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Die beste aller Welten

Norbert Hungerbühler
Département de Mathématiques, Université de Fribourg,

Pérolles, CH-1700 Fribourg
norbert.hungerbuehler@unifr.ch

Warum sind Seifenblasen rund und Planeten nur fast rund? Was weiss der
Schützenfisch von der Snelschen Formel? Sind Bienen nicht nur ßeissig, sondern
auch sparsam? Wie kommen zwei Lappländerinnen 1737nach Paris? Wieviel Land
lässt sich mit einer Ochsenhaut umspannen, und was haben Vergil und Tolstoi mit
dieser Frage zu tun? Bewies Anselm von Canterbury mit der Existenz Gottes auch
die Existenz der verlorenen Inseln? Wie segelt man am besten mit der Strömung
gegen den Wind, und warum hat die Antwort etwas mit einem Kupfer-Aluminium-
Nickel-Kristall zu tun?

OptimaUtätsprinzipien regieren nicht nur die unbelebte, sondern auch die belebte
Natur. Der vorliegende Text bietet eine Zeitreise durch die faszinierende Geschichte

des menschlichen Strebens nach einer Weltformel und nach dem Verständnis
des Kosmos.

Von den oben gestellten sieben Fragen -werden im Text sechs beantwortet, es wird
jedoch dem Leser überlassen herauszufinden welche Frage offen bleibt.

Pourquoi les bulles de savon sont-elles rondes alors que les planètes ne le sont pas
tout à fait Que sait le poisson archer de la formule de Snel Les abeilles sont-
elles non seulement travailleuses, mais aussi économes Comment vinrent deux
femmes lappones à Paris en 1737? Combien de pays se laisse entourer avec une
peau de boeuf et quel lien a cette question avec Virgile et Tolstoi En prouvant
l'existence de Dieu, Anselm von Canterbury a-t-il également démontré l'existence
de l'île perdue? Comment navigue-t-on au mieux avec le courant contre le vent,
et pourquoi la réponse a-t-elle un lien avec un cristal de cuivre, d'alluminium et
de nickel

Les principes d'optimalité ne régissent pas seulement les éléments inertes mais
également la nature animée. Le texte suivant offre un voyage dans la fascinante
histoire de l'effort humain pour trouver une formule universelle et pour
comprendre le cosmos.

Six des sept questions posées y trouveront réponse. Cependant, le lecteur devra
prendre seui Je soin de trouver quelle question reste ouverte.

1 "Mehr Licht!"1

Einstein nannte zwei Gründe für die Entstehung von Theorien: Erstens, wenn neue Fakten
nicht mit bestehenden Theorien erklärt werden können, zweitens das Streben nach

Vereinheitlichung und Vereinfachung. Im Folgenden wird vor allem von der zweitgenannten
Triebfeder für die Evolution von Theorien die Rede sein.

1 Goethes letzte Worte (nicht belegt)
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1.1 Das Heronsche Prinzip

Ein Beispiel eines Prinzips, welches eine Vielzahl von Phänomenen erklärt, ist das Heronsche

Prinzip. Betrachten wir zuerst die Auffassung von Licht, die Euklid um 320 v. Chr.
in seinem Werk Optik formulierte:

(1) Licht breitet sich geradlinig aus.

(2) Einfalls- und Ausfallsebene stimmen bei der Reflexion überein.

(3) Einfalls- und Ausfallswinkel sind gleich gross.

Heron von Alexandria formulierte um 50 n. Chr. in seiner Katoptrik das Prinzip, dass

Licht immer den Weg nimmt, der kürzer ist als alle andern. Dieses Prinzip vereinheitlicht

nun Euklids Gesetze der Optik im Sinne Einsteins: Denn aus diesem einen Prinzip kssen
sich alle drei Gesetze Euklids ableiten. Betrachten wir etwa (1) und (2) als bewiesen, so

folgt das Reflexionsgesetz (3) aus Abbildung 1: Seien A und B zwei Punkte auf der selben
Seite eines Spiegels s. Dann ist für einen beliebigen Punkt X auf s der kürzeste Weg von
A über X nach B gleich der Streckenlänge von A über X zum Spiegelpunkt B'. Diese

Strecke ist nach (1) kürzestmöglich falls X C auf der Verbindungsgeraden von A und
B' liegt. Für diesen Lichtweg gilt dann in der Tat a ß.

X \ C

" B'

Abbildung 1: Deis Reflexionsgesetz

Ein Wort zur Vorsicht: Herons Prinzip ist in der urprünglichen Fassung nicht ganz glücklich
formuliert wie das berühmte Problem von Alhazen zeigt (siehe Abbildung 2 und [6], [13],

[8]): Hier wählt bei der Reflexion eines Strahls von A über X nach B in einem Hohlspiegel

s das Licht nicht den kürzesten, sondern den längsten Weg: Für alle Punkte auf der

gestrichelten Ellipse ist die Summe der Abstände zu ihren Brennpunkten A und B gleich
gross, für alle Punkte innerhalb der Ellipse, insbesondere die Punkte auf s, jedoch kleiner!

Leider erklärt das Heronsche Prinzip nicht die Lichtbrechung. An dieser Stelle muss also

Einsteins erste Triebfeder für die Evolution von Theorien zum tragen kommen.
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A M B
Abbildung 2: Reflexion im Hohlspiegel

1.2 Lichtbrechung

Ptolemäus fertigte für das fünfte Buch seiner Optik die erste Tabelle mit Einfalls- und
Ausfallswinkel zur Brechung von Licht beim Übergang von Luft in Wasser an. Er zog
daraus den leider falschen Schluss, Einfalls- und Ausfallswinkel seien proportional. Kepler
ergänzte diese Tabelle um die Grenzwinkel für die Totalreflexion für verschiedene Medien.
Auch seine Formel sollte sich als falsch herausstellen. Schon vorher befasste sich der
bereits angesprochene Arabische Gelehrte Alhazen in seinem Hauptwerk Grosse Optik mit
der Lichtbrechung. Er stellte darin als erster die Hypothese auf, Licht besitze eine
endliche Ausbreitungsgeschwindigkeit. Diese Hypothese ist zentral um vom Heronschen zum
Fermatschen Prinzip zu gelangen.

Der dänische Astronom Ole Romer mass 1667 die Lichtgeschwindigkeit anhand von
Beobachtungen des innersten Jupitermondes Io. Galilei hatte dessen Umlaufzeit mit 42^
Stunden angegeben. Diese 'astronomische Uhr' wurde von Seefahrern für die Bestimmung
des Längengrades benützt wobei sich aber Abweichungen bis zu 300 Seemeilen ergaben.
Giovanni Domenico Cassini erstellte daher eine Tafel mit den Verfinsterungszeiten von Io.
Als Römer diese Werte kontrollierte stellte er Differenzen von bis zu 1000 Sekunden fest.

Dies erklärte er sich so: Sind Jupiter und Erde in ihren entferntesten Positionen zueinander,

so muss das Licht den doppelten Erdbahnradius mehr zurücklegen, als in der nächsten
Position. Daher braucht das Licht mehr Zeit, um die Information des auf- oder untergehenden

Io zur Erde zu übermitteln. Daraus konnte R0mer leicht die Lichtgeschwindigkeit
berechnen.

1621 fixierte Willebrord Snel(l) van Rojen, genannt Snellius, experimentell das nach ihm
benannte Brechungsgesetz2:

sinei
konstant

sm£2

(siehe Abbildung 3). Snel versäumte es allerdings, seine Entdeckung zu publizieren. Es gibt
Hinweise, dass Thomas Harriot3 (1560-1621) das Gesetz schon vor Snel kannte. Es wies

experimentell nach, dass die Brechung von der Farbe des Lichtes, also dessen Wellenlänge,
abhängt.

Das Brechungsgesetz wurde erstmals von Descartes (1596-1650) in seinem 1637 erschienenen

Werk Dwptrik publiziert, nämlich im dritten Anhang seines vorerst annonym her-

2Die Schreibweise ist nicht ganz einheitlich. Das zweite T ist nach heutigem Kenntnisstand eine Folge
einer Delateinisierung späterer Generationen.

3Harriot führte übrigens die Symbole '<' und '>' in der Mathematik ein.
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Abbildung 3: Das Brechungsgesetz von Snellius. Zwei Medien unterschiedlicher

optischer Dichte grenzen entlang einer Ebene e (hier proijzierend dargestellt)

aneinander. Der Lichtstrahl von A nach B ist gebrochen. Geometrisch

kann ^j1 als Längenverhältnis der gestrichelten Linien gedeutet werden.

ausgegebenen Discours de la méthode. Ähnlich wie eine Druckwelle sollten sich dabei die
'Lichtteilchen' in einem optisch dichteren Medium schneller bewegen als in einem weniger
dichten.

Newton schloss sich dieser Ansicht an. Er gab in seiner Abhandlung über die Optik eine

Herleitung der Snelschen Formel, indem er argumentierte, dass sich beim Übergang in
das optisch dichtere Medium aufgrund von kurzreichweitigen Anziehungskräften zwischen

Atomen und Lichtteilchen die Transversalkomponente der Geschwindigkeit dieser Teilchen
erhöht.

1.3 Das Fermatsche Prinzip

1661 formulierte Pierre de Fermât sein Prinzip, wonach Licht stets einen Weg wählt, für
den es ein Minimum an Zeit benötigt, den sogenannten optisch kürzesten Weg.
Insbesondere ergab sich damit aus dem Brechungsgesetz, dass sich Licht in einem dichteren
Material langsamer fortbewegt als in einem dünneren, und dies stand im Widerspruch zu
Descartes und Newton.

1678 legte Huygens (1629-1695) seine Abhandlung Traité de la lumière der Pariser Akademie

vor und begründete damit die Äther-Wellentheorie des Lichtes. In Übereinstimmung
mit Fermats Prinzip sollte Licht in optisch dichteren Medien langsamer sein. Huygens
Prinzip der "Elementarwellen" erklärte zwanglos das Brechungsgesetz und identifizierte,
ebenso wie Fermats Prinzip, die Snelsche Konstante als das Verhältnis der Lichtgeschwindigkeiten

in den beiden Medien.

Genaue Messungen der Lichtgeschwindigkeit in Medien von Leon Foucault (1862) führten
die Entscheidung zugunsten der Theorie von Huygens herbei. Hierzu trugen auch die In-
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terferenzexperimente von Thomas Young und Jean Fresnel (1800 und 1815) bei. In seinem

Hauptwerk Treatise on Electricity and Magnetism (1873) ersetzte James Clerk Maxwell
(1831-1879) das Äthermodell durch elektromagnetische Wellen, welche eine Folgerung
aus seinen vier Grundgleichungen der Elektrodynamik waren. Sieben Jahre später
gelang Heinrich Hertz der Nachweis diese Wellen. Die berühmten Interferenzexperimente
von Michelson und Morley (1887) bedeutete für die Äthertheorie das endgültige Aus. Im
zwanzigsten Jahrhundert versöhnte Einstein, wie wir wissen, die Wellen- und die
Teilchentheorie des Lichts.

Wir wollen nun das Brechungsgesetz mit Hilfe des Fermatschen Prinzip verstehen.
Tatsächlich kann man es aus Abbildung 4 direkt ablesen. Wir betrachten dazu eine kleine
Verschiebung des Punktes X und die beiden dabei auftretenden grauen Dreiecke (rechts
vergrössert dargestellt). Im oberen Medium sei die des Lichtgeschwindigkeit v\, im unteren

5 sin £t

X eX e

ösin

Abbildung 4: Das Brechungsgesetz von Snellius

i72. Hat der Pfad von A über X nach B optisch minimale Länge, so sind benachbarte Wege,
bis auf einen Fehler zweiter Ordnung, optisch gleich lang. Die Zeit At '' die man im
oberen Medium durch Verschiebung des Brechungspunktes X nach links gewinnt, verliert
man im unteren Medium durch die Zeiteinbusse At isinei. Gleichsetzen ergibt sofort
das Brechungsgesetz!

Heute leitet man das Brechungsgesetz entweder ganz innerhalb der elektromagnetischen
Wellentheorie her, womit auch Polarisationseffekte, wie der Brewster-Winkel, greifbar
werden, oder man arbeitet mit der strahlenoptischen Näherung: Wir betrachten dazu
eine skalare Wellenoptik, in der monochromatisches Licht der Kreisfrequenz ui beschrieben
wird durch die Schwingungsgleichung

(A + k2)u{x) 0.

Dabei ist k(x) im wesentlichen die inverse Lichtgeschwindigkeit. Zerlegt man u in relie
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Amplitude und Phase u(x) A(i)e's(l) so wird daraus

AA-A(grnAS)2 + k2A 0

4AS + 2(gradA,gradS) 0

Vernachlässigt man |^| gegen die anderen Terme in der ersten Gleichung oben, wird
diese zu einer Gleichung für S allein:

(grad S)2 k2 (Eikonalgleichung)

Die Lichtstrahlen sind dann definiert als Orthogonaltrajektorien der Flächen konstanter

Phase: Eine Lösung S(x) beschreibt somit ein Bündel von Lichtstrahlen durch die

Differentialgleichung erster Ordnung

k— — grad 5.
073

Daraus folgt mit einer kurzen Zwischenrechnung die Strahlengleichung

^(fcg)=grad*.

Für ein eben geschichtetes Medium k k(z) ist das just das Gesetz von Snel

d
— (fcsina) 0,
ds

wobei a der Winkel zur z-Achse ist. Die Strahlengleichung ist nun nichts anderes als die

Euler-Lagrange-Gleichung zum Funktional

T= I kdss>

welches (bis auf einen Faktor) die Durchlaufungszeit darstellt. Damit ist (innerhalb dieses

Formalismus) das Fermatsche Prinzip nachgewiesen.

1.4 "... ein gewaltiger Jäger vor dem Herrn!"3

Überraschenderweise kannte jemand das Brechungsgestz bereits lange vor dessen

Entdeckung, nähmlich ein südostasiatischer Brackwasserbewohner. Es ist ein Vertreter der

aus sechs Unterarten bestehenden Familie der Schützenfische (siehe Abbildung 5). Diese

Fische besitzen die Fähigkeit, Beuteinsekten ausserhalb des Wassers mit einem gezielten

Wasserstrahl zu treffen. Bei diesem Kunststück muss der Schützenfisch natürlich die

Brechung des Lichtes an der Wasseroberfläche kompensieren (siehe Abbildung 6).

2 Der grosse Weltenplan

Kommen wir jetzt zu Pierre Louis Moreau de Maupertuis, Philosoph, Biologe, Geograph
und Mathematiker (1698-1759). Maupertuis leitete 1736/37 die Lapplandexpedition der

3Genesis 10, 8-12, über Nimrod
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Abbildung 5: Toxotes jaculator

»

Abbildung 6: Kompensation der Lichtbrechung

Académie des sciences, deren Mitglied er seit 1723 war. Diese Expedition wurde
ausgeschickt, um Gradmessungen längs eines Erdmeridians vorzunehmen (siehe Abbildung 7).
Damit sollte der Nachweis der von Newton vorausgesagten Abplattung der Erde an den
Polen erbracht werden. Das Unternehmen gelang. Damit war die Theorie von Descartes,
welche auch von Cassini vertreten wurde und die besagte die Erde sei in Richtung der
Pole auseinandergezogen, widerlegt4. Maupertuis formulierte 1744 sein Prinzip der kleinsten

Wirkung, das er als eine Art Weltformel ansah: Es besagt, dass die Natur stets mit
grösstmöglicher Sparsamkeit vorgeht.

Um dieses Prinzip anwenden zu können war eine neue mathematische Disziplin nötig,
die Variationsrechung. Sie befasst sich mit der Frage, wie sich Optimierungsprobleme
mathematisch fassen und lösen lassen. Dieser Frage wollen wir im Folgenden nachgehen.

2.1 Das Problem der Dido

Eine bereits in der Antike bekannte Maximumseigenschaft des Kreises ist mit dem Namen
der Königin Dido verbunden, deren Lebensgeschichte Vergil in seine Aeneis eingeflochten
hat (siehe Abbildung 8). Dido, eine phönizische Prinzessin aus Tyros, war zu Schiff aus
ihrer Heimat entflohen, nachdem ihr Bruder, König Pygmalion, ihren Ehemann ermordet

hatte. Als Dido 900 vor Christus die afrikanische Küste an der Stelle des späteren
Karthago erreichte, wollte sie König Jarbas von Numidien dort Land abkaufen. Es wurde

Dieser grosse Erfolg trug Maupertuis beträchtlichen Ruhm ein, den noch zwei junge Lappländerinnen
vermehrten, die er von seiner Reise nach Paris mitgebracht hatte und die dort ähnlich bestaunt wurden,
wie später die Feuerländer, die Darwin von seiner Reise um die Welt nach London brachte.
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Abbildung 7: Maupertuis und sein Freund und Weggefährte Charles Marie
de La Condamine auf einer fr>ajizösischen Sondermarke. Während Maupertuis
am Polarkreis unterwegs war, leitetet La Condamine 1745 die entsprechende

Expedition nach Südamerika für die Messungen am Äquator.

ausgehandelt, dass Dido nicht mehr Land bekommen sollte, als sie mit einem Ochsenfell

umspannen konnte. Dido machte aus diesen Vetragsbedingungen das beste, indem sie die
Ochsenhaut in dünne Streifen schneiden liess, die zusammengeknüpft eine geschlossene
Schnur ergaben. Danach breitetet Dido die Schnur auf dem Boden so aus, dass sie eine

möglichst grosse Fläche umschloss. Sie müsste also das isoperimetrische Problem lösen,
diejenige geschlossene Kurve gegebener Länge mit grösstmöglichem Flächeninhalt zu
finden. Dido dürfte die Lösung gefunden haben: es ist ein Kreis. Natürlich gab es für die

Städtebauer noch andere Gründe, Städte kreisrund zu bauen, so etwa um eine möglichst
kurze Verteidigungslinie zu haben. Abbildung 9 zeigt eine Karte von Paris von François
de Belieferest, ein Jahr nach dem Regierungsantritt von Heinrich III, dem letzten Valois.
Ein näherliegendes Beispiel ist das alte Zürich (siehe Abbildung 10), wo aus militärischen
Erwägungen die runde Stadtform zugunsten von zackigen Schanzen angepasst wurde.
Strapaziert man das Beispiel ein bisschen, sieht hier ausserdem, dass der 'freie Rand' am
See senkrecht ans Ufer stösst. Vor der gleichen Aufgabe wie Dido stand der Bauer Pachom
in Tolstois Erzählung Wieviel Erde braucht der Mensch?, als der Baschkirenälteste ihm
zurief: "Soviel Land, wie Du an einem Tag umschreiten kannst, ist Dein".

Unter der Annahme, das isoperimetrische Problem besitze eine Lösung zeigte Jakob Steiner

1836 mit Hilfe einer eleganten Überlegung dass der Kreis optimal ist: Zunächst muss
die Lösungskurve k konvex sein, da sonst bei gleichem Umfang eine Kurve mit grösserem
Inhalt existiert. In der Tat, ist k nicht konvex, so findet man zwei Punkte P und Q auf k

deren Verbindungsstrecke auf s nicht zur von k umschlossenen Fläche gehört (siehe Abbildung

11). Durch Spiegelung eines Teils von k an s erhält man eine Kurve gleicher Länge,
welche eine grössere Fläche umschliesst. In der Abbildung 11 ist der Flächengewinn grau
markiert. Auf der nun als konvex erkannten Kurve markiert man nun zwei Punkte R und
S welche die Kurve in zwei Teile gleicher Länge zerlegen. Die Verbindungsstrecke l von
R und S zerlegt dann das Innere in zwei Flächenstücke F und F' (siehe Abbildung 12).
Steiner argumentierte nun, dass F und F' die gleiche Fläche haben müssen. Andernfalls
könnte man das grössere Stück, sagen wir F an l spiegeln und auf diese Weise eine Kurve
gleicher Gesamtlänge, jedoch mit grösserem Infalt (nämlich zweimal die Fläche von F)
erhalten. Somit müssen also die Flächen von F und F' gleich gross sein und es genügt im
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Abbildung 8: Aeneas stellt Dido seinen Sohn Ascanius vor, der allerdings
von Juno und Venus heimlich durch Cupido ersetzt worden war. Gemälde

von Tiepolo (1757).

Folgenden, die eine Hälfte der Kurve zu betrachten, von der nachzuweisen ist, dass sie ein
Halbkreis ist.

Betrachten wir nun in Abbildung 13 ein Dreieck über RS mit dritter Ecke T auf der Kurve,
und denken uns in T ein bewegliches Gelenk. Bewegen wir dieses Gelenk so behalten die

grau markierten 'Möndchen' ihren Flächeninhalt, während sich der Flächeninhalt des

Dreickes RST ändert. Offenbar ist dieser Flächeninhalt maximal, wenn der Winkel r bei
T ein rechter ist. Nach dem Satz von Apollonius charakterisiert nun aber diese

Winkeleigenschaft gerade den Halbkreis! Karl Weierstrass (1815-1897) wies allerdings darauf
hin, dass Steiners Argumentation bereits die Existenz einer Lösung des isoperimetrischen
Problems voraussetzte, diese also nicht bewies. Die Kritik war berechtigt: Setzt man etwa
die Existenz einer grössten natürlichen Zahl n voraus, so folgt daraus leicht dass re 1 ist
(wäre es eine Zahl echt grösser als eins, so wäre deren Quadrat echt grösser als die Zahl
selber, und letztere könnte also nicht die grösste gewesen sein). Weierstrass entwickelte
daraufhin eine Theorie der Extremalfelder, welche die Formulierung von hinreichenden
Bedingungen für die Existenz von Extremen erlaubte. Inbesondere erbrachte er für das

isoperimetrische Problem den Existenznachweis.

2.2 Das Brachystochronenproblem

1696 stellte Johann Bernoulli folgende Aufgabe in "Acta Eruditorum" die ursprünglich
von Galilei stammte [3]:
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Abbildung 9: Paris 1575

Gegeben sind zwei Punkte A und B im Raum. Ein Massenpunkt gleitet reibungsfrei unter
dem Einfluss der Schwerkraft auf einer Rutschbahn von A nach B. Welche Form muss

man der Rutschbahn geben, damit der Massenpunkt ein Minimum an Zeit braucht, wenn
er in A aus der Ruheposition losgelassen wird? Die Lösungskurve (die sogenannte Bra-
chystochrone) ist nicht etwa die Verbindungsgerade der beiden Punkte (siehe Abbildung
14). Neben Johann Bernoulli konnten nur sein Bruder Jacob, Leibniz, und de l'Hôpital die

Aufgabe lösen. Es zeigte sich, dass die gesuchte Kurve eine Zykloide ist, also die Kurve,
die ein fester Punkt auf der Peripherie eines abrollenden Rades beschreibt.

Beim Brachystochronenproblem handelte es sich um einen neuen Typ von Optimierungsaufgabe,

nämlich um ein Extremalproblem in einem unendlichdimensionalen Funktionenraum.

Die ersten Lösungen des Problems beruhten daher auf speziellen Ideen. So war
etwa Johann Bernoullis Lösungsidee die folgende: Statt einen Massenpunkt von A nach B
gleiten zu Ibissen, schickt man einen Lichtstrahl auf den Weg. Damit die Situation genau
der mechanischen entspricht, wird als Ausbreitungsmedium des Lichtes ein (gedachtes)
Material so gewählt, dass der Brechungsindex in jedem Punkt gerade diejenige
Lichtgeschwindigkeit erzwingt, die der Geschwindigkeit des Massenpunktes entspricht, und die

mit dem Energiesatz leicht berechnet werden kann. Dann muss man nur noch die in
Abschnitt 1.3 hergeleitet Strahlengleichung lösen. Damit gelang es Johann Bernoulli
erstmals Optik und Mechanik zu verbinden - mehr als hundert Jahre bevor dies der irische
Mathematiker William Hamilton (1805-1865) systematisch tat.

Im Wettstreit den Bernoullis Aufgabe ausgelöst hatte, ging unter anderem eine anonyme
Lösung ein, die durch besondere Brillianz bestach. Als Bernoulli diese Lösung sah, tat
er den Ausspruch "Man erkennt den Löwen an seinen Krallen" - die anonyme Lösung
stammte von Newton.

Euler löste das Brachystochronenproblem später indem er es mit Hilfe seiner Variationsmethode

auf eine Differentialgleichung zurückführte. Die Bezeichnung "Variation" geht
auf Lagrange zurück, der mit seiner Methode der Multiplikatoren auch Extremalpro-
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Abbildung 11: Steiners Beweis I

blême mit Nebenbedingungen lösen konnte. Die Gleichung wird deshalb heute Euler-
Lagrange-Gleichung, oder in höheren Dimensionen Ostrogradski-Gleichung, des Funktionais

genannt. Damit war ein allgemeines Werkzeug gefunden um eine grosse Klasse von
Funktionalen zu extremieren. Vorerst blieb diese Technik allerdings auf einer formalen
Stufe.

2.3 Das Prinzip der kleinsten Wirkung

Kommen wir nun zurück zu Maupertuis und seinem allumfassenden Weltenplan, dem

Prinzip der kleinsten Wirkung. Es besagt: Wenn die Natur sich ändert, so ist die für die

Änderung erforderliche Wirkung5 kleinstmöglich.

Was ist diese Wirkung, mit der die Natur so sparsam wirtschaftet? Die Tätigkeit eines
Postboten mag dies erklären: Je weiter und je schneller er läuft, desto grösser ist seine

In der deutschsprachigen Literatur hat sich für das von Maupertuis benutzte französische Wort action

unglücklicherweise die Übersetzung Wirkung durchgesetzt, die eigentlich etwas anderes bedeutet: eine
Aktion hat eine Wirkung, ist aber keine Wirkung. Maupertuis Prinzip könnte man aus dem französischen
vielleicht so übersetzen: "Wenn die Natur sich ändert, so ist die für die Änderung erforderliche .Aktions¬

menge (oder Aufwand an Handlung) kleinstmöglich".
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Abbildung 12: Steiners Beweis II
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Abbildung 13: Steiners Beweis III

Wirkung. Vernünftigerweise sollte auch die Tasche, die der Postbote trägt, berücksichtigt
werden. Demnach ergibt sich:

Wirkung Masse x Entfernung x Geschwindigkeit

Folglich hätte die Wirkung dieselbe physikalische Dimension, wie die von Leibniz
definierte kinetische Energie multipliziert mit der Zeit. Tatsächlich findet sich bereits in den

Schriften von Leibniz diese Definition von Wirkung. Maupertuis fand sich daher rasch

in einem Urheberschaftsstreit mit dem Leibnizianer Samuel König, der die Formulierung
des Prinzips zu Recht als unvollständig kritisierte und behauptete, dass sich eine richtige
Fassung in einem Leibnizbrief von 1707 finde. Zum andern erschien 1753 die Maupertui-
sana eine Sammlung von Entgegnungen, darunter Voltaires Spottgeschichte Diatribe du

Docteur Akakia, übersetzt ins Deutsche übrigens von Gottsched, worauf Voltaire durch
jFriedrich II aus Preussen ausgewiesen wurde. Maupertuis war ja seit 1746 Präsident der
Preussischen Akademie der Wissenschaft in Berlin.

Schon 1743, also vor Maupertuis, hatte Euler bewiesen, dass das Prinzip der kleinsten

Wirkung geeignet war, die Bewegung eines Massepunktes in einem konservativen Kraftfeld
zu beschreiben. Er war überzeugt, dass hinter jedem Phänomen unseres Universums eine
Maximum- oder Minimumregel stecken müsse: "Da sämtliche Verrichtungen der Natur
gewisse Gesetze des Maximums oder Minimums befolgen, ist es nicht zweifelhaft, dass

auch bei den Bahnen, welche die Körper unter Einwirkung bestimmter Kräfte beschreiben,
irgendeine Extremumseigenschaft vorhanden sein muss". Maupertuis beanspruchte die
Priorität der Theorie jedoch für sich. Immerhin verweist er im erweiterten Vorwort seiner
Gßvres von 1756 für Begründung und Anwendungen des Prinzips auf Euler. Letzterer
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Abbildung 14: Brachystochrone: Der optimale Weg erspart in diesem

Beispiel rund 42% Zeit gegenüber dem geometrisch kürzesten Weg.

bestand überraschenderweise nicht auf seiner Entdeckung. Möglicherweise wollte er als

Direktor der mathematisch-physikalischen Klasse der Preussischen Akademie mit seiner

bescheidenen Haltung seine Loyalität gegenüber seinem Präsidenten Maupertuis unter
Beweis stellen. Fest steht, dass die Arbeit Maupertuis bedenkliche Schwächen aufwies, wie
wir am Beispiel der Reflexion im Hohlspiegel gesehen haben. Euler formulierte das Prinzip
passender, indem er den Begriff der stationären Wirkung prägte. Der Urheberschaftsstreit
zwischen Maupertuis und Euler ging unter dem Begriff 'Berliner Affäre' in die Geschichte
ein.

Maupertuis' Gedanken waren mitgeprägt von der Philosophie von Leibniz. Dessen philo-
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GOTTFRIED WILHELM LEIBNIZ 1646-171Ó DEUTSCHLAND

Abbildung 15: Gottfried Wilhelm von Leibniz auf der von der Deutschen

Bundespost aus Anlass seines 350. Geburtstages herausgegebenen Briefmarke

sophische Hauptgedanken finden sich in seinen Essais de Théodicée sur la bonté de Dieu,
la liberté de l'homme et l'origine du mal. Darin geht Leibniz vom scheinbaren Widerspruch
zwischen der Annahme eines allmächtigen, gütigen und allwissenden Schöpfergottes und
der Unvollkommenheit der Welt aus. Zum Beweis für das Dasein Gottes zog Leibniz den

ontologischen Schluss von Anselm von Canterbury heran: Der Begriff eines vollkommenen
Wesens impliziert dessen Existenz, weil sonst ein noch vollkommeneres (weil existentes)
Wesen denkbar sei. Gaunilo von Marmoutiers wies allerdings darauf hin, dass man mit
demselben Argument auch die Existenz einer besten aller Inseln nachweisen könnte (die
"verlorenen Inseln", wie er sie nannte).

Leibniz 'bewies' (in diesem Punkt ganz Mathematiker) auch die Eindeutigkeit Gottes,
indem er Argumente des Xenophanes benutzte.

Gott sei also das Wesen, das alle Eigenschaften im höchsten Grade in sich vereinige, aller-
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dings nur insofern diese Eigenschaften miteinander verträglich seien. Diese Einschränkung
sei nötig, denn es gebe Eigenschaften wie Allmacht und Güte, die nicht im höchsten Grade
nebeneinander bestehen könnten. Gottes Güte beschränke seine Allmacht, denn sie hindere

ihn daran, Böses zu tun, was ihm wegen seiner Allmacht durchaus möglich sei. Daraus
folge, dass Gott zwar alle möglichen Welten gedacht, aber nur die beste aller möglichen
Welten gewollt und demnach auch geschaffen habe.

Leibniz' Gedanken blieben unter seinen Zeitgenossen nicht unwidersprochen. Die schärfste

Antwort kam von Voltaire: Unter dem Titel Candide, ou l'Optimisme schrieb er unter dem

Pseudonym 'Doktor Ralph' 1758 eine boshafte Satire, die in zwanzig Jahren in 42 Auflagen
erschienen, obwohl sie ab 1762 auf den päpstlichen Index stand.

2.4 Minimalprinzipien in der theoretischen Physik

Übersetzt man das Prinzip der kleinsten Wirkung direkt in eine Formel, so sagt es man
habe das Zeitintegral über die kinetische Energie zu minimieren, bei festgehaltener
Gesamtenergie (und bei freier Anfangs- und Endzeit). Wie wir gesehen haben, besteht eine

erste Verbesserung darin, nicht nach Mimima, sondern nach stationären Punkten suchen.

Aufbauend auf Eulers Arbeiten formulierten Lagrange, Gauss, Hamilton und Jacobi
flexiblere Variationsprinzipien für die Mechanik: Wird ein mechanisches System durch
Lagekoordinaten q beschreiben (q kann also beispielsweise der Auslenkunswinkel bei einem
Pendel sein), so definiert man als Lagrange-Funktion

L(q,q,t) T(q,q,t)-V(q,t)

als Differenz von kinetischer und potentieller Energie des Systems. Das Prinzip von
Hamilton besagt dann, dass entlang der mechanischen Bahn die Variation 6 fA Ldt 0,

bei festen Endpunkten A, B in der (q, t)-Ebene, verschwindet, die zugehörigen Euler-
Lagrange-Gleichungen

dL d dL
dqa dt dqQ

sind also gerade die Bewegungsgleichungen des Systems.

Die geometrische Form der physikalichen Bahn wird durch folgende Variante beschrieben:
Die Bahnkurve im Konfigurationsraum zwischen den Punkten P und Q ist ein stationärer
Punkt des Integrals

i-Q
6 / y/E - V(q)ds 0 (*)

falls E der Wert der (erhaltenen) Gesamtenergie ist (Anfangs- und Endzeit variieren aber)
bezüglich der Metrik

ds2 ^gaß(q)dqadqß
aß

im Konfigurationsraum die via T(q,q) | J2aß 9aß{Q)4aQß gegeben ist.

Betrachtet man einen einzelnen Massenpunkt, so erhält man (bis auf einen Faktor), die
gewöhnliche Euklidische Metrik. Fassen wir dann \J'E — V(x) in (*) als Brechungsindex
k(x) auf, so erhalten wir wieder das Fermatsche Prinzip für Lichtstrahlen.
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Mit Hilfe der Hamilton-Jacobi-Gleichungen lässt sich ganz allgemein eine formale
Verbindung von der Mechanik zur Strahlenoptik herstellen. Da die Strahlenoptik (wie wir
gesehen haben) eine Näherung der Wellenoptik darstellt, kann man sich fragen, ob im
gleichen Sinne die Mechanik eine Näherung einer allgemeineren Mechanik ist. In der Tat
"löste" Schrödinger die symbolische Gelchung

Wellenoptik Wellenmechanik

Strahlenoptik klassische Mechanik

und gelangte so zu seiner Quantentheorie.

2.5 Was die Bienen wissen, und was sie nicht wissen

Bereits Pappus bemerkte, dass Bienenwaben ein interessantes Beispiel für die Ökonomie
der Mittel in der Natur sind. Bienenwaben sind, von der Front betrachtet, als Sechseck-

parkettierung der Ebene angeordnet (siehe Abbildung 16 links). Diese hat für sich bereits
gewisse Optimalitätseigenschaften.

Beim Bienenstock sind nun zwei solche Schichten von Waben gewissermassen Rücken an
Rücken aneinandergebaut (siehe Abbildung 16 rechts). Es fragt sich nun, wie die zwei
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Abbildung 16: Bienenwaben

Lagen gegenseitig angeordnet sind. Eine einzelne Zelle sieht etwa aus, wie in Abbildung
17 dargestellt. Jedes Sechseckprisma wird oben zeltartig von drei Romben abgeschlossen.

Dieser Bau ermöglicht, dass die zwei Schichten, geeignet gegeneinander verschoben,
lückenlos aneinanderpassen (siehe Abbildung 18). Das Verhältnis von Volumen zu
Oberfläche, also der Materialverbrauch beim Bau der Zelle, soll nun optimiert werden. Einigt
man sich zuerst auf den beschriebenen Bauplan, so ist die einzige Variable die Neigung
des Zeltdaches. Die Lösung ergibt, dass die Diagonalen der Romben das Verhälnis \/2
aufweisen. Dies entspricht in der Tat dem Bauplan im Bienenstock. Erstaunlicherweise
beschrieb Fejes Töth 1964 eine Wabenkonstrucktion, die optimaler ist als der Bauplan der
Bienen (siehe Abbildung 19). Die Ersparnis der Tóthschen Zelle macht weniger als 0.35%
des Flächeninhalts der Öffnung aus. Dass die Bienen nicht das Optimum gefunden haben,
lässt verschiedene Schlüsse zu: Entweder sind die Bienen schlecht im Rechnen, oder die
Bienen haben nach anderen Kriterien optimiert, oder die Bienen sind zwar fieissig aber
nicht unbedingt sparsam.
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Abbildung 17: Einzelne Zelle (Öffnung von unten)

IUI"
TTTT*

Abbildung 18: Lückenlose Schichtung der Zellen

2.6 Seifenhäute

Seifenhäute werden in der Mathematik seit über 200 Jahren untersucht. Für Seifenhäute
führt man eine Oberflächenenergie ein, welche proportional zur Fläche ist. Da nach dem

Prinzip von Maupertuis die Natur für eine Seifenhaut immer eine Realisierung minimaler
Energie wählt, sind Seifenhäute Minimalflächen. So fand 1762 Lagrange die Gleichung
von Flächen (lokal) kleinsten Inhalts. Meusnier erkannte 1776 die geometrische Deutung
der von Lagrange angegebenen Gleichung, nämlich dass sich Minimalflächen durch ve-
schwinden der mittleren Krümmung auszeichnen6. 1873 beschrieb der Physiker Plateau
seine umfangreichen Experimente mit Seifenhäuten [10]. Er gelangte insbesondere zur
Erkenntnis (etwas salop formuliert) : "In jede geschlossene Raumkurve lässt sich eine Mi-

6Herrscht auf den zwei Seiten einer Seifenhaut ein unterschiedlicher Luftdruck, so bildet sich eine
Fläche aus, bei welcher die mittlere Krümmung proportional zur Druckdifferenz, also normalerweise
konstant, ist. Daher sind Seifenblasen rund. Es gibt jedoch auch eine geschlossene Fläche vom Geschlecht
eins, den Wente-Torus, mit konstanter mittlerer Krümmung! Die Bedingung der konstanten mittleren
Krümmung erhält man auch bei Minimierung des Flächenfunktionals bei gegebenem eingeschlossenem
Volumen als Nebenbedingung.
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Abbildung 19: Tóths Zelle

nimalfläche einspannen". Plateau betrachtete diese Tatsache als durch seine Experimente
hinreichend bewiesen. Natürlich genügte eine derartige Argumentation, insbesondere

nach der von Weierstrass 1870 vorgebrachten Kritik an den Grundlagen des Dirichletschen

Prinzips nicht den Ansprüchen der Mathematik. Weierstrass gelangte bei seinen eigenen

Untersuchungen zu seiner Darstellungsformel für Minimalflächen, ein Beweis für die Pla-
teausche Vermutung Hess jedoch bis 1930/31 auf sich warten. Dann nämlich bewiesen

Douglas und Rado unabhängig voneinender einen entsprechenden Satz ([2], [11]):

Satz (Dougl;as, Rado) Jede hinreichend glatte Jordan-Kurve m IR3 berandet mindestens

eine parametrische Minimalfläche vom Typ der Kreisscheibe, welche das Dirichlet-Integral
unter allen derartigen Flächen minimiert.

Die von Douglas und Rado gefundene Minimalfläche ist allerdings nur eine "schwache

Lösung". Die Regularität der Parameterdarstellung wurde erst 1969 von Hildebrand [4]

und Nitsche [9] nachgewiesen. Tomi-Tromba [12], Almgren-Simon [1] und Meeks-Yau [7]

zeigten zudem, dass die Douglas-Rado Lösung eingebettet ist, falls die gegebene Randkurve

"extrem" ist, d. h. auf dem Rand eines konvexen Körpers liegt. Eindeutigkeit der Lösung

gilt unter anderem, falls eine überschneidungsfreie Projektion der Randkurve existiert. Es

ist nicht bekannt, ob es eine geschlossene Kurve gibt, die unendlich viele Minimalflächen
vom Typ der Kreisscheibe berandet. Auch weiss man für keine einzige Kurve, die mehr
als eine Minimalfläche berandet, wieviele sie tatsächlich berandet.

Minimalflächen finden in der Leichtbautechnik gelegentlich Anwendung, so beim
Olympiastadion von 1972 in München von Frei Otto (siehe Abbildung 20). Durch Weierstrass'

Kritik geriet die Variationsrechnung gegen Ende des 19. Jahrhunderts in eine Grund-
lagenkriese. Dank dem Einsatz von Weierstrass selber [14], sowie von Arzéla, jPréchet,

Hilbert und Lebesgue wurden dann die eigentlichen Grundlagen der Variationsrechnung
geschaffen und so erhob sie sich nach bewältigter Krise wie Phönix aus der Asche. Im 20.

Jahrhundert setzte für die Variationsrechnung eine rasante Entwicklung ein, die weiter
anhält.
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Abbildung 20: Das Olympiastadion in München, aufgenommen vom Fernsehturm.

3 Youngsche Masse

Betrachten wir ein Funktional, welches auf Bolza zurückgeht:

/(«):= / (4>(u'(x)) + u2(x))dx
io

wobei 4> die nicht-konvexe Funktion <j>(r) := (£2 — l)2 ist. Wir möchten nun / (in einem

geeigneten Funktionenraum) minimieren unter der Randbedingung

u(0) u(l) 0

Dazu bemerken wir, dass inf I(u) 0, denn I(u) > 0 und I(un) —» 0 für die Funktionenfolge

1 1 \kx\u,(x):=--|x---—|
Nehmen wir an, es gäbe eine Funktion u derart, dass I(u) 0. Dann müsste u identisch

null sein, damit der zweite Term des Funktionais verschwindet. Dann wäre aber
u' 0, und somit I(u) — 1, was im Widerspruch zur Annahme steht. Das Funktional
nimmt also das Minimum nicht an. Beispiele wie dieses kommen z. B. in den
Materialwissenschaften vor (siehe Abbildung 21). Man kann sich auch vorstellen, man möchte in
einer Flussströmung gegen den Wind mit einem Segelschiff kreuzen (siehe Abbildung 22):
Dabei möchte man einerseits immer den optimalen Winkel zum Wind einhalten,
andererseits möglichst in der Flussmitte bleiben, um die dort höhere Strömungsgeschwidigkeit
auszunutzen. Beide Forderungen lassen sich aber nicht gleichzeitig realisieren. In der Realität

verhindern üblicherweise Energieterme höherer Odnung (die man vernachlässigt hat,
so etwa das Wenden beim Beispiel mit dem Segelschiff) dass die Natur sich ohne Ende
immer weiter verfeinert. Dadurch bleibt man auf einer möglicherweise sehr feinen Skala
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Abbildung 21: Mikrostruktur in einem Cu-Al-Ni Kristall (C. Chu and R. D.

James, Department of Aerospace Engineering and Mechanics, Minneapolis).
Diese filigranen Erscheinungen lassen sich mit ähnlichen Funktionalen, wie
dem gesehenen beschreiben. Eine detaillierte Analyse der Struktur ist möglich
(siehe zum Beispiel die Arbeiten von Stefan Müller et al.).

Strömung

Kurs

Wind

Abbildung 22: Kreuzen

stehen, es entstehen Mikrostrukturen. Kennt man die minimierenden Sequenzen genügend

genau, lassen sich Rückschlüsse auf diese Mikrostruktur ziehen.

Wenn Probleme, wie etwa die Gleichung x2 — 1 in einer zur Verfügung stehenden Menge,

(bei dieser Gleichung, den reellen Zahlen) keine Lösung besitzen, so ist die Mathematik
seit jeher erfinderisch gewesen und sucht die Lösung in einem grösseren Raum, der notfalls
erst konstruiert wird (hier die komplexen Zahlen). Ein ähnliches Program lässt sich für
unser Variationsproblem durchführen. So kann man sich etwa fragen, ob den minimierenden

Sequenzen des Funktionais irgendeine Eigenschaft gemeinsam ist. Diese liesse sich
vielleicht als Lösung in einem verallgemeinerten Sinne interpretieren.

Dies ist in der Tat der Fall. Wir betten dazu / ein in ein verallgemeinertes Variationsproblem:

ï(u,v)= U <j>(\)dvx(\) + u(x)2)dx

wobei v (vi)ig[o,i] ein Youngsches Mass mit

/ / Xduy(X)dy 0
Jo Jm.

und

u(x) I \dvy(\)dy
Jo Jn
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Eine Folge v^ von Funktionen auf [0,1] erzeugt ein Youngsches Mtîss v (vx)x€ß,i] in dem

Sinne, dass für jedes x € [0,1] vx ein Wahrscheinlichkeitsmass auf IR ist, welches, grob
gesprochen, die Verteilung der Werte von Vk nahe bei x beschreibt. Insbesondere ist, für
vk u',

î(u,6u.) I(u).
Dieses verallgemeinerte Problem nimmt djas Minimum an, nämlich für u 0, vx |(5_i +
i5i). Es zeigt sich, dfass die Ableitungen minimierender Folgen alle das Youngsche Mass
ì(<5_)_ + i5i) erzeugen. Dies ist plausibel, denn die Ableitungen einer Minimalfolge müssen

im Schnitt etwa gleich oft die Werte 1 und —1 haben. Insofern ist das Youngsche Mass

der Träger der Information über die minimierenden Folgen des ursprünglichen Problems.

So wie die Zahl i, nachdem sie einmal in der Welt war, nicht nur dazu diente, die
Gleichung x2 — 1 zu lösen, sondern einen Nutzen an zum Teil unerwarteten Stellen mit
sich brachte, so zeigte es sich auch bei den Youngschen Massen, dass sie nicht nur für
Variationsprobleme ein nützliches Werkzeug liefern, sondern dass man mit ihnen ganz
allgemein schwache Limites vom Folgen berechnen kann, auf die eine nichtlineare Funktion
angewendet wurde. So ist eben beispielsweise

sin(ni) -»0 in L2[0,7r]

aber

sin2(nx) ->• - # 02 ini2[0,7r]

Dies macht die Youngschen Masse zu einem hervorragenden Werkzeug in der Theorie
nichtlinearer partieller Differentialgleichungen, aber das ist wieder eine andere Geschichte.
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