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Percées dans la résolution

d'un problème mathématique

Jean-Paul Berrut
Département de mathématiques

Université de Fribourg
1700 Fribourg/Pérolles

1. Introduction

Les victoires du syndicat suisse Alinghi dans le cadre de la coupe de l'America ont mis

en lumière le fait que, de nos jours, tant les bateaux que les voitures ou les avions sont

dessinés par ordinateur. Mais que cela signifie-t-il au juste

Ces moyens de transport se déplacent dans des fluides, l'eau et/ou l'air. Leur forme

obéit certes à des considérations esthétiques, mais est surtout optimisée de façon à

minimiser la résistance à ces fluides, ou à profiter de ceux-ci pour garantir certaines propriétés.

(Savez-vous, par exemple, qu'un avion tient en l'air grâce à la différence de pression entre

la face supérieure et la face inférieure de ses ailes Cette différence est obtenue par la

forme de ces dernières, qui accélère l'air sur la face supérieure.)

Pour réaliser une telle optimisation, on reproduit mathématiquement dans l'ordinateur
le moyen de transport projeté (disons un avion) et munit l'espace (le domaine) qui l'entoure

et que remplit le fluide d'un système de coordonnées (x,y,z). Un ensemble d'équations

aux dérivées partielles, dites d'Euler ou de Navier-Stokes suivant la viscosité, détermine

alors en dépendance du temps t le vecteur v(x,y, z,i) de la vitesse du fluide ainsi que

sa pression p en tout point (x, y, z) du domaine, (v et p dépendent l'une de l'autre ct

doivent être calculées simultanément.) p permet de comparer les propriétés des différentes

formes testées de l'avion, v et p sont donc fonction des quatre grandeurs x, y, z et t. Des

équations d'une telle complexité ne peuvent être résolues analytiquement; leur solution

ne s'exprime pas en termes de fonctions connues. Par ailleurs, ces grandeurs x. y, z et
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t remplissent tout un domaine continu contenant une infinité de points dans lequel il est

impossible de trouver v et p par le calcul (nécessairement fini). On doit se contenter de

les déterminer en un nombre fini d'endroits que l'on obtient comme points de croisement

d'une grille appelée maillage que l'on pose dans le domaine.

2. Interpolation

Laissons le cas, par trop complexe, de l'écoulement de fluides dans un espace tridimensionnel

et tournons-nous vers un exemple simple qui permet néanmoins d'expliciter le problème

qui nous intéresse ici. Supposons que, quittant une ville au temps t 0, vous vous déplaciez

en voiture sur une route parfaitement rectiligne (comme une version idéalisée de celle qui

relie Joshua Tree à Twentynine Palms en Californie). Vous occuperez en tout temps t une

certaine position, mesurée par exemple par la distance parcourue depuis Joshua Tree, qui

se concrétise en un nombre u(t), fonction de t.

Vous vous déplacerez par ailleurs en tout temps à une certaine vitesse v(t), variation
instantanée de la position u et également fonction de t. Comme vous le savez sans doute,

on appelle dérivée la variation instantanée d'une fonction et l'écrit u'(t). On a donc

v(t) u'(t).
Cette vitesse va en général varier elle aussi, par exemple lorsque vous devrez ralentir

en vous rapprochant d'un véhicule plus lent, enlever vos lunettes de soleil à la tombée de la

nuit ou vous désaltérer, ceci avant de réaccélérer pour reprendre une vitesse plus régulière.

La variation instantanée de la vitesse, sa dérivée, est l'accélération a(t) v'(t). Elle est

ainsi la dérivée de la dérivée de la position u(t), donc sa dérivée seconde u"(t). Et l'on

peut en général poursuivre ce processus de dérivation à volonté en considérant la variation

instantanée de a(t), dérivée troisième de u(t), etc.: on dit alors de u qu'elle est infiniment
derivable.

Supposons maintenant que vous soyez parvenu à Twentynine Palms après un voyage
d'une durée T et que l'on veuille décrire mathématiquement le trajet parcouru sur la route

rectiligne, c'est-à-dire trouver une formule donnant pour tout instant t entre 0 et T la

position u de la voiture, dont on pourra tirer sa vitesse v, son accélération o et les autres

dérivées.

La difficulté fondamentale, mentionnée déjà dans le cas tridimensionnel, réside

précisément dans le fait que u prend une valeur (mesurée par exemple en km) pour tout temps t
et que l'intervalle [0. T] contient une quantité indénombrable de tels t, alors qu'en pratique

on ne peut la mesurer que pour un nombre fini de valeurs de t, disons

to, h, t2,...,tN avec to 0, t/v T. (1)
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Celles-ci seront en général équidistantes, donc l'intervalle de temps entre deux mesures

sera constant, par exemple une minute, et l'on mesurera la position après une minute,
deux minutes, trois minutes, etc. : t0 0, tt 1, t2 2, ts 3, etc.

Afin d'obtenir une valeur approchée de u et de ses dérivées en dehors de ces inststnts,

on va construire une autre fonction û qui approche u en toute valeur de t. Dans ce but,

on fait naturellement passer le graphe de 2 par les valeurs mesurées (tk, u(tk)). û satisfait

alors aux conditions d'interpolation û(tjt) u(tfc), k 0,1,...,N, et l'on dit qu'elle

interpole u aux tjt.

Figure 1 Figure 2

Commençons par des exemples. Supposons que l'on ne mesure qu'au début et à

l'arrivée du voyage, si bien que l'information à disposition ne consiste qu'en les valeurs

(O, u(0)) et (T, u(T)) — kilométrage u(0) au départ de Joshua TVee au temps t 0, durée

totale T du trajet et kilométrage à l'arrivée à Twentynine Palms. Comme on l'apprend

au gymnase, un des axiomes d'Euclide postule qu'il existe une droite unique par ces deux

points du graphe de u. Cette droite est un polynôme du premier degré, pour lequel la

géométrie analytique de Descartes et Fermât donne la formule suivante (figure 1) :

û(t) u(0) + u(T)-u(0)4 (2)T-0
Si l'on ajoute une valeur, disons le temps de passage tj au milieu du parcours (résultant

au total en trois valeurs 0, t] et T non-équidistantes de t), le polynôme le plus simple par

(0,0), (ti. ^Z) et C^i U(T)) sera une parabole, un polynôme û de degré deux (un de moins

que le nombre de mesures) (figure 2). Dans le cas des N + 1 instants (1), il existe un seul

polynôme û de degré au plus N passant par les points (t/e,«(tj.)) du graphe; il peut être

exprimé par toute une série de formules équivalentes portant le nom de savants comme

Newton ou Lagrange, dont la célébrité témoigne de l'importance de ce problème.

117



Malheureusement, l'existence d'un objet
mathématique et d'une formule permettant son calcul est

une chose, son utilité pratique en est une autre. Dans

le cas de mesures équidistantes, le polynôme 2 passe

certes par les valeurs (tk,u(tk)), mais (»cille souvent

de manière catastrophique entre les points d'interpolation

extrêmes, et ce d'autant plus fortement que le

nombre N 4- 1 de ces derniers est grand, voir figure 3

pour N 16. (La fonction approchée u est en bleu,

les valeurs interpolées sur le graphe sont marquées

par des disques rouges et l'approximant 2 en vert.)
Cet effet est appelé phénomène de Runge, du nom
du mathématicien allemand qui l'a expliqué en 1901.

L'auteur d'un article dc vulgarisation récent l'a jugé

assez important pour le mentionner parmi les

propriétés fondamentales des polynômes [Leh]. Figure 3

En fait, ce problème d'interpolation est si important que mathématiciens et ingénieurs

ont depuis longtemps trouvé une parade au phénomène de Runge : au lieu de faire passer

le même polynôme par tous les points du graphe, ils construisent un polynôme différent,

souvent de degré 3, sur chaque sous- intervalle reliant deux points t k successifs. Le résultat

global 2 (appelé spline) n'est alors que quelques fois derivable aux tk, suffisamment cependant

pour les besoins de ses utilisateurs.

Alors pourquoi poursuivre la recherche d'interpolants infiniment dérivables Pour le

défi de correspondre à la nature, évidemment. Mais pas uniquement. Il s'avère en effet

(voir plus bas) qu'il faut parfois beaucoup moins de points t/,., donc dc valeurs de u, pour

que 2 approche celle ci avec une précision donnée. Cette propriété est souvent cruciale,

car elle diminue le volume des données u(tjfc) à obtenir et mettre en mémoire ainsi que le

calcul nécessaire à l'évaluation de 2 en une valeur quelconque de t. Cet aspect est d'autant

plus important que la dimension est élevée : là où il faut 100 points pour approcher à une

dimension, il en faut naturellement ÎO'OOO à deux dimensions, un million en dimension 3

et 100 millions en dimension 4.
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3. Ameliorations par rapport au polynôme d'interpolation

Revenons au polynôme d'interpolation.La manière la plus simple dc le modifier est de le

diviser par un autre polynôme pour obtenir cc que l'on appelle une fonction rationnelle.

L'ajout de ce dénominateur pour des conditions d'interpolation inchangées modifie le

polynôme du numérateur; ce dernier est cependant toujours uniquement déterminé, comme

avec le dénominateur constant 1 contenu implicitement dans les exemples polynomiaux vus

plus haut.

Pour diverses raisons, l'interpolant maintenant rationnel 2 devra par ailleurs conserver

une propriété importante du polynôme d'interpolation appelée linéarité. Celle-ci stipule

que l'interpolant d'une somme ui + it2 de fonctions doit être la somme des deux interpolants

correspondant chacun à l'une des deux fonctions U\ et u2, et celui du pourcentage d'une

fonction u le même pourcentage de l'interpolant de u. Il est aisé de voir par exemple que

l'interpolant correspondant à trois tk équidistants satisfait à ces conditions : la parabole

interpolant la somme de deux fonctions ui et u2 en 0 et T est la somme des deux paraboles

correspondant séparément à Ui et u2 (figure 4).

Ul +u2

"j

Figure 4

Pour conserver cette propriété avec l'interpolant rationnel, il sera nécessaire que le

dénominateur dc ce dernier ne dépende pas de la fonction interpolée u (comme dans le
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cas polynomial avec le dénominateur constant 1) et, pour ne pas commettre le crime de

division par zéro, qu'il soit non-nul pour toute valeur de t.

Après ces longs préparatifs, venons-en au coeur de notre histoire. Vers la fin de mon

doctorat, et à la suite d'une mauvaise manipulation informatique inconcevable aujourd'hui,
des résultats exceptionnellement bons pour l'interpolation de fonctions périodiques sont

apparus sur l'un des listings utilisés à l'époque. J'ai dû attendre le calme de mon premier

poste aux USA pour étudier et comprendre le phénomène, que je suis ensuite parvenu à

adapter au cas non-périodique qui nous concerne ici et ainsi construire les premiers
interpolants rationnels linéaires pour points quelconques, publiés en 1988 [Berlj. La qualité de

l'un d'entre eux — dénoté par R(t) ci-dessous — est fantastique lorsque les points peuvent
être choisis : avec Richard Baltensperger, actuellement professeur à l'Ecole d'Ingénieurs et

d'Architectes de Fribourg, nous l'avons utilisé pour développer une méthode de résolution

d'équations aux dérivées partielles comme des versions simplifiées de celles d'Euler ou de

Navier-Stokes mentionnées au début. Poursuivant ces recherches, et mettant aussi à profit
des travaux effectués en collaboration avec Hans Mittelmann, professeur à Arizona State

University, sur des équations dont la solution présente des fronts, c'est-à-dire des portions
extrêmement pentues, Nick Trefethen de l'Université d'Oxford et son doctorant Wynn Tee

ont étendu cette méthode à des problèmes plus complexes pour lesquels ils ont obtenu de

remarquables résultats [Tee-Tre]. Us sont par exemple parvenus à déterminer avec une

erreur relative de 10~10 l'instant de l'explosion thermique induite par des réactions chimiques

exothermiques en n'utilisant que 57 points tk, alors qu'il en faudrait des milliers avec des

splines — un exemple, annoncé plus haut, de résultat très précis obtenu avec relativement

peu de points. La méthode a aussi été utilisée tout récemment par Luis Cueto-Felgueroso

et Ruben Juanes du Massachusetts Institute of Technology pour expliquer les "doigts"

apparaissant lors de l'infiltration de liquides dans des sols poreux [Cue-Jua],

Cependant, dans le cas général où les tk sont donnés et ne peuvent être choisis —

par exemple celui de points équidistants — cette fonction rationnelle linéaire R(t) n'était

pas une assez bonne approximation pour être vraiment utile. J'ai continué durant une

quinzaine d'années à réfléchir épisodiquement à ce problème jusqu'à ce que, travaillant

sur des interpolants à plusieurs dimensions, Michael Floater de l'Université d'Oslo et Kai
Hormann de celle de Clausthal soient tombés séparément sur mon article de 1988 et aient

tenté chacun de son côté de l'améliorer. Dans un papier mis sur l'internet en 2006 [Flo-

Hor], ils ont publié une solution commune consistant en une correction de R aux extrémités
de l'intervalle. Elle a attiré de manière étonnamment rapide l'attention des auteurs de

l'ouvrage "Numerical Recipes" [Pre-Teu-Vet-Fla], compendium d'excellents algorithmes
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pour l'utilisateur qui a besoin de résoudre des problèmes numériques sans pouvoir étudier
dans le détail des mathématiques sous-tendant les méthodes. La troisième édition de cet

ouvrage, parue en 2007, consacre tout un paragraphe à cette interpolation rationnelle

barycentrique, dénomination que Richard Baltensperger, Hans Mittelmann et moi-même

lui avions donnée en 2005 [Ber-Bal-Mit]. Ses auteurs disent en introduction: "This is the

only method in this chapter for which we might actually encourage experimentation with

high order (say, > 6). Barycentric rational interpolation competes very favorably with
splines: its error is often smaller, and the resulting approximation is infinitely smooth

(unlike splines)."

Figure 5a Figure 5b

Afin que le lecteur puisse apprécier la simplicité de tels interpolants, je me permets
d'écrire leur formule générale donnée pour le polynôme [Ber-Tre] par l'américain Taylor en

1945 et dans le cas non linéaire par les allemands Schneider et Werner en 1986 [Sch-Wer] :

r(l).
£ï -tk u(tt)

(3)

E Wk

t-tk
Une introduction en français à cette formule se trouve dans le compte rendu de ma leçon

inaugurale [Ber3]. Tout l'art réside dans le choix du nombre Wk (que l'on appelle poids)

associé au point tk- Les Wk utiles pour l'interpolation linéaire sont de signe alterné. En

valeur absolue, ceux de R étaient 1/2,1,1,1,1, 1,1,1,1,1/2, alors que ceux de Floater

et Hormann prennent plusieurs valeurs différentes de 1 aux extrémités, valeurs qui de-
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viennent malheureusement de plus cn plus petites lorsque la précision requise augmente,

rendant l'évaluation de r de plus en plus difficile.

La figure 5a montre l'interpolant rationnel barycentrique linéaire avec des poids de

Floater et Hormann passant par les mêmes valeurs que sur la figure 3. La figure 5b montre
les erreurs, en rouge pour l'interpolant rationnel avec des poids non optimaux et en vert

pour l'interpolant rationnel avec poids optimaux. Pour revenir à l'exemple de la voiture,

une fois déterminé l'interpolant 2(f) de sa position u(t), on peut approcher sa vitesse u'(t),
respectivement son accélération u"(t), en calculant simplement 2'(t), resp. 2"(t). Il suffit

pour cela d'évaluer la formule étonnamment élégante donnée dans [Sch-Wer] pour le calcul

des dérivées d'un interpolant rationnel sous forme (3).

De mon côté, j'ai cherché à améliorer l'interpolant appelé sine (de "sinus cardinalis",

cn fait la fonction sin x/x, qui a trouvé de multiples applications en théorie du signal) après

m'étre aperçu que, dans le cas de points équidistants, R pouvait être interprété comme

quotient d'interpolants sine tronqués aux extrémités de l'intervalle (alors qu'ils interpolent
normalement sur toute la droite de moins l'infini à plus l'infini — le lecteur trouvera une

introduction en français à cet interpolant dans [Ber2].) Après être parvenu à comprendre

ces effets dc troncature, je les ai corrigés pour obtenir de nouveaux interpolants linéaires

que l'on peut caractériser comme des interpolants sine extrapolés rationnels. Ils sont certes

légèrement plus compliqués que (3) et doivent encore être étudiés de manière plus poussée;

les calculs numériques montrent cependant une précision comparable à celle de r avec

les Wk de Floater et Hormann et surtout n'indiquent pas d'instabilité du calcul fiée à

l'augmentation de la précision requise. A l'échelle de la figure 5a, la précision avec un tel

quotient d'interpolants sine extrapolés reste la même; l'erreur d'approximation avec ces 17

points apparaît en bleu sur la figure 5b.

Les spécialistes de l'approximation testent généralement leurs méthodes en se donnant

une fonction à approcher / et calculant la différence maximale entre leur approximant et

cette fonction sur un certain intervalle. Mes résultats pour f(t) sinh(10t)/(l + t2)

sur l'intervalle [—1,1] sont réunis dans la table ci-dessous. La première colonne donne

le nombre de points d'interpolation moins 1, les deux suivantes l'erreur de l'interpolant
rationnel avec deux valeurs différentes des poids de Floater et Hormann (déterminées par
un paramètre d) et la quatrième l'erreur avec l'interpolant sine extrapolé rationnel, la

lettre "e" signifiant "10 puissance". Jusqu'à la mise sur l'internet de l'article de Floater et

Hormann en 2006, on ne pouvait que rêver de tels résultats avec des interpolants infiniment

dérivables entre points équidistants.
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N FH, d 4 FH, d=8 Sine extrapolé

8 4.12e+1 4.91e0 3.06e -1-1

16 2.60eO 4.91e - 2 7.40c - 1

32 1.17e-1 2.29e-4 4.89e - 3

64 2.81e-3 3.73e - 7 8.61e - 6

128 3.90e - 5 2.54e - 10 3.91e-9

256 7.91e - 7 1.46e-11 2.27e - 11

512 2.12e-8 1.36e-11 1.55e- 11

4. Développements futurs

Il faut cependant rappeler que l'interpolant de Floater et Hormann existe pour des points

quelconques, alors que le sine n'interpole en principe qu'en des points équidistants. Pourra-

t-on généraliser cc dernier Tous ces interpolants se laisseront-ils adapter à plusieurs

dimensions Trouvera-t-on, pour une classe donnée de fonctions, des interpolants infiniment

dérivablcs utilisant un minimum de valeurs de la fonction La quête de tels objets est

dans un certain sens un problème typique des mathématiques appliquées : contrairement

à la plupart des conjectures célèbres comme celles pour la résolution desquelles le Clay

Institute attribue un prix d'un million dc dollars (la démonstration de l'existence dc

solutions des équations de Navier-Stokes, par exemple), il n'appelle pas de réponse définitive

par oui ou par non ou sous forme de démonstration, mais plutôt une patiente amélioration

de méthodes existantes. La recherche dans ce domaine va probablement durer encore des

lustres, si tant est qu'elle aboutisse un jour.
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