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Fascinante interpolation

par Jean-Paul Berrut,
Institut de Mathématiques de l'Université, CH-1700 Fribourg

Mesdames, Messieurs, chers collègues,

En choisissant ce titre accrocheur, je ne voulais pas insinuer que l'interpolation
est plus fascinante qu'un autre sujet. Tout domaine de recherche devrait être
fascinant pour celui qui y travaille. Je veux uniquement tenter de montrer ici
pourquoi je trouve personnellement l'interpolation fascinante, et essayer de vous
convaincre, au moins partiellement, que cela peut être fascinant.

1. Pourquoi l'interpolation?

Ceux d'entre vous qui sont aussi âgés que moi se souviennent certainement
des calculs mentaux qu'il fallait exécuter pour trouver les valeurs des

logarithmes et des fonctions trigonométriques dans les tables: ces calculs me gâchèrent
complètement les travaux pratiques de physique et sont une des raisons pour
lesquelles j'ai passé de la physique aux mathématiques. Ils furent aussi
probablement un des seuls contacts de la plupart d'entre vous avec l'interpolation. Si

aujourd'hui l'interpolation dans les tables ferait bien rire les plus jeunes habitués
aux calculatrices de poche, ces dernières n'ont guère diminué l'importance de

l'interpolation dans d'autres domaines: pensons par exemple au dessin assisté

par ordinateur, entièrement basé sur des interpolants.
Ici je vais prendre un exemple plus proche de l'analyse numérique, mon

domaine de recherche: la résolution pratique de certaines équations aux dérivées

partielles (EDP) de la physique.
Vous avez tous vu dans vos journaux les courbes isobares (càd. de pression

constante) servant à la prévision du temps. Comment les obtient-on? En simulant
le temps par avance, sur ordinateur.

Avant de commencer les calculs, on mesure les valeurs des grandeurs qui
déterminent le déplacement des gaz qui forment l'atmosphère. Dans un modèle
très simplifié, ceux-ci ne se déplacent en fonction du temps t que d'ouest en est

(ou l'inverse) — coordonnée x — et verticalement — coordonnée z. Et on néglige
la rotation de la terre, la friction des gaz et le réchauffement adiabatique. Alors les

variables importantes sont la vitesse de l'atmosphère -v(x,z,t) (yi,v^)(x,z,f),
sa pression p(x, z,t) (p\, Pi)(x, z,t), et son volume spécifique (la réciproque de

sa densité) a(x,z.t). Les équations du mouvement de Newton, l'équation de la

thermodynamique et l'équation de continuité donnent le système d'EDP suivant
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pour ces inconnues en fonction du temps [Hal-Wil]:

dv\ dp
dl dx
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g y représente l'accélération terrestre, cp et c„ sont les chaleurs spécifiques,
respectivement à pression et volume constants.

Partant des valeurs mesurées des inconnues, on calcule alors les déplacements
et changements de pression de l'atmosphère dans les heures et les jours suivants
en résolvant ces équations; cela revient à simuler le temps par avance.

Le point important ici est que les trois inconnues v, p et a sont des fonctions

de l'espace et du temps, donc de grandeurs continues. Elles représentent
par conséquent une information infinie impossible à déterminer en pratique. On
les remplace donc par des fonctions plus simples reconstructibles à partir d'une
information finie. Si cette information finie consiste en des valeurs de la fonction

cherchée en un nombre fini de points (plutôt que dans le continu), alors

l'approximation est un interpolant de la fonction. C'est entre autres cette
application à la résolution pratique des EDP par le calcul scientifique qui donnent
aujourd'hui son importance à l'interpolation.

2. Interpolation polynomiale

Les interpolants les plus simples sont les polynômes. Et si l'on ne sait rien
par avance sur la fonction, les points les plus logiques semblent être les points
équidistants. Pour 2, 3 et 4 points, cela donne

yi(x) a0 + axx V2(X) <io + a\x + a-ix



j/3(-r) a0 + a\x + a2x2 + a3x

Remarquez que le degré est plus petit d'une unité que le nombre de points.
On peut faire de même quel que soit le nombre de points: pour n + 1 points,

yn(x) a0 + a.]_x + a2x + + an_1xn 1 + anx" (D

Les coefficients ai dépendent de manière compliquée des £,• et des fi :— f(xi), si

bien que pour l'interpolation on n'écrit pas le polynôme sous la forme classique

(!)¦
Afin d'introduire l'autre représentation du polynôme que nous allons utiliser

ici, prenons le cas de trois points (l'interpolant est donc une parabole) —1, 0, 1

et de la fonction f(x) Mx2. Alors les valeurs interpolées /,- sont

2 + x
1 + x2

1/2, en xq — 1,

2, en x\ 0,

3/2, en x2 1.

Essayons maintenant d'écrire notre interpolant quadratique y2{x) comme

1

V2(X)
(-1)2 + Zt2 +TI 12

+ iL
x- (-1) ' x-~ö^ iM^f

(les dénominateurs sont les distances de la variable aux points d'interpolation,
et au numérateur chaque fraction est multipliée par la valeur de l'interpolant au

point correspondant)



bp 1
i *io i

b2 3
F+T? + Z2+ 1M7J2

l>n
(2)

+ +

avec une coefficient inconnu 6, à déterminer pour chacun des points d'interpolation.

Le numérateur et le dénominateur de (2) ont le même dénominateur commun

(x 4- l)x(x — 1), le produit des distances de la variable à tous les points
d'interpolation. Multiplions numérateur et dénominateur par ce dénominateur
commun:

V2(M

1 3
b0x(x - 1)- + h(x + l)(x - 1)2 + b2x(x + 1)-

(3)
b0x(x- l) + bi(x+ l)(.r- l) + b2x(x+ 1)

On voit donc que, quels que soient les 6, choisis, y2(x) est une fonction
rationnelle, càd. un quotient de deux polynômes. Et quels que soient les nombres
bo, bi et b2 (différents de zéro), limr_ri fl: donc y2(x) interpole toujours f(x)
entre les points Xq, x.\ et x2.

Illustration
Si pour l'exemple ci-dessus et les coefficients arbitraires bo 7, b\ 4 et b2 13

on calcule la valeur de l'interpolant pour x 0.1 puis toutes les valeurs de x
obtenues en divisant celle-ci successivement par 100, on obtient la suite suivante
de valeurs de l'interpolant, qui tend bien vers /(0) 2.

X V2(x)

0.1 1.92721518987342

0.001 1.99900274813870

0.00001 1.99999000027500

0.0000001 1.99999990000003

0.000000001 1.99999999900000

0.00000000001 1 99999999999000

0.0000000000001 1.99999999999990

0.000000000000001 2.00000000000000

Et ceci vaut en tous les points d'interpolation, quel que soit le nombre de ces

derniers. 0
Le dénominateur de l'interpolant (3) s'écrit

b0(x2 - x) + bx{x2 - 1) + b2(x2 +x) -èi + (62 - b0)x + (b0 + &i + b2)x2.

Pour que (2) soit un polynôme, il faut que ce dénominateur soit constant, càd.

que
b2 — bo

61 + 62



h.
'

2

La solution de ce système est donnée par

»o -y b2

pour 6i/0 quelconque. Avec 61 —2, cela donne

60 1 r bi -2 -
Dans le cas général de n + 1 points équidistants, la solution est donnée à une
constante près par

n\
0(l)n.(-1)

Avec ces 6,, (3) est une modification de la formule de Joseph Louis LAGRANGE
(1736-1813) pour le polynôme d'interpolation. Quoiqu'en disent la plupart des

livres d'introduction à l'analyse numérique, surtout américains, elle est souvent
meilleure que la formule instable de Isaac NEWTON (1643-1727), où de plus
les différences divisées correspondant aux 6, dépendent de /, ce qui hypothèque
l'utilisation de la formule pour la résolution d'équations. Remarquons cependant

que la stabilité de la formule de Newton peut être sensiblement améliorée
en réordonnant les points [Fis-Rei] selon la suite de Johannes Gualtherus VAN
DER CORPUT (1890-1975), professeur à l'institut de mathématiques de notre
Université en 1922-1923. L'idée d'utiliser la représentation (2) pour le calcul est

venue à un certain William J. TAYLOR durant la deuxième guerre mondiale:
ce dernier était l'un des nombreux mathématiciens qui ont du leur emploi au
National Bureau of Standards à la politique du New Deal instaurée par F.D.
Roosevelt durant la grande crise des années 30. Cette formule a été baptisée
barycentrique par Heinz RUTISHAUSER (1918-1970), notre génie national du
calcul numérique, qui a entre autres eu l'idée de l'algorithme généralement utilisé
pour le calcul de valeurs propres.

Illustration
Voyons maintenant l'erreur maximale de l'interpolation des fonctions sin 2x, Za

sur l'intervalle [—1, 1] (où toutes trois ne prennent que des valeurs entreet
1 + 25T772

0 et 1) pour 11 points d'interpolation équidistants (n 10).

Fonction Erreur

sin 2x 4.038 10"7

1 7.900 • IO"4
l + x'2

1
1.916- 10°

1 + 25z2



L'exemple final, où l'interpolation polynomiale entre points équidistants donne
des résultats catastrophiques, est dû a Carl RUNGE (1856-1927) [Run]. 0

Pour un grand nombre n + 1 de points d'interpolation, les points équidistants
ne sont donc pas adéquats; ceci se manifeste aussi dans le fait que les 6;

(—1)'("), au signe près les nombres du triangle de Pascal, sont très différents les

uns des autres. Il est donc naturel de chercher à utiliser d'autres points.

Dans le cas de n + 1 points quelconques xo, x\,... ,xn, on a pour le polynôme
d'interpolation la formule barycentrique

hi fn _i h r, + j K t
X — Xo X — XiJL T '" ' x — xnJny(*) 1 ît 1—— • 4a

JL " JU Q *L ~~~ Jb 1 JL ^~ *L Yi

où le coefficient 6; n'est plus — 1)' ("), mais la réciproque du produit des distances
du point Xi à tous les autres points d'interpolation:

n<
fc=0
fcjéi

xk) ¦ (4b)

Et de meilleurs points que les points équidistants existent. On mesure la qualité
des points par leur constante de Henri LEBESGUE (1875-1941), qui doit être la
plus petite possible. Les bons points sont ceux qui, une fois rapportés verticalement

sur le cercle dont le diamètre est donné par l'intervalle d'interpolation, sont

presque équidistants. Les plus courants sont ceux d'Adrien-Marie LEGENDRE
(1752-1833) et surtout ceux, exactement équidistants sur le cercle, de Pafnuti
Lwowitsch CEBYSEV (1821-1894), pour lesquels on a pour l'essentiel la formule
très simple 6; — 1)* (voir (8) plus loin) et pour lesquels on peut aussi prouver
que le polynôme d'interpolation est très proche du meilleur de tous les polynômes
du même degré approximant /.
Illustration
La table du sommet de la page suivante montre pour des n croissant l'erreur
d'interpolation de la fonction de Runge entre n + 1 points de Cebysev. La
différence avec celle des points équidistants se passe de commentaire! 0

Mais si on ne peut pas choisir les points? Alors on pourrait penser se

contenter d'une fonction rationnelle et utiliser le fait que tout choix des b, donne

un interpolant. Et, pour utiliser l'interpolant dans la résolution d'équations
différentielles, choisir les poids indépendants de la fonction à interpoler. C'est un
des projets auxquels je travaille en ce moment. J'ai proposé [Ber2] de prendre
6j — I)' quels que soient les points intérieurs, et la même valeur divisée par 2

pour les points des extrémités. Rien n'est encore prouvé quant à l'erreur, mais
Benjamin NOEL, un de mes diplomants, vient d'obtenir des résultats numériques



n Equidistants Cebysev
4 4.382- IO"1 4.599-IO"1
8 1.045- 10° 2.045- IO-1

12 3.657 - 10° 8.423- IO"2
16 1.432- IO1 3.658-IO"2
20 5.859- IO1 1.773- IO"2
24 2.572 ¦ IO2 8.103- IO"3
28 1.107- IO3 3.649 IO"3
32 4.778 ¦ IO3 1.615- IO"3
36 2.244 ¦ IO4 7.388-IO"4
40 1.044- IO5 3.328 - IO"4
80 1.133-IO-7

160 1.366- IO"14

d'une qualité étonnante pour certains points; ces résultats devraient permettre
de mieux comprendre le comportement de cet interpolant.

3. Intégration

A nouveau, l'intégration d'une fonction quelconque est un problème que l'on
ne peut en général pas résoudre sur le papier: en gros, on peut dire que seules les

fonctions composées de celles que l'on étudie au gymnase peuvent être intégrées
exactement.

L'idée est alors de remplacer la fonction d'information infinie par un
interpolant, ce qui rend l'information finie, et d'intégrer exactement cet interpolant.
Dans le cas de certaines fonctions singulières que nous verrons plus loin, on peut
même prouver que cette manière de faire est optimale.

Ici on ne parlera que d'intégrales définies I : f f(t)dt. Rappelons qu'une
telle intégrale est la surface entre le graphe de la fonction et l'axe des abcisses.

Une des méthodes les plus simples consiste à prendre sur l'intervalle [a,b] des

points d'interpolation équidistants t^, approximer f(t) par un segment de droite
(un interpolant de degré 1) dans chacun de ces n intervalles de longueur h et

intégrer exactement la ligne polygonale ainsi construite.
La surface sous celle-ci est faite de trapèzes (posés verticalement), ce qui

donne la formule

'1
T(h) \f(to)+ \f(M, :f(U + \f{h) +

m
+ :/(<»- + ^f(tn) />£ /(**)



2.7177
intégration trapézoïdale; f(x) exp(sin(1/x))

0.9553

intervalle: [0.1000,0.2500] nombre de points : 10

C'est la règle d'intégration du trapèze. Les " dans ^ signifient que le

premier et le dernier termes de la somme sont à diviser par 2.

Illustration
Considérons les deux fonctions -2 r-y et -

l +25(f-l 1 + 25 cos^ ^

f(x) 1/(1+25((x-pi)/pi)A2)

f(x)= 1/(1+25(C0S(x/2))*2)

1 2

0.8

0.6

3.4

3.2

1.5708 6.2832

10



qui ne diffèrent que peu l'une de l'autre, et intégrons-les de 0 à 27r avec un
nombre croissant d'intervalles. On obtient les valeurs suivantes:

n
1 i

l+25(f-l)2 1 + 25 cos2 f
1 0.2416609733530610 0.2416609733530610
2 3.2624231402663235 3.2624231402663235
4 2.0645346947662366 1.8639221370657391
8 1.7495462692026278 1.3392744017714020

16 1.7254328170369020 1.2365115752044911
32 1.7257151357648688 1.2322414176354950
64 1.7258284904609167 1.2322340188232968

128 1.7258568493175397 1.2322340188010841

256 1.7258639402207825 1.2322340188010843
512 1.7258657130111090 1.2322340188010841

1024 1.7258661562131921 1.2322340188010836

30 1.72586630394762 1.23223401880108

(le symbole oo dénote la valeur exacte de l'intégrale). O

Comment expliquer une telle différence de rapidité de convergence de la règle
du trapèze? Pour une fonction / suffisamment différentiable, l'erreur est donnée

par la formule de Leonhard EULER (1707-1783) — le mathématicien qui se

trouve sur nos billets de 10 francs — et Colin MACLAURIN (1698-1746) [Hen]

li B,
T(h) - I %¦ [/'(6) - f(a)} h2 + -f [/'"(6) - /'»] /i4 +

2! 4!

Ih

m R

(20!

['
|/(2.--i)(6)

L/(2"-D(6) - /(2—"(a)] h2m + 0(/i2m+1)
(5)

/(2'-1)(a)]/i2î+0(/i 2777 + 17

où les constantes B2i sont les nombres de Jakob I BERNOULLI (1654-1705),
mathématicien balois comme Euler. Ces nombres sont par définition les coefficients

(sans les factorielles) de la série de Taylor (Brook TAYLOR (1685-1731),
rien à voir avec W. Taylor vu plus haut) de la fonction autour de x 0:

DU

M-IZM
Pourquoi l'erreur ne dépend-elle que de la fonction / aux extrémités de l'intervalle?

L'interpolant linéaire par morceaux par lequel on a introduit la règle du

trapèze ne permet pas de l'expliquer.

11



L'interpolant constant par morceaux

fonction: f(x) exp(sin(1/x))

2.5

1.5

05
_j [_ 1_ ¦-T - O'
intervalle: [0.100,0.250] # de sous-intervalles: 10

intégré exactement donne aussi la règle du trapèze. Mais lui non plus ne permet
pas d'expliquer que l'erreur ne dépende que de la fonction / aux extrémités.

Il existe cependant encore au moins un autre interpolant dont l'intégrale exacte
est donnée par la règle du trapèze: l'interpolant trigonométrique. Pour des

fonctions paires (càd. symétriques par rapport au centre de l'intervalle) et après
un changement de variable pour amener l'intervalle à être [a,b] [0,2tt], cet

interpolant est donné par la même formule que (1) avec les monômes xk remplacés

par cos kt:

Zn(t) c0 + ?i così1 + + ?„_! cos(n - I)* + cn cos nt. (6)

Ce n'est donc rien d'autre qu'une série de Jean-Baptiste-Joseph FOURIER
(1768-1830) tronquée après le terme en cos ni. Pour la série de Fourier complète
(infinie), on sait que les coefficients de Fourier rj, sont donnés par la formule

'•o -f2Wo
f(t)dt

1

Z I. '¦k
* Jo

f(t) cos ktdt.

Les coefficients du polynôme trigonométrique d'interpolation (6) sont exactement
les approximations Ck de ces intégrales par la règle du trapèze en prenant le même
nombre d'intervalles que de coefficients (ceci n'est pas tellement surprenant, vu

12



que la règle du trapèze utilise alors les mêmes valeurs de / que le polynôme (6)).
?o n'est alors rien d'autre que ^T(h), où T{h) dénote à nouveau l'approximation
de I par la règle du trapèze.

Intégrons exactement le polynôme (6) pour approximer I:

2tt 2tt 2tt 2tt 27T-

/ zn(t)dt ?o / dt + c i / cos idi + + cn_i / cos(n — \)tdi + cn j cos ntdt.

2tt |2tt
Mais pour tout k 1,2,..., J cos ktdt £ sin kt\ =0 et donc

o lo

2*

j zn{t)dt cQ f dt ^-T(h)2n
0 0

T(h).

Lisant cette égalité de droite à gauche, on voit que l'approximation de / par la

règle du trapèze n'est rien d'autre que l'intégrale exacte du polynôme
trigonométrique interpolant f(t)\ Et ainsi la raison pour laquelle l'erreur dépend des

sauts des dérivées en 0 et 2ir, selon la formule (5), devient claire. Le polynôme
trigonométrique est 27r-périodique et ne peut pas être une bonne approximation
de / si / ou ses dérivées ne sont pas 27t-périodiques. Cela explique pourquoi la

règle du trapèze donne de bien meilleurs résultats pour une fonction périodique
et à dérivées périodiques comme 1+25cos:'» ^ue Pour i+2\x2 '

Remarques
1) Si l'on s'intéresse au polynôme trigonométrique d'interpolation (6), il faut

calculer par la règle du trapèze les approximations cj, des Ck- C'est ce qu'on
appelle la transformation de Fourier discrète. Or il y a n -f 1 coefficients c^,
et chaque règle du trapèze exige un multiple de n opérations. Le total des

opérations est donc de l'ordre d'un multiple de n2, qui croit assez vite avec n
(plus d'un million pour n 1024 210). En 1965, James W. COOLEY et
John W. TUKEY ont publié un des articles les plus cités des mathématiques et
de l'informatique [Coo-Tuk] dans lequel ils présentent un algorithme (càd. une
méthode à caractère répétitif, idiome dérivé du nom du mathématicien arabe
Mohammed ibn Musa AL-KHOVÀRIZMÌ (IXe siècle)) permettant de calculer
les n + 1 règles du trapèze en un multiple de n log2 n opérations (guère plus
de 10000 pour n 1024) si n est une puissance de 2. Cet algorithme s'appelle
la transformation de Fourier rapide (en anglais Fast Fourier Transform —
FFT), voir [Hen] pour une présentation "simple". Pour ne citer qu'une de ses

nombreuses applications, remarquons que c'est elle qui permet la tomographie
et par conséquent les scanners;

2) il existe aussi pour le polynôme d'interpolation trigonométrique (6) une for-

13



mule barycentrique [Beri]:

77/2'

E (-ir
z„(<)

cost — COSIjt
/(**)

n/2'

E
/a-

2?r
(7)

-1)

COS t — COS 11.

Celle-ci permet d'évaluer zn de manière efficiente sans calculer les coefficients
de Fourier par la FFT.
Par ailleurs, les points x^ := costj, cos/c^1, k 0(1)tj, ne sont rien d'autre

que les points de Cebysev mentionnés plus haut, et la formule barycentrique
pour le polynôme d'interpolation (non-trigonométrique) (1) entre ces points
[Sal] est la même que (7) avec le changement de variable x := cost:

n/2 t nk
X Xfc

n/2"

E
k 0

Xk := cos k- 0 (8)

(~lf
X Xk

Il existe un autre cas où la règle du trapèze donne d'excellents résultats, comme
l'a remarqué un certain Goodwin [Goo] en 1949. C'est pour l'intervalle infini,
où elle devient

/00
^

f(x)dx « T(h) h J2 f(kh)-
¦CO 1. _ „„

(9)

h f x2e x dx reo •) _r2
1 x^e x dxJ — OQ

2.000000000000 0.73575888234288 0.29305742447096

1.000000000000 0.36787944117144 0.88450897174632

0.500000000000 0.37863991635357 0.88622692545276
0.250000000000 0.37892803584528 0.88622692545276

0.125000000000 0.37894368321945 0.88622692545276
0.062500000000 0.37894462910716 0.88622692545276
0.031250000000 0.37894468774025 0.88622692545276

0.015625000000 0.37894469139731 0.88622692545276
0.007812500000 0.37894469162576 0.88622692545276
0.003906250000 0.37894469164003 0.88622692545276
0.001953125000 0.37894469164093 0.88622692545276
0.000976562500 0.37894469164098 0.88622692545276

0.000488281250 0.37894469164098 0.88622692545276
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Illustration
La table de la page précédente contient l'intégrale de la même fonction x2e~x
une fois sur l'intervalle [—1,1], une fois sur ] — oo,oo[. O

C'est à nouveau l'interpolation qui permet d'expliquer intuitivement cette
surprenante précision sur l'intervalle infini. En effet, la règle du trapèze infinie
intègre exactement l'interpolant SINC. Ce dernier est une somme pondérée de

copies de la fonction SINC(.r) := ^1^, une par point d'interpolation xj,. kh.
décalées de façon à égaler 1 au point x^ et zéro en tous les autres points Xf / x^
([Ber5] p. 192), avec comme coefficients les valeurs à interpoler:

oo

S(x)= Y, /*SINC[£(*. ¦n.

Et ZZ SWC(x)dx h (ibid. p. 195), donc ZZ S(x)dx T(h) de (9).
Frank STENGER (1938- de l'Université de l'Utah à Salt Lake City, est

le "pape" de l'étude de ces interpolants SINC (je ne suis moi-même tombé
sur eux qu'après qu'un collègue m'ait fait savoir, en regardant le MORGINS
de ma plaque californienne, que Stenger avait choisi SINC-F comme plaque de

voiture). Et je mentionnerai pour les mathématiciens parmi vous que, comme

pour l'interpolation trigonométrique, on a convergence exponentielle de

l'interpolant, ce qui implique la convergence exponentielle de la règle du trapèze:

./:T(h)- / f(x)dx <Cic >, /i-»0,

pour des constantes positives Ci et C2 indépendantes de h. (En fait, c'est ce

dernier résultat qui est le plus général des deux: l'interpolant trigonométrique
n'est en fait rien d'autre que l'interpolant SINC d'une fonction périodique, ibid.
p. 193).

Remarques
1) En utilisant la représentation de Magnus Gustav MITTAG-LEFFLER (1846-

1927) — le "responsable" de l'inexistence d'un prix Nobel en mathématiques
— de 1/sin x, on peut voir que la formule barycentrique de l'interpolant SINC

est donnée par [Ber3]

(-1)*E —^-» x -¦ Xk

S(x) "
-f)k

E (-ir
x - xk

une formule que l'on peut appliquer à des points Xk non équidistants pour
obtenir un interpolant SINC rationnel non encore étudié;

15



2) si comme fonction de la variable complexe w
- / est partout differentiate (donc entière);
- / ne croit dans aucune direction plus vite qu'une fonction exponentielle,

càd. |/(u>)| < Ce*>w< pour une constante C et tout w G C;

- / est quadratiquement intégrable sur l'axe réel, f_ \f{x)\ dx < oo,
alors elle est à spectre borné et est reproduite exactement par son interpolant
SINC:

S(w) — f(w) pour tout tc£C
(et donc aussi pour tout x £ IR). C'est le théorème d'échantillonage de Claude
Elwood SHANNON (1916- qui donne une condition suffisante pour qu'un
signal puisse être reconstitué exactement par l'interpolation SINC [But-Ste]
et est fondamental en traitement numérique des signaux. 0
La règle du trapèze est la somme pondérée

k=o Ja

dans laquelle les abcisses tk sont choisies équidistantes et les poids w^ sont
identiquement 1 sauf en a et 6 où ils sont 1/2. Mais pour les cas où la règle du

trapèze ne donne pas d'excellents résultats, il existe des quantités d'autres
formules d'intégration. Et Claus Schneider de l'Université de Mayence vient de

prouver [Sch] que toute formule d'intégration 2~Z=o wkfi)k) qui intègre exactement

la fonction 1 est l'intégrale exacte d'un interpolant rationnel de Charles
HERMITE (1822-1901), c'est-à-dire ici d'une fonction rationnelle qui interpole
non seulement les valeurs de /, mais aussi les valeurs aux mêmes abcisses d'une
de ses primitives. Remarquons qu'il existe des formules barycentriques pour de

tels interpolants.

4. Fonctionnelles de certaines fonctions singulières

La plupart des fonctions que l'on cherche dans la pratique sont analytiques
(infiniment différentiables) sur un ensemble fini de sous-intervalles, avec
d'éventuelles singularités aux extrémités de chaque sous-intervalle. Considérons
uniquement l'un de ces sous-intervalles et supposons que

— la fonction traitée soit analytique dans tout le disque complexe dont le dia¬

mètre est l'intervalle considéré, ici normalisé à [—1, 1] par changement de

variable;

— la fonction soit quadratiquement intégrable sur le cercle unité Y:

J \f(z)\2\dz\ < oo.

Cette intégrale mesure la grandeur de /, se nomme norme de / et est dénotée
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Les mathématiciens appellent l'ensemble de ces fonctions un espace de Gode-
frey Harold HARDY (1877-1947) et le dénotent H2.

Exemples

f(w) - ZZO + w)(l -w) w2\Jl - w2 et f(w)
VT^w2

appartiennent à H

f(w) ^L= et /(«,)= -^Vl — w2 1 — w1

n'appartiennent pas à H 0
Supposons maintenant que tout ce qu'on sache de / soient ses valeurs /,- :=

f{xi) en des points donnés xo, Xi,... ,xn, et qu'on veuille approximer un nombre

N(/) qui dépende de cette fonction — ce qu'on appelle une fonctionnelle en
mathématiques: N(/) peut être par exemple la valeur de / en un certain point
x*, ou l'intégrale J, f(x)dx. On supposera que cette dépendance est linéaire.

On veut maintenant trouver la meilleure approximation possible de ce nombre

N(/) sous la forme d'une somme pondérée

wofo + Wifi + + wnfn

des valeurs données de la fonction, où les poids Wk dépendent certes des points
Xk, mais non de la fonction f.

Alors il est naturel de chercher les poids pour lesquels le maximum de la valeur
absolue de l'erreur de l'approximation de N(/) par Y)wkîk pour les fonctions

k

d'une grandeur donnée est minimale:

niax y~) wkfk - N(/) min!
/ de mè- I ' ' I

me norme k

Résultat étonnant [Ric-Dyn]: les poids Wk cherchés doivent être tels que pour
toute fonction f de R la valeur approchée J2k w^fk s°it la valeur exacte de la
fonctionnelle, certes non pour /, mais pour un certain interpolant rationnel /x
de / entre les points donnés £;:

Ymh N(Z)!
(-

De nouveau, un interpolant apparaît où on ne l'attendait pas au premier abord.
Et tout aussi étonnant: il existe une formule explicite pour cette fonction
rationnelle f1 ([Gol], [Lar])!

Et alors qu'on ne peut en général pas calculer la fonctionnelle pour une fonction

quelconque, cela est souvent possible pour une fonction rationnelle. Et je
me suis aperçu [Ber4] que, si l'un des points est 0, on pouvait écrire f1- très
simplement sous forme barycentrique (4a): il suffit de multiplier chaque coefficient
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bi du polynôme par le produit des distances du point Xi aux points réciproques
des autres points (sans bien sur 0):

n 1 j n

b'= n (** - ^) / n (x* - **
l- 0

xkjL0
k 0

*k£x.

(La formule n'est que légèrement plus compliquée si aucun des points n'est 0.)

Illustration
Les erreurs maximales d'interpolation des fonctions (dénotées (a,ß,7) dans la

table) f(x) (1 + .r)°(l — 3-)/3log7(l — x) entre 101 points de Cebysev sur
l'intervalle [—1, 1] par le polynôme d'interpolation d'une part et la fonction
rationnelle /x d'autre part prennent les valeurs ci-dessous. La première colonne
donne la fonction interpolée, les autres l'erreur par l'interpolation polynomiale,
respectivement la fonction rationnelle /

Fonction Polynome M
(3,3,0) 0.0 0 0

(1/2,1/2,0) 1.2- 10"5 0.0

(1/4,1/4,0) 5.7- IO"5 0.0

(1/4,0,0) 4.9-10-5 0.0

(1/4,1/4,1) 3.1 ¦ IO"4 7.9-IO"14

(1/4,0,1) 2.2-IO"3 1.0- IO"13

(-1/4,-1/4,0) 3.5-IO"3 6.0- IO"13

(-1/2,-1/2,0) 5.2- 10~2 2.5-IO"11

(-3/4,0,0) 9.4- IO"1 7.8- IO"10

(-1,-1.0) 5 2 6.2- IO"9

Les trois dernières lignes de résultats montrent que / approxime encore assez
bien certaines fonctions trop singulières au bord pour appartenir à H 0

5. Conclusion

Au travers des exemples ci-dessus j'ai essayé de vous convaincre de l'importance

de l'interpolation et du fait qu'elle intervient souvent où on ne l'attendrait
guère de prime abord. Le nombre de mathématiciens célèbres mentionnés dans
ce texte témoigne de son importance, pour le moins dans les mathématiques.
Elle y demeure aujourd'hui un domaine de recherche très prisé: on vient à peine
[Boo-Ron] de trouver une solution satisfaisante au problème de l'interpolation
polynomiale à plusieurs variables pour points quelconques. Il reste beaucoup à

faire, et j'espère par mes travaux actuels sur les interpolants rationnels linéaires
à constante de Lebesgue minimale [Ber6, Ber-Mit], entre autres, apporter une
très modeste pierre à l'édifice.
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