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Stand der Entwicklung radioökologischer Modelle

Von Hans Bonka
Lehrgebiet Strahlenschutz in der Kerntechnik, RWTH Aachen

1 Einleitung

Radioökologie ist die Wissenschaft vom Transport der Radionuklide und
der Wirkung ionisierender Strahlung in der belebten und unbelebten Umwelt.
In die Umwelt gelangten zum ersten Mal im Rahmen der Plutoniumproduktion

für Kernwaffen in den 40er lahren und durch die oberirdischen
Kernwaffenexplosionen größere Mengen künstlicher Radionuklide, s. z.B. /Bo
93/. Man mußte sich daher detailliert mit dem Transport der wichtigsten
Radionuklide in der Umwelt beschäftigen und dafür Sorge tragen, daß die
beruflich strahlenexponierten Personen und die Bevölkerung nicht zu hohe
Dosen erhielten. Die Dosisgrenzwerte für den Ganzkörper betrugen z.B. in
den USA von 1935 -1948 für beruflich strahlenexponierte Personen 1 mSv/d
sowie 300 mSv/a /Wa 49/ /Ta 58/. Es war üblich von l/10tel des Wertes für die
Bevölkerung auszugehen /Mo 55/. Die ICRP erniedrigte ihre Grenzwerte für
beruflich strahlenexponierte Personen im lahre 1950 von 600 mSv/a auf 150
mSv/a und im Jahre 1956 auf 50 mSv/a /Ta 58/. Einen Eindruck von den
umfangreichen radioökologischen Arbeiten in den 50er Jahren liefern einige
Berichte auf der ersten Genfer Atomkonferenz im Jahre 1955 /Pe 55/, die
Beiträge auf dem ersten Symposium «Radioecology» /Sc 61/ an der Colorado

Universität vom 10. bis 15.9.1961, das Buch «Radioekologiya», Moskow
1971 /Kl 71/ und andere Veröffentlichungen, s. z.B. /Bo 93/. Mitte der 50er
Jahre begannen die ersten größeren oberirdischen Kernwaffenversuche der
USA und UdSSR. Damit wurden in allen Ländern Radionuklide abgelagert.
Die Radioökologie wurde ein Arbeitsgebiet auch in den Staaten, die keine
Kernwaffen besaßen. So wundert es nicht, daß sowohl in der Schweiz, als
auch in Deutschland die staatliche Umweltüberwachung radioaktiver Stoffe
ca. 40 Jahre alt ist. Parallel zu den Messungen wurde über die Anreicherung
der Radionuklide in der Umwelt diskutiert. In diesem Zusammenhang wurden

die ersten radioökologischen Modelle entwickelt.
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2 Radionuklidemission und verwendete Modelltypen

Die mit Luft in die Atmosphäre eingeleiteten Radionuklide sind gasförmig
oder an Partikel im Durchmesserbereich von ca. 10~2 bis 20 (im angelagert.
Die Radionuldide können sich je nach Entstehungsprozeß der Partikel an
deren Oberfläche oder in ihrem Inneren befinden. Die chemischen Verbindungen

sind im allgemeinen nicht bekannt. 3H liegt bei Emissionen aus
Kernkraftwerken mit Leichtwasserreaktor in Form von H20, l4C in Form von C02
und organischen Verbindungen und l31I und andere Iodisotope in Form von I2,

organischen Verbindungen und partikelgebunden vor. Mit dem Wasser in
Fließgewässer eingeleitete Radionuklide sind molekular oder an Partikel
gebunden. Der Transport der mit Luft oder Wasser in die Atmosphäre oder
Fließgewässer emittierten Radionuklide ist in Abb. 1 und 2 dargestellt. In Abb.
1 sind die Pfade, auf denen eine Strahlenexposition des Menschen möglich ist,
dargestellt. Im folgenden soll nur der Radionuklidtransport in der Umwelt
betrachtet werden. Ist die Radionuklidverteilung bekannt, so lassen sich mit
Hilfe von Dosisleistungs- und Dosisfaktoren /Bu 89/ /Re 90/ die Körperdosen
berechnen. Sie werden z.B. benötigt zur:

• Bewertung der radioaktiven Emissionen aus kerntechnischen Anlagen und
Einrichtungen im Normalbetrieb

• Bewertung eventueller störfallbedingter Emissionen

• Bewertung und Festlegung von Schutzmaßnahmen nach unfallbedingten
Emissionen

• Bewertung der Strahlenexposition durch natürliche oder künstliche
Radionuklide in der Umwelt usw.

Die Betrachtungen können prospektiv oder retrospektiv sein.

Aufgrund der außerordentlich komplexen Vorgänge in der Umwelt ist es
nicht möglich, den Transport der Radionuklide naturgetreu nachzubilden. Es
werden im allgemeinen deterministische Modelle angewendet. In der Mehrzahl

sind es Kompartimentmodelle bei denen in den einzelnen Kompartimen-
ten von einer homogenen Radionuklidverteilung ausgegangen wird. Die Abb.
3 zeigt als Beispiel ein geschlossenes und offenes 2-Kompartimentmodell
sowie ein offenes 3-Kompartimentmodell. Sind die Übergangsfaktoren k^
konstant, so läßt sich die Aktivität im Kompartiment i durch eine
Differentialgleichung erster Ordung beschreiben. Die Aktivität Aj und deren zeitliche
Änderung hängt vom Quellterm Qj, den Übergangsfaktoren und den
Eliminationskonstanten k, ab. Ist Qj, kjj und k, zeitlich konstant, so läßt sich A, analytisch

berechnen. Im anderen Fall muß A; numerisch berechnet werden.
Dort, wo es möglich ist, werden bei der Berechnung der Ausbreitung der

Radionuklide in der Umwelt naturwissenschaftlich-mathematische Modelle
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angewendet. Eines der am häufigsten angewendeten Modelle ist das Gauß-

Ausbreitungsmodell zur Berechnung der Radionuklidverteilung in der Luft.
Übertragbar ist es auf die Ausbreitung in Fließgewässern und andere Spezialfälle.

Aufgrund der großen Fortschritte bei der Berechnung der Windverteilung

nach den Erhaltungsgleichungen für Masse, Energie und Impuls ist es
heute möglich, von der Annahme einer mit der Höhe konstanten
Windgeschwindigkeit und -richtung abzugehen. Hierdurch sind insbesondere bei
Notfällen verbesserte Ausbreitungsrechnungen möglich. Für die
Ausbreitungsrechnungen eignet sich in diesem Fall besonders das Lagrange-Aus-
breitungsmodell (Monte-Carlo-Simulationsmodell) /Ss 96/.

In speziellen Fällen ist es möglich, den Radionuklidtransport in Pflanzen
und tierischen Produkten mit Hilfe des nuldidspezifischen Aktivitätsmodells
zu berechnen. Üblich ist dieses Verfahren bei 3H und l4C /Bo 82/ /Bu 90/ /Bi
90/. Die spezifische 14C Aktivität der Lebensmittel ergibt sich aus dem
14C/12C-Verhältnis im C02 der bodennahen Luft. Bei 3H bestimmt das WH-
Verhältnis in der bodennahen Luftfeuchte und im Bodenwasser die spezifische

3H-Aktivität in Lebensmitteln. Instationäre Kompartimentmodelle für
3H und l4C sind z.B. in /Ba 99/ und /Bi 99/ dargestellt.

3 Aufbau der heute verwendeten Modelle bei Emission mit Luft

3.1 Historie

Modelle zur Berechnung des Radionuklidtransports in der Umwelt sollten
so aufgebaut sein, daß sie die wesentlichen Transportprozesse beschreiben.
Schon das auf dem ersten Symposium «Radioökologie» im lahr 1961 dargestellte

Analogrechner-Modell zur Berechnung der Radionuklidverteilung im
Ökosystem /Ol 61/ enthält alle wesentlichen Elemente: Die Ablagerung auf
die Pflanzen, den Transport vom Boden in die Pflanzen und den Transport in
die Tiere auf den verschiedenen trophischen Stufen, s. Abb. 4. Es wird besonders

betont, daß einige Elemente wie Cäsium die Tendenz haben, im Boden
stark gebunden zu werden und daher für die Pflanzen relativ unverfügbar
sind. Für die Ablagerung wird der nicht eindeutig definierte Ausdruck Fallout
verwendet.

Ein großer Schritt auf dem Gebiet der radioökologischen Modelle war die
Entwicklung des Rechenprogramms HERMES im lahre 1971 /Fl 71//So 73/.
Die Abb. 5 zeigt das Dosisberechnungsmodell für den Luftpfad. Das
Ingestionsmodell wurde von Soldat am Batteile Pacific Northwest Laboratory,
Richland, entwickelt /So 73/. Wenn man sich die mittlerweile bekannt gewordenen

Kontaminationen durch die Plutoniumproduktionsanlage Hanford
nördlich von Richland vor Augen hält, so wundert es nicht, daß die Hanford
Contractors /Fl 71/ komplette Datensätze zur Berechnung des Radionuklid-
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transports der verschiedenen Radionuklide zusammentragen konnten. Das
HERMES Rechenprogramm wurde Grundlage für den Regulatory Guide
1.109 vom Oktober 1977 /Us 77/ der U.S. Nuclear Regulatory Commission.
In Deutschland wurden die Dosismodelle in /So 74/ /Ba 76 /, die auch auf
HERMES zurückgehen sowie der Regulatory Guide 1.109 Grundlage für die

sogenannte ABG zu § 45 StrlSchV /Bu 79/. Die dosimetrischen Modelle, die
im Rechenprogramm HERMES erarbeitet wurden, beeinflußten die gesamte
Weiterentwicklung auf diesem Gebiet. Die gleiche Bedeutung bekamen die
Datensammlungen der radioökologischen Parameter für die Modelle von Ng
u.a. vom Lawrence Livermore Laboratory, University of California, USA, s.

z.B. /Ng 78/
Von Boone, Ng u. Palms wurden 1981 ein gegenüber dem Regulatory Guide

1.109 erweitertes Modell für die terrestrische Nahrungskette mit einem
konsistenten Datensatz veröffentlicht /Bo 81 /. Die Abb. 6 zeigt das Kompar-
timentmodell. Es werden Translokationsfaktoren, definiert als das Verhältnis
spezifischer Aktivität im eßbaren Teil der Pflanze zu der im gesamten
oberirdischen Teil der Pflanze, zur Zeit der Ernte für 8 Elemente und 19 Pflanzen
angegeben. Die gesamte flächenbezogene Aktivität der oberirdischen Pflanze

ergibt sich aus der abgelagerten flächenbezogenen Aktivität und dem
Radionuklidverlust durch Zerfall und AbWitterung. Es wird von einer
kontinuierlichen Ablagerung der Radionuklide ausgegangen. Für andere
Emissionsszenarien lassen sich jedoch leicht die Berechnungsgleichungen angeben.

Ein weiterer Meilenstein auf dem Gebiet der Modellentwicklung für
prospektive Untersuchungen bei einer größeren Anzahl kerntechnischer Anlagen
war die von der Kommission der Europäischen Gemeinschaften geförderte
Untersuchung /Cl 79/ des National Radiological Protection Board, England
und des Commissariat à l'Energie Atomique, Frankreich. Die Kompartiment-
modelle wurden wesentlich weiterentwickelt. Viel Detailarbeit wurde auf die
Festlegung der Übergangsfaktoren verwendet. Die Abb. 7 zeigt z.B. das

Kompartimentmodell für den Bereich Pflanze-Boden bei gepflügten und
ungestörten Böden und die Abb. 8 das Kompartimentmodell für den Weide-
Kuh-Milch-Fleisch-Pfad, nach /Si 81/.

Etwa zur gleichen Zeit entstanden weitere Kompartimentmodelle speziell
zur Berechnung der potentiellen Dosen nach Stör- und Unfällen. Modelle,
mit denen über längere Zeiträume die zeitliche Veränderung der spezifischen

Aktivität in den einzelnen Kompartimenten berechnet werden kann,
erhalten in der Folgezeit den Zusatz «dynamic» /Si 81/ /Ko 86/ /Mü 93/.
Bei der GSF in Neuherberg wurde das Kompartimentmodell ECOSYS
entwickelt /Ei 81/ /Mü 85/ /Mü 93/. Die Abb. 9 zeigt das Modell für den Transport

der Radionuklide in die Nahrungsmittelketten. In /St 98/ wird das

Störfallmodell PARK, in dem die Modellierung der Nahrungsmittelketten
dem Modell ECOSYS-87 /Mü 93/ entspricht, mit dem französischen
Störfallmodell ASTRAL verglichen. Es wird festgestellt, daß die Modellstruk-
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turen und radioökologischen Parameter vergleichbar sind. Weitere Modelle
sind u.a. in /La 79/ /Au 82/ /Bo 82/ /Ko 86/ /Wi 90/ /Tv 90/ /Ab 94/ und /Ia
96/ dargestellt.

Für die Weiterentwicklung der Modelle sind die bisher durchgeführten
Vergleiche von großer Bedeutung. In /Ho 84/ werden radioökologische
Parameter und Ergebnisse von sechs international angewendeten Modellen
in Schweden, den USA, in England, in Deutschland und bei der IAEA für die

Nahrungsmittelketten miteinander verglichen. Die errechneten Differenzen
variieren zwischen einem Faktor 6 und 30. Zurückzuführen ist dies auf die
verwendeten radioökologischen Parameter. Ein zweiter internationaler
Vergleich fand im Rahmen der BIOMOVS-Studie (Biopheric Model Validation
Study), die in Schweden organisiert wurde, von 1985 bis 1996 statt /Jo 95/
/Da 99/. Seit 1988 läuft bei der IAEA das große durch die IAEA und die CEC
koordinierte Forschungsprogramm zur Validierung von Modellvorhersagen
(VAMP) /Li 89/ /Ho 95/ /Ha 95/ /Zh 95/ /Ia 96/. Gegenwärtig werden durch
die IAEA fortlaufend Ergebnisse veröffentlicht.

3.2 Aufbau der Kompartimentmodelle für pflanzliche Produkte

Wie oben dargestellt, sind Kompartimentmodelle zur Berechnung der
spezifischen Aktivität des betrachteten Radionuklids in Pflanzen allgemein wie
in Abb. 10 gezeigt aufgebaut. An oberirdischen Pflanzenteilen werden
Radionuklide unter dem Einfluß turbulenter Strömung und durch Niederschlag

abgelagert. Im ersten Fall spricht man von trockener und im zweiten
Fall von nasser Ablagerung. Nur ein Teil der im Regentropfen aufgenommenen

Aktivität wird an den oberirdischen Pflanzenteilen angelagert; der Rest
fällt auf den Boden. Der Rückhaltefaktor ist von der Niederschlagshöhe und
der Bewuchsdichte abhängig. Für Gras beträgt er bei einer Bewuchsdichte
von 1 kg/m2 und einer Niederschlagshöhe von 1 mm etwa 0,2 /Bo 98,/. Bei
trockener Ablagerung gibt es neben der Ablagerung an den Pflanzenoberflächen

eine auf den Boden. Die flächenbezogene Aktivität der oberirdischen
Pflanzenteile unter Einschluß der in die Pflanzen gewanderten Aktivität
nimmt durch Zerfall und Abwitterung, d.h. durch Einwirkung des Windes
und des Regens ab. Aufgewirbelte Radionuklide -Resuspension- können an
der Pflanzenoberfläche wieder abgelagert werden. Die spezifische Aktivität a

ergibt sich durch Division der flächenbezogenen Aktivität AF zum Zeitpunkt
der Ernte mit der Bewuchsdichte Y.

Die spezifische Aktivität im eßbaren Teil der Pflanze ist mit Hilfe des
Translokationsfaktors berechenbar. In /Bo 81/ wird er als Verhältnis der
spezifischen Aktivität im eßbaren Teil der Pflanze zu der mittleren in den
oberirdischen Pflanzenteilen zur Zeit der Ernte und in /Fl 71/ als Verhältnis Aktivität
im eßbaren Pflanzenteil zur Zeit der Ernte zu abgelagerter Aktivität an den
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oberirdischen Pflanzenteilen zur Zeit der Ablagerung angegeben. Oft geht
man von Werten gemäß der zweiten Definition aus, s. z.B. /Mü 93/ Der
Übergang der Aktivität vom Boden in die Pflanzen wird mit Hilfe des
Transferfaktors Boden-Pflanze beschrieben. Er bezieht sich bei Blattgemüse und
bei Gras auf diese Pflanzenteile und im anderen Fall auf den eßbaren Teil der
Pflanze. Zur Berechnung des Transports der Radionuklide aus dem Wurzelbereich

in tiefere Bodenschichten werden Kompartimentmodelle, s. Abb. 8

oder analytische Funktionen mit Eliminationskonstanten, s. z.B. /Bo 82 /Bu
90/ /Mü 93/, angewendet. Bei gelagerten pflanzlichen Produkten muß der
Zerfall bis zum Verzehr berücksichtigt werden.

Nach diesem Modell kann für alle Ablagerungsbedingungen die spezifische

Aktivität in den pflanzlichen Produkten berechnet werden. Entscheidend

für die Genauigkeit der Ergebnisse sind jedoch die in die Rechnung
eingehenden radioökologischen Parameter und die richtige Wahl der
Randbedingungen wie z.B. Kontaminationszeitpunkt, Wetterbedingungen,
Bewuchsdichte, Erntezeitpunkt nach der Kontamination usw.

Um die Berechnung der Aktivität in einem Kompartiment zu verdeutlichen,

ist in Abb. 11 die flächenbezogene Aktivität AF an den oberirdischen
Pflanzenteilen von Blattgemüse betrachtet. Pro Zeit- und Flächeneinheit
wird die Aktivität cL • vd an die Pflanzenoberflächen abgelagert. Durch Zerfall
und Abwitterung erniedrigt sind pro Zeit- und Flächeneinheit AF um AF (kr +

\). Die zeitliche Änderung von AF läßt sich, wie in Abb. 3 dargestellt, nach
einer Differentialgleichung erster Ordnung berechnen.

Handelt es sich um eine kontinuierliche Ablagerung, so steigt AF bis zum
Erntezeitpunkt ständig an. Bei kurzzeitiger Ablagerung nimmt AF bis zum
Zeitpunkt, an dem der Verlust durch Zerfall und Abwitterung größer als die
Ablagerung ist, zu. Danach nimmt AF bis zur Ernte ab. Die Ablagerungsgeschwindigkeit

vd ist bei partikelgebundenen Radionukliden eine Funktion
des Partikeldurchmessers und der Partikeldichte bzw. des aerodynamischen
Partikeldurchmessers. Die Abb. 12 zeigt einen Vergleich zwischen Meßwerten

und strömungsmechanisch berechneten Ablagerungsgeschwindigkeiten
/Ho 842/ /Ho 88/ /Bo 90/. Die oberhalb eines Partikeldurchmessers von ca. 1

|j.m gemessenen höheren Ablagerungsgeschwindigkeiten wurden mit
Kupfersulfatpartikeln mit einer Dichte von 3,6 g/cm3 gemessen /Jo 84/. Daher
wurde die berechnete Ablagerungsgeschwindigkeit bei einer Dichte von 1

und 3,6 g/cm3 eingezeichnet. Die mittlere Ablagerungsgeschwindigkeit
ergibt sich aus einer Mittelung über die vorhandene Aktivitätsverteilung in
Abhängigkeit vom Partikeldurchmesser /Bo 90/. In Aachen wurde z.B. nach
dem Unfall in Tschernobyl eine mittlere Ablagerungsgeschwindigkeit an Gras
von ca. 0.06 cm/s gemessen /Bo 98/. In Abhängigkeit von der Bewuchsdichte

Y ergab sich vd 0,07 cm/s (Y/Y0)°'7, mit Y0 1 kg/m2. Für elementares 131I

ergab sich ein Wert von ca. 0,7 cm/s bzw. Vd 0,83 cm/s (Y/Y0)06. Zur Berechnung

der Abwitterung wird allgemein eine Halbwertszeit von 14 d verwendet
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/Ss 92/. Die Abb. 13 zeigt z.B. die Veränderung von AF an Gras nach dem
Unfall in Tschernobyl in Aachen und die daraus ableitbare HWZ von ca. 10 d
für l3lI und 14 d für l37Cs In Abb. 14 ist die gemessene spezifische Aktivität
des Grases nach zweimaliger Abgrasung dargestellt. Abb. 15 zeigt die
Veränderung der spezifischen 137Cs -Aktivität im Gras einer Wiese in Aachen bis
zum gegenwärtigen Zeitpunkt und in Kopfsalat bis 1990.

3.3 Aufbau der Kompartimentmodelle für tierische Produkte

Kompartimentmodelle zur Berechnung der spezifischen Aktivität in
tierischen Produkten wie Milch und Fleisch sind bei der Berechnung der
spezifischen Aktivität in Futter ähnlich wie die zur Berechnung der spezifischen
Aktivität in eßbaren Pflanzen aufgebaut, s. Abb. 16. Für Gras ist der Translo-
kationsfaktor gemäß der Definition in /Bo 81/ eins. Unterschiedlich ist die
Verteilung der Radionuklide im Boden. Bei Gras geht man von ungepflügten
und bei den übrigen Pflanzen von gepflügten Böden aus, s. Abb. 7 und 8.
Während bei gepflügten Böden von einer homogenen Verteilung der
Radionuklide über die Pflugschartiefe ausgegangen werden kann, geht man bei
ungestörten Böden vereinfachend von einer homogenen Aktivitätsverteilung
über die Wurzeltiefe des Grases oder von weiter unterteilten Schichten
(Kompartimenten), s. Abb. 8, aus. Die spezifische Aktivität in der Milch und
im Fleisch läßt sich im allgemeinen mit Hilfe eines Einkompartimentmodells
berechnen, s. Abb. 16 und 17. Die Abb. 18 zeigt z.B. den berechneten Verlauf
der spezifischen 131I- und l37Cs-Aktivität in der Milch von einem Bauernhof
in Aachen nach dem Unfall in Tschernobyl. Der Transferfaktor Futter-Milch
und die effektive Eliminationskonstante wurden so angepaßt, daß das Quadrat
der Abweichungen zu den Meßergebnissen minimal ist. Geht man von den in
der Schweiz in /Sc 86/ /Su 86/ und /Sa 86/ angegebenen Verhältnissen der
spezifischen 13II-Aktivität in der Milch zu der im Gras aus, so lag bei einer
Freßrate von 65 kg/d der Transferfaktor zwischen ca. 0,0015 und 0,0031
d/kg. In Deutschland lagen die Transferfaktoren zwischen 0,002 und 0,007
d/kg /Bo 982/. Im Mittel lagen die gemessenen Transferfaktoren bei ca. 0,003
d/kg. Im Rahmen von Genehmigungsverfahren wurde in Deutschland bis zu
diesem Zeitpunkt ein 131I-Transferfaktor Futter-Milch von 0,01 d/kg
angewendet. Um die starke Konservativst der verwendeten radioökologischen
Parameter abzubauen, wurde in /Bu 90/ der Transferfaktor auf 0,003 d/kg
gesenkt. Für 137Cs ergab sich im Mai 1986 ein Transferfaktor von ca. 0,003
d/kg, s. Abb. 18. Nach der gemessenen Aktivitätsaufnahme mit geschnittenem

Gras erhöhte sich danach der Transferfaktor auf ca. 0,007 d/kg, s. Abb.
19. In der Winterzeit, in der die Kühe l37Cs hauptsächlich mit Grassilage und
Kraftfutter aufnahmen, sank er wieder auf 0,003 d/kg. Zurückzuführen ist
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dies wahrscheinlich auf die Aufnahme von Boden während der Weidezeit,
der allgemein nicht erfaßt wird. Die Abb. 19 zeigt den mit diesen Transferfaktoren

berechneten Verlauf der spezifischen 137Cs-Aktivität im Vergleich zu
den Meßergebnissen bei einem Bauernhof in Aachen. Mit einem Mehrkom-
partimentmodell, wie es in Abb. 17 dargestellt ist, ergibt sich eine noch bessere

Übereinstimmung zwischen Messung und Berechnung, s. Abb. 20.
Bemerkenswert ist, daß auch die Übereinstimmung zwischen Rechnung und
Messung in Rindfleisch befriedigend ist. Nach den gemessenen Verläufen
der spezifischen Aktivität in Rindfleisch vom Schlachthof in Aachen und der
Milch in Aachen betrug das Verhältnis Transferfaktor Futter-Fleisch zu Futter-
Milch etwa 5. Die teilweise niedriger gemessen als berechneten spezifischen
Aktivitäten sind wahrscheinlich darauf zurückzuführen, daß die Tiere niedriger

kontaminiertes Futter von gepflügten Feldern erhielten, z.B.
Rübenschnitzel aus der Dürener Gegend.

3.4 Kompartimentmodell für das Waldökosystem

Bei der Entwicklung von Kompartimentmodellen für die Forstwirtschaft
gibt es im Gegensatz zur Landwirtschaft keine ca. 40-jährige Tradition, s.

Kap. 3.1. In den letzten 30 Jahren wurden die Modelle für landwirtschaftliche
Produkte vor allem zur Berechnung der potentiellen Strahlenexposition
durch die Emission radioaktiver Stoffe im Rahmen von Genehmigungsverfahren

kerntechnischer Anlagen benutzt. Untersuchungen zeigten, daß

Nahrungsmittel aus dem Wald keinen kritischen Expositionspfad darstellen. Aus
diesem Grunde wird in Deutschland in der Allgemeinen Verwaltungsvorschrift

zu § 45 StrlSchV /Bu 90/ und in der Schweiz in der Richtlinie HSK-R-
41/d /Hs 97/ dieser Expositionspfad nicht berücksichtigt. Nach dem Unfall in
Tschernobyl, als große Waldflächen stärker kontaminiert wurden, waren vor
allem Wildfleisch und Pilze teilweise stark kontaminert. Es gab plötzlich die
Notwendigkeit den Transport von l34Cs und l37Cs im Waldökosystem
vorherzusagen. Von verschiedenen Arbeitsgruppen wurde nach 1986 die spezifische

Aktivität in den verschiedenen Bereichen des Waldes gemessen, so daß
nach den Zeitreihen die Übergangsfaktoren zwischen den einzelnen Kompar-
timenten bestimmt werden können. Die wichtigsten Kompartimente sind die
Bäume, das Unterholz, die Streuauflage auf dem Boden, der Humusbereich
des organischen Horizonts sowie die oberste und tiefere Mineralbodenschicht,

s. z.B. /Sc 95/. Von Hecht /He 93/ wird zur Beschreibung des 137Cs-

Transports im Waldökosystem das in Abb. 21 dargestellte Kompartimentmodell
vorgeschlagen. Es wurde von einem geschlossenem Kaliumkreislauf in

einem stabilen Waldökosystem abgeleitet. Es hat im wesentlichen drei Spei-
cherkompartimente: die Nadeln bzw. Blätter, die Streuauflage und den
Humusbereich. Hecht betont in seinem Bericht: «Da das Waldökosystem aus
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Stabilitätsgründen kein Kalium verlieren darf, wird auch das Cäsium nahezu

vollständig zurückgeführt». Das zeigen auch die Messungen in Aachen. Die
Abb. 22 zeigt z.B. die Zeitreihen der spezifischen Aktivität in Fichtenzweigen,

Heidelbeeren, Birkenröhrlingen und Waldhonig. Die Zeitreihe weiterer
Mykorrhizapilze wie Butterröhrling (Suillus luteus), Goldröhrling (Suillus
grevillei), Maronenröhling (Xerocomus badius), Steinpilz (Boletus edulis),
Ziegenlippe (Xerocomus subtomentosus) u.a. aber auch andere Pilze wie
Hallimasch (Armillaria mellea, ostoyae u. polymyses), Flaschenstäubling
(Lycoperdon perlatum), Safranschirmling (Macrolepiota rachodes), Violetter
Rötelritterling (Lepista nuda) u.a. zeigen den gleichen Verlauf wie die Bir-
kenröhrlinge /Bo 98,/. Ab ca. 1992 nimmt die spezifische 137Cs-Aktivität
etwa mit einer Halbwertszeit von 30 a ab. Nach der spezifischen l37Cs-Aktivität

im Waldhonig muß auch im Phloemsaft der Nadelbäume die spezifische
l37Cs-Aktivität mit einer Halbwertszeit von ca. 30 a abnehmen.

4 Aufbau der heute verwendeten Modelle für den Wasserpfad

4.1 Fließgewässer

Wie beim Luftpfad stand am Anfang der Modellentwicklung zur Berechnung

der potentiellen Strahlenexposition durch Emission radioaktiver Stoffe
aus kerntechnischen Anlagen das Rechenprogramm HERMES /Fl 71/ /So
73/. Angesichts der hohen Emissionen radioaktiver Stoffe durch die Kernreaktoren

der Hanford Anlage in den Columbia River /Bo 93/ ist nicht verwunderlich,

daß Hanford Contractors die Modelle erarbeiteten. Die Abb. 23 zeigt
den Teil des dosimetrischen Modells in HERMES, nach der die potentielle
Dosis bei Emission in Fließgewässer berechnet wird. Die hierin enthaltenen
Dosismodelle /So 74/ wurden zusammen mit dem Regulatory Guide 1.109
/Us 77/ Grundlage für die sogenannte ABG zu § 45 StrlSchV /Bu 79/ in
Deutschland.

Die Weiterentwicklung der Modelle für Fließgewässer seit Mitte der 70er
Jahre ist in /Ra 98/ dargestellt. Es werden nun das Wasser, die Schwebstoffe
und das Sediment als ein geschlossenes System betrachtet. Zur Berechnung
der Strömungen werden 1-, 2- und 3-dimensionale Modelle auf der Grundlage

der Erhaltungssätze für die Masse, die Energie und den Impuls entwickelt.
Im Fluß Pripyat wurden derartige Modelle unterstützend zur Vorhersage des

Radionuklidtransports bei Hochwasser in die Pripyat - Dnieper - Stauseen
und zur Entwicklung von Wassereinbauten zur Erniedrigung des
Radionuklidtransports eingesetzt 17h 92/.

Für vereinfachte Langzeituntersuchungen wurden Kompartimentmodelle
entwickelt. Das Fließgewässer wird in einzelne Abschnitte unterteilt, in denen

von einer homogenen Verteilung der Radionuklide im Wasser, Schwebstoff
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und Sediment ausgegangen wird. Die Abb. 24 zeigt als Beispiel ein Modell von
Höfer und Bayer /Hö 93/. Es gibt jedoch gegenwärtig für keinen Fluß in
Deutschland einen auf der Basis von Messungen abgeleiteten Datensatz.

Untersuchungen zur Erstellung eines Simulationsmodells für die Aare und den
Rhein vom Kernkraftwerk Mühleberg bis Basel enthält der Bericht /AI 98/.

Zur Berechnung der spezifischen Aktivität im Fischfleisch geht man allgemein

von einem 2-Kompartimentmodell, s. Abb. 25, aus. Der Konzentrationsfaktor

KFi aFi/cw ist wie viele andere radioökologische Parameter sehr
variabel, s. z.B. /Fe 82/. Ein detaillierteres Mehrkompartimentmodell wurde
von Weiß /We 91/ für den Greifswalder Bodden entwickelt, s. Abb. 26.

4.2 Binnenseen

Aufgrund der nicht vorhandenen Einleitung radioaktiver Stoffe in Binnenseen

gab es bis zum Unfall in Tschernobyl kein anwendungsreifes Modell
zur Prognose der spezifischen Aktivität in Fischen bei Eintrag radioaktiver
Stoffe in Seen mit Regen. Der Bericht /Ra 98/ gibt einen Überblick über die
nach 1986 entwickelten Kompartimentmodelle. Weitere Modelle sind in /Kr
99/ aufgeführt. Die Abb. 27 zeigt das beim Bayerischen Landesamt für
Wasserforschung, Deutschland, von Hübel u.a. /Hü 91/ entwickelte Modell. Die
verschiedenen Kompartimentmodelle zur Berechnung der Aktivitätskonzen-
tration in gefiltertem Wasser c und der spezifischen Aktivität im Schwebstoff
und Sediment sind allgemein wie in Abb. 28 dargestellt aufgebaut. Das Sediment

wird in 2 Schichten unterteilt. In den See können Radionuklide mit dem
Zufluß, durch nasse und trockene Ablagerung aus der Atmosphäre und vom
umgebenden Boden durch Abwaschen gelangen.

5 Schlußfolgerung

Es wurden in den letzten 40 Jahren eine Reihe von Modellen und
Simulationsprogrammen zur Berechnung der Aktivitätskonzentration bzw. spezifischen

Aktivität der verschiedenen Radionuklide in der Umwelt bei Emission
mit Luft und Wasser entwickelt.

Bei Emission mit Luft stehen heute Rechenprogramme zur Berechnung
der Ausbreitung nach dem Gauß- und Lagrange-Ausbreitungsmodell zur
Verfügung. Die Rechenprogramme zur Berechnung des Windfeldes nach den

Erhaltungssätzen werden immer leistungsfähiger, so daß sicher zukünftig bei
Ausbreitungsrechnungen in der Regel nur noch Lagrange- und Eulersche
Modelle zur Anwendung kommen werden. Bei der Berechnung der spezifischen

Aktivität in landwirtschaftlichen Produkten läßt sich für 3H und 14C in
der Regel das nuklidspezifische Aktivitätsmodell anwenden. Für die anderen
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Radionuklide gibt es eine größere Anzahl Kompartimentmodelle zur Berechnung

der spezifischen Aktivität in Abhängigkeit von der Zeit in den verschiedenen

landwirtschaftlichen Produkten. Die Ergebnisse lassen sich durch
genauere radioökologische Parameter in den Modellen verbessern. Es fehlen
Modelle zur Berechnung der spezifischen Aktivität in Obst von Bäumen
sowie Sträuchern und für das Waldökosystem.

Auch bei der Emission radioaktiver Stoffe in Fließgewässern gibt es
Ansätze im Nahbereich des Emittenten naturwissenschaftlich-mathematische

Methoden anzuwenden. Zur Verbesserung der Vorhersage der spezifischen

Aktivität in Sediment und in Fischfleisch sollten für einzelne Flüsse
Modelle entwickelt werden, in denen das Gesamtsystem Wasser, Schwebstoff

und Sediment betrachtet wird.
Nach dem Unfall in Tschernobyl zeigte sich, daß radioökologische

Modelle für Binnenseen, mit denen die spezifische Aktivität im gesamten
Ökosystem berechnet werden kann, fehlen. Die bisher entwickelten
Kompartimentmodelle sollten anhand von Meßwerten verbessert werden.

Bei allen Erfolgen bei der Modellierung des Radionuklidtransportes in der
Umwelt sollte aber immer beachtet werden, daß aufgrund der komplexen
Vorgänge in der Natur es nicht möglich sein wird, die Radionuklidverteilung
genau zu berechnen. Die entscheidende Größe für die Maßnahmen ist in der
Regel die Messung. Nur sie gibt uns, evtl. in Verbindung mit dosimetrischen
Modellen, letztlich Gewißheit, ob Dosisgrenzwertüberschreitungen möglich
oder eingetreten sind.
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