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Virtuelle Welten aus dem Hochleistungsrechner —
Hilfe fiir die reale Welt

Roland BULIRSCH*
Lehrstuhl Numerische Mathematik,
Technische Universitiat Miinchen

Schickard und Legendre

Zukunft hat eine lange Vergangenheit, uralte rabbinische Weisheit.

An den beriihmtesten und vortrefflichsten Herrn Kepler in Linz, clarissime
et excellentissime domine Keplere, steht auf dem Brief aus Tiibingen. Ein
Gelehrter teilt dem lieben Freund in Linz mit, daf} er eine Maschine konstru-
iert habe, die Zahlen automatisch zusammenrechnet: addiert, subtrahiert,
multipliziert und dividiert. Du wiirdest lachen, schreibt er — in Latein , wie es
sich damals gehorte — wenn Du erlebtest, wie sie die Stellen, wenn es iiber
Zehner oder Hunderter geht, von selbst erhoht.

September 1623, die erste funktionierende Rechenmaschine der Welt, gut
370 Jahre ist es her.

Der Tiibinger Gelehrte, ein Theologe, Diakon, ist Professor fiir Hebraisch,
die heilige Sprache, fiir Martin Luther die Sprache aller Sprachen. Der
Gelehrte: Wilhelm Schickard; er kennt auch das Arabische, hat Teile des
Koran iibersetzt und arabische Fachliteratur; er spricht Aramadisch
(Chaldaisch), Syrisch. Schickard ist dazu Astronom, entwickelt eine mathe-
matische Theorie zur Mondbahnberechnung, und er ist Landvermesser, mit
der Neuvermessung des Herzogtums Wiirttemberg beschiftigt. Schickard ist
auch ein talentierter Kiinstler, fertigt Radierungen, Holzschnitte, Olbilder. In
Wilhelm Schickard waren Naturwissenschaften, Geisteswissenschaften und
Kunst verschmolzen, und er war einer der ersten Ingenieure.

Kepler und andere GroB3e haben Schickard hoch geschitzt. Ein auslandi-
scher Kollege riithmt ihn : Siehe, nicht die Hdilfte war mir mitgeteilt worden;
du iibertriffst an Weisheit und Giite die Kunde, die ich vernommen habe. Wor-
te aus dem Alten Testament. Die Konigin von Saba hat sich so von Konig
Salomo verabschiedet.

* Unter Mitwirkung von Privatdozent Dr.-Ing. Rainer Callies
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Schickards Rechenmaschine muf3 damals ein kleines Wunderwerk gewe-
sen sein. Nichts ist davon iibrig geblieben. Der Dreifigjahrige Krieg hat alles
vernichtet, auch das zweite, fiir Kepler vorgesehene Exemplar der Maschine
ist verbrannt. Man hat von Schickard, dem es schlimmer erging als dem Hiob
der Bibel, kaum Notiz genommen, nie war Schickard, Genie aus dem schwi-
bischen Herrenberg, Vorbild gewesen, die allermeisten aus dem akademi-
schen Bereich kennen nicht einmal seinen Namen. Schickard war vergessen.

Vor 40 Jahren, um 1960, ist Schickards Maschinchen nachgebaut worden
nach erhaltenen Skizzen und Schickards Anweisungen fiir den Mechaniker,
und daBl man iiberhaupt etwas iiber die Schickardsche Rechenmaschine
erfahren hat, verdankt man der Arbeit der Kepler Kommission der Bayeri-
schen Akademie der Wissenschaften. Das Mitglied der Kommission, Dr.
Franz Hammer, hat 1935 in St. Petersburg im Nachla3 Keplers die Zeichnung
und mehr gefunden, die Schickard an Kepler gesandt hat.

Diese Bayerische Akademie der Wissenschaften hat gerade in ithrem Leib-
niz-Rechenzentrum in Miinchen den gréfiten Rechner Europas installiert.
Der Rechner, eine japanische Maschine, ist einer der groBBten der Welt; nur
drei Rechner, als Spezialanfertigungen fiir das Militdr. sind noch groBer.
Aber auch dieser groBe Rechner kann im Grunde nur Zahlen addieren,
ausgedriickt durch Schaltzustdnde in den kleinsten Bauteilen der Maschine:
entweder es fliet Strom oder nicht, Spannung ist da oder nicht. Eine Addition
im Zahlensystem der Maschine: 0 +0=0,0+1=1,1+1=2.

Ganze Reihen solcher einfachen Additionen sind im Rechner zusammen-
gefa3t zu Biindeln, dann kann man mehr, vielstellige Zahlen addieren; noch
mehr wird gebiindelt, dann kann man Multiplizieren, Dividieren. Auch die
duBerst verwickelten inneren Organisationsabldaufe in der Maschine lassen
sich auf Additionen zuriickfiihren. Kunst des Programmierens: hochkom-
plexe Vorginge der Welt zuriickfiihren auf lange Ketten von elementaren
Rechenoperationen. Die neue Maschine kann viel: in jeder Sekunde 1,3 Bil-
lionen zehnstellige Zahlen addieren oder multiplizieren. Setzt man fiir die
Addition oder Multiplikation von 2 Zahlen eine Sekunde an, brauchte man
40 000 Jahre, eine Billion Sekunden. In der Zeit des Neandertalers hadtte man
anfangen miissen zu rechnen, um das zu erhalten, was die Maschine in einer
einzigen Sekunde liefert. Der Rechner versorgt ganz Bayern und dariiber hin-
aus auch Deutschland. Eine schnelle Leitung, 155 Mbit/sec., geht nach
Erlangen-Niirnberg, dem zweiten Zentrum Bayerns: 16 bis 19 Biicher a 300
Seiten oder 4 !/2 Bibeln konnten in jeder Sekunde iibertragen werden.

Der GroBrechner besteht eigentlich aus 900 kleinen Rechnern, die in 8er
Gruppen arbeiten. 112 solcher Gruppen gibt es. Jeder dieser 900 kleinen
Rechner verarbeitet 1,5 Milliarden Zahlen in der Sekunde. 1,5 Milliarden
Sekunden, das sind 50 Jahre.
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Aber wer braucht schon 1,3 Billionen Zahlen? Die Zeit von der Erschaffung
unserer Welt bis heute wiirde nicht ausreichen, solche unvorstellbaren Men-
gen von Zahlen mit Geridten zu messen und in die Maschine einzuspeisen.
Aber es ist alles ganz anders. Um die hochkomplexen Vorginge der Wirk-
lichkeit nachbilden zu konnen, erzeugt sich die Maschine die Zahlen selbst.

1825 veroffentlicht Legendre, der groBe Franzose, Ritter der Ehrenlegion,
Mitglied der Pariser Akademie, seine Abhandlungen tiber elliptische Funk-
tionen und Eulersche Integrale. Sie tauchen bei Beschreibungen vieler Natur-
vorgidnge auf: Bei der Bewegung eines Pendels, beim Kreiselkompal, bei
Storungen der Planetenbahnen, bei der Durchbiegung von Bautriagern; man
begegnet ihnen jeden Tag, wenn man mit dem Riihrer Schlagrahm macht,
staubsaugt, oder im Krankenhaus im Kernspintomographen liegt und Kopf
und Gehirn nach Tumoren abgetastet werden, die starken Magnetfelder im
Tomographen werden durch diese Funktionen beschrieben. Auf Kinderspiel-
pliatzen und Trainingsstitten flir Boxer kann man diese Funktionen sogar
sehen: beim Seilhiipfen nimmt das Seil die Gestalt dieser Funktionen an.
Legendre weil} das alles nicht, aber ein genialer mathematischer Instinkt
weist thm den Weg — in Frankreich gibt es in vielen Stddten eine Rue Legen-
dre, sogar manche Schnapswirte wissen dort, wer Legendre war. Man frage
einmal in Deutschland herum, nach einem grofen deutschen Mathematiker.

In Legendres Buch findet sich eine Zahlentafel mit 16 000 Zahlenwerten fiir
diese Integrale. Legendre hatte fiir die Rechnungen 20 Jahre gebraucht, 20
Jahre miihseligster Arbeit. Diese Zahlentafeln, eine Art Telefonbuch ohne
Namen nur mit Nummern, waren frither fiir Wissenschaft und Technik
unendlich wichtig. Die Zahlenbeziehungen der Tafel lassen sich auch in Bil-
der umsetzen, und das sieht dann so aus.

Wir ahmen Legendre nach und setzen seine Formeln in ein Computerpro-
gramm um, das ist ein in einer formalen Sprache nach strengen Regeln ver-
fater Text. Zur Herstellung des Textes ist eine genaue Kenntnis der zugrun-
deliegenden Mathematik notig, die Maschine konnte uns da nicht helfen. Der
Text enthdlt den Algorithmus, das ist der Befehlsablauf fiir die Maschine, wie
sie die Integrale berechnen soll. Die Maschine beginnt. Wir miissen nicht lan-
ge warten. Nach 37 Tausendstel Sekunden ist sie fertig! Nur das Ausdrucken
der mehr als 16.000 Zahlen dauert linger. 20 Jahre Fronarbeit in den winzi-
gen Bruchteil einer Sekunde komprimiert!

Der Computer hat Legendre und tiberhaupt die ganze Mathematik iiberfliissig
gemacht. Man hort das hierzulande oft. Das Gegenteil ist richtig. Noch nie in
threr dreitausendjdhrigen Geschichte war Mathematik und ihre Tochter
Informatik so wichtig wie heute. Riickgrat der modernen Technik sind sie.
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Hochtechnologie ist im wesentlichen mathematische Technologie, heifit es in
Amerika. Die mathematischen Wissenschaften sind still und leise, von den
meisten unbemerkt, zu Schliisseltechnologien der modernen Internet-Gesell-
schaft geworden, stellte man liberrascht im Leitartikel einer iiberregionalen
Zeitung fest

Aber rabbinischer Weisheit eingedenk, dal Gegenwart und Zukunft eine
lange Vergangenheit haben, tauchen wir noch einmal in vergangene Jahr-
hunderte ein.

Diirer und die Perspektive

In der Renaissance entdeckte die Kunst die Geometrie; ldngst verschiittete
mathematische Dogmen architektonischer Vollkommenheit wurden damals
wieder ausgegraben. Die grolen Baumeister der Renaissance waren iiber-
zeugt, dal} die sichtbare Welt, dort, wo sie sich in geometrisch vollendeter
Kirchenarchitektur zeigt, die metaphysische Welt erschlief3t.

Keiner lese mich, in meinen Werken, der nicht Mathematiker ist. ... Leonardo
da Vinci sprach so von sich. Leonardos visionédrer Blick erweckt immer wie-
der Bewunderung. Der andere GroBe, Raffael, sieht sich mehr als Geometer
denn als Maler. In seiner Schule von Athen feiert er die Geometrie, zeigt uns
Philosophen, Geometer und stellt sich selbst zur Gruppe der Geometer rechts
im Bild.

Die Renaissance und das «neue Sehen». Die Wiederentdeckung der mathema-
tischen Perspektive: man schreibt sie Brunnelleschi und Piero della Francesca
zu, und Peruginos Bild von 1481 war den Kiinstlern Vorbild. Unerhorte Voll-
kommenheit sehen wir in Michelangelos Deckenfresken der Sixtina. Die
Dynamik in der Bewegung der Figuren wird auch durch die meisterhaft ver-
wendete, stindig wechselnde Perspektive der Bilder im Fresko erzeugt; die
Propheten und Sibyllen steigen beinahe korperlich von der Decke herab. Das
alles gemalt auf schwierigstem Hintergrund, einer ungleichmiflig gewdlbten
Decke, Michelangelo mufite mehr oder weniger verzerrt malen, damit es von
unten vollkommen natiirlich erscheint. Das Genie wuBlte neben so vielem auch
um alle geometrischen Gesetze. Es schuf in der Sixtina ein menschliches Uni-
versum, das bis auf den heutigen Tag tief bertihrt, ein grandioser menschlicher
Kosmos in einer virtuellen Welt. Die Bewiltigung schwierigster perspektivi-
scher Darstellungen weist die groBen Meister der Renaissance als eminente
Wissenschaftler aus. In den Notizen Leonardos, Raffaels, und in den wenigen
von Michelangelo — er hat fast alles verbrannt — finden sich immer wieder
mathematische Formeln, Berechnungen. Geometrie als Teil ihrer Kunst.
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Aber die italienischen Kiinstler hiiteten das Wissen um die neu entdeckte Per-
spektive als Geheimnis. Aus Venedig schreibt (1506) Albrecht Diirer, Freund
Raffaels, dem Willibald Pirckheimer in Niirberg, ... werde ich nach Bologna
reiten, um der Kunst in geheimer Perspektive willen, die mich einer lehren
will. ... Dananch will ich mit dem néchsten Boten kommen. Geometrie ist fiir
Diirer Offenbarung der Naturgesetze. Einer, der nicht Algebra und Geometrie
beherrscht, sowie alles, was man iiber Astronomie und Naturwissenschaften
lernen kann, ist fiir ihn kein ganzer Maler. Den Johannes Miiller aus dem
unterfrankischen Konigsberg, einen Erneuerer der Mathematik der Renais-
sance, studiert er sorgfiltig. Die Welt kennt ihn als Regiomontanus. Columbus
und Amerigo Vespucci sollen nach den Sternkarten des Regiomontanus gese-
gelt sein. Die Schriften eines anderen GroB3en liest Diirer mit entziickter Ver-
bliiffung.

Beriihmt war er schon zu Lebzeiten, Nikolaus von Kues aus Bernkastell an der
Mosel, Cusanus, Kardinal Nikolaus von St. Peter in den Ketten. Giordano Bru-
no, der groBBe Italiener und Rebell — seiner Verbrennung vor 400 Jahren hat man
gerade gedacht — rithmt den Cusaner ... daf} er dem Pythagoras nicht gleich sel,
sondern ein Groflerer. .. ..., In seiner Schrift De mathematica perfectione, von
der mathematischen Vollendung, bekennt der Kardinal Mathematische Einsich-
ten fiihren uns zum beinahe absolut Gottlichen und Ewigen. Mit Kurven- und
Flachenmessung hat er sich beschiftigt, Cusanus, beinahe die Integralrechnung
erfunden, 250 Jahre vor dem groBen Leibniz. Gottlicher Leibniz, heiflt ihn der
niichterne und skeptische Golo Mann. Und wer wollte auch widersprechen.

In Niirnberg packt Albrecht Diirer alle seine Erkenntnisse iiber das neue
Sehen in sein Werk Underweysung der messung mit dem zirckel und richt-
scheyt.... Und dem Willibald Pirckheimer schreibt er: Dieweil aber dies die
eigentliche Grundlage aller Malerei ist, habe ich mir vorgenommen ... eine
Grundlage zu schaffen ... um daraus die rechte Wahrheit zu erkennen. ... ...
gar leicht verlieren sich die Kiinste, ... schwer nur ... werden sie wieder erfun-
den. ... Und habe ich Euch dieses Biichlein aus besonderer Zuneigung und
freundlicher Absicht zugeschrieben. ... Diirer hatte sein Buch mit Herzblut
geschrieben, schitzte es hoher als seine Kunstwerke.

Die Renaissance war eine groe Zeit fiir die Mathematik auch im Heiligen
Romischen Reich Deutscher Nation. In Augsburg erscheinen Biicher iliber
Mathematik; sogar die Fugger interessierten sich dafiir, zeichneten als Her-
ausgeber der Werke des Euklid. In der Benediktinerabtei St. Ulrich und Afra
verfalit der gelehrte Monch Vitus Rechenanleitungen: In seinen deutschen
Texten aus dem Jahre 1500 erscheint das lateinische Wort computus, com-
putj, (computieren), 470 Jahre spiter taucht es in Deutschland wieder auf,
jetzt aber mit angelsdchsischer Betonung: Computer.
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Wie perfekt die groBen Maler der Renaissance die geometrischen Gesetze
der Perspektive beherrschten, sehen wir am Bild Die Botschafter, einem Mei-
sterwerk des Augsburger Hans Holbein d. Jiingeren aus seiner Londoner Zeit.
Das Bild, den franzosischen Botschafter Jean de Dinteville und den Bischof
von Lavour Georges de Selve zeigend, steckt voller Symbolik: Hier mathe-
matisch-astronomische Instrumente als wesentliche Hilfsmittel zur Erkennt-
nis der Welt; da Peter Apians deutsches Lehrbuch einer Arithmetik fiir Kauf-
leute, aus Leipzig; das Bild wurde 1534 in London gemalt. Neben dem
franzosischen Bischof des Johannes Walthers protestantisches Gesangsbuch
aus Wittenberg, aufgeschlagen die Seite mit dem deutschen Lied Komm hei-
liger Geist. Das war kein Zufall: der franzosische Bischof war tief bekiimmert
iiber die Glaubensstreitereien in Deutschland — es war die Zeit der Reforma-
tion — und er hatte die Deutschen angefleht, sie mochten ihre Differenzen bei-
seite lassen und heimkehren zu den anderen Christen. Zwischen den beiden
Figuren ein langliches Etwas, noch vor zweihundert Jahren hatte man dariiber
geriatselt. Es ist ein perspektivisch verzerrter Schidel; im Rechner kann man
die Verzerrung riickgdangig machen, Mathematiker sagen, man wendet auf
das Gebilde die inverse Abbildung an. Das Ergebnis sehen Sie hier. Ein per-
fekt gemalter Schiddel, des jungen Holbein vollkommene Kenntnis der Male-
rei und erstaunliches Wissen um Mathematik offenbarend*.

Kunst der Perspektive offenbart sich auch im Freskenwerk des Cosmas
Damian Asam, jenen beriihmten Kuppelbildern in bayerischen Kirchen, wie
hier in Maria de Victoria in Ingolstadt. Der Maler Asam besal} eine genaue
Kenntnis der geometrischen Abbildungsgesetze, er hatte — um 1690 — Andrea
Pozzos Lehrbuch tiber Perspektive genau studiert.

Bis in unsere Tage teilten gro3e Maler Diirers Begeisterung fiir streng ratio-
nale Wissenschaften. Von Salvador Dalis Verehrung Raffaels und Dalis Nei-
gung zur Geometrie weill man. Man kennt Wassily Kandinskys Ausspruch: ...
Es kann alles als eine mathematische Formel ... dargestellt werden. Paul Klee
war sogar liberzeugt, da3 es eine mathematische Grundlage aller Daseinsbe-
reiche gibt. Die Cardinal-Progression (Folge 1,2,4,8,16,...) hatte es 1hm
besonders angetan, und er setzte sie in seine Bilder.

Aber was kann uns das alles bedeuten, was kann uns heute Diirer bedeuten,
der seit 500 Jahren tot ist? Uns, die wir im Computerzeitalter leben und uns
so klug glauben. Jeder Rechner geht bei der perspektivischen Bilderzeugung
wie Diirer vor, die Maschine kann es nur schneller als Diirer, unendlich viel
schneller. Verwohnt, verzogen, wie wir sind, sehen wir Erkenntnisse der Wis-

* Siehe: Holbein’s Ambassadors i Susan Foister, Ashok Roy and Martin Wyld. The
National Gallery, London 1997.
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senschaft, Erkenntnisse, um die jahrhundertelang gerungen wurde, als grobte
Selbstverstandlichkeit an. Schidmen sollten sich die Leute, meinte Albert Ein-
stein zu solcher Haltung.

Bilderzeugung im Rechner

Die neue Archdologie, virtuelle Reisen in die Vergangenheit ist der Titel eines
neuen Buches!. Man sieht die Uberreste antiker Kulturen, vertraute Bilder,
und daneben Rekonstruktionen dieser Bauwerke — im Rechner erzeugt.
Sehen wir einige an.

Virtuelle Welten?. Der Bildgeber, Bilderzeuger ist der Rechner, und mit Hilfe
der Mathematik lassen sich Bilder der Wirklichkeit berechnen. Das weil3 man
seit langem, half freilich wenig, weil mathematische Strukturen kaum sicht-
bar gemacht werden konnten. Die Natur ist geizig bei der Schaffung von
Michelangelos. Heute baut der elektronische Rechenautomat. Aber wie
macht er das?

Cluny, das groBe Kloster in Burgund mit seiner gewaltigen fiinfschiffigen
Kirche, iiber 200 Meter lang war sie und 7 grofle Tiirme hatte sie, war in der
franzosischen Revolution zerstort worden. Im Rechner wurde die Kirche
wieder aufgebaut, Cramer und Koob haben es in einem Buch dokumentiert:
Ein Drahtmodell wird erstellt, die Formen zuriickgefiihrt auf regelmiBige
Grundkorper der Geometrie und durch Vereinigung und Verschneidung neue
Formen gebildet. Einzelne Bauteile werden zu Bauteilgruppen zusammenge-
faBit, Stiitzen, Arkaden, Untergarden, Obergarden. Und dann wird «zusam-
mengebaut», nach alten, erhalten gebliebenen Planen.

Die schnellen Rechenautomaten haben es moglich gemacht, Beziehungen
zwischen Zahlen schnell aufzulosen. Numerische Simulation nennt es der
Fachmann; man versteht darunter die explizite Losung mathematischer Glei-
chungen und ihre Umsetzung in Bilder auf Rechnern nach den Gesetzen der
Darstellenden Geometrie, von immenser Bedeutung fiir die moderne Wirt-
schaft, fiir Schliisselindustrien wie den Automobil- und Flugzeugbau, die
Raumfahrt, die Elektro- und Chemieindustrie. Fortschritte in der industriellen
Produktion und Forschung sind ohne numerische Simulation nicht mehr vor-
stellbar. Die zur Bildherstellung erforderlichen Rechenleistungen sind sehr
grof3, erst recht, wenn bewegte Bilder erzeugt werden miissen.

I von Maurizio Forte und Alberto Siliotti
2 Virtuell oder virtual, vom mittellateinischen virtualis, der Kraft nach vorhanden,
aber noch nicht wirklich.
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Einen solchen ProzeB studieren wir jetzt an der optimalen Gestaltung
einer Turbinenschaufel.

Transistoren, Chips

Moglich wurden solche ungeheueren Rechenleistungen erst durch die Minia-
turisierung der elektrischen Bauteile, insbesondere des Transistors. Begon-
nen hatte alles im Oktober 1957, die Sowjetunion ihren ersten Kunstmond,
den Sputnik, in eine Umlaufbahn um die Erde geschossen. Ein Schock fiir die
Vereinigten Staaten. Ein neues Raumfahrtprogramm wird sofort etabliert,
1958 die NASA gegriindet, und fiir dieses Raumfahrtprogramm braucht man
dringend kleine Rechner. Da war der Transistor, 1947 bei Bell entdeckt: zwei
Driéhte aus Phosphorbronze auf einem Germaniumkristall, damit konnte man
schwache elektrische Strome verstarken. An Transistoren war man erst nicht
interessiert, doch jetzt, 1957, in einer Art Staatsnotstand, baute man Transi-
storen — die waren teuer in der Herstellung — l6tete sie in die Schaltkreise ein.
Dann hatte man die Idee, alles zusammen auf eine Siliziumplatte zu bringen
und aufgedampftes Metall als Leiterbahnen zu verwenden. Chip nannte man
das Ding, Mikrochip. Dieser Mikrochip wurde von der NASA in ihre Gemi-
niraketen eingebaut und auch in allen Raumfahrtprogrammen verwendet bis
hin zum Apollo Programm. 1968 konnte man schon 64 000 kleine Schalt-
kreise auf einem Chip unterbringen.

Die Raumfahrt hatte die Rechnerentwicklung, die Miniaturisierung, voran-
getrieben.

Im Bild das Schema eines Metall-Oxyd-Silizium Transistors; Silizium, im
wesentlichen geschmolzener Sand. Zur Herstellung der Transistoren gentigte
bald bloBe Experimentierkunst, «gefiihlsmdBiges» Bauen, nicht mehr. Gera-
de die Miniaturisierung der Bausteine in den Rechenautomaten zwang zu
genauer Vorhersage des elektrischen Verhaltens der Transistoren, noch ehe
sie in Fertigung gegangen waren. Man fand heraus, dal das funktionale Ver-
halten der Transistoren durch die Losungen eines Systems der Ordnung 6 von
partiellen Differentialgleichungen vom elliptischen Typus beschrieben wer-
den kann. Solche Gleichungen zu 16sen war ein schwieriges Problem. An
Verfahren zur numerischen Losung der Halbleitergleichungen hat man inten-
siv gearbeitet und mit den Losungen die «<Halbleiterwirklichkeit»> relativ
gut vorhersagen konnen.

Auf die Mathematik war man auch angewiesen, als viele solcher Transistoren

zu ganzen funktionalen Blocken verkniipft werden sollten, den sogenannten
««Chips»». Das ist ein Bldttchen aus Silizium, auf dem die Transistoren ein-
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geitzt sind, ein komplizierter technischer ProzeB. Wie der Block arbeitet und
welche Spannungen und Strome man an den Zufiihrungsdrihten, den «<Bein-
chen» des Chips, abnehmen kann, 1dBt sich wieder aus den Losungen von
Differentialgleichungen — jetzt sind es nur gewohnliche Differentialgleichun-
gen, dafiir aber viele, Tausende, Hunderttausende, Millionen! — mit guter
Genauigkeit vorhersagen.

Auf einem Speicherchip, einem 4 Megabit Chip, sitzen vier Millionen Tran-
sistoren, dicht an dicht gepackt. Ein 16 Megabit Chip enthilt etwa 16 Millio-
nen Transistoren auf der Flache von einem Pfennig. Die ganze Bibel, Altes
und Neues Testament zusammen, konnte man leicht auf zwei von ihnen
speichern. Freilich ohne schone Bilder, wie z. B. die von Doré, da gehen
vielleicht zwanzig solcher Bilder auf den Chip. Einer der neueren ist der
256 Megabit Chip; er ist gerade im Handel. Man kann einige Sekunden eines
35 mm Kino-Farbfilms darauf speichern. Der neue Chip nahme alle 80 der
neuen Bibelbilder des Wiener Malers Ernst Fuchs auf.

Roboter und Fahrzeugbau, Elchtest

Es gibt nicht nur Kunst, es gibt auch Autos. Autos werden heute von Robotern
in Roboterstralen montiert. Wie soll sich ein solcher Roboter bewegen: soll
der Roboterarm moglichst schnell von einem Punkt zum anderen fahren,
oder soll der Energieverbrauch minimal sein? Eine Frage der Mathematik.
Der Roboter wird in mathematische Gleichungen, in Differentialgleichungen
«aufgelost». Und die Aufgabe wird zu einer Aufgabe der optimalen Steue-
rung. Die mathematische Losung 148t sich in einen Film3 umsetzen.

Autos werden zwar von Robotern montiert, aber im Rechner entworfen. Die
japanische Kraftfahrzeugindustrie hatte damit schon vor Jahrzehnten Erfolg
und Entwicklungszeit, Entwicklungskosten erheblich reduzieren konnen.
Die europdische Fahrzeugindustrie ist spiter gefolgt. Fahrwerksimulationen
bei Kraftfahrzeugen laufen so ab. Ein Kraftfahrzeug wird in einem mathema-
tischen Koordinatengeriist fiir 56 Variable entworfen. Die Bewegungen von
Vorderachse und Hinterachse, der Reifen, des Motorblocks, des Schwer-
punktes etc.: fiir jede dieser Bewegungen steht eine Variable als Funktion der
Zeit. 56 zeitvariable Gro3en am Auto, die liber Gesetze der Mechanik 1n (dif-
ferentiellen) Beziehungen zueinander stehen. Mit weniger Variablen geht es
nicht, mehr wiren besser. Eisglitte, Bodenunebenheiten, Federstarken, Len-
kungsfehler, Reifengiite, Motorkraft u. a. werden als Parameter eingegeben.
Wir sehen uns dazu einen Film* an. Das virtuelle Auto wird auf eine Test-

3 Kurzversion unter http://www-m2.mathematik.tu-muenchen.de/Drittmittel/BMBF/Roboter
4 Kurzversion unter http://www-m2.mathematik.tu-muenchen.de/~voegel/kfz
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strecke geschickt. Ein virtueller Fahrer bedient Lenkrad, Gaspedal, Bremsen
und versucht moglichst schnell die Testrunden zu absolvieren. Man sieht das
fahrende Auto auf dem Bildschirm, doch dieses Auto ist nur das visuelle
Abbild der Losungen eines Systems von 56 Differentialgleichungen in einem
56-dimensionalen Losungsraum. Auf Eisplatten kommt dieses virtuelle Auto
ins Rutschen, bei falscher Bremsung schleudert es, fliegt aus der Kurve. Das
Auto auf dem Bildschirm verhilt sich getreu wie ein wirkliches Auto auf
einer Testrecke.

Fachjournalisten viel gelesener Zeitschriften und Zeitungen kommentieren das
so. «Auto Bild»: ... Stolz auf superkurze Entwicklungszeiten, wird immer mehr
auf die Computersimulation vertraut. Rechenmodelle ersetzen jedoch keine
Fahrtests ... . Die «Neue Ziircher Zeitung»?: ... Der Computer, der Abgott der
Jahrtausendwende, hat den Elchtest nicht bestanden, den Zusammenprall mit
der realen Welt ... Aber das ist nicht wahr: Wird namlich beim virtuellen Auto der
Schwerpunkt nach oben verlagert, tillt beim erzwungenen Slalomfahren auch
das virtuelle Fahrzeug um, wie in der Wirklichkeit. Die mathematischen Losun-
gen sehen den Unfall voraus, noch ehe das Fahrzeug gebaut ist. Freilich, von
selbst, aus sich heraus, fiihrt kein Rechenprogramm einen «Elchtest» durch.

Metamorphose der Pflanzen im Rechner

Auf die Seiten eines Dreiecks setzen wir kleinere Dreiecke, auf deren Seiten
noch kleinere und so fort bis ins Unendliche. Schneeflocken sehen (fast) so
aus. Noch ein Kuriosum: In ein Quadrat setzen wir kleinere Quadrate, in die-
se noch kleinere, bis in alle Ewigkeit. Ergebnis? Ein Streckenzug, der ein
Quadrat ganz ausfiillt! Die Gesetze, nach denen beide Kurven erzeugt wer-
den, lassen sich in Form einer genauen Berechnungsvorschrift, eines Algo-
rithmus hinschreiben. Ein Rechenautomat kann in Verbindung mit einem
Bildschirm die so erzeugten Kurven sichtbar machen, zwar nicht die Final-
kurve, das ist prinzipiell unmoglich, wohl aber die Vorstufen, die der Final-
kurve beliebig nahe kommen.

Man kann die einfache Berechnungsvorschrift abandern, etwa so, dall wir
von dem Blatt Papier, der Ebene, in den Raum hinausgehen, und man kann bei
jedem Verfeinerungsschritt noch eine spiralformige Drehung der kleinen
Kurvenstiickchen vornehmen. Man 1st nicht gezwungen, die Kurvenstiicke
alle gleich lang zu machen: man kann das eine kiirzer, das andere linger hal-
ten, wie es der Zufall eingibt. Alle diese Dinge lassen sich wieder in Form
einer informatischen Anweisung, in Form eines sogenannten «string» dar-

> Auto Bild 44/1997. NZZ Folio 2/1998
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stellen. Der Rechenautomat fiihrt den Algorithmus aus. Und das Resultat auf
dem Bildschirm: Es hat Ahnlichkeit mit einer Pflanze. Wir machen das
Gesetz komplizierter, farben das entstehende Bild ein und erhalten merkwiir-
dige Gebilde, die mit Pflanzen groBe Ahnlichkeit haben, und es liegt manch-
mal nur an unzureichenden Hilfsmitteln, dal sie nicht so vollkommen wie
Pflanzen aussehen.

Goethes Metamorphose der Pflanzen, die Ableitung aller Pflanzen aus einer
Urpflanze nach dem Gesetz der Zusammenziehung und Ausdehnung, verse-
hen mit einer Spiraltendenz in einem Vertikalsystem.® So hat Goethe das
Pflanzenreich geschaut und sich dafiir den Hohn der Zeitgenossen — auch der
Nachwelt — eingehandelt. Es hat Goethe tief getroffen, aber Zeit seines
Lebens hielt er selbstbewullt an dieser Idee fest: ... wie von einer Leiden-
schaft eingenommen und getrieben, mich ... durch alles iibrige Leben hin-
durch damit beschdiftigen mufte. ... Begeistert hatte er schon 1787 aus Rom an
Frau von Stein geschrieben: Die Urpflanze wird das wunderlichste Geschopf
von der Welt ... Mit ... dem Schliissel dazu kann man ... noch Pflanzen ins
Unendliche erfinden, ... die, wenn sie auch nicht existieren, ... eine innerliche
Wahrheit und Notwendigkeit haben. Dall mathematische Wissenschaften ihm
den Schliissel zu seiner Morphologie der Pflanzen liefern, wiirde ihn hochst
verwundert haben. Der Schliissel: Rechenprogramme’, in denen «Zusam-
menziehung», «Ausdehnung», «Drehung», «Spiraltendenz» und anderes
durch geometrische Transformationen algorithmisch mit groBBter Geschwin-
digkeit und in groBer Mannigfaltigkeit erzeugt werden. Durch Festlegung
von Eingangsparametern, Einsetzen von Zahlenkombinationen, erzeugt das
Programm Gebilde, die wie natiirliche Pflanzen aussehen. Andert man die
Eingangsparameter ab, erhidlt man neue Pflanzen. Durch Variation dieser
Parameter wird eine uniibersehbare Fiille botanischer Objekte erzeugt, Pflan-
zengestalten, eine virtuelle, kiinstliche Welt aus dem Rechner, «materialisier-
te» Idee der Urpflanze.

Raumfahrt

Bedeutsame Anwendungen findet die Mathematik in der Raumfahrt. Konigs-
disziplin der Ingenieure nennt sie Ambros Speiser, der groe Ingenieur von
der ETH Ziirich. Nirgendwo werden Ingenieure in ihren Arbeiten so gefor-
dert, wie in der Raumfahrt. Der Zwang zur Perfektion bis in die letzten und

¢ Fiir Schiller eine «Idee»
7 siehe z. B. das Pflanzenmodellierprogramm von B. Lintermann und O. Deussen
xfrog (http:www.greenworks.de)
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unscheinbarsten Einzelheiten erzwingt strenge geistige Disziplin der Kon-
strukteure und bringt Erkenntnisse, die auch fiir Dinge auBerhalb der Raum-
fahrt von grofStem Wert sind. Es gibt zahllose Beispiele, die Rechnerentwick-
lung ist nur eines davon; die vielbeschworene Teflonpfanne nicht, Teflon gab
es schon vorher.

Einer der NASA-Mainner hatte es so gesagt: ... Die Leute sehen immer nur die
groflen Raketen. Aber das ist nur ein Teil der Raumfahrt und nicht einmal der
grofite. Das andere, die iiberaus komplizierten Steuereinrichtungen, die
gewaltige dazu notwendige Elektronik, die Berechnung der Flugbahnen, den
riesigen, aber unabdingbaren Leitapparat auf der Erde, das sehen die Leute
nicht. ... Was hat den Amerikanern der Flug zum Mond eingebracht? Die
Raumfahrt hat damals verstarkt Grundlagen fiir eine amerikanische Compu-
terindustrie gelegt; die ist jetzt so méchtig, daB sie uns heute mit ithren Pro-
dukten erschldgt. Auch Japan leistet sich seit 1964 ein umfangreiches Pro-
gramm der unbemannten Raumfahrt. Sowohl in den USA als auch in Japan
war die Raumfahrt Antriecbsmotor fiir Computerindustrie und Mikroelektro-
nik. Raumfahrt allein war noch kein Garant fiir deren Erfolg, aber ohne sie
wire es nicht gegangen. Auch Indien treibt seit Jahrzehnten Weltraumfor-
schung, leistet sich eigene Satelliten; Grundlagen dafiir wurden noch unter
Pandit Nehru in Bangalore geschaffen. Bangalore ist heute die Computer-
kapitale Indiens. Unbeeinflult von aller Tagesmode haben die USA, Japan
und Indien, auch Frankreich, thre Weltraumforschungen iiber die Jahre
durchgezogen.

Vom Start der Raketen bis zur Bildiibertragung, also der Ubermittlung und der
storungsfreien Rekonstruktion der Bilder, die von den Raumsonden zur Erde
gefunkt werden, wird in unvorstellbarem Malle von neuen mathematischen
Methoden Gebrauch gemacht. Durch ihre Raumfahrt haben die USA und
Japan Malistibe und Normen bei der Codierung von Bildern und der Bildii-
bertragung gesetzt.

Auch die Ermittlung der Bahn, die Raumsonden fliegen miissen, um mit mini-
malem Treibstoffverbrauch ihren Zielplaneten zu erreichen, ist eine mathema-
tische Aufgabe, ein Mehrpunkt-Randwertproblem mit freien Rindern.

Zwischen den Planeten Mars und Jupiter liegt der Asteroidengiirtel. Hier
umkreisen Abertausende von kleinen Planeten — die Asteroiden — die Sonne.
Der groBte von ihnen besitzt einen Durchmesser von etwa 1 000 km, und bis
zum Staubkorn hinunter sind alle GroBBen vertreten. Diese kleinen Planeten
sind mit freiem Auge nicht sichtbar mit Ausnahme des Asteroiden Nr. 4
Vesta. Asteroid Nr. 4386 ist nach dem Astrophysiker Prof. Liist benannt, ehe-
maliger Prasident der Max-Planck-Gesellschaft und der Alexander von Hum-
boldt-Stiftung. 4386 LUST liegt etwas auBerhalb des Giirtels, seine Bahn ist
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stark gegen die Ekliptik geneigt. Die Berechnung der optimalen Flugbahn
eines Raumfahrzeugs zu 4386 LUST — es muB eine zweistufige Sonde sein —
ist eine Herausforderung an die Mathematik.® Optimal soll die Bahn in dem
Sinne sein, daBB moglichst wenig Treibstoff verbraucht wird, damit die Sonde
viel Nutzlast mitnehmen kann.

Die Ergebnisse der Rechnungen werden in einem Film? prasentiert.

Rekonstruktion eines Schadels

Im Jahre 1000 wurde Prinzessin Gisela aus dem alten bayerischen Herzogs-
geschlecht der Luitpoldinger, die Schwester Kaiser Heinrich II, zur ersten
Konigin von Ungarn gekront. Ihr Denkmal und das ihres Gemahls Stephans
des Heiligen steht in der ungarischen Konigsstadt Veszprém. An die Konigin
erinnert heute in Minchen ein kostbares Kreuz, das sie fiir ihre Mutter in
Bayern gestiftet hat und im Bayerischen Nationalmuseum aufbewahrt wird,
und auch das Gisela-Kreuz in der Schatzkammer der Miinchner Residenz. In
den Wirren der Geschichte wird Gisela spiter Abtissin in der Passauer Abtei
Niedernmiinster, und dort wurde sie auch beigesetzt. Die ehemalige bayeri-
sche Prinzessin wurde selig gesprochen. In Ungarn wird die Konigin als
Nationalheilige verehrt; viele ungarische Pilger suchen ihr Grab in der Pas-
sauer Abtei auf. Zur Restaurierung der Gebeine muBite vor kurzem das Grab
geoffnet werden. Die ungarische Regierung schickte dazu eigens ihren Bot-
schafter nach Passau, der ersten ungarischen Konigin, der seligen Gisela, die
Reverenz der Republik Ungarn erweisend.

Die Gebeine waren in schlechtem Zustand. Neue Methoden aus dem Miin-
chener Krankenhaus rechts der Isar sollten helfen, eine Replik des Schidels
anzufertigen. Im modernsten Spiraltomographen von Siemens Medizintech-
nik in Forchheim/Bayern wurde zuniéchst eine tomographische Aufnahme
angefertigt. Aus diesen Daten wurden iiber komplizierte Prozesse die mathe-
matischen Gleichungen abgeleitet, die die Form des Schédels beschreiben.
Mit Hilfe dieser Gleichungen 1d8t sich eine Replik anfertigen, Fachleute kon-
nen aus der Replik das Antlitz der Konigin nachbilden.

8 Ein freies Randwertproblem mit etwa 70 Differentialgleichungen und weiteren 300
Nebenbedingungen in Form algebraischer und transzendenter Gleichungen. Startge-
wicht der Sonde 1 1/2 Tonnen, Nutzlast ca. 130 kg.

9 Kurzversion unter http://www-home.mathematik.tu-muenchen.de/ callies/Filme/Filme.html
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Leben der Sonne

Sterne werden wie wir selbst geboren. Im Orionnebel blicken wir in eine der
Werkstatten der Schopfung; dort sind gerade neue Sterne, neue Sonnen,
erschaffen worden. Sterne sind aber auch sterblich — wie wir selbst. GroBe
Sterne explodieren am Ende ihres Lebens mit unvorstellbarer Gewalt in
gleilender Lichtfiille. Die vom Explosionsherd ausgehenden Schockwellen
rasen dann fiir Jahrtausende durch das Weltall, verdichten dort vorhandene
Materie und leiten die Geburt neuer Sterne ein. Auch die Sonne, die Erde, ver-
danken mit groBer Wahrscheinlichkeit ihr Leben der Explosion eines Riesen-
sterns, die vor unendlichen Zeiten stattgefunden hat. — Im Sternbild des Ori-
on sehen wir einen sterbenden Stern, eine sterbende Sonne, die Beteigeuze.

Kein Stern ist uns so wichtig wie die Sonne. Ihr Anblick gibt den Engeln
Stdrke riihmt der Erzengel Raphael in Goethes Faust die Sonne.

Tief im Sonneninnern wird Wasserstoff zu Helium «verbrannt», dabei ent-
steht Energie in Form kurzwelliger Rontgenstrahlung; auf dem langen, Jahr-
millionen dauernden Weg zur Sonnenoberflache wird sie in Licht und Warme
umgewandelt. In jeder Sekunde 16sen sich 4 Millionen Tonnen Materie in
Strahlung auf, und in jeder Sekunde wird die Sonne um 4 Millionen Tonnen
leichter. Aber die Sonne ist so riesig, selbst nach Milliarden Jahren ist der
Verlust fiir sie ganz klein. Der nach auflen wirkende Gasdruck und die nach
innen ziehende Gravitationskraft halten die Sonne im stabilen Gleichge-
wicht. Die Sonne: Ein gigantischer, aus ionisiertem Wasserstoff und Helium
bestehender, fre1 im Raum schwebender und sich selbst regulierender Kern-
fusionsreaktor, der von seiner eigenen Schwerkraft zusammengehalten wird.

Das Leben eines Sterns 1a6t sich durch ein System von partiellen Differen-
tialgleichungen beschreiben; und die Losungen Druck, Temperatur, Leucht-
kraft, Masse, chemische Haufigkeiten usw. als Funktionen von Ort und Zeit
berechnet, beschreiben das Leben der Sonne. Wir I6sen die zugehorigen Dif-
ferentialgleichungen fiir die Sonne. Ein hochnichtlineares System von parti-
ellen Differentialgleichungen vom parabolischen Typus, vollstindig hinge-
schrieben fiillen sie mehrere Seiten. Es ist ein freies Randwertproblem mit 3
freien (beweglichen) Randern. Das Leben der Sonne: vom Ziinden der Kern-
fusion vor etwa viereinhalb Milliarden Jahren bis zum Ende der Sonne in
etwa siebeneinhalb Milliarden Jahren, im Rechner gesehen. Solche unendli-
chen Zeiten entziehen sich aller menschlicher Vorstellungskraft. Setzen wir
eine Milliarde Jahre einem Kilometer gleich, dann sind es 12 Kilometer von
der Geburt unserer Sonne bis zu ihrem Tod. Zwolf Milliarden Jahre, 12 Kilo-
meter. Etwa bei Kilometer 4,5 leben wir; die menschliche Rasse trat ca. 6
Meter vorher, 6 Millionen Jahre zuvor, in Erscheinung; die ganze Kulturge-
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schichte der Menschheit reduziert sich auf ein paar Zentimeter, unsere
Gegenwart ist unmefBbar diinn, 100 Jahre sind weniger als Papierstirke, ein
zehntel Millimeter. Wir wollen annehmen, da3 es mit der Menschheit noch
eine Million Jahre weitergeht — da sind wir Optimisten —, doch das ist nicht
mehr als ein Meter. Leben konnte die Erde noch einen ganzen weiteren Kilo-
meter tragen, eine Milliarde Jahre. Aber die von der Sonne ausgestrahlte
Energie nimmt zu, fiir uns unmerklich, es wird heil auf der Erde, — verwech-
seln Sie das nicht mit dem sog. Treibhauseffekt —, die Weltmeere werden ver-
dampfen, alles verbrennt. Die Sonne wird weitere 6 Milliarden Jahre leuchten,
6 Kilometer konnen wir noch gehen, vor ihrem Ende wird sie sich zu einem
rotlich leuchtenden Riesenstern ausdehnen, der, von der Erde aus gesehen,
fast den halben Himmel einnehmen und so groB8 wie die Merkurbahn sein
wird. Dann wird die Sonne in rascher Folge ihre Gashiille abstoBen, sich
zusammenziehen, sich wieder ausdehnen, erneut Gasmassen abstoBen ..., ein
planetarer Gasnebel bildet sich, der im Weltraum entschwindet und einen
winzigen, aber sehr schweren, langsam verloschenden Zwergstern zuriick-
1aBt. 1 Kubikzentimeter Materie von ihm wiegt etwa !/> Tonne.

Das Leben der Sonne im Film!?, Der Film komprimiert die 12 Milliarden
Lebensjahre der Sonne auf wenige Minuten. Das Leben eines hundertjdhrigen
Menschen dauert gerade 1 Millionstel Sekunde. Wire die Sonne nur wenig
groBer, wiirde sie, die Losungen der mathematischen Gleichungen zeigen es, so
schnell brennen, daB sich gar kein Leben auf einem Planeten entwickeln konnte.
Bei nur 20% groflerem Durchmesser, nicht viel also, wire schon nach 1 Milliar-
de Jahren alles vorbei. Und erst, wenn die Sonne zehnmal so viel Masse hiitte,
schon nach ein paar Millionen Jahren — Millionen, nicht Milliarden — wire aller
Brennstoff der Sonne verpufft. Wire die Sonne kleiner, wire es besser, aber sie
wiirde jetzt nicht hei3 genug sein und die Planeten miiBiten sie dichter umkreisen,
wiren dann intensiver (Rontgen)Strahlung ausgesetzt und michtige Gezeiten
wiirden auf den Planeten toben, kein Leben hatte sich entwickeln konnen.

Wer hitte die Sonne besser bauen konnen.

Meine Damen und Herren,

Zum hier prasentierten Material aus den unterschiedlichsten Gebieten
haben viele Forscher entscheidende Beitrdage geleistet, auch meine Mitarbeiter.

Herr Callies und ich haben Sie mitgenommen auf eine virtuelle Reise
durch Raum und Zeit. Sie sind geduldig mitgegangen. Wir danken Ihnen.

10 Kurzversion unter http://www-m2.ma.tum.de/~haberj/Sonne.
In Zusammenarbeit mit dem Max-Planck-Institut fiir Astrophysik, Miinchen.
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