux nombres précédents F,,_; et F,,. i.e. on pose

Fn—-—l = Fn—l ‘f’Fn-

Kepler avait constaté 1I'importance du nombre cing dans le monde végé-
tal : comme da Vincti, il identifie. par exemple. des cycles de cinq feuilles et
remarque que les pommes ont cing divisions pour leurs pépins. Mais cinq est
un nombre de la suite de Fibonacci. ce qui inspira a Kepler la réflexion sui-
vante : la capacité d’un arbre a se propager correspond a la capacité de cette
suite a se propager elle-méme. En fait, la suite de Fibonacci ne se propage
pas elle-méme : ce n'est qu une image pour dire qu elle est une suite définie
par récurrence (chaque nouveau nombre est la somme des deux précédents).

L'intuition de Kepler anticipe de 300 ans la découverte des botanistes
allemands Karl Friedrich Schimper et Alexander Braun qui, en 1830, re-
marquent que la phyllotaxie spiralée est associée a I’angle d’or et a la suite
de Fibonacci. Exprimant les angles de divergence observés comme portions
de circonférence, ils constatent que les valeurs les plus fréquemment me-
surées sont %q% ... . on remarque que les numérateurs et les dénomi-
nateurs de ces fractions sont tous des nombres de Fibonacci consécutifs !
Par ailleurs, ces quotients sont des approximations du nombre @ tel que
® x 360° = 137.5...°, qui est I'angle d’or.

Dans une plante spiralée. on appelle parastiches les spirales apparentes
formées par des feuilles adjacentes. Cette définition s applique de méme aux
spirales présentes sur les pommes de pin (figure 4) ou dans le capitule d un
tournesol (figure 5(a)). Nous verrons par la suite que 1'on peut aussi définir
un angle de divergence pour ces exemples de structures spiralées.

En observant les deux familles de parastiches sur des pommes de pin,
Schimper et Braun remarquent que les nombres de spirales dans chacune
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FIGURE 4 — Sur cette pomme de pin, on compte 8 parastiches gauches (en
rouge) et 13 parastiches droites (en bleu).

de ces familles sont deux termes consécutifs de la suite de Fibonacci (voir
figure 4).

Des constats surprenants

Dans la nature, 94% des plantes spiralées ont la particularité que les
nombres de parastiches dans les sens horaire et antihoraire sont des nombres
consécutifs de la suite de Fibonacci, et I’on remarque que 1'angle de diver-
gence ¢ vaut a peu pres 137.5°, qui est I'angle d’or.

Ces constats surprenants suscitent depuis lors I'intérét de botanistes, ma-
thématiciens et physiciens, qui cherchent a comprendre comment et pourquoi
la nature produit majoritairement de tels arrangements.

2  Description mathématique de la phyllotaxie

Modele planaire

La disposition réguliere et spiralée des fleurons dans un capitule de tour-
nesol est frappante : chaque fleuron est disposé approximativement a un
angle (de divergence) approximativement constant de son prédécesseur (cf.
figure S(a)). Par ailleurs, dans la plupart des structures végétales qui pré-
sentent un mode spiralé, cet angle est égal a I'angle d’or ¢ ~ 137.5°. Le
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présent chapitre a pour but d’exposer un premier modele mathématique dé-
crivant de tels arrangements.

(a) (b) (c)

FIGURE 5 — Les fleurons d’un tournesol sont disposés le long d une spirale
cyclotronique d’équation (2) et 1'angle (de divergence) entre deux fleurons
consécutifs est d’environ 137.5°.

Cette disposition tres particuliere des fleurons produit un motif dont les
nombres de parastiches dans les sens horaire et antihoraire sont deux nombres
consécutifs de la suite de Fibonacci : par exemple, le tournesol de la figure
5(a) possede 21 parastiches dans un sens et 34 parastiches dans I"autre.

On commence par simplifier le probleme en symbolisant les fleurons par
des billes (c.f. figure 5(b)). Une possibilité de modélisation consiste a placer
ces billes une a une sur une spirale. Il s’avere que les spirales de type cy-
clotronique menent a des structures ressemblant de pres a celles observées
empiriquement. En utilisant les coordonnées polaires (cf. figure 5(c)). une
telle spirale est décrite mathé matiquement par une équation du type

N
r=a@'’? a une constante.

qui exprime un rapport entre le rayon r et I'angle 6. On place donc les billes
une a une sur cette spirale de telle maniere que I'angle o compris entre deux
billes consécutives soit constant, comme indiqué dans la figure 6. La figure
5(b) présente un exemple ou I'angle & vaut 137.5°,

On peut ainsi considérer les structures géométriques spiralées pour di-
verses valeurs de I'angle a. Un des buts de cette modélisation est d’es-
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FIGURE 6 — On place les billes les unes apres les autres a un angle « de la
précédente.

sayer de comprendre pourquoi I'angle d’or apparait si souvent dans la na-
ture. On sait qu’un tournesol a d”autant plus de chances de se reproduire que
le nombre de ses graines est grand : on pourrait donc étre tenté de penser
que la nature fait en sorte que |'arrangement spiralé observé empiriquement
mene a la structure la plus compacte possible, et que I'angle d’or a = ¢ op-
timise I'empilement des graines dans le capitule. On peut commencer par
tester cette affirmation dans le cadre de ce modele.

L'idée consiste a faire varier I'angle a pour trouver 1'angle optimal, di-
vers arrangements sont représentés dans la figure 7. On trouve que ce dernier
(64% de I'espace est occupé par les billes) est égal a I"angle d or. ce qui
confirme 1'hypothese de I'empilement optimal. Par ailleurs, on peut compter
le nombre de parastiches : on trouve ici les nombres 21 et 34. L arrangement
ressemble de plus beaucoup au capitule de tournesol (voir figure 8).

Le deuxieme meilleur taux de remplissage est obtenu pour un angle
o =~ 99.55° (voir figure 7(c)). Pour cet angle, on dénombre 18 et 29 para-
stiches. qui sont deux nombres consécutifs de la suite de Lucas L, qui est
définie par la méme relation L, =L, + L,—), mais avec Lo =1etL, = 3.
Cest la deuxieme suite la plus présente dans la nature apres celle de Fibo-
nacci.

Modele de phyllotaxie sur une tige

Le modéle mathé matique précédent considere des arrangements planai-
res. On trouve aussi de nombreux motifs spiralés sur des tiges de plantes ou
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(a) (b) (c)

FIGURE 7 — Résultat du compactage des billes pour un angle « égale a (a)
63.7°, (b) 151.6° et (c¢) 99.55°, il s’agit du deuxieme arrangement le plus
compact, correspondant a I’arrangement suivant les nombres de Lucas.

FIGURE 8 — Comparaison entre le modele avec les billes et un vrai tournesol.

des cactus. En 1907, le botaniste hollandais Gerrit van Iterson propose un
modele mathématique de la phyllotaxie spiralée le long d’une tige, qui utilise
des cylindres [VI]. Dans plus de 90 % des cas, on peut voir que les organes
botaniques (feuilles, graines..) sont arrangés le long de deux familles de spi-
rales (sens horaire et antihoraire) : généralement, s'il y a n et m parastiches
dans les deux sens, alors n et m sont deux nombres consécutifs de la suite de
Fibonacci.

La tige est assimilée a un cylindre et les organes sont représentés par des
disques non-intersectants de rayon constant (voir figure 9). Si I'on découpe
le cylindre le long d’une ligne verticale, et que 1'on déroule le cylindre. on
obtient un rectangle de longueur D, qui va représenter la tige. D correspond
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FIGURE 9 — Modélisation d’une tige de cactus a 1'aide d’un cylindre, en
mode spiralé, ou les embranchements sont représentés par des disques.

en fait a la circonférence du cylindre. Les organes sont représentés par les
disques, qui ont chacun 4 ou 6 voisins, comme I’on peut le voir sur la figure
10(a). Les disques de diametre & sont disposés un a un sur le cylindre, a
hauteur r constante et a distance horizontale a constante du précédent, avec
0 <a <D/2. Les disques sont donc placés périodiquement le long d’une
hélice, la spirale génératrice (voir figure 3(b) et figure 10(b)).

[ ey ——
[ ——

| 5 o b
1 - j
~ ¥, 0 e
~— a

(a) Arrangement phyllotactique modélisé, avec 5 (b) Construction du modele et spirale génératrice
et 3 spirales (en orange et vert). en noir.

FIGURE 10 — Schéma illustrant le modele de van Iterson

Un tel réseau est caractérisé par une paire d’entiers premiers entre eux
(m,n), qui donnent les nombres de spirales paralléles tournant dans un sens et
dans I'autre (m = S et n = 3 dans la figure 10(a)) : ces nombres correspondent
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aussi a I'indice des disques qui sont en contact avec un disque pris comme
disque d’origine (en général Ag). Van Iterson a déterminé les équations de
tous les arrangements résultant en un couple (m.n) de spirales de contact.
Grace au théoréeme de Pythagore, on peut exprimer a. r et § par rapport a m.n
et un parametre. On peut caractériser un arrangement par 1'un des parametres
a.rou d. Il en résulte que I'on peut représenter chaque arrangement par une
paire (r/D.a/D). i.e. comme un point dans un plan. La courbe associée aux
paires (r/D.a/D) est un arbre binaire qui possede une structure fractale :
c’est I'arbre de van Iterson. La branche unique correspondant au motif (1.2)
se partage en deux branches. I'une pour le motif (1.3), I'autre pour le motif
(2.3). etc... (voir la figure 11 ).

02

Ol

(1.4)  —

LTS

,_/-{ @7
‘ ,
UNE}

.3 0.2= ] .35 0.0 .48 (.50

DK

FIGURE |1 — Arbre fractal représentant les valeurs du couple (r.a) donnant
un arrangement phyllotactique (m.n). en rouge la branche des nombres de
Fibonacci, en bleu la branche des nombres de Lucas.

Aufur et a mesure de la croissance de la plante, le rapport /D devient
plus petit. Essayons de voir ce qui se passe dans le cadre du modele de van
[terson. La structure géométrique ne change pas tant que 1'on ne se trouve
pas sur un embranchement de I'arbre de van Iterson. Une fois arrivé a un
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tel embranchement, on doit choisir entre deux possibilités, par exemple la
paire (1.3) ou la paire (2. 3). On sait que la nature choisit presque toujours la
branche de Fibonacci, i.e. opte pour la paire (2. 3) au lieu de la paire (1,3). Si
ce modele représente bien la réalité, on peut se demander comment la nature
parvient a choisir la « bonne branche ».

Pour mieux comprendre cela, on peut étudier la compacité des différentes
branches. ¢’ est-a-dire calculer le rapport entre 1"aire des disques et " aire to-
tale :

__Aire des disques
fr= Aire totale

Plus I'arrangement est compact, plus I"aire occupée par les disques sera
grande, donc plus B sera proche de 1. Il s’avere que. si I’on se trouve sur un
point dintersection de deux branches de I"arbre, la compacité est minimale et
I"arrangement est hexagonal. Si I'on continue sur une branche. la compacité
est maximale sur celle de Fibonacci: (1.2).(2.3).(3.5).(5.8).....

Conclusion

Les deux modeles exposés ci-dessus peuvent reproduire les arrangements
phyllotactiques. Mais ils n"ont pas d’ambition explicative, il s agit unique-
ment de modeles. qui ne sont pas basés sur des faits biologiques. Les cher-
cheurs essaient actuellement d’expliquer les diverses phyllotaxies en utilisant
des principes ou des lois issues de la biologie et de la mécanique. Il est ce-
pendant assez fantastique que des modeles aussi simples que ceux que nous
avons décrits menent a des résultats si proches de la réalité.

3 L’auxine, un agent (presque) indétectable

3.1 Auxine et primordia

L auxine (du grec avéave [auxano]| = “croitre™), ou acide indole 3-
actique (IAA), est I'une des premieres hormones végétales qui ait été décou-
verte, en 1937. Les chercheurs ont longuement soupconné qu’elle jouait un
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(a) Méristéme de tomate (b) Fluorescence, vue d’en haut

FIGURE 12 - Les anciens primordia sont indiqués par le symbole P, les nou-
veéaux par [. Photos : D. Reinhardt (Université de Fribourg).

role fondamental pour la croissance des plantes en général. En effet, on ob-
serve qu’une accumulation de cette molécule dans une ou plusieurs cellules
induit I’apparition d’un nouvel embryon, appelé primordium [RE]. Cepen-
dant, la concentration d’auxine ne peut pas étre mesurée directement. Les
biologistes la mesurent indirectement en utilisant I’expression d’un géne, par
fluorescence (cf. figure 12, plus la concentration d’auxine est grande, plus le
vert est clair). Les primordia déja existants (en rouge dans la figure 12(a))
influencent le positionnement des nouveaux (en jaune).

Toute la question consiste a comprendre comment ces petites molécules
d’auxine qui se déplacent de cellule en cellule font pour s accumuler dans
des endroits bien précis (on a vu précédemment que les nouveaux organes
botaniques sont disposés de maniere tres réguliere, produisant ainsi les mo-
tifs géométriques observés dans la nature). Historiquement, 1'influence des
anciens primordia sur les nouveaux a été€ vue sous deux angles différents :
publiée en 1868, la régle de Hofmeister [HO] stipule que les nouveaux pri-
mordia se placent dans le plus grand espace disponible, alors que le deuxieme
principe propose que les anciens primordia repoussent les nouveaux. Ce der-
nier principe a été testé par Douady et Couder en 1996 [DO] : les éléments
botaniques sont représentés physiquement par des gouttes d’ un ferro-fluide.
Les gouttes se repoussent et on observe diverses spirales, semblables a celles
que 1’on observe dans la nature. On peut aussi citer le travail mathé matique
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de [KU] sur ce principe.

On a vu que le flot d’auxine et son accumulation induisent la création
des nouveaux primordia. On ne sait pas encore actuellement si les deux prin-
cipes énonceés ci-dessus (qui ne sont que des hypotheses) peuvent se déduire
des propriétés du flot d’auxine. Il est cependant remarquable que quelques
travaux mathématiques basés sur ces deux principes soient capables de re-
produire les motifs géométriques observés dans la nature. Le lecteur inté-
ressé pourra consulter les articles mathé matiques sur la question, par exemple
[KU] et [AT].

3.2 Simulation du flot d’auxine

Plusieurs modeles mathématiques proposant une modélisation de flot
d auxine existent a I'heure actuelle (voir par exemple [SM] et [JO]). On peut
voir une simulation de 1'évolution temporelle du flot d’auxine dans la figure
i3

FIGURE 13 — Simulation de I'évolution temporelle du flot d auxine. Plus le
vert est clair, plus la quantité de molécules est grande.

Le flot d’auxine est polarisé, i.e. les passages de cellule en cellule sont
favorisés dans certaines directions. Cette polarisation est une conséquence de
la présence de protéines PIN qui se placent a I'interface des cellules : elles
transportent les molécules d’auxine d une cellule a une autre. Comment font
les protéines PIN pour se placer sur les bonnes interfaces, de maniere a pola-
riser le flot d auxine, et ensuite de créer des sites d’accumulation d’auxine ?
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Les modeles mathé matiques mettent en équation certains principes hypothé-
tiques. qui sont ensuite simulés (voir figure 14). On ne sait rien de plus a

I"heure actuelle.

FIGURE 14 — Evolution temporelle du processus de transport de I'auxine
par les protéines PIN, concentration d’auxine en vert, polarisation de PIN en
rouge. Simulation R. Smith (Universitidt Bern) [SM].
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