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Une collaboration entre
les Instituts de mathématiques et de physiologie:

un modèle mathématique
de la contraction d'un muscle

Jean-Pierre GABRIEL

Le travail présenté ici est le fruit d'une collaboration entre un physiologiste (D. Rüegg)
et deux mathématiciens (L. Studer et J.-P. Gabriel) qui s'est étendue sur plusieurs
années. Cette recherche a permis d'élaborer un modèle mathématique de l'activation
volontaire d'un muscle du squelette par le système nerveux central. Dans une telle
entreprise, la première étape consiste à décrire le phénomène dans le langage naturel

pour aboutir à un modèle verbal et nous procéderons ainsi. Le processus qui part du
système nerveux central (SNC) pour aboutir à la contraction des fibres d'un muscle
est très complexe et il est donc nécessaire de le fragmenter en éléments simples.

Un muscle peut être compris comme un ensemble d'unités motrices (UM) dont
la taille peut varier d'une dizaine à plusieurs centaines. A son tour, une UM est

composée d'une cellule nerveuse appelée motoneurone (MN) ainsi que des fibres du
muscle commandées par ce dernier. Un MN contrôle plusieurs fibres, mais chaque fibre
n'est rattachée qu'à un seul MN. Rappelons encore que les neurones qui constituent
notre système nerveux communiquent entre eux à l'aide de signaux électriques appelés

potentiels d'action (PA). Leur forme est fixe et l'information est contenue dans leur
fréquence d'apparition. Ainsi, pour provoquer une contraction musculaire, le SNC
envoie des « trains » de PA le long de fibres nerveuses qui sont reliées aux MN des

UM constituant le muscle concerné. Chaque PA parvenant à la membrane d'un MN
provoque l'ouverture de canaux perméables à différents ions spécifiques et induit une
élévation du potentiel (électrique) de la membrane. Rien ne se produit tant que la
valeur de ce dernier reste inférieure à une certaine valeur critique. Si par contre celle-
ci est atteinte (puis dépassée), alors le MN commence à décharger et produit à son

tour des PA qui seront propagés vers les fibres musculaires de l'UM pour produire
leur contraction. Le moment où le MN décharge correspond au recrutement de l'UM
associée. Une fois que celle-ci est recrutée, l'augmentation de sa force sera tributaire
de l'augmentation de la fréquence des PA parvenant à son MN. Un muscle dispose
ainsi de deux chemins pour augmenter sa force : soit par recrutement de nouvelles
UM (à condition qu'elles ne soient pas toutes déjà recrutées), soit par modulation
de fréquence, c'est-à-dire par augmentation de la fréquence des PA. Il faut encore
signaler que les UM d'un muscle peuvent être classées par ordre croissant de leur
force tétanique (i.e. force maximale), et que, selon le «size principle», un muscle
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recrute ses UM en respectant cet ordre.

Toutes ces informations sont fournies par la littérature concernant ce sujet. On les

trouve sous forme verbale et aussi certaines fois sous forme quantifiée (p. ex. de nuages
de points observés). En les regardant de plus près, on constatera qu'un chainon est

manquant. Il s'agit du nombre de liaisons qu'une fibre nerveuse provenant du SNC
réalise avec un MN. Cette grandeur, appelée poids synaptique. existe au niveau
microscopique et un accès direct par l'observation reste quasi-impossible aujourd'hui encore.
Il semble donc pertinent d'essayer de relier quantitativement cette fonction inconnue
à d'autres grandeurs qui elles seront accessibles par des mesures. Cette problématique
nous fait pénétrer de façon naturelle dans la modélisation mathématique qui permet
justement d'établir ce genre de liens.

Un modèle mathématique est une tradurtion du modèle verbal dans l'univers
conceptuel offert par les mathématiques. Il consiste en un ensemble de variables et
de paramètres (grandeurs dont les valeurs peuvent être fixées) qui sont liés par des

relations formant les hypothèses du modèle. Un des intérêts de cette démarche est
la possibilité de déduire de nouvelles relations entre variables et paramètres à partir
des hypothèses. Celles-ci formeront les conclusions du modèle. L'avantage du langage
mathématique sur le langage naturel réside dans le fait que la correction du chemin
déductif est indépendante de sa longueur. Cet aspect est très important car. si les

conclusions du modèle supportent mal la comparaison avec les observations, alors
nous sommes renvoyés directement aux hypothèses de départ et non pas au chemin
intermédiaire.

Si le poids synaptique était connu, alors on pourrait déduire la force du muscle de
la fréquence des PA provenant du SNC. Inversement, notre modèle montre qu'il est

possible de reconstituer la fonction inconnue microscopique à partir du comportement

global du muscle donnée par la propriété qui suit. Nous appellerons « input » la
fréquence, notée In. des PA provenant du SNC. Les travaux de Rüegg et Bongioanni
(1989) fournissent des évidences en faveur d'une relation linéaire entre la force du
muscle F(In) et l'input, c'est-à-dire :

F(In) k(In-Ino), (1)

où Ino désigne la plus petite valeur de /„ nécessaire au recrutement de l'UM la plus
faible et k la pente de la relation. Il faut noter qu'une telle relation ne peut être
valable que durant la phase de recrutement car au-delà de celui-ci, F(In) est une
fonction strictement concave.

En nous appuyant sur ces considérations nous avons construit un modèle
mathématique formé de 17 variables. 11 paramètres et 15 hypothèses. On comprendra qu'il
n'est pas possible d'entrer ici dans les détails de ce travail. Nous nous contenterons
donc de dégager certains aspects généraux qui nous paraissent intéressants. Les UM
sont représentées par leur force tétanique notée r et rmm < t < rmax où rmm et rmax

sont respectivement les forces tétaniques de la plus faible et de la plus forte des UM.
Le travail mathématique nous a conduits à considérer la fonction F(t) qui est la force
du muscle lorsque le SNC recrute ses UM exactement jusqu'au niveau r. Notons que
cette fonction (encore inconnue) est très complexe car elle rend compte des forces de
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toutes les UM depuis leur recrutement en incluant l'augmentation par modulation de

fréquence. On peut démontrer que F(t) vérifie l'équation suivante :

F(t) I sp(s) Il-ce Qf-<"+l'«o j ds, (2)

pour Tmin < r < Tmax. La fonction p(s) est la densité d'UM du muscle et a, c, k, Ino

sont des paramètres sur lesquels nous reviendrons. La présence du signe / dans (2)
est la généralisation d'une sommation sur le continu, conséquence de la représentation
des UM par une variable réelle.

L'importance de (2) vient du fait que toutes les grandeurs liées à l'activation d'un
muscle peuvent être, dans ce modèle, déduites de la fonction F(t). Il faut donc
commencer par discuter les propriétés de l'équation (2). Tout d'abord, pour des raisons

évidentes, (2) est appelée équation intégrale pour la fonction inconnue F(t). Ce genre
d'équations a attiré l'attention des mathématiciens depuis le 18e siècle et une théorie
générale était déjà disponible au début du 20e siècle. Malheureusement, de par sa

forme, (2) n'entre pas dans celle-ci. On constate ainsi qu'une question physiologique
peut conduire à la formulation de problèmes mathématiques nouveaux

La première question que le mathématicien se pose à propos d'une telle équation
est celle de l'existence et de l'unicité d'une solution. Le contexte physiologique du
problème pourrait nous faire penser qu'une telle propriété devrait être automatiquement

vérifiée. Il n'en est rien car la formulation mathématique, à ce niveau, possède

sa vie propre et peut conduire à des problèmes imprévus. Le premier résultat que nous

avons obtenu à propos de (2) était pour le moins surprenant : si l'équation admet une

solution, alors elle admet une infinité de solutions distinctes discontinues. Cette
propriété suggère que notre problème est encore mal posé et que la physiologie n'a pas été

suffisamment exploitée. En effet, l'interprétation de F(t) conduit à postuler que cette
fonction doit être monotone croissante. A l'aide de techniques topologiques, on peut
alors montrer que (2) admet une solution monotone croissante. De plus, pour toute
solution de (2), les propriétés de croissance monotone et de continuité se trouvent
être équivalentes. Il suffit alors de démontrer l'unicité d'une solution continue de (2)

pour conclure que notre équation admet une unique solution physiologique qui est

nécessairement monotone croissante et continue.

Ce point étant réglé, il nous faut revenir sur les paramètres qui figurent dans (2).
Dans ce modèle, a et c sont indépendants du muscle et peuvent donc être estimés

expérimentalement une fois pour toute. En ce qui concerne k et Ino, nous ne savons

pas à l'heure actuelle s'ils dépendent ou non du muscle considéré. Nous décidons
donc de les laisser libres. Le dernier paramètre est la fonction p(s). Celle-ci dépend
fortement du muscle puisqu'elle représente sa population d'UM. Il se trouve qu'il est

préférable de travailler avec la densité de force ft(s) := sp(s) plutôt que p{s). La
discussion ci-dessus montre que la solution physiologique de (2) dépend seulement de

ft et A kIno. Il est donc logique d'introduire la notation F^aM pour souligner ce

fait. On peut alors démontrer que la relation suivante est vraie :

Fh.Mr) AFU ffl) (3)
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où H(t) f sp(s) ds est la force maximale que le muscle peut produire en recrutant
Tmin

ses UM jusqu'au niveau r. La relation (3) est tout-à-fait remarquable car elle relie le
muscle le plus général à un muscle très particulier, à savoir celui dont les paramètres
sont p(s) — ^ et A kIno 1. Pour des raisons évidentes, nous avons appelé
hyperbolique ce muscle particulier. On peut donc commencer par calculer une fois pour
toute la fonction Fu et on déduira F/,,a de Fu à l'aide de (3). Cette relation suggère
aussi que, dans ce modèle, tous les muscles présentent d'importantes similitudes au
niveau de leur activation. Plus précisément, l'analyse montre que dans la double échelle
relative ïn Z et F(/n) -Jh^ où Fmax est la force maximale du muscle, la courbe

d'activation F(In) ne dépend que du paramètre

LIS=2Ml (4)
T'm.ix

que nous avons appelé facteur d'activation. Ainsi, en double échelle relative, tous les

muscles avec même facteur d'activation possèdent la même courbe d'activation.

La propriété ci-dessus est une première conclusion remarquable de ce modèle. Il y
en a d'autres, et à titre indicatif, nous nous permettons d'en signaler quelques unes.
Tout d'abord, le poids synaptique noté g(r) est maintenant calculable à l'aide de :

9(r) 7 M^r (M) :• (5)

(FEPSP-VT)/no(Fu(^f) + l)

Vf désigne le potentiel critique de la membrane d'un MN et E^psp représente un
potentiel d'inversion.

La longueur de l'intervalle de recrutement, notée R, n'est pas imposée dans ce

modèle. La théorie montre que

R FW(Ì) (6)

et ainsi R ne dépend que de S. Il en va de même du rapport Q de la force du muscle
à la fin du recrutement et de Fmax. car

Q SR (7)

et on peut démontrer que 0.1 < Q < 0.66 pour tous les muscles.

En conclusion, ce modèle permet de classer de façon très simple l'activation de

nos muscles squelettiques et fournit des relations quantitatives entre des grandeurs
observables. La prochaine étape dans cette recherche sera la confrontation de ces

résultats avec l'observation.

Nous terminerons par quelques remarques générales sur la modélisation. Tout
modèle s'inscrit nécessairement dans un schéma hypothético-déductif en ce sens que
les conclusions sont du type : si les hypothèses suivantes sont vraies alors il
s'ensuit que Nous aimerions souligner que l'expérimentateur est aussi prisonnier
de ce schéma car tout résultat d'une observation est conditionnel à une situation
expérimentale fixée volontairement ou non. On reproche souvent aux modèles leurs
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caractères simplificateurs et idéalisateurs. C'est un fait, mais il est inévitable, car
nous ne pouvons comprendre de la nature que ses aspects simplifiés. Tout modèle
est d'ailleurs une étape et non un aboutissement car il est appelé à être remplacé

par un modèle plus complet et donc plus complexe. Finalement, toute affirmation est
solidaire d'un modèle et toute propriété « démontrée » ne peut l'être qu'à l'intérieur
d'un modèle. Nous sommes condamnés à procéder par modélisation mais il ne faut
pas oublier qu'un modèle est toujours un point de vue cohérent sur un phénomène et
donc une source d'enrichissement pour notre connaissance.
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