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Die beste aller Welten

Norbert HUNGERBUHLER
Département de Mathématiques, Université de Fribourg,
Pérolles, CH-1700 Fribourg

norbert.hungerbuehler @unifr.ch

Warum sind Seifenblasen rund und Planeten nur fast rund? Was weiss der
Schiitzenfisch von der Snelschen Formel? Sind Bienen nicht nur fleissig, sondern
auch sparsam? Wie kommen zwei Lapplidnderinnen 1737 nach Paris? Wieviel Land
ldsst sich mit einer Ochsenhaut umspannen, und was haben Vergil und Tolstoi mit
dieser Frage zu tun? Bewies Anselm von Canterbury mit der Existenz Gottes auch
die Existenz der verlorenen Inseln? Wie segelt man am besten mit der Strémung
gegen den Wind, und warum hat die Antwort etwas mit einem Kupfer-Aluminium-
Nickel-Kristall zu tun?

Optimalitdtsprinzipien regieren nicht nur die unbelebte, sondern auch die belebte
Natur. Der vorliegende Text bietet eine Zeitreise durch die faszinierende Geschich-
te des menschlichen Strebens nach einer Weltformel und nach dem Verstiandnis
des Kosmos.

Von den oben gestellten sieben Fragen werden im Text sechs beantwortet, es wird
jedoch dem Leser iiberlassen herauszufinden welche Frage offen bleibt.

Pourquoi les bulles de savon sont-elles rondes alors que les planétes ne le sont pas
tout a fait ? Que sait le poisson archer de la formule de Snel ? Les abeilles sont-
elles non seulement travailleuses, mais aussi économes 7 Comment vinrent deux
femmes lappones & Paris en 1737 7 Combien de pays se laisse entourer avec une
peau de boeuf et quel lien a cette question avec Virgile et Tolstoi ? En prouvant
I'existence de Dieu, Anselm von Canterbury a-t-il également démontré l’existence
de I'ile perdue ? Comment navigue-t-on au mieux avec le courant contre le vent,
et pourquoi la réponse a-t-elle un lien avec un cristal de cuivre, d’alluminium et
de nickel 7

Les principes d’optimalité ne régissent pas seulement les éléments inertes mais
également la nature animée. Le texte suivant offre un voyage dans la fascinante
histoire de D’effort humain pour trouver une formule universelle et pour com-
prendre le cosmos.

Six des sept questions posées y trouveront réponse. Cependant, le lecteur devra
prendre seul le soin de trouver quelle question reste ouverte.

1 “Mehr Licht!”!

Einstein nannte zwei Griinde fiir die Entstehung von Theorien: Erstens, wenn neue Fakten
nicht mit bestehenden Theorien erkliart werden kénnen, zweitens das Streben nach Ver-
einheitlichung und Vereinfachung. Im Folgenden wird vor allem von der zweitgenannten
Triebfeder fiir die Evolution von Theorien die Rede sein.

!Goethes letzte Worte (nicht belegt)
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1.1 Das Heronsche Prinzip

Ein Beispiel eines Prinzips, welches eine Vielzahl von Phanomenen erklért, ist das Heron-
sche Prinzip. Betrachten wir zuerst die Auffassung von Licht, die Euklid um 320 v. Chr.
in seinem Werk Optik formulierte:

(1) Licht breitet sich geradlinig aus.
(2) Einfalls- und Ausfallsebene stimmen bei der Reflexion {iberein.
(3) Einfalls- und Ausfallswinkel sind gleich gross.

Heron von Alexandria formulierte um 50 n. Chr. in seiner Katoptrik das Prinzip, dass
Licht immer den Weg nimmt, der kiirzer ist als alle andern. Dieses Prinzip vereinheitlicht
nun Euklids Gesetze der Optik im Sinne Einsteins: Denn aus diesem einen Prinzip lassen
sich alle drei Gesetze Euklids ableiten. Betrachten wir etwa (1) und (2) als bewiesen, so
folgt das Reflexionsgesetz (3) aus Abbildung 1: Seien A und B zwei Punkte auf der selben
Seite eines Spiegels s. Dann ist fiir einen beliebigen Punkt X auf s der kiirzeste Weg von
A iiber X nach B gleich der Streckenldnge von A iiber X zum Spiegelpunkt B’. Diese
Strecke ist nach (1) kiirzestmoglich falls X = C auf der Verbindungsgeraden von A und
B’ liegt. Fiir diesen Lichtweg gilt dann in der Tat a = .

A,

X

> B,
Abbildung 1: Das Reflexionsgesetz

Ein Wort zur Vorsicht: Herons Prinzip ist in der urpriinglichen Fassung nicht ganz gliicklich
formuliert wie das berithmte Problem von Alhazen zeigt (siehe Abbildung 2 und [6], [13],
[8]): Hier wéhlt bei der Reflexion eines Strahls von A iiber X nach B in einem Hohlspie-
gel s das Licht nicht den kiirzesten, sondern den lingsten Weg: Fiir alle Punkte auf der
gestrichelten Ellipse ist die Summe der Abstédnde zu ihren Brennpunkten A und B gleich
gross, fiir alle Punkte innerhalb der Ellipse, insbesondere die Punkte auf s, jedoch kleiner!

Leider erklirt das Heronsche Prinzip nicht die Lichtbrechung. An dieser Stelle muss also
Einsteins erste Triebfeder fiir die Evolution von Theorien zum tragen kommen.
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A M B
Abbildung 2: Reflexion im Hohlspiegel

1.2 Lichtbrechung

Ptoleméus fertigte fiir das fiinfte Buch seiner Optik die erste Tabelle mit Einfalls- und
Ausfallswinkel zur Brechung von Licht beim Ubergang von Luft in Wasser an. Er zog
daraus den leider falschen Schluss, Einfalls- und Ausfallswinkel seien proportional. Kepler
ergianzte diese Tabelle um die Grenzwinkel fiir die Totalreflexion fiir verschiedene Medien.
Auch seine Formel sollte sich als falsch herausstellen. Schon vorher befasste sich der be-
reits angesprochene Arabische Gelehrte Alhazen in seinem Hauptwerk Grosse Optik mit
der Lichtbrechung. Er stellte darin als erster die Hypothese auf, Licht besitze eine end-
liche Ausbreitungsgeschwindigkeit. Diese Hypothese ist zentral um vom Heronschen zum
Fermatschen Prinzip zu gelangen.

Der dénische Astronom Ole Rgmer mass 1667 die Lichtgeschwindigkeit anhand von Be-
obachtungen des innersten Jupitermondes lo. Galilei hatte dessen Umlaufzeit mit 42%
Stunden angegeben. Diese ‘astronomische Uhr’ wurde von Seefahrern fiir die Bestimmung
des Langengrades beniitzt wobei sich aber Abweichungen bis zu 300 Seemeilen ergaben.
Giovanni Domenico Cassini erstellte daher eine Tafel mit den Verfinsterungszeiten von Io.
Als Rgmer diese Werte kontrollierte stellte er Differenzen von bis zu 1000 Sekunden fest.
Dies erklarte er sich so: Sind Jupiter und Erde in ihren entferntesten Positionen zueinan-
der, so muss das Licht den doppelten Erdbahnradius mehr zuriicklegen, als in der néchsten
Position. Daher braucht das Licht mehr Zeit, um die Information des auf- oder unterge-
henden Io zur Erde zu iibermitteln. Daraus konnte Rgmer leicht die Lichtgeschwindigkeit
berechnen.

1621 fixierte Willebrord Snel(l) van Rojen, genannt Snellius, experimentell das nach ihm

benannte Brechungsgesetz?:

sin e,
= konstant

sine 2
(siche Abbildung 3). Snel versaumte es allerdings, seine Entdeckung zu publizieren. Es gibt
Hinweise, dass Thomas Harriot® (1560-1621) das Gesetz schon vor Snel kannte. Es wies

experimentell nach, dass die Brechung von der Farbe des Lichtes, also dessen Wellenlédnge,
abhéngt.

Das Brechungsgesetz wurde erstmals von Descartes (1596-1650) in seinem 1637 erschie-
nenen Werk Dioptrik publiziert, namlich im dritten Anhang seines vorerst annonym her-

2Die Schreibweise ist nicht ganz einheitlich. Das zweite ‘1’ ist nach heutigem Kenntnisstand eine Folge
einer Delateinisierung spiterer Generationen.
3Harriot fiihrte iibrigens die Symbole ‘<’ und ‘>’ in der Mathematik ein.
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Abbildung 3: Das Brechungsgesetz von Snellius. Zwei Medien unterschiedli-
cher optischer Dichte grenzen entlang einer Ebene e (hier proijzierend darge-
stellt) aneinander. Der Lichtstrahl von A nach B ist gebrochen. Geometrisch

kann 3-2—?5 als Liangenverhéltnis der gestrichelten Linien gedeutet werden.

ausgegebenen Discours de la méthode. Ahnlich wie eine Druckwelle sollten sich dabei die
‘Lichtteilchen’ in einem optisch dichteren Medium schneller bewegen als in einem weniger
dichten.

Newton schloss sich dieser Ansicht an. Er gab in seiner Abhandlung iiber die Optik eine
Herleitung der Snelschen Formel, indem er argumentierte, dass sich beim Ubergang in
das optisch dichtere Medium aufgrund von kurzreichweitigen Anziehungskraften zwischen
Atomen und Lichtteilchen die Transversalkomponente der Geschwindigkeit dieser Teilchen
erhoht.

1.3 Das Fermatsche Prinzip

1661 formulierte Pierre de Fermat sein Prinzip, wonach Licht stets einen Weg wabhlt, fiir
den es ein Minimum an Zeit benétigt, den sogenannten optisch kiirzesten Weg. Insbe-
sondere ergab sich damit aus dem Brechungsgesetz, dass sich Licht in einem dichteren
Material langsamer fortbewegt als in einem diinneren, und dies stand im Widerspruch zu
Descartes und Newton.

1678 legte Huygens (1629-1695) seine Abhandlung Traité de la lumiére der Pariser Akade-
mie vor und begriindete damit die Ather-Wellentheorie des Lichtes. In Ubereinstimmung
mit Fermats Prinzip sollte Licht in optisch dichteren Medien langsamer sein. Huygens
Prinzip der “Elementarwellen” erkldrte zwanglos das Brechungsgesetz und identifizierte,
ebenso wie Fermats Prinzip, die Snelsche Konstante als das Verhaltnis der Lichtgeschwin-
digkeiten in den beiden Medien.

Genaue Messungen der Lichtgeschwindigkeit in Medien von Leon Foucault (1862) fithrten
die Entscheidung zugunsten der Theorie von Huygens herbei. Hierzu trugen auch die In-
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terferenzexperimente von Thomas Young und Jean Fresnel (1800 und 1815) bei. In seinem
Hauptwerk Treatise on Electricity and Magnetism (1873) ersetzte James Clerk Maxwell
(1831-1879) das Athermodell durch elektromagnetische Wellen, welche eine Folgerung
aus seinen vier Grundgleichungen der Elektrodynamik waren. Sieben Jahre spéater ge-
lang Heinrich Hertz der Nachweis diese Wellen. Die beriihmten Interferenzexperimente
von Michelson und Morley (1887) bedeutete fiir die Athertheorie das endgiiltige Aus. Im
zwanzigsten Jahrhundert versohnte Einstein, wie wir wissen, die Wellen- und die Teil-
chentheorie des Lichts.

Wir wollen nun das Brechungsgesetz mit Hilfe des Fermatschen Prinzip verstehen. Tat-
sachlich kann man es aus Abbildung 4 direkt ablesen. Wir betrachten dazu eine kleine
Verschiebung des Punktes X und die beiden dabei auftretenden grauen Dreiecke (rechts
vergrossert dargestellt). Im oberen Medium sei die des Lichtgeschwindigkeit v;, im unteren

Abbildung 4: Das Brechungsgesetz von Snellius

vo. Hat der Pfad von A {iber X nach B optisch minimale Lénge, so sind benachbarte Wege,
bis auf einen Fehler zweiter Ordnung, optisch gleich lang. Die Zeit At = 5—“”—':51 die man im
oberen Medium durch Verschiebung des Brechungspunktes X nach links gewinnt, verliert
man im unteren Medium durch die Zeiteinbusse At = ‘Si;‘)“éﬂ. Gleichsetzen ergibt sofort
das Brechungsgesetz!

Heute leitet man das Brechungsgesetz entweder ganz innerhalb der elektromagnetischen
Wellentheorie her, womit auch Polarisationseffekte, wie der Brewster-Winkel, greifbar
werden, oder man arbeitet mit der strahlenoptischen Naherung: Wir betrachten dazu
eine skalare Wellenoptik, in der monochromatisches Licht der Kreisfrequenz w beschrieben
wird durch die Schwingungsgleichung

(A + k2)u(z) = 0.

Dabei ist k(z) im wesentlichen die inverse Lichtgeschwindigkeit. Zerlegt man u in relle
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Amplitude und Phase u(z) = A(z)e**® so wird daraus
AA— A(grad S)2 + kA = 0
AAS +2(grad A,grad S) = 0

Vernachlissigt man |22| gegen die anderen Terme in der ersten Gleichung oben, wird
diese zu einer Gleichung fiir S allein:

(grad S)? = k* (Eikonalgleichung)

Die Lichtstrahlen sind dann definiert als Orthogonaltrajektorien der Flachen konstan-
ter Phase: Eine Losung S(x) beschreibt somit ein Biindel von Lichtstrahlen durch die
Differentialgleichung erster Ordnung

!cgE = grad S.
ds

Daraus folgt mit einer kurzen Zwischenrechnung die Strahlengleichung

d , dr
E(k?.'t;) = grad k.

Fiir ein eben geschichtetes Medium k& = k(z) ist das just das Gesetz von Snel

%(k sina) = 0,

wobei a der Winkel zur z-Achse ist. Die Strahlengleichung ist nun nichts anderes als die
Euler-Lagrange-Gleichung zum Funktional

T=/kds,

welches (bis auf einen Faktor) die Durchlaufungszeit darstellt. Damit ist (innerhalb dieses
Formalismus) das Fermatsche Prinzip nachgewiesen.

1.4 “...ein gewaltiger Jiger vor dem Herrn!”?

Uberraschenderweise kannte jemand das Brechungsgestz bereits lange vor dessen Ent-
deckung, ndhmlich ein siidostasiatischer Brackwasserbewohner. Es ist ein Vertreter der
aus sechs Unterarten bestehenden Familie der Schiitzenfische (siehe Abbildung 5). Diese
Fische besitzen die Fahigkeit, Beuteinsekten ausserhalb des Wassers mit einem geziel-
ten Wasserstrahl zu treffen. Bei diesem Kunststiick muss der Schiitzenfisch natiirlich die
Brechung des Lichtes an der Wasseroberfliche kompensieren (siche Abbildung 6).

2 Der grosse Weltenplan

Kommen wir jetzt zu Pierre Louis Moreau de Maupertuis, Philosoph, Biologe, Geograph
und Mathematiker (1698-1759). Maupertuis leitete 1736/37 die Lapplandexpedition der

3Genesis 10, 8-12, iiber Nimrod
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Abbildung 5: Toxotes jaculator

Abbildung 6: Kompensation der Lichtbrechung

Académie des sciences, deren Mitglied er seit 1723 war. Diese Expedition wurde ausge-
schickt, um Gradmessungen langs eines Erdmeridians vorzunehmen (siehe Abbildung 7).
Damit sollte der Nachweis der von Newton vorausgesagten Abplattung der Erde an den
Polen erbracht werden. Das Unternehmen gelang. Damit war die Theorie von Descartes,
welche auch von Cassini vertreten wurde und die besagte die Erde sei in Richtung der
Pole auseinandergezogen, widerlegt*. Maupertuis formulierte 1744 sein Prinzip der klein-
sten Wirkung, das er als eine Art Weltformel ansah: Es besagt, dass die Natur stets mit
grosstmoglicher Sparsamkeit vorgeht.

Um dieses Prinzip anwenden zu koénnen war eine neue mathematische Disziplin nétig,
die Variationsrechung. Sie befasst sich mit der Frage, wie sich Optimierungsprobleme
mathematisch fassen und l6sen lassen. Dieser Frage wollen wir im Folgenden nachgehen.

2.1 Das Problem der Dido

Eine bereits in der Antike bekannte Maximumseigenschaft des Kreises ist mit dem Namen
der Konigin Dido verbunden, deren Lebensgeschichte Vergil in seine Aeneis eingeflochten
hat (sieche Abbildung 8). Dido, eine phéonizische Prinzessin aus Tyros, war zu Schiff aus
ihrer Heimat entflohen, nachdem ihr Bruder, Kénig Pygmalion, ihren Ehemann ermor-
det hatte. Als Dido 900 vor Christus die afrikanische Kiiste an der Stelle des spéteren
Karthago erreichte, wollte sie Konig Jarbas von Numidien dort Land abkaufen. Es wurde

4Dieser grosse Erfolg trug Maupertuis betrachtlichen Ruhm ein, den noch zwei junge Lapplanderinnen
vermehrten, die er von seiner Reise nach Paris mitgebracht hatte und die dort #hnlich bestaunt wurden,
wie spiiter die Feuerldnder, die Darwin von seiner Reise um die Welt nach London brachte.
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Abbildung 7: Maupertuis und sein Freund und Weggefdhrte Charles Marie
de La Condamine auf einer franzdsischen Sondermarke. Wahrend Maupertuis
am Polarkreis unterwegs war, leitetet La Condamine 1745 die entsprechende
Expedition nach Stidamerika fiir die Messungen am Aquator.

ausgehandelt, dass Dido nicht mehr Land bekommen sollte, als sie mit einem Ochsenfell
umspannen konnte. Dido machte aus diesen Vetragsbedingungen das beste, indem sie die
Ochsenhaut in diinne Streifen schneiden liess, die zusammengekniipft eine geschlossene
Schnur ergaben. Danach breitetet Dido die Schnur auf dem Boden so aus, dass sie eine
moglichst grosse Flache umschloss. Sie musste also das isoperimetrische Problem losen,
diejenige geschlossene Kurve gegebener Lénge mit grosstmoglichem Fliacheninhalt zu fin-
den. Dido diirfte die Lésung gefunden haben: es ist ein Kreis. Natiirlich gab es fiir die
Stadtebauer noch andere Griinde, Stadte kreisrund zu bauen, so etwa um eine moglichst
kurze Verteidigungslinie zu haben. Abbildung 9 zeigt eine Karte von Paris von Francois
de Belleforest, ein Jahr nach dem Regierungsantritt von Heinrich III, dem letzten Valois.
Ein néherliegendes Beispiel ist das alte Ziirich (siehe Abbildung 10), wo aus militdrischen
Erwigungen die runde Stadtform zugunsten von zackigen Schanzen angepasst wurde.
Strapaziert man das Beispiel ein bisschen, sieht hier ausserdem, dass der ‘freie Rand’ am
See senkrecht ans Ufer stosst. Vor der gleichen Aufgabe wie Dido stand der Bauer Pachom
in Tolstois Erzahlung Wieviel Erde braucht der Mensch?, als der Baschkirenilteste ihm
zurief: “Soviel Land, wie Du an einem Tag umschreiten kannst, ist Dein”.

Unter der Annahme, das isoperimetrische Problem besitze eine Losung zeigte Jakob Stei-
ner 1836 mit Hilfe einer eleganten Uberlegung dass der Kreis optimal ist: Zunichst muss
die Losungskurve k konvex sein, da sonst bei gleichem Umfang eine Kurve mit grosserem
Inhalt existiert. In der Tat, ist £ nicht konvex, so findet man zwei Punkte P und @ auf k
deren Verbindungsstrecke auf s nicht zur von k& umschlossenen Fldche gehort (siehe Abbil-
dung 11). Durch Spiegelung eines Teils von k an s erhilt man eine Kurve gleicher Linge,
welche eine grossere Flache umschliesst. In der Abbildung 11 ist der Flichengewinn grau
markiert. Auf der nun als konvex erkannten Kurve markiert man nun zwei Punkte R und
S welche die Kurve in zwei Teile gleicher Lange zerlegen. Die Verbindungsstrecke | von
R und S zerlegt dann das Innere in zwei Flichenstiicke F' und F” (siehe Abbildung 12).
Steiner argumentierte nun, dass F' und F’ die gleiche Fliche haben miissen. Andernfalls
konnte man das grossere Stiick, sagen wir F' an [ spiegeln und auf diese Weise eine Kurve
gleicher Gesamtlinge, jedoch mit grosserem Infalt (n&mlich zweimal die Fliche von F)
erhalten. Somit miissen also die Flachen von F und F’ gleich gross sein und es geniigt im
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Abbildung 8: Aeneas stellt Dido seinen Sohn Ascanius vor, der allerdings
von Juno und Venus heimlich durch Cupido ersetzt worden war. Gemaélde
von Tiepolo (1757).

Folgenden, die eine Hélfte der Kurve zu betrachten, von der nachzuweisen ist, dass sie ein
Halbkreis ist.

Betrachten wir nun in Abbildung 13 ein Dreieck iiber RS mit dritter Ecke T auf der Kurve,
und denken uns in T" ein bewegliches Gelenk. Bewegen wir dieses Gelenk so behalten die
grau markierten ‘Mondchen’ ihren Flacheninhalt, wiahrend sich der Fléacheninhalt des
Dreickes RST andert. Offenbar ist dieser Fliacheninhalt maximal, wenn der Winkel 7 bei
T ein rechter ist. Nach dem Satz von Apollonius charakterisiert nun aber diese Winkel-
eigenschaft gerade den Halbkreis! Karl Weierstrass (1815-1897) wies allerdings darauf
hin, dass Steiners Argumentation bereits die Existenz einer Losung des isoperimetrischen
Problems voraussetzte, diese also nicht bewies. Die Kritik war berechtigt: Setzt man etwa
die Existenz einer grossten natiirlichen Zahl n voraus, so folgt daraus leicht dass n = 1 ist
(wiére es eine Zahl echt grosser als eins, so wire deren Quadrat echt grésser als die Zahl
selber, und letztere konnte also nicht die grosste gewesen sein). Weierstrass entwickelte
daraufhin eine Theorie der Extremalfelder, welche die Formulierung von hinreichenden
Bedingungen fiir die Existenz von Extremen erlaubte. Inbesondere erbrachte er fir das
isoperimetrische Problem den Existenznachweis.

2.2 Das Brachystochronenproblem

1696 stellte Johann Bernoulli folgende Aufgabe in “Acta Eruditorum” die urspriinglich
von Galilei stammte [3]:
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Abbildung 9: Paris 1575

Gegeben sind zwei Punkte A und B im Raum. Ein Massenpunkt gleitet reibungsfrei unter
dem Einfluss der Schwerkraft auf einer Rutschbahn von A nach B. Welche Form muss
man der Rutschbahn geben, damit der Massenpunkt ein Minimum an Zeit braucht, wenn
er in A aus der Ruheposition losgelassen wird? Die Losungskurve (die sogenannte Bra-
chystochrone) ist nicht etwa die Verbindungsgerade der beiden Punkte (siehe Abbildung
14). Neben Johann Bernoulli konnten nur sein Bruder Jacob, Leibniz, und de I’'Hopital die
Aufgabe losen. Es zeigte sich, dass die gesuchte Kurve eine Zykloide ist, also die Kurve,
die ein fester Punkt auf der Peripherie eines abrollenden Rades beschreibt.

Beim Brachystochronenproblem handelte es sich um einen neuen Typ von Optimierungs-
aufgabe, ndmlich um ein Extremalproblem in einem unendlichdimensionalen Funktionen-
raum. Die ersten Losungen des Problems beruhten daher auf speziellen Ideen. So war
etwa Johann Bernoullis Losungsidee die folgende: Statt einen Massenpunkt von A nach B
gleiten zu lassen, schickt man einen Lichtstrahl auf den Weg. Damit die Situation genau
der mechanischen entspricht, wird als Ausbreitungsmedium des Lichtes ein (gedachtes)
Material so gewahlt, dass der Brechungsindex in jedem Punkt gerade diejenige Lichtge-
schwindigkeit erzwingt, die der Geschwindigkeit des Massenpunktes entspricht, und die
mit dem Energiesatz leicht berechnet werden kann. Dann muss man nur noch die in
Abschnitt 1.3 hergeleitet Strahlengleichung 16sen. Damit gelang es Johann Bernoulli erst-
mals Optik und Mechanik zu verbinden - mehr als hundert Jahre bevor dies der irische
Mathematiker William Hamilton (1805-1865) systematisch tat.

Im Wettstreit den Bernoullis Aufgabe ausgelost hatte, ging unter anderem eine anonyme
Losung ein, die durch besondere Brillianz bestach. Als Bernoulli diese Losung sah, tat
er den Ausspruch “Man erkennt den Léwen an seinen Krallen” - die anonyme Loésung
stammte von Newton.

Euler 16ste das Brachystochronenproblem spéter indem er es mit Hilfe seiner Variations-
methode auf eine Differentialgleichung zuriickfithrte. Die Bezeichnung “Variation” geht
auf Lagrange zuriick, der mit seiner Methode der Multiplikatoren auch Extremalpro-
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Abbildung 11: Steiners Beweis |

bleme mit Nebenbedingungen lésen konnte. Die Gleichung wird deshalb heute Euler-
Lagrange-Gleichung, oder in héheren Dimensionen Ostrogradski-Gleichung, des Funktio-
nals genannt. Damit war ein allgemeines Werkzeug gefunden um eine grosse Klasse von
Funktionalen zu extremieren. Vorerst blieb diese Technik allerdings auf einer formalen
Stufe.

2.3 Das Prinzip der kleinsten Wirkung

Kommen wir nun zuriick zu Maupertuis und seinem allumfassenden Weltenplan, dem
Prinzip der kleinsten Wirkung. Es besagt: Wenn die Natur sich dndert, so ist die fir die
Anderung erforderliche Wirkung® kleinstmaglich.

Was ist diese Wirkung, mit der die Natur so sparsam wirtschaftet? Die Tétigkeit eines
Postboten mag dies erklaren: Je weiter und je schneller er lauft, desto grosser ist seine

5In der deutschsprachigen Literatur hat sich fiir das von Maupertuis benutzte franzosische Wort acti-
on ungliicklicherweise die Ubersetzung Wirkung durchgesetzt, die eigentlich etwas anderes bedeutet: eine
Aktion hat eine Wirkung, ist aber keine Wirkung. Maupertuis Prinzip kénnte man aus dem franzésischen
vielleicht so iibersetzen: “Wenn die Natur sich &ndert, so ist die fiir die Anderung erforderliche Aktions-
menge (oder Aufwand an Handlung) kleinstmdoglich”.
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Abbildung 12: Steiners Beweis II

Abbildung 13: Steiners Beweis III

Wirkung. Verniinftigerweise sollte auch die Tasche, die der Postbote trégt, beriicksichtigt
werden. Demnach ergibt sich:

Wirkung = Masse x Entfernung x Geschwindigkeit.

Folglich hitte die Wirkung dieselbe physikalische Dimension, wie die von Leibniz defi-
nierte kinetische Energie multipliziert mit der Zeit. Tatsdchlich findet sich bereits in den
Schriften von Leibniz diese Definition von Wirkung. Maupertuis fand sich daher rasch
in einem Urheberschaftsstreit mit dem Leibnizianer Samuel Kénig, der die Formulierung
des Prinzips zu Recht als unvollstédndig kritisierte und behauptete, dass sich eine richtige
Fassung in einem Leibnizbrief von 1707 finde. Zum andern erschien 1753 die Maupertui-
sana eine Sammlung von Entgegnungen, darunter Voltaires Spottgeschichte Diatribe du
Docteur Akakia, tibersetzt ins Deutsche iibrigens von Gottsched, worauf Voltaire durch
Friedrich II aus Preussen ausgewiesen wurde. Maupertuis war ja seit 1746 Prasident der
Preussischen Akademie der Wissenschaft in Berlin.

Schon 1743, also vor Maupertuis, hatte Euler bewiesen, dass das Prinzip der kleinsten
Wirkung geeignet war, die Bewegung eines Massepunktes in einem konservativen Kraftfeld
zu beschreiben. Er war iiberzeugt, dass hinter jedem Phinomen unseres Universums eine
Maximum- oder Minimumregel stecken miisse: “Da sdmtliche Verrichtungen der Natur
gewisse Gesetze des Maximums oder Minimums befolgen, ist es nicht zweifelhaft, dass
auch bei den Bahnen, welche die Kérper unter Einwirkung bestimmter Krifte beschreiben,
irgendeine Extremumseigenschaft vorhanden sein muss”’. Maupertuis beanspruchte die
Prioritét der Theorie jedoch fiir sich. Immerhin verweist er im erweiterten Vorwort seiner
(Evres von 1756 fiir Begriindung und Anwendungen des Prinzips auf Euler. Letzterer

34



A Horizontale

Schwerkraft Optimale Losung

Abbildung 14: Brachystochrone: Der optimale Weg erspart in diesem Bei-
spiel rund 42% Zeit gegeniiber dem geometrisch kiirzesten Weg.

bestand iiberraschenderweise nicht auf seiner Entdeckung. Méglicherweise wollte er als
Direktor der mathematisch-physikalischen Klasse der Preussischen Akademie mit seiner
bescheidenen Haltung seine Loyalitdt gegeniiber seinem Prasidenten Maupertuis unter
Beweis stellen. Fest steht, dass die Arbeit Maupertuis bedenkliche Schwichen aufwies, wie
wir am Beispiel der Reflexion im Hohlspiegel gesehen haben. Euler formulierte das Prinzip
passender, indem er den Begriff der stationaren Wirkung pragte. Der Urheberschaftsstreit
zwischen Maupertuis und Euler ging unter dem Begriff ‘Berliner Affare’ in die Geschichte
ein.

Maupertuis’ Gedanken waren mitgeprédgt von der Philosophie von Leibniz. Dessen philo-

Abbildung 15: Gottfried Wilhelm von Leibniz auf der von der Deutschen
Bundespost aus Anlass seines 350. Geburtstages herausgegebenen Briefmarke

sophische Hauptgedanken finden sich in seinen Essais de Théodicée sur la bonté de Dieu,
la liberté de I’homme et ’origine du mal. Darin geht Leibniz vom scheinbaren Widerspruch
zwischen der Annahme eines allméchtigen, giitigen und allwissenden Schopfergottes und
der Unvollkommenheit der Welt aus. Zum Beweis fiir das Dasein Gottes zog Leibniz den
ontologischen Schluss von Anselm von Canterbury heran: Der Begriff eines vollkommenen
Wesens impliziert dessen Existenz, weil sonst ein noch vollkommeneres (weil existentes)
Wesen denkbar sei. Gaunilo von Marmoutiers wies allerdings darauf hin, dass man mit
demselben Argument auch die Existenz einer besten aller Inseln nachweisen konnte (die
“verlorenen Inseln”, wie er sie nannte).

Leibniz ‘bewies’ (in diesem Punkt ganz Mathematiker) auch die Eindeutigkeit Gottes,
indem er Argumente des Xenophanes benutzte.

Gott sei also das Wesen, das alle Eigenschaften im héchsten Grade in sich vereinige, aller-

35



dings nur insofern diese Eigenschaften miteinander vertraglich seien. Diese Einschrankung
sei notig, denn es gebe Eigenschaften wie Allmacht und Giite, die nicht im hochsten Grade
nebeneinander bestehen konnten. Gottes Giite beschrianke seine Allmacht, denn sie hinde-
re ihn daran, Boses zu tun, was ihm wegen seiner Allmacht durchaus moglich sei. Daraus
folge, dass Gott zwar alle moglichen Welten gedacht, aber nur die beste aller méglichen
Welten gewollt und demnach auch geschaffen habe.

Leibniz’ Gedanken blieben unter seinen Zeitgenossen nicht unwidersprochen. Die schérfste
Antwort kam von Voltaire: Unter dem Titel Candide, ou I’Optimisme schrieb er unter dem
Pseudonym ‘Doktor Ralph’ 1758 eine boshafte Satire, die in zwanzig Jahren in 42 Auflagen
erschienen, obwohl sie ab 1762 auf den péapstlichen Index stand.

2.4 Minimalprinzipien in der theoretischen Physik

Ubersetzt man das Prinzip der kleinsten Wirkung direkt in eine Formel, so sagt es man
habe das Zeitintegral {iber die kinetische Energie zu minimieren, bei festgehaltener Ge-
samtenergie (und bei freier Anfangs- und Endzeit). Wie wir gesehen haben, besteht eine
erste Verbesserung darin, nicht nach Mimima, sondern nach stationdren Punkten suchen.

Aufbauend auf Eulers Arbeiten formulierten Lagrange, Gauss, Hamilton und Jacobi fle-
xiblere Variationsprinzipien fiir die Mechanik: Wird ein mechanisches System durch La-
gekoordinaten ¢ beschreiben (g kann also beispielsweise der Auslenkunswinkel bei einem
Pendel sein), so definiert man als Lagrange-Funktion

L(Qa qa t) = T(Q» q’t) - V(Qﬁt)

als Differenz von kinetischer und potentieller Energie des Systems. Das Prinzligp von Ha-
milton besagt dann, dass entlang der mechanischen Bahn die Variation 4 [ 4 Ldt =0,
bei festen Endpunkten A, B in der (gq,t)-Ebene, verschwindet, die zugehorigen Euler-

Lagrange-Gleichungen
OL d oL 0

89e  dt0Ga
sind also gerade die Bewegungsgleichungen des Systems.

Die geometrische Form der physikalichen Bahn wird durch folgende Variante beschrieben:
Die Bahnkurve im Konfigurationsraum zwischen den Punkten P und @ ist ein stationérer
Punkt des Integrals

Q
6./13 VE-V(q)ds=0 (%)

falls E der Wert der (erhaltenen) Gesamtenergie ist (Anfangs- und Endzeit variieren aber)
beziiglich der Metrik

d52 = ZQQH(Q)dQQdQﬁ
af

im Konfigurationsraum die via T'(q,q) = 3 Y5 9a5(¢)dads gegeben ist.

Betrachtet man einen einzelnen Massenpunkt, so erhélt man (bis auf einen Faktor), die
gewohnliche Euklidische Metrik. Fassen wir dann \/E — V(z) in (%) als Brechungsindex
k(z) auf, so erhalten wir wieder das Fermatsche Prinzip fiir Lichtstrahlen.
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Mit Hilfe der Hamilton-Jacobi-Gleichungen lidsst sich ganz allgemein eine formale Ver-
bindung von der Mechanik zur Strahlenoptik herstellen. Da die Strahlenoptik (wie wir
gesehen haben) eine Naherung der Wellenoptik darstellt, kann man sich fragen, ob im
gleichen Sinne die Mechanik eine Naherung einer allgemeineren Mechanik ist. In der Tat
“loste” Schrodinger die symbolische Gelchung

Wellenoptik Wellenmechanik

< Strahlenoptik klassische Mechanik

und gelangte so zu seiner Quantentheorie.

2.5 Was die Bienen wissen, und was sie nicht wissen

Bereits Pappus bemerkte, dass Bienenwaben ein interessantes Beispiel fiir die Okonomie
der Mittel in der Natur sind. Bienenwaben sind, von der Front betrachtet, als Sechseck-
parkettierung der Ebene angeordnet (siehe Abbildung 16 links). Diese hat fiir sich bereits
gewisse Optimalitdtseigenschaften.

Beim Bienenstock sind nun zwei solche Schichten von Waben gewissermassen Riicken an
Riicken aneinandergebaut (siche Abbildung 16 rechts). Es fragt sich nun, wie die zwei

Abbildung 16: Bienenwaben

Lagen gegenseitig angeordnet sind. Eine einzelne Zelle sieht etwa aus, wie in Abbildung
17 dargestellt. Jedes Sechseckprisma wird oben zeltartig von drei Romben abgeschlos-
sen. Dieser Bau ermoglicht, dass die zwei Schichten, geeignet gegeneinander verschoben,
liickenlos aneinanderpassen (siehe Abbildung 18). Das Verhiltnis von Volumen zu Ober-
flache, also der Materialverbrauch beim Bau der Zelle, soll nun optimiert werden. Einigt
man sich zuerst auf den beschriebenen Bauplan, so ist die einzige Variable die Neigung
des Zeltdaches. Die Losung ergibt, dass die Diagonalen der Romben das Verhilnis /2
aufweisen. Dies entspricht in der Tat dem Bauplan im Bienenstock. Erstaunlicherweise
beschrieb Fejes Téth 1964 eine Wabenkonstrucktion, die optimaler ist als der Bauplan der
Bienen (siehe Abbildung 19). Die Ersparnis der Té6thschen Zelle macht weniger als 0.35%
des Flicheninhalts der Offnung aus. Dass die Bienen nicht das Optimum gefunden haben,
lasst verschiedene Schliisse zu: Entweder sind die Bienen schlecht im Rechnen, oder die
Bienen haben nach anderen Kriterien optimiert, oder die Bienen sind zwar fleissig aber
nicht unbedingt sparsam.
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Abbildung 18: Liickenlose Schichtung der Zellen

2.6 Seifenhiute

Seifenhdute werden in der Mathematik seit iber 200 Jahren untersucht. Fiir Seifenhaute
fiihrt man eine Oberflichenenergie ein, welche proportional zur Fliache ist. Da nach dem
Prinzip von Maupertuis die Natur fiir eine Seifenhaut immer eine Realisierung minimaler
Energie wihlt, sind Seifenhdute Minimalflachen. So fand 1762 Lagrange die Gleichung
von Flachen (lokal) kleinsten Inhalts. Meusnier erkannte 1776 die geometrische Deutung
der von Lagrange angegebenen Gleichung, namlich dass sich Minimalflichen durch ve-
schwinden der mittleren Kriimmung auszeichnen®. 1873 beschrieb der Physiker Plateau
seine umfangreichen Experimente mit Seifenhduten [10]. Er gelangte insbesondere zur
Erkenntnis (etwas salop formuliert) : “In jede geschlossene Raumkurve ldsst sich eine Mi-

6Herrscht auf den zwei Seiten einer Seifenhaut ein unterschiedlicher Luftdruck, so bildet sich eine
Flache aus, bei welcher die mittlere Kriitmmung proportional zur Druckdifferenz, also normalerweise
konstant, ist. Daher sind Seifenblasen rund. Es gibt jedoch auch eine geschlossene Fliche vom Geschlecht
eins, den Wente-Torus, mit konstanter mittlerer Kriimmung! Die Bedingung der konstanten mittleren
Kriimmung erhalt man auch bei Minimierung des Fliachenfunktionals bei gegebenem eingeschlossenem
Volumen als Nebenbedingung.
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Abbildung 19: Téths Zelle

nimalfliche einspannen”. Plateau betrachtete diese Tatsache als durch seine Experimen-
te hinreichend bewiesen. Natiirlich geniigte eine derartige Argumentation, insbesondere
nach der von Weierstrass 1870 vorgebrachten Kritik an den Grundlagen des Dirichletschen
Prinzips nicht den Anspriichen der Mathematik. Weierstrass gelangte bei seinen eigenen
Untersuchungen zu seiner Darstellungsformel fiir Minimalflachen, ein Beweis fiir die Pla-
teausche Vermutung liess jedoch bis 1930/31 auf sich warten. Dann némlich bewiesen
Douglas und Radé unabhéngig voneinender einen entsprechenden Satz ([2], [11]):

Satz (Douglas, Radé) Jede hinreichend glatte Jordan-Kurve in R® berandet mindestens
eine parametrische Minimalfiiche vom Typ der Kreisscheibe, welche das Dirichlet-Integral
unter allen derartigen Fldchen minimiert.

Die von Douglas und Radé gefundene Minimalflache ist allerdings nur eine “schwache
Losung”. Die Regularitdt der Parameterdarstellung wurde erst 1969 von Hildebrand [4]
und Nitsche [9] nachgewiesen. Tomi-Tromba [12], Almgren-Simon [1] und Meeks-Yau (7]
zeigten zudem, dass die Douglas-Radd Losung eingebettet ist, falls die gegebene Randkur-
ve “extrem” ist, d. h. auf dem Rand eines konvexen Korpers liegt. Eindeutigkeit der Lésung
gilt unter anderem, falls eine {iberschneidungsfreie Projektion der Randkurve existiert. Es
ist nicht bekannt, ob es eine geschlossene Kurve gibt, die unendlich viele Minimalflachen
vom Typ der Kreisscheibe berandet. Auch weiss man fiir keine einzige Kurve, die mehr
als eine Minimalflache berandet, wieviele sie tatsachlich berandet.

Minimalflichen finden in der Leichtbautechnik gelegentlich Anwendung, so beim Olym-
piastadion von 1972 in Miinchen von Frei Otto (siehe Abbildung 20). Durch Weierstrass’
Kritik geriet die Variationsrechnung gegen Ende des 19. Jahrhunderts in eine Grund-
lagenkriese. Dank dem Einsatz von Weierstrass selber [14], sowie von Arzéla, Fréchet,
Hilbert und Lebesgue wurden dann die eigentlichen Grundlagen der Variationsrechnung
geschaffen und so erhob sie sich nach bewaltigter Krise wie Phonix aus der Asche. Im 20.
Jahrhundert setzte fiir die Variationsrechnung eine rasante Entwicklung ein, die weiter
anhalt.
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Abbildung 20: Das Olympiastadion in Miinchen, aufgenommen vom Fernsehturm.

3 Youngsche Masse

Betrachten wir ein Funktional, welches auf Bolza zuriickgeht:

I(w) = f (6((z)) +13(x))dz

wobei ¢ die nicht-konvexe Funktion ¢(¢) := (£2 — 1)? ist. Wir méchten nun I (in einem
geeigneten Funktionenraum) minimieren unter der Randbedingung

w(0)=u(l)=0

Dazu bemerken wir, dass inf I(u) = 0, denn I(u) > 0 und I(u,) — 0 fiir die Funktionen-
folge x
uk(m):=2—1];— I——2lk-;— L;J|
Nehmen wir an, es gidbe eine Funktion u derart, dass I(u) = 0. Dann miisste u iden-
tisch null sein, damit der zweite Term des Funktionals verschwindet. Dann ware aber
v = 0, und somit /(u) = 1, was im Widerspruch zur Annahme steht. Das Funktional
nimmt also das Minimum nicht an. Beispiele wie dieses kommen z. B. in den Material-
wissenschaften vor (siehe Abbildung 21). Man kann sich auch vorstellen, man mochte in
einer Flussstromung gegen den Wind mit einem Segelschiff kreuzen (siehe Abbildung 22):
Dabei mochte man einerseits immer den optimalen Winkel zum Wind einhalten, ande-
rerseits moglichst in der Flussmitte bleiben, um die dort hohere Stréomungsgeschwidigkeit
auszunutzen. Beide Forderungen lassen sich aber nicht gleichzeitig realisieren. In der Rea-
litat verhindern iiblicherweise Energieterme hoherer Odnung (die man vernachlissigt hat,
so etwa das Wenden beim Beispiel mit dem Segelschiff) dass die Natur sich ohne Ende
immer weiter verfeinert. Dadurch bleibt man auf einer méglicherweise sehr feinen Skala
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Abbildung 21: Mikrostruktur in einem Cu-Al-Ni Kristall (C. Chu and R.D.
James, Department of Aerospace Engineering and Mechanics, Minneapolis).
Diese filigranen Erscheinungen lassen sich mit dhnlichen Funktionalen, wie
dem gesehenen beschreiben. Eine detaillierte Analyse der Struktur ist moglich
(siehe zum Beispiel die Arbeiten von Stefan Miiller et al.).

Stromung Wind

Abbildung 22: Kreuzen

stehen, es entstehen Mikrostrukturen. Kennt man die minimierenden Sequenzen geniigend
genau, lassen sich Riickschliisse auf diese Mikrostruktur ziehen.

Wenn Probleme, wie etwa die Gleichung 2 = —1 in einer zur Verfiigung stehenden Menge,
(bei dieser Gleichung, den reellen Zahlen) keine Losung besitzen, so ist die Mathematik
seit jeher erfinderisch gewesen und sucht die Lésung in einem grésseren Raum, der notfalls
erst konstruiert wird (hier die komplexen Zahlen). Ein dhnliches Program lédsst sich fiir
unser Variationsproblem durchfiithren. So kann man sich etwa fragen, ob den minimie-
renden Sequenzen des Funktionals irgendeine Eigenschaft gemeinsam ist. Diese liesse sich
vielleicht als Losung in einem verallgemeinerten Sinne interpretieren.

Dies ist in der Tat der Fall. Wir betten dazu I ein in ein verallgemeinertes Variationspro-

blem:
I(u,v) = / /qb Jdvz(A) + u(z ))dz

wobei v = (Vz)z¢(0,1) ein Youngsches Mass mit

/Olfmz\duy()\)dyz()
=f0$/m)\duy(/\)dy

und
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Eine Folge v; von Funktionen auf [0, 1] erzeugt ein Youngsches Mass v = (v )z¢[o,1) in dem
Sinne, dass fiir jedes z € [0,1] v, ein Wahrscheinlichkeitsmass auf IR ist, welches, grob
gesprochen, die Verteilung der Werte von v, nahe bei z beschreibt. Insbesondere ist, fiir
v =, .
I(u,d,) = I(u).

Dieses verallgemeinerte Problem nimmt das Minimum an, ndmlich fiir u =0, v, = %(6‘1+
d1). Es zeigt sich, dass die Ableitungen minimierender Folgen alle das Youngsche Mass
%((5“1 + 41) erzeugen. Dies ist plausibel, denn die Ableitungen einer Minimalfolge miissen
im Schnitt etwa gleich oft die Werte 1 und —1 haben. Insofern ist das Youngsche Mass
der Trager der Information iiber die minimierenden Folgen des urspriinglichen Problems.

So wie die Zahl 7, nachdem sie einmal in der Welt war, nicht nur dazu diente, die Glei-
chung z? = —1 zu lésen, sondern einen Nutzen an zum Teil unerwarteten Stellen mit
sich brachte, so zeigte es sich auch bei den Youngschen Massen, dass sie nicht nur fiir
Variationsprobleme ein niitzliches Werkzeug liefern, sondern dass man mit ihnen ganz all-
gemein schwache Limites vom Folgen berechnen kann, auf die eine nichtlineare Funktion
angewendet wurde. So ist eben beispielsweise

sin(nz) — 0 in L?[0, ]
aber

1
sin?(nz) — ki 0% in L*[0, 7

Dies macht die Youngschen Masse zu einem hervorragenden Werkzeug in der Theorie
nichtlinearer partieller Differentialgleichungen, aber das ist wieder eine andere Geschichte.
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