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Percées dans la résolution
d'un probleme mathématique

Jean—Paul Berrut
Département de mathématiques
Université de Fribourg
1700 Fribourg/Pérolles

1. Introduction

Les victoires du syndicat suisse Alinghi dans le cadre de la coupe de I’America ont mis
en lumiere le fait que, de nos jours, tant les bateaux que les voitures ou les avions sont
dessinés par ordinateur. Mais que cela signifie-t—il au juste ?

Ces moyens de transport se déplacent dans des fluides, 'eau et/ou I'air. Leur forme
obéit certes a des considérations esthétiques, mais est surtout optimisée de fagon & mini-
miser la résistance a ces fluides, ou a profiter de ceux—ci pour garantir certaines propriétés.
(Savez-vous, par exemple, qu'un avion tient en I'air grace i la différence de pression entre
la face supérieure et la face inférieure de ses ailes 7 Cette différence est obtenue par la

forme de ces derniéres, qui accélére 'air sur la face supérieure.)

Pour réaliser une telle optimisation, on reproduit mathématiquement dans 'ordinateur
le moyen de transport projeté (disons un avion) et munit I'espace (le domaine) qui I'entoure
et que remplit le fluide d'un systéme de coordonnées (z,y,2). Un ensemble d’équations
aux dérivées partielles, dites d’'Euler ou de Navier—Stokes suivant la viscosité, détermine
alors en dépendance du temps ¢ le vecteur v(z,y,2,t) de la vitesse du fluide ainsi que
sa. pression p en fout point (r,y,2) du domaine. (v et p dépendent 'une de 'autre et
doivent étre calculées simultanément.) p permet de comparer les propriétés des différentes
formes testées de 'avion. v et p sont donc fonction des quatre grandeurs z, y, 2 et t. Des
équations d'une telle complexité ne peuvent étre résolues analytiquement; leur solution

ne s'exprime pas en termes de fonctions connues. Par ailleurs, ces grandeurs r, y, 2 et
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t remplissent tout un domaine continu contenant une infinité de points dans lequel il est
impossible de trouver v et p par le calcul (nécessairement fini). On doit se contenter de
les déterminer en un nombre fini d’endroits que I'on obtient comme points de croisement

d'une grille appelée maillage que I'on pose dans le domaine.

2. Interpolation

Laissons le cas, par trop complexe, de 'écoulement de fluides dans un espace tridimension-
nel et tournons—nous vers un exemple simple qui permet néanmoins d’expliciter le probléme
qui nous intéresse ici. Supposons que, quittant une ville au temps t = 0, vous vous déplaciez
en voiture sur une route parfaitement rectiligne (comme une version idéalisée de celle qui
relie Joshua Tree & Twentynine Palms en Californie). Vous occuperez en tout temps ¢ une
certaine position, mesurée par exemple par la distance parcourue depuis Joshua Tree, qui
se concrétise en un nombre u(t), fonction de t.

Vous vous déplacerez par ailleurs en tout temps & une certaine vitesse v(t), variation
instantanée de la position u et également fonction de {. Comme vous le savez sans doute,
on appelle dérivée la variation instantanée d’'une fonction et l'éerit u'(t). On a donc
v(t) = u'(t).

Cette vitesse va en général varier elle aussi, par exemple lorsque vous devrez ralentir
en vous rapprochant d'un véhicule plus lent, enlever vos lunettes de soleil a la tombée de la
nuit ou vous désaltérer, ceci avant de réaccélérer pour reprendre une vitesse plus réguliere.
La variation instantanée de la vitesse, sa dérivée, est 'accélération a(t) = v'(t). Elle est
ainsi la dérivée de la dérivée de la position u(t), donc sa dérivée seconde u’’(t). Et I'on
peut en général poursuivre ce processus de dérivation a volonté en considérant la variation
instantanée de a(t), dérivée troisieme de u(t), etc.; on dit alors de u qu’elle est infiniment
dérivable.

Supposons maintenant que vous soyez parvenu a Twentynine Palms apres un voyage
d’'une durée T et que 'on veuille décrire mathématiquement le trajet parcouru sur la route
rectiligne, c’est-a—dire trouver une formule donnant pour tout instant ¢ entre 0 et T la
position u de la voiture, dont on pourra tirer sa vitesse v, son accélération a et les autres
dérivées.

La difficulté fondamentale, mentionnée déja dans le cas tridimensionnel, réside préci-
sément dans le fait que u prend une valeur (mesurée par exemple en km) pour tout temps ¢
et que 'intervalle [0, T'] contient une quantité indénombrable de tels ¢, alors qu’en pratique

on ne peut la mesurer que pour un nombre fini de valeurs de t, disons

T R T, avec tp =0, txy =T. (1)
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Celles—ci seront en général équidistantes, donc 'intervalle de temps entre deux mesures
sera constant, par exemple une minute, et 'on mesurera la position aprés une minute,
deux minutes, trois minutes, etc. : to =0, t; =1, t; = 2, t3 = 3, etc.

Afin d’obtenir une valeur approchée de u et de ses dérivées en dehors de ces instants,
on va construire une autre fonction % qui approche u en toute valeur de t. Dans ce but,
on fait naturellement passer le graphe de @ par les valeurs mesurées (tx,u(tx)). U satisfait
alors aux conditions d’interpolation u(t;) = u(tx), k = 0,1,...,N, et 'on dit qu’elle

interpole u aux t.

Figure 1 Figure 2

Commengons par des exemples. Supposons que 'on ne mesure qu’'au début et &
I'arrivée du voyage, si bien que l'information a disposition ne consiste qu’en les valeurs
(0,u(0)) et (T,u(T)) — kilométrage u(0) au départ de Joshua Tree au temps ¢ = 0, durée
totale 7' du trajet et kilométrage a 'arrivée & Twentynine Palms. Comme on 'apprend
au gymnase, un des axiomes d’Euclide postule qu’il existe une droite unique par ces deux
points du graphe de u. Cette droite est un polynome du premier degré, pour lequel la
géométrie analytique de Descartes et Fermat donne la formule suivante (figure 1) :
u(T) — u(0)
ﬁt. (2)

Sil'on ajoute une valeur, disons le temps de passage t; au milieu du parcours (résultant

a(t) = u(0) +

au total en trois valeurs 0, t; et T non—équidistantes de t), le polynome le plus simple par
(0,0), (ti, #) et (T',u(T')) sera une parabole, un polynéme u de degré deux (un de moins
que le nombre de mesures) (figure 2). Dans le cas des N + 1 instants (1), il existe un seul
polynéme @ de degré au plus N passant par les points (tx,u(tx)) du graphe; il peut étre
exprimé par toute une série de formules équivalentes portant le nom de savants comme

Newton ou Lagrange, dont la célébrité témoigne de I'importance de ce probleme.
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Malheureusement, 1'existence d'un objet mathé-
matique et d'une formule permettant son calcul est *
une chose, son utilité pratique en est une autre. Dans
le cas de mesures équidistantes, le polynome u passe
certes par les valeurs (tk, u(tk)), mais oscille souvent
de maniere catastrophique entre les points d’interpo-

lation extrémes, et ce d’autant plus fortement que le ¢

nombre N + 1 de ces derniers est grand, voir figure 3

pour N = 16. (La fonction approchée u est en bleu,

les valeurs interpolées sur le graphe sont marquées
par des disques rouges et 'approximant u en vert.)
Cet effet est appelé phénoméne de Runge, du nom

du mathématicien allemand qui I'a expliqué en 1901.

L’auteur d'un article de vulgarisation récent I'a jugé

assez important pour le mentionner parmi les pro-

priétés fondamentales des polynomes [Leh]. Figare 3

En fait, ce probleme d’interpolation est si important que mathématiciens et ingénieurs
ont depuis longtemps trouvé une parade an phénoméne de Runge : au lieu de faire passer
le méme polynome par tous les points du graphe, ils construisent un polynome différent,
souvent de degré 3, sur chaque sous-intervalle reliant deux points ;. successifs. Le résultat
global u (appelé spline) n’est alors que quelques fois dérivable aux tj, suffisamment cepen-
dant pour les besoins de ses utilisateurs.

Alors pourquoi poursuivre la recherche d’'interpolants infiniment dérivables 7 Pour le
défi de correspondre a la nature, évidemment. Mais pas uniquement. Il s’avere en effet
(voir plus bas) qu'il faut parfois beaucoup moins de points t;, donc de valeurs de u, pour
que u approche celle—i avec une précision donnée. Cette propriété est souvent cruciale,
car elle diminue le volume des données u(fy) a obtenir et mettre en mémoire ainsi que le
calcul nécessaire a 'évaluation de 4 en une valeur quelconque de t. Cet aspect est d’autant
plus important que la dimension est élevée : la ou il faut 100 points pour approcher a une
dimension, il en faut naturellement 10°000 a4 deux dimensions, un million en dimension 3

et 100 millions en dimension 4.
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3. Améliorations par rapport au polynome d’interpolation

Revenons au polynome d’interpolation.La maniére la plus simple de le modifier est de le
diviser par un autre polynome pour obtenir ce que 'on appelle une fonction rationnelle.
L’ajout de ce dénominateur pour des conditions d’interpolation inchangées modifie le
polynome du numérateur; ce dernier est cependant toujours uniquement déterminé, comme
avec le dénominateur constant 1 contenu implicitement dans les exemples polynomiaux vus
plus haut.

Pour diverses raisons, 'interpolant maintenant rationnel u devra par ailleurs conserver
une propriété importante du polynome d’interpolation appelée linéarité. Celle—ci stipule
que l'interpolant d’une somme u; +u5 de fonctions doit étre la somme des deux interpolants
correspondant chacun & 'une des deux fonctions u; et uy, et celui du pourcentage d'une
fonction u le méme pourcentage de I'interpolant de u. Il est aisé de voir par exemple que
I'interpolant correspondant a trois t; équidistants satisfait a ces conditions : la parabole
interpolant la somme de deux fonctions u; et us en 0 et T est la somme des deux paraboles

correspondant séparément a u, et u, (figure 4).

Uy +u2

Uz

Uy

Figure 4

Pour conserver cette propriété avec l'interpolant rationnel, il sera nécessaire que le

dénominateur de ce dernier ne dépende pas de la fonction interpolée u (comme dans le
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cas polynomial avec le dénominateur constant 1) et, pour ne pas commettre le crime de

division par zéro, qu'il soit non—nul pour toute valeur de t.

Apres ces longs préparatifs, venons—en au coeur de notre histoire. Vers la fin de mon
doctorat, et a la suite d'une mauvaise manipulation informatique inconcevable aujourd’hui,
des résultats exceptionnellement bons pour I'interpolation de fonctions périodiques sont ap-
parus sur l'un des listings utilisés & ’époque. J'ai di attendre le calme de mon premier
poste aux USA pour étudier et comprendre le phénomeéne, que je suis ensuite parvenu a
adapter au cas non-périodique qui nous concerne ici et ainsi construire les premiers inter-
polants rationnels linéaires pour points quelconques, publiés en 1988 [Berl]. La qualité de
I'un d’entre eux — dénoté par K(t) ci-dessous — est fantastique lorsque les points peuvent
etre choisis : avec Richard Baltensperger, actuellement professeur a 1’Ecole d’'Ingénieurs et
d’Architectes de Fribourg, nous I'avons utilisé pour développer une méthode de résolution
d’équations aux dérivées partielles comme des versions simplifiées de celles d’Euler ou de
Navier-Stokes mentionnées au début. Poursuivant ces recherches, et mettant aussi a profit
des travaux effectués en collaboration avec Hans Mittelmann, professeur a4 Arizona State
University, sur des équations dont la solution présente des fronts, c¢’est—a—dire des portions
extrémement pentues, Nick Trefethen de I'Université d’Oxford et son doctorant Wynn Tee
ont étendu cette méthode a des problémes plus complexes pour lesquels ils ont obtenu de
remarquables résultats [Tee-Tre]. Ils sont par exemple parvenus & déterminer avec une er-
reur relative de 10~!% I'instant de I’explosion thermique induite par des réactions chimiques
exothermiques en n'utilisant que 57 points ¢, alors qu'il en faudrait des milliers avec des
splines — un exemple, annoncé plus haut, de résultat trés précis obtenu avec relativement
peu de points. La méthode a aussi été utilisée tout récemment par Luis Cueto-Felgueroso
et Ruben Juanes du Massachusetts Institute of Technology pour expliquer les “doigts”

apparaissant lors de 'infiltration de liquides dans des sols poreux [Cue-Jua].

Cependant, dans le cas général ou les t; sont donnés et ne peuvent étre choisis —
par exemple celui de points équidistants — cette fonction rationnelle linéaire R(t) n’était
pas une assez bonne approximation pour étre vraiment utile. J’ai continué durant une
quinzaine d’années a réfléchir épisodiquement a ce probléeme jusqu'a ce que, travaillant
sur des interpolants a plusieurs dimensions, Michael Floater de I'Université d’Oslo et Kai
Hormann de celle de Clausthal soient tombés séparément sur mon article de 1988 et aient
tenté chacun de son co6té de I'améliorer. Dans un papier mis sur I'internet en 2006 [Flo-
Hor], ils ont publié une solution commune consistant en une correction de R aux extrémités
de l'intervalle. Elle a attiré de maniére étonnamment rapide l'attention des auteurs de

l'ouvrage “Numerical Recipes” [Pre-Teu-Vet-Fla|, compendium d’excellents algorithmes
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pour l'utilisateur qui a besoin de résoudre des problémes numériques sans pouvoir étudier
dans le détail des mathématiques sous-tendant les méthodes. La troisiéme édition de cet
ouvrage, parue en 2007, consacre tout un paragraphe a cette interpolation rationnelle
barycentrique, dénomination que Richard Baltensperger, Hans Mittelmann et moi-méme
lui avions donnée en 2005 [Ber-Bal-Mit]. Ses auteurs disent en introduction: “This is the
only method in this chapter for which we might actually encourage experimentation with
high order (say, > 6). Barycentric rational interpolation competes very favorably with
splines: its error is often smaller, and the resulting approximation is infinitely smooth

(unlike splines).”

Figure 5a Figure 5b

Afin que le lecteur puisse apprécier la simplicité de tels interpolants, je me permets
d’écrire leur formule générale donnée pour le polynome [Ber-Tre| par I'américain Taylor en

1945 et dans le cas non linéaire par les allemands Schneider et Werner en 1986 [Sch-Wer| :

r(t) = = : (3)

Une introduction en francais a cette formule se trouve dans le compte rendu de ma legon
inaugurale [Ber3]. Tout 'art réside dans le choix du nombre w; (que 'on appelle poids)
associé au point tp. Les wj utiles pour l'interpolation linéaire sont de signe alterné. En
valeur absolue, ceux de R étaient 1/2,1,1,1,1,...,1,1,1,1,1/2, alors que ceux de Floater

et Hormann prennent plusieurs valeurs différentes de 1 aux extrémités, valeurs qui de-
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viennent malheureusement de plus en plus petites lorsque la précision requise augmente,
rendant I'évaluation de r de plus en plus difficile.

La figure 5a montre 'interpolant rationnel barycentrique linéaire avec des poids de
Floater et Hormann passant par les memes valeurs que sur la figure 3. La figure 5b montre
les erreurs, en rouge pour l'interpolant rationnel avec des poids non optimaux et en vert
pour l'interpolant rationnel avec poids optimaux. Pour revenir & I'exemple de la voiture,
une fois déterminé l'interpolant @(t) de sa position u(t), on peut approcher sa vitesse u'(t),
respectivement son accélération u”(t), en calculant simplement @'(t), resp. @”(¢). Il suffit
pour cela d’évaluer la formule étonnamment élégante donnée dans [Sch-Wer| pour le calcul

des dérivées d'un interpolant rationnel sous forme (3).

De mon coté, j'ai cherché a améliorer l'interpolant appelé sinc (de “sinus cardinalis”,
en fait la fonction sin z/z, qui a trouvé de multiples applications en théorie du signal) apres
m’étre apercu que, dans le cas de points équidistants, R pouvait étre interprété comme
quotient d’interpolants sinc tronqués aux extrémités de l'intervalle (alors qu’ils interpolent
normalement sur toute la droite de moins l'infini a plus l'infini — le lecteur trouvera une
introduction en francgais a cet interpolant dans [Ber2].) Apres étre parvenu a comprendre
ces effets de troncature, je les ai corrigés pour obtenir de nouveaux interpolants linéaires
que l'on peut caractériser comme des interpolants sinc extrapolés rationnels. Ils sont certes
légérement plus compliqués que (3) et doivent encore etre étudiés de maniere plus poussée;
les calculs numériques montrent cependant une précision comparable a celle de r avec
les wy de Floater et Hormann et surtout n'indiquent pas d’instabilité du calcul liée a
I'augmentation de la précision requise. A 1'échelle de la figure 5a, la précision avec un tel
quotient d’interpolants sinc extrapolés reste la méme; 'erreur d’approximation avec ces 17
points apparait en bleu sur la figure 5b.

Les spécialistes de I'approximation testent généralement leurs méthodes en se donnant
une fonction a approcher f et calculant la différence maximale entre leur approximant et
cette fonction sur un certain intervalle. Mes résultats pour f(t) = sinh(10t)/(1 + t?)
sur l'intervalle [—1, 1] sont réunis dans la table ci-dessous. La premiére colonne donne
le nombre de points d’interpolation moins 1, les deux suivantes l'erreur de l'interpolant
rationnel avec deux valeurs différentes des poids de Floater et Hormann (déterminées par
un parametre d) et la quatrieme l'erreur avec l'interpolant sinc extrapolé rationnel, la
lettre “e” signifiant “10 puissance™. Jusqu’a la mise sur 'internet de I'article de Floater et
Hormann en 2006, on ne pouvait que réver de tels résultats avec des interpolants infiniment

dérivables entre points équidistants.
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N FH,d=4 FH,d=8 Sinc extrapolé
8 412 + 1 4.91e0 3.06¢ + 1
16 2.60c0 4.91e — 2 7.40¢ — 1
32 1.17e — 1 2.20¢ — 4 4.80¢ — 3
64 2.81e — 3 373 — 7 8.61e — 6
128 3.90c — 5 2.54e — 10 3.91e — 0
256 7.9le — 7 1.46e — 11 2.27e — 11
512 2.12¢ — 8 1.36e — 11 1.55¢ — 11

4. Développements futurs

Il faut cependant rappeler que l'interpolant de Floater et Hormann existe pour des points
quelconques, alors que le sinc n'interpole en principe qu’en des points équidistants. Pourra-
t-on généraliser ce dernier ? Tous ces interpolants se laisseront—ils adapter a plusieurs
dimensions ? Trouvera-t-on, pour une classe donnée de fonctions, des interpolants infini-
ment dérivables utilisant un minimum de valeurs de la fonction 7 La queéte de tels objets est
dans un certain sens un probleme typique des mathématiques appliquées : contrairement
a la plupart des conjectures célebres comme celles pour la résolution desquelles le Clay
Institute attribue un prix d'un million de dollars (la démonstration de I'existence de solu-
tions des équations de Navier-Stokes, par exemple), il n’appelle pas de réponse définitive
par oui ou par non ou sous forme de démonstration, mais plutot une patiente amélioration
de méthodes existantes. La recherche dans ce domaine va probablement durer encore des

lustres, si tant est qu'elle aboutisse un jour.
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