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Une collaboration entre
les Instituts de mathématiques et de physiologie:
un modele mathématique
de la contraction d’un muscle

Jean-Pierre GABRIEL

Le travail présenté ici est le fruit d'une collaboration entre un physiologiste (D. Riiegg)
et deux mathématiciens (L. Studer et J.-P. Gabriel) qui s’est étendue sur plusieurs
anneées. Cette recherche a permis d’élaborer un modele mathématique de 'activation
volontaire d'un muscle du squelette par le systeme nerveux central. Dans une telle
entreprise, la premiere étape consiste a décrire le phénomene dans le langage naturel
pour aboutir & un modele verbal et nous procéderons ainsi. Le processus qui part du
systeme nerveux central (SNC) pour aboutir a la contraction des fibres d'un muscle
est tres complexe et il est donc nécessaire de le fragmenter en éléments simples.

Un muscle peut étre compris comme un ensemble d'unités motrices (UM) dont
la taille peut varier d'une dizaine a plusieurs centaines. A son tour, une UM est
composée d'une cellule nerveuse appelée motoneurone (MN) ainsi que des fibres du
muscle commandées par ce dernier. Un MN controle plusieurs fibres, mais chaque fibre
n’est rattachée qu'a un seul MN. Rappelons encore que les neurones qui constituent
notre systéme nerveux communiquent entre eux a l’aide de signaux électriques appelés
potentiels d’action (PA). Leur forme est fixe et I'information est contenue dans leur
fréquence d’apparition. Ainsi, pour provoquer une contraction musculaire, le SNC
envoie des «trains » de PA le long de fibres nerveuses qui sont reliées aux MN des
UM constituant le muscle concerné. Chaque PA parvenant a la membrane d'un MN
provoque ’'ouverture de canaux perméables a différents ions spécifiques et induit une
élévation du potentiel (électrique) de la membrane. Rien ne se produit tant que la
valeur de ce dernier reste inférieure & une certaine valeur critique. Si par contre celle-
ci est atteinte (puis dépassée), alors le MN commence a décharger et produit a son
tour des PA qui seront propagés vers les fibres musculaires de 'UM pour produire
leur contraction. Le moment ol le MN décharge correspond au recrutement de "'UM
associée. Une fois que celle-ci est recrutée, 'augmentation de sa force sera tributaire
de 'augmentation de la fréquence des PA parvenant & son MN. Un muscle dispose
ainsi de deux chemins pour augmenter sa force : soit par recrutement de nouvelles
UM (& condition qu’elles ne soient pas toutes déja recrutées), soit par modulation
de fréquence, c’est-a-dire par augmentation de la fréquence des PA. Il faut encore
signaler que les UM d’un muscle peuvent étre classées par ordre croissant de leur
force tétanique (i.e. force maximale), et que, selon le «size principle », un muscle
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recrute ses UM en respectant cet ordre.

Toutes ces informations sont fournies par la littérature concernant ce sujet. On les
trouve sous forme verbale et aussi certaines fois sous forme quantifiée (p. ex. de nuages
de points observés). En les regardant de plus pres, on constatera qu'un chainon est
manquant. Il s’agit du nombre de liaisons qu'une fibre nerveuse provenant du SNC
réalise avec un MN. Cette grandeur, appelée poids synaptique, existe au niveau micro-
scopique et un acces direct par I’'observation reste quasi-impossible aujourd’hui encore.
Il semble donc pertinent d’essayer de relier quantitativement cette fonction inconnue
a d’autres grandeurs qui elles seront accessibles par des mesures. Cette problématique
nous fait pénétrer de facon naturelle dans la modélisation mathématique qui permet
justement d’établir ce genre de liens.

Un modele mathématique est une traduction du modele verbal dans 'univers
conceptuel offert par les mathématiques. Il consiste en un ensemble de variables et
de parametres (grandeurs dont les valeurs peuvent étre fixées) qui sont liés par des
relations formant les hypotheses du modele. Un des intéréts de cette démarche est
la possibilité de déduire de nouvelles relations entre variables et parametres a partir
des hypotheses. Celles-ci formeront les conclusions du modele. L’avantage du langage
mathématique sur le langage naturel réside dans le fait que la correction du chemin
déductif est indépendante de sa longueur. Cet aspect est trés important car, si les
conclusions du modele supportent mal la comparaison avec les observations, alors
nous sommes renvoyés directement aux hypotheéses de départ et non pas au chemin
intermédiaire.

Si le poids synaptique était connu, alors on pourrait déduire la force du muscle de
la fréquence des PA provenant du SNC. Inversément, notre modele montre qu’il est
possible de reconstituer la fonction inconnue microscopique a partir du comporte-
ment global du muscle donnée par la propriété qui suit. Nous appellerons « input » la
fréquence, notée I,,, des PA provenant du SNC. Les travaux de Riiegg et Bongioanni
(1989) fournissent des évidences en faveur d’une relation linéaire entre la force du
muscle F(I,) et 'input, c¢’est-a-dire :

F(I) = k(In = Ing), (1)

ou I, désigne la plus petite valeur de I,, nécessaire au recrutement de I'UM la plus
faible et k la pente de la relation. Il faut noter qu'une telle relation ne peut étre
valable que durant la phase de recrutement car au-dela de celui-ci, F'(I,) est une
fonction strictement concave.

En nous appuyant sur ces considérations nous avons construit un modele mathé-
matique formé de 17 variables, 11 parametres et 15 hypothéses. On comprendra qu’il
n’est pas possible d’entrer ici dans les détails de ce travail. Nous nous contenterons
donc de dégager certains aspects généraux qui nous paraissent intéressants. Les UM
sont représentées par leur force tétanique notée 7 et Tmin < 7 < Tmax OU Tmin €t Tmax
sont respectivement les forces tétaniques de la plus faible et de la plus forte des UM.
Le travail mathématique nous a conduits a considérer la fonction F(7) qui est la force
du muscle lorsque le SNC recrute ses UM exactement jusqu’au niveau 7. Notons que
cette fonction (encore inconnue) est trées complexe car elle rend compte des forces de
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toutes les UM depuis leur recrutement en incluant I’augmentation par modulation de
fréquence. On peut démontrer que F(7) vérifie I'équation suivante :

T ‘aF‘(r)—Fga)
g B / sp(s) (1 — ce F‘S’*"’"O) ds, (2)

min

POUT Thin < T < Thax- Lia fonction p(s) est la densité d’UM du muscle et o, ¢, k, I,
sont des parametres sur lesquels nous reviendrons. La présence du signe [ dans (2)
est la généralisation d’une sommation sur le continu, conséquence de la représentation
des UM par une variable réelle.

L’importance de (2) vient du fait que toutes les grandeurs liées a 'activation d'un
muscle peuvent étre, dans ce modele, déduites de la fonction F(7). Il faut donc com-
mencer par discuter les propriétés de I’équation (2). Tout d’abord, pour des raisons
évidentes, (2) est appelée équation intégrale pour la fonction inconnue F'(7). Ce genre
d’équations a attiré I'attention des mathématiciens depuis le 18% siécle et une théorie
générale était déja disponible au début du 20¢ siecle. Malheureusement, de par sa
forme, (2) n’entre pas dans celle-ci. On constate ainsi qu'une question physiologique
peut conduire a la formulation de problémes mathématiques nouveaux!

La premiere question que le mathématicien se pose a propos d’une telle équation
est celle de 'existence et de 'unicité d'une solution. Le contexte physiologique du
probleme pourrait nous faire penser qu'une telle propriété devrait étre automatique-
ment vérifiée. Il n’en est rien car la formulation mathématique, & ce niveau, possede
sa vie propre et peut conduire a des problemes imprévus. Le premier résultat que nous
avons obtenu a propos de (2) était pour le moins surprenant : si I’équation admet une
solution, alors elle admet une infinité de solutions distinctes discontinues. Cette pro-
priété suggere que notre probléme est encore mal posé et que la physiologie n’a pas été
suffisamment exploitée. En effet, 'interprétation de F'(7) conduit a postuler que cette
fonction doit étre monotone croissante. A 1'aide de techniques topologiques, on peut
alors montrer que (2) admet une solution monotone croissante. De plus, pour toute
solution de (2), les propriétés de croissance monotone et de continuité se trouvent
étre équivalentes. Il suffit alors de démontrer I'unicité d’une solution continue de (2)
pour conclure que notre équation admet une unique solution physiologique qui est
nécessairement monotone croissante et continue.

Ce point étant réglé, il nous faut revenir sur les parametres qui figurent dans (2).
Dans ce modele, « et ¢ sont indépendants du muscle et peuvent donc étre estimés
expérimentalement une fois pour toute. En ce qui concerne k et I,,,, nous ne savons
pas a I'heure actuelle s’ils dépendent ou non du muscle considéré. Nous décidons
donc de les laisser libres. Le dernier parametre est la fonction p(s). Celle-ci dépend
fortement du muscle puisqu’elle représente sa population d’'UM. Il se trouve qu’il est
préférable de travailler avec la densité de force h(s) := sp(s) plutot que p(s). La
discussion ci-dessus montre que la solution physiologique de (2) dépend seulement de
h et A = kI,,. Il est donc logique d’introduire la notation Fj a(7) pour souligner ce
fait. On peut alors démontrer que la relation suivante est vraie :

Fh,A(T) = AF1,1 (HXF)) ) (3)
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on H(t) = jT" sp(s) ds est la force maximale que le muscle peut produire en recrutant
Tmin
ses UM jusqu’au niveau 7. La relation (3) est tout-a-fait remarquable car elle relie le
muscle le plus général & un muscle tres particulier, a savoir celui dont les parametres
sont p(s) = + et A = kI, = 1. Pour des raisons évidentes, nous avons appelé
hyperbolique ce muscle particulier. On peut donc commencer par calculer une fois pour
toute la fonction F} ; et on déduira Fj A de Fi; a 'aide de (3). Cette relation suggere
aussi que, dans ce modele, tous les muscles présentent d’'importantes similitudes au
niveau de leur activation. Plu% gre)écisément, I’analyse montre que dans la double échelle
_ P,

relative [, = ILT*— et F'(I,) = 7= ol Fpa est la force maximale du muscle, la courbe
RO max

d’activation F(I,) ne dépend que du paramétre

kly,

S N FH’].&X (4)

que nous avons appelé facteur d’activation. Ainsi, en double échelle relative, tous les
muscles avec meme facteur d’activation possedent la meéme courbe d’activation.

La propriété ci-dessus est une premiere conclusion remarquable de ce modele. 11 y
en a d’autres, et a titre indicatif, nous nous permettons d’en signaler quelques unes.
Tout d’abord, le poids synaptique noté g(7) est maintenant calculable a 'aide de :

Vr
g (T) = ) . (5)

(EEPSP = VI‘)Ino(F],l(IZ},; )+ 1)

Vi désigne le potentiel critique de la membrane d'un MN et Egpsp représente un
potentiel d’inversion.

La longueur de l'intervalle de recrutement, notée R, n’est pas imposée dans ce

modele. La théorie montre que
1

et ainsi R ne dépend que de S. Il en va de méme du rapport ) de la force du muscle
a la fin du recrutement et de Fj,.y, car

Q=SR (7)

et on peut démontrer que 0.1 < ¢ < 0.66 pour tous les muscles.

En conclusion, ce modele permet de classer de facon trés simple l'activation de
nos muscles squelettiques et fournit des relations quantitatives entre des grandeurs
observables. La prochaine étape dans cette recherche sera la confrontation de ces
résultats avec 1'observation.

Nous terminerons par quelques remarques générales sur la modélisation. Tout
modele s’inscrit nécessairement dans un schéma hypothético-déductif en ce sens que
les conclusions sont du type : si les hypotheses suivantes sont vraies ..., alors il
s'ensuit que ... . Nous aimerions souligner que l'expérimentateur est aussi prisonnier
de ce schéma car tout résultat d’une observation est conditionnel a une situation
expérimentale fixée volontairement ou non. On reproche souvent aux modeles leurs

30



caracteres simplificateurs et idéalisateurs. C’est un fait, mais il est inévitable, car
nous ne pouvons comprendre de la nature que ses aspects simplifiés. Tout modele
est d’ailleurs une étape et non un aboutissement car il est appelé a étre remplacé
par un modele plus complet et donc plus complexe. Finalement, toute affirmation est
solidaire d'un modele et toute propriété « démontrée » ne peut I'etre qu’a l'intérieur
d’un modele. Nous sommes condamnés a procéder par modélisation mais il ne faut
pas oublier qu'un modele est toujours un point de vue cohérent sur un phénomene et
donc une source d’enrichissement pour notre connaissance.
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