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Fascinante interpolation

par JEAN-PAUL BERRUT,
Institut de Mathématiques de I'Université, CH-1700 Fribourg

Mesdames, Messieurs, chers collégues,

En choisissant ce titre accrocheur, je ne voulais pas insinuer que 'interpolation
est plus fascinante qu’un autre sujet. Tout domaine de recherche devrait étre
fascinant pour celui qui y travaille. Je veux uniquement tenter de montrer ici
pourquoi je trouve personnellement I'interpolation fascinante, et essayer de vous
convaincre, au moins partiellement, que cela peut étre fascinant.

1. Pourquoi 'interpolation?

Ceux d’entre vous qui sont aussi agés que mol se souviennent certainement
des calculs mentaux qu’il fallait exécuter pour trouver les valeurs des loga-
rithmes et des fonctions trigonométriques dans les tables: ces calculs me gachérent
completement les travaux pratiques de physique et sont une des raisons pour
lesquelles j’ai passé de la physique aux mathématiques. Ils furent aussi proba-
blement un des seuls contacts de la plupart d’entre vous avec I'interpolation. Si
aujourd’hui 'interpolation dans les tables ferait bien rire les plus jeunes habitués
aux calculatrices de poche, ces derniéres n’ont guere diminué 'importance de
I'interpolation dans d’autres domaines: pensons par exemple au dessin assisté
par ordinateur, entierement basé sur des interpolants.

Ici je vais prendre un exemple plus proche de I’analyse numérique, mon do-
maine de recherche: la résolution pratique de certaines équations aux dérivées
partielles (EDP) de la physique.

Vous avez tous vu dans vos journaux les courbes isobares (cad. de pression con-
stante) servant a la prévision du temps. Comment les obtient—on? En simulant
le temps par avance, sur ordinateur.

Avant de commencer les calculs, on mesure les valeurs des grandeurs qui
déterminent le déplacement des gaz qui forment ’atmosphere. Dans un modéle
tres simplifié, ceux—ci ne se déplacent en fonction du temps ¢ que d’ouest en est
(ou I'inverse) — coordonnée & — et verticalement — coordonnée z. Et on néglige
la rotation de la terre, la friction des gaz et le réchauffement adiabatique. Alors les
variables importantes sont la vitesse de ’atmospheére v(z, z,t) = (v, v3)(z, 2,1),
sa pression p(x, z,t) = (p1,ps)(x, z,t), et son volume spécifique (la réciproque de
sa densité) a(x, z,1). Les équations du mouvement de Newton, I’équation de la
thermodynamique et I’équation de continuité donnent le systeme d’EDP suivant
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pour ces inconnues en fonction du temps [Hal-Wil]:
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g y représente l'accélération terrestre, ¢, et ¢, sont les chaleurs spécifiques, res-
pectivement a pression et volume constants.

Partant des valeurs mesurées des inconnues, on calcule alors les déplacements
et changements de pression de 'atmospheére dans les heures et les jours suivants
en résolvant ces équations; cela revient a simuler le temps par avance.

Le point important ici est que les trois inconnues v, p et a sont des fonc-
tions de 'espace et du temps, donc de grandeurs continues. Elles représentent
par conséquent une information infinie impossible a déterminer en pratique. On
les remplace donc par des fonctions plus simples reconstructibles a partir d’une
information finie. Si cette information finie consiste en des valeurs de la fonc-
tion cherchée en un nombre fini de points (plutot que dans le continu), alors
’approximation est un interpolant de la fonction. C’est entre autres cette ap-
plication a la résolution pratique des EDP par le calcul scientifique qui donnent
aujourd’hui son importance a |'interpolation.

2. Interpolation polynomiale

Les interpolants les plus simples sont les polynomes. Et si I’on ne sait rien
par avance sur la fonction, les points les plus logiques semblent étre les points
équidistants. Pour 2, 3 et 4 points, cela donne

vi(z) =ap+ a1z ya(x) = ap + a1z + axz?



ys(z) = ap+ a1z + arz’ + azx®
Remarquez que le degré est plus petit d’une unité que le nombre de points.
On peut faire de meme quel que soit le nombre de points: pour n + 1 points,

Yn(z) = ag + a1z + asxe® + ...+ ap_12" ! +apz”. (1)

Les coefficients a; dépendent de maniére compliquée des x; et des f; := f(z;), s
bien que pour l'interpolation on n’écrit pas le polynome sous la forme classique
(1).

Afin d’introduire 'autre représentation du polynome que nous allons utiliser
ici, prenons le cas de trois points (I'interpolant est donc une parabole) —1, 0, 1
et de la fonction f(z) = %% Alors les valeurs interpolées f; sont

1/2, enzp= -1,
= 2, en ry = 0,
3/2, enzy=1.

24z

9

14 2°

Essayons maintenant d’écrire notre interpolant quadratique ys(z) comme

_ by
o) = 2=

r—(=1)
(les dénominateurs sont les distances de la variable aux points d’interpolation,

1 b
f+$l

T g=nt

et au numérateur chaque fraction est multipliée par la valeur de I'interpolant au
point correspondant)



bo 1, by, by 3
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avec une coefficient inconnu b; a déterminer pour chacun des points d’interpola-
tion.

Le numérateur et le dénominateur de (2) ont le meme dénominateur com-
mun (z + 1l)z(z — 1), le produit des distances de la variable a tous les points
d’interpolation. Multiplions numérateur et dénominateur par ce dénominateur

(2)

commun:
1 . 3

. 3

bor(z — 1)+ by(x+ 1)(x — 1)+ box(z + 1) (3)

On voit donc que, quels que soient les b; choisis, y2(z) est une fonction ra-
tionnelle, cad. un quotient de deux polynomes. Et quels que soient les nombres
by, by et by (différents de zéro), img_.,, = fi, donc y(x) interpole toujours f(x)
entre les points xg, ¥, et s,

ya(x) =

Ilustration

Si pour I'exemple ci—dessus et les coefficients arbitraires by = 7, by = 4 et by = 13
on calcule la valeur de l'interpolant pour x = (0.1 puis toutes les valeurs de x
obtenues en divisant celle—ci successivement par 100, on obtient la suite suivante
de valeurs de I'interpolant, qui tend bien vers f(0) = 2.

& ya(x)
0.1 1.92721518987342
0.001 1.99900274813870
0.00001 1.99999000027500
0.0000001 1.99999990000003
0.000000001 1.99999999900000
0.00000000001 1.99999999999000
0.0000000000001 1.99999999999990
0.000000000000001 2.00000000000000

Et ceci vaut en tous les points d’interpolation, quel que soit le nombre de ces
derniers. @

Le dénominateur de l'interpolant (3) s’écrit
bo(2® — z) + by (2 — 1) + ba(z® + ) = —by + (by — bo)x + (bo + b1 + ba)z?.

Pour que (2) soit un polynome, il faut que ce dénominateur soit constant, cad.
que

bg—bozo
bo + by + b2 = 0.



La solution de ce systeme est donnée par

by by
by = —— by = ——
0Ty =g
pour b; # 0 quelconque. Avec by = —2, cela donne

2 2 2
bn=1= b = -2 = — s =1= .
. (0> == (1) =i (z)

Dans le cas général de n + 1 points équidistants, la solution est donnée a une
constante pres par
b = (~1)¢ (’:) i=0(1)n.

Avec ces b;, (3) est une modification de la formule de Joseph Louis LAGRANGE
(1736-1813) pour le polynome d’interpolation. Quoiqu’en disent la plupart des
livres d’introduction a I'analyse numeérique, surtout américains, elle est souvent
meilleure que la formule instable de Isaac NEWTON (1643-1727), ou de plus
les différences divisées correspondant aux b; dépendent de f, ce qui hypotheque
I'utilisation de la formule pour la résolution d’équations. Remarquons cepen-
dant que la stabilité de la formule de Newton peut etre sensiblement améliorée
en réordonnant les points [Fis-Rei] selon la suite de Johannes Gualtherus VAN
DER CORPUT (1890-1975), professeur a I'institut de mathématiques de notre
Université en 1922-1923. L’idée d’utiliser la représentation (2) pour le calcul est
venue a un certain William J. TAYLOR durant la deuxiéme guerre mondiale:
ce dernier était l'un des nombreux mathématiciens qui ont du leur emploi au
National Bureau of Standards a la politique du New Deal instaurée par F.D.
Roosevelt durant la grande crise des années 30. Cette formule a été baptisée
barycentrique par Heinz RUTISHAUSER (1918-1970), notre génie national du
calcul numérique, qui a entre autres eu l'idée de ’algorithme généralement utilisé
pour le calcul de valeurs propres.

[llustration

Voyons maintenant ’erreur maximale de I'interpolation des fonctions sin 2z, 1_1_1$
et Tél's—x'g sur I'intervalle [—1, 1] (ol toutes trois ne prennent que des valeurs entre

0 et 1) pour 11 points d’interpolation équidistants (n = 10).

Fonction Erreur
sin 2x 4.038 107
1 -
; |
H—xg 7.900 - 10
1 100




L’exemple final, ou I'interpolation polynomiale entre points équidistants donne
des résultats catastrophiques, est du a Carl RUNGE (1856-1927) [Run]. ©

Pour un grand nombre n + 1 de points d’interpolation, les points équidistants
ne sont donc pas adéquats; ceci se manifeste aussi dans le fait que les b; =
(—1)*(7), au signe prés les nombres du triangle de Pascal, sont trés différents les
uns des autres. Il est donc naturel de chercher a utiliser d’autres points.

Dans le cas de n+ 1 points quelconques xg, 21, ...,2&,, on a pour le polynome
d’interpolation la formule barycentrique

by
_r—m0f0+:c—a:1f1 +:13—:1:nf”
y(z) = bo b, b ) (4a)
-z Tz—z; T tz—7,

ou le coefficient b; n’est plus (—1)* ( ), mais la réciproque du produit des distances
du point z; a tous les autres points d’interpolation:

H i — 1) (4b)

k;tz

Et de meilleurs points que les points équidistants existent. On mesure la qualité
des points par leur constante de Henri LEBESGUE (1875-1941), qui doit étre la
plus petite possible. Les bons points sont ceux qui, une fois rapportés verticale-
ment sur le cercle dont le diametre est donné par l'intervalle d’interpolation, sont
presque équidistants. Les plus courants sont ceux d’Adrien-Marie LEGENDRE
(1752-1833) et surtout ceux, exactement équidistants sur le cercle, de Pafnuti
Lwowitsch CEBYSEV (1821-1894), pour lesquels on a pour ’essentiel la formule
trés simple b; = (—1)" (voir (8) plus loin) et pour lesquels on peut aussi prouver
que le polynome d’interpolation est trés proche du meilleur de tous les polynomes
du méme degré approximant f.

Hlustration

La table du sommet de la page suivante montre pour des n croissant l’erreur
d’interpolation de la fonction de Runge entre n + 1 points de Cebysev. La diffé-
rence avec celle des points équidistants se passe de commentaire! ©

Mais si on ne peut pas choisir les points? Alors on pourrait penser se con-
tenter d’une fonction rationnelle et utiliser le fait que tout choix des b; donne
un interpolant. Et, pour utiliser I'interpolant dans la résolution d’équations
différentielles, choisir les poids indépendants de la fonction a interpoler. C’est un
des projets auxquels je travaille en ce moment. J’al proposé [Ber2] de prendre
b; = (—1)' quels que soient les points intérieurs, et la meme valeur divisée par 2
pour les points des extrémités. Rien n’est encore prouvé quant a l’erreur, mais
Benjamin NOEL, un de mes diplomants, vient d’obtenir des résultats numériques
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n Equidistants Cebysev
4 4.382 - 1071 4.599 - 107!
8 1.045 - 10° 2.045 - 1071
12 3.657 - 10° 8.423-1072
16 1.432 - 10! 3.658 - 10~2
20 5.859 - 10! 19773 - 162
24 2 572 - 10° 8.103-1073
28 1.107 - 10% - 3.649 - 103
32 4.778 - 108 1.615-1073
36 2.944 - 10* 7.388 - 10—¢
40 1.044 - 10° 3.328 - 10~
80 1.133 - 1077
160 1.366 . 10~ 14

dune qualité étonnante pour certains points; ces résultats devraient permettre
de mieux comprendre le comportement de cet interpolant.

3. Intégration

A nouveau, I'intégration d’une fonction quelconque est un probleme que 'on
ne peut en général pas résoudre sur le papier: en gros, on peut dire que seules les
fonctions composées de celles que 1'on étudie au gymnase peuvent étre intégrées
exactement.

L’idée est alors de remplacer la fonction d’information infinie par un inter-
polant, ce qui rend 'information finie, et d’intégrer exactement cet interpolant.
Dans le cas de certaines fonctions singulieres que nous verrons plus loin, on peut
meme prouver que cette maniére de faire est optimale.

Ici on ne parlera que d’intégrales définies [ := f: f(t)dt. Rappelons qu’'une
telle intégrale est la surface entre le graphe de la fonction et I’axe des abcisses.

Une des méthodes les plus simples consiste a prendre sur l'intervalle [a, b] des
points d’interpolation équidistants ty, approximer f(¢) par un segment de droite
(un interpolant de degré 1) dans chacun de ces n intervalles de longueur h et
intégrer exactement la ligne polygonale ainsi construite.

La surface sous celle-ci est faite de trapézes (posés verticalement), ce qui
donne la formule

10 = b [370000+ g1 + [0 + 31|+
\ fEtwl) J )
[ + 3 10)] | = th fite)



intégration trapézoidale; f(x) = exp(sin(1/x))

27177

1
~
Ve

2.1303

1.5428

0.9553

0.3679 - S
intervalle: [0.1000,0.2500] nombre de points : 10

C’est la régle d’intégration du trapéze. Les " dans 3" signifient que le
premier et le dernier termes de la somme sont a diviser par 2.

Hlustration
L ; 1 1
Considérons les deux fonctions 1+25(-;%—1)2 et 42507 3
12f
1 -
f(x) = 1/(1+25((x-pi)/pi)"2)
o5 f(x) = 1/(1+25(cos(x/2))"2)

1 1 J
0 1.56708 3.1416 4.7124 6.2832
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qui ne different que peu l'une de 'autre, et intégrons—les de (0 a 27 avec un

nombre croissant d’intervalles. On obtient les valeurs suivantes:

n TFER(ETT B
1 0.2416609733530610 0.2416609733530610
2 3 2624231402663235 3 2624231402663235
] 2.0645346947662366 1.8639221370657391
3 1.7495462692026278 1.3392744017714020
16 1.7254328170369020 1.2365115752044911
3 1.7257151357648688 1.2322414176354950
64 1.7258284904609167 1.2322340188232963
128 1.7258568493475307 [.2322340188010841
256 1.7258639402207825 1.2322340188010843
512 1.7258657130111090 [.2322340188010841
1024 1.7258661562131921 1.2322340188010836
o T.72586630304762 1.23223401850108

(le symbole co dénote la valeur exacte de 'intégrale). ©

Comment expliquer une telle différence de rapidité de convergence de la regle
du trapeze? Pour une fonction f suffisamment différentiable, I'erreur est donnée
par la formule de Leonhard EULER (1707-1783) — le mathématicien qui se
trouve sur nos billets de 10 francs — et Colin MACLAURIN (1698-1746) [Hen]

T(hS — = 22 17'(6) =~ f/(@)]h” + 1) = F(a)] A +
+ BQm [f(Qm 1( ) f(2m 1)((1)] h2m+0(h2m+1)

2m)!
m
Z [f(2z 1) )_ f(21'—1)(a)] th' +O(h2m+1),
ou les constantes Bs; sont les nombres de Jakob I BERNOULLI (1654-1705),
mathématicien balois comme Euler. Ces nombres sont par définition les coeffi-

cients (sans les factorielles) de la série de Taylor (Brook TAYLOR (1685-1731),

rien a voir avec W. Taylor vu plus haut) de la fonction =% autour de z = 0:

ZZB,::—'

1=0

(5)

Pourquol ’erreur ne dépend-elle que de la fonction f aux extrémités de l'inter-
valle? L’interpolant linéaire par morceauz par lequel on a introduit la regle du
trapéze ne permet pas de I’expliquer.

11



L’interpolant constant par morceauz

fonction : f(x) = exp(sin(1/x))

251 1

15 |

05 .
= .
1 1 1 1 I = & = )
&

intervalle: [ 0.100, 0.250] # de sous-intervalles: 10

intégré exactement donne aussi la régle du trapeze. Mais lui non plus ne permet
pas d’expliquer que I'erreur ne dépende que de la fonction f aux extrémités.

Il existe cependant encore au moins un autre interpolant dont I'intégrale exacte
est donnée par la regle du trapeze: I'interpolant trigonométrique. Pour des
fonctions paires (cad. symétriques par rapport au centre de 'intervalle) et apres
un changement de variable pour amener lintervalle a etre [a,b] = [0,27], cet

interpolant est donné par la méme formule que (1) avec les monomes z* remplacés
par cos kt:
zn(t) =co+cycost+ ...+ ¢y cos(n — 1)t + ¢, cosnt. (6)

Ce n’est donc rien d’autre qu’une série de Jean—Baptiste-Joseph FOURIER
(1768-1830) tronquée apres le terme en cos nt. Pour la série de Fourier compléte
(infinie), on sait que les coefficients de Fourier ¢; sont donnés par la formule

1 27 1 1 2T
cop = —/ f)dt = —1, Cf: = —/ f(t) cos ktdt.
27 Jy 2T T Jo

Les coefficients du polynome trigonométrique d’interpolation (6) sont exactement
les approximations ¢ de ces intégrales par la regle du trapeze en prenant le meme
nombre d’intervalles que de coefficients (ceci n’est pas tellement surprenant, vu

12



que la régle du trapeze utilise alors les mémes valeurs de f que le polynome (6)).
¢o n’est alors rien d’autre que 5=7'(h), ot T'((h) dénote & nouveau I’approximation
de I par la régle du trapéze.

Intégrons exactement le polynome (6) pour approximer I:

27 2 27

2w 27
/zn(t)dt = EO/dt + /costdi + ...+ Chy /cos(n — Dtdt + ¢, /cosntdt.
0 0 0

0 0

2 2T
Mais pour tout k = 1,2,..., [ cosktdt = %sin kt| =0 et donc
0 0
27 2w i
/zn(t)dt = ?O/dt = —Q—T(h)27r = T(h}:
T
0 0

Lisant cette égalité de droite a gauche, on voit que I'approximation de I par la
regle du trapeze n’est rien d’autre que 'intégrale exacte du polynome trigono-
métrique interpolant f(¢)! Et ainsi la raison pour laquelle 'erreur dépend des
sauts des dérivées en 0 et 27, selon la formule (5), devient claire. Le polynome
trigonométrique est 27-périodique et ne peut pas étre une bonne approximation
de f si f ou ses dérivées ne sont pas 2m—périodiques. Cela explique pourquoi la
regle du trapeze donne de bien meilleurs résultats pour une fonction périodique

. T » s e . 1 1 1
et & dérivées périodiques comme 5z smr; que pour g

Remarques

1) Si 'on s’intéresse au polynome trigonométrique d’interpolation (6), il faut
calculer par la regle du trapéze les approximations ¢ des cx. C’est ce qu’on
appelle la transformation de Fourier discrete. Or il y a n + 1 coefficients ¢,
et chaque regle du trapéze exige un multiple de n opérations. Le total des
opérations est donc de I'ordre d’un multiple de n?, qui croit assez vite avec n
(plus d’un million pour n = 1024 = 2%). En 1965, James W. COOLEY et
John W. TUKEY ont publié un des articles les plus cités des mathématiques et
de I'informatique [Coo-Tuk] dans lequel ils présentent un algorithme (cad. une
méthode a caractere répétitif, idiome dérivé du nom du mathématicien arabe
Mohammed ibn Misa AL-KHOVARIZMI (IX€ siecle)) permettant de calculer
les n + 1 régles du trapéze en un multiple de nlog, n opérations (gueére plus
de 10000 pour n = 1024) si n est une puissance de 2. Cet algorithme s’appelle
la transformation de Fourier rapide (en anglais Fast Fourier Transform —
FFT), voir [Hen] pour une présentation “simple”. Pour ne citer qu’une de ses
nombreuses applications, remarquons que c’est elle qui permet la tomographie
et par conséquent les scanners;

2) 1l existe aussi pour le polynome d’interpolation trigonométrique (6) une for-

13



mule barycentrique [Berl]:
71/2H k
(-1
> ) J(tx)
cost — costy

wn(t) = kz(jllzu ) b 7= . (7)

>
cost — costy

k=0

Celle—ci permet d’évaluer z,, de maniere efficiente sans calculer les coefficients
de Fourier par la FFT.

Par ailleurs, les points x := cost; = cos k2n—“, = 0(1)%, ne sont rien d’autre

que les points de Cebysev mentionnés plus haut, et la formule barycentrique
pour le polynome d’interpolation (non-trigonométrique) (1) entre ces points
[Sal] est la meme que (7) avec le changement de variable z := cost:

n

Py = BOS kz. %)

[l existe un autre cas ou la regle du trapeze donne d’excellents résultats, comme
’a remarqué un certain Goodwin [Goo] en 1949. C’est pour I'intervalle infini,

ou elle devient

/_DO f(x)dz = T(hy=h Y f(kh).

k=—oc0

h

1 _om2
[ afe " de

o0 2
f rle % dr
— 0

2.000000000000

0.73575888234288

0.29305742447096

1.000000000000

0.36787944117144

0.88450897174632

0.500000000000

0.37863991635357

0.88622692545276

0.250000000000

0.37892803584528

0.88622692545276

0.125000000000

0.37894368321945

0.88622692545276

0.062500000000

0.37894462910716

0.88622692545276

0.031250000000

0.37894468774025

0.88622692545276

0.015625000000

0.37894469139731

0.88622692545276

0.007812500000

0.37894469162576

0.88622692545276

0.003906250000

0.37894469164003

0.88622692545276

0.001953125000

0.37894469164093

0.88622692545276

0.000976562500

0.37894469164098

0.88622692545276

0.000488281250

0.37894469164098

0.88622692545276
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Hlustration
La table de la page précédente contient I'intégrale de la meme fonction .T,?e“”g,
une fois sur 'intervalle [—1, 1], une fois sur | — 0o, 00[. @

(’est a nouveau l'interpolation qui permet d’expliquer intuitivement cette
surprenante précision sur I'intervalle infini. En effet, la regle du trapeze infinie
integre exactement l'interpolant SINC. Ce dernier est une somme pondérée de
copies de la fonction SINC(x) := % une par point d’'interpolation zp = kh,
décalées de fagon a égaler 1 au point xj et zéro en tous les autres points x; # xy

([Ber5] p. 192), avec comme coefficients les valeurs a interpoler:

}:_nsmc[gu—x”]

k=—o00

Et j SINC(z)dx = h (ibid. p. 195), donc f S(z)dx = T(h) de (9).

Frank STENGER (1938- ), de I’ UnlverSIte de I'Utah a Salt Lake City, est
le “pape” de I’étude de ces interpolants SINC (je ne suis moi-meme tombé
sur eux qu’apres qu’un collegue m’ait fait savoir, en regardant le MORGINS
de ma plaque californienne, que Stenger avait choisi SINC-F comme plaque de
voiture). Et je mentionnerai pour les mathématiciens parmi vous que, comme
pour I'interpolation trigonométrique, on a convergence exponentielle de I'inter-

polant, ce qui implique la convergence exponentielle de la regle du trapeze:

ﬁwn—[:fuum

pour des constantes positives 'y et (5 indépendantes de h. (En fait, c’est ce
dernier résultat qui est le plus général des deux: l'interpolant trigonométrique
n’est en fait rien d’autre que I'interpolant SINC d’une fonction périodique, ibid.

p. 193).

Remarques

1) En utilisant la représentation de Magnus Gustav MITTAG-LEFFLER (1846-
1927) — le “responsable” de I'inexistence d’un prix Nobel en mathématiques 7
— de 1/sinz, on peut voir que la formule barycentrique de I'interpolant SINC

est donnée par [Ber3]
0 k
-1
Y
r — Tk

=
<Cre”®, h—0,

3y

une formule que I'on peut appliquer a des points z; non équidistants pour
obtenir un interpolant SINC rationnel non encore étudié;
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2) si comme fonction de la variable complexe w
— f est partout différentiable (donc entiere);
— f ne croit dans aucune direction plus vite qu’une fonction exponentielle,
cad. |f(w)| < Ce®!*l pour une constante C et tout w € C;
— f est quadratiquement intégrable sur I’axe réel, ffom If($)|2 dz < oo,
alors elle est a spectre borné et est reproduite exactement par son interpolant
SINC:
S(w) = f(w) pour tout w € C

(et donc aussi pour tout € IR). C’est le théoréme d’échantillonage de Claude
Elwood SHANNON (1916- ), qui donne une condition suffisante pour qu’un
signal puisse étre reconstitué exactement par l'interpolation SINC [But-Ste]
et est fondamental en traitement numérique des signaux. ©@

La regle du trapeze est la somme pondérée

n b
S wnfte)~ [ s
k=0 L

dans laquelle les abcisses t; sont choisies équidistantes et les poids wy, sont iden-
tiquement 1 sauf en a et b ou ils sont 1/2. Mais pour les cas ou la régle du
trapéze ne donne pas d’excellents résultats, il existe des quantités d’autres for-
mules d’intégration. Et Claus Schneider de I’Université de Mayence vient de
prouver [Sch] que toute formule d’intégration Y ,_, w f(tx) qui intégre exacte-
ment la fonction 1 est l'intégrale exacte d’un interpolant rationnel de Charles
HERMITE (1822-1901), c’est-a-dire ici d’une fonction rationnelle qui interpole
non seulement les valeurs de f, mais aussi les valeurs aux mémes abcisses d’'une
de ses primitives. Remarquons qu’il existe des formules barycentriques pour de
tels interpolants.

4. Fonctionnelles de certaines fonctions singuliéres

La plupart des fonctions que I'on cherche dans la pratique sont analytiques
(infiniment différentiables) sur un ensemble fini de sous—intervalles, avec d’é-
ventuelles singularités aux extrémités de chaque sous-intervalle. Considérons
uniquement ’'un de ces sous—intervalles et supposons que
— la fonction traitée soit analytique dans tout le disque complexe dont le dia-

metre est I'intervalle considéré, ici normalisé a [—1, 1] par changement de va-

riable;
— la fonction soit quadratiquement intégrable sur le cercle unité I':

] 1F(2)2]dz] < oo.
I

Cette intégrale mesure la grandeur de f, se nomme norme de f et est dénotée

1711
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Les mathématiciens appellent I’ensemble de ces fonctions un espace de Gode-
frey Harold HARDY (1877-1947) et le dénotent HZ.

Eremples

w

f(w) = w ATF o= w) = V=0 et f(u) = 5tey

appartiennent & H?,

w w2

f(w):—\/ﬁ et f(w)= T

n’appartiennent pas a H. ©

Supposons maintenant que tout ce qu’on sache de f solent ses valeurs f; :=
f(z;) en des points donnés g, zy,...,&,, et qu’on veuille approximer un nombre
N(f) qui dépende de cette fonction — ce qu’on appelle une fonctionnelle en
mathématiques: N(f) peut etre par exemple la valeur de f en un certain point
z*, ou l'intégrale f_{l f(z)dz. On supposera que cette dépendance est linéaire.

On veut maintenant trouver la meilleure approximation possible de ce nombre
N(f) sous la forme d’une somme pondérée

wofo+wifi+...4+wnfn

des valeurs données de la fonction, ou les poids w; dépendent certes des points
rr, mais non de la fonction f.
Alors 1l est naturel de chercher les poids pour lesquels le maximum de la valeur
absolue de 'erreur de 'approximation de N(f) par >  wy fr pour les fonctions
k

d’une grandeur donnée est minimale:

max
f de mé-
me norme

Zwkfk — N(f)| = min!
k

Résultat étonnant [Ric-Dyn]: les poids wi cherchés doivent etre tels que pour
toute fonction f de H? la valeur approchée >k Wk fi soit la valeur exacte de la
fonctionnelle, certes non pour f, mais pour un certain interpolant rationnel f+
de f entre les points donnés z;:

S wifi = N(F)!
k

De nouveau, un interpolant apparait ou on ne l'attendait pas au premier abord.
Et tout aussi étonnant: 1l existe une formule ezplicite pour cette fonction ra-
tionnelle f+ ([Gol], [Lar])!

Et alors qu’on ne peut en général pas calculer la fonctionnelle pour une fonc-
tion quelconque, cela est souvent possible pour une fonction rationnelle. Et je
me suis apergu [Berd] que, si I'un des points est 0, on pouvait écrire f4 trés sim-
plement sous forme barycentrique (4a): il suffit de multiplier chaque coefficient
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b; du polynome par le produit des distances du point z; aux points réciproques
des autres points (sans bien sur 0):

n

b; = H (3:1---) H (zi — z).

k=0
LRl :ck#:r:,

(La formule n’est que légerement plus compliquée si aucun des points n’est 0.)

[lustration

Les erreurs maximales d'interpolation des fonctions (dénotées (o, 3,7v) dans la
table) f(z) = (1 + z)*(1 — z)?log”(1 — z) entre 101 points de Cebysev sur
I'intervalle [—1, 1] par le polynome d’interpolation d’une part et la fonction ra-
tionnelle f1 d’autre part prennent les valeurs ci—dessous. La premiere colonne
donne la fonction interpolée, les autres 'erreur par I'interpolation polynomiale,
respectivement la fonction rationnelle f+.

Fonction Polynome
(3,3,0) 0.0 0.0
(1/2,1/2,0) 1.2-10°° 0.0
(1/4,1/4,0) 5.7-107° 0.0
(1/4,0,0) 49-107° 0.0
(1/4,1/4,1) 3.1-107% | 7.9.1071
(1/4,0,1) 2,910 1.0-10-13
(—-1/4,—-1/4,0) | 35-1072 | 6.0.10713
(—=1/2,—1/2,0) | 5.2-10"2 2.5 - Mi—H
(—=3/4,0,0) 94-10~' | 7.8-107'°
(-1,-1,0) 5.2 6.2-107°

Les trois derniéres lignes de résultats montrent que f* approxime encore assez
¢ ; . . - _ 2
bien certaines fonctions trop singulieres au bord pour appartenir a H*., ©

5. Conclusion

Au travers des exemples ci-dessus j’al essayé de vous convaincre de I'impor-
tance de I'interpolation et du fait qu’elle intervient souvent ou on ne ’attendrait
guere de prime abord. Le nombre de mathématiciens célebres mentionnés dans
ce texte témoigne de son importance, pour le moins dans les mathématiques.
Elle y demeure aujourd’hui un domaine de recherche trés prisé: on vient a peine
[Boo-Ron] de trouver une solution satisfaisante au probleme de I'interpolation
polynomiale a plusieurs variables pour points quelconques. Il reste beaucoup a
faire, et j’espere par mes travaux actuels sur les interpolants rationnels linéaires
a constante de Lebesgue minimale [Ber6, Ber-Mit], entre autres, apporter une
tres modeste pierre a |’édifice.
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