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Eine neue Geometrie für neue Kristalle:
Einladung zu einer Gratwanderung

zwischen Kristallographie und Geometrie

von Andreas Nickel,
3065 Bolligen, Eisengasse 7
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1. Vorwort: Geordnete Raumerfüllung - was ist das?

Vor nun gerade 7 Jahren wurde die Kristallographie von einer Verunsicherung

erfaßt, deren Ursache in einigen merkwürdigen Meßergebnissen lag.
Sie standen in eklatantem Widerspruch zur lange etablierten Theorie. So

herrschte zunächst Ratlosigkeit, doch zeigte sich bald - wie schon manches
Mal in der Geschichte der Wissenschaften -, daß die Trickkiste der Mathematik

bereits die Lösung enthielt. Was bis dahin eher wie eine nutzlose
Spielerei erschien, nur gerade amüsant für ein paar Mathematiker, brachte
Licht in den Bau dieser nichtperiodischen Festkörper. Zur Abgrenzung von
den «klassischen» Kristallen erhielten sie die Bezeichnung Quasikristalle.

Die klassische Definition der Kristalle bezieht sich bekanntlich auf ihre
Struktur: sie sind aus atomaren Komponenten periodisch aufgebaut - mit
diesem Begriff meint der Kristallograph, daß eine Grundeinheit translatorisch

raumfüllendgestapelt ist. Dies führt zu einer abgeschlossenen Theorie,
in welcher 230 Raumgruppen den Kristall als Diskontinuum beschreiben.
Makroskopisch reduziert sich diese Vielfalt auf 32 Klassen oder Punktgruppen,

die sich auf die 6 bzw. 7 Kristallsysteme (je nach Darstellung) verteilen.

Da sich bislang alle bekannten Festkörper - anorganische wie organische
Kristalle - in diese Theorie fügten, dachte kein Kristallograph daran, daß -
rein geometrisch betrachtet - raumfüllende Stapelungen auch nicht-translatorisch

erfolgen können. Nun aber wurde es nötig, von der sehr speziellen
Vorgabe der translatorischen Stapelung abzusehen und zunächst einmal
festzustellen, wie sich Raumerfüllung mit beliebig erdachten Bausteinen
gestalten läßt - ohne daß dabei jedoch alle Ordnung verloren geht. Sonst
nämlich fielen wir in den altbekannten Glaszustand zurück, und mit ihm
haben die Quasikristalle, wie noch auszuführen ist, wenig gemein!

Als Fazit dieser Untersuchungen erscheint heute der klassische Kristall -
Regelfall der Natur - als mathematischer Sonderfall einer weitergefaßten
Kategorie von Strukturen, die teilweise äußerst fremdartige Eigenschaften
besitzen.

In den Jahren nach 1984 jagten sich die Veröffentlichungen über neue
Meßergebnisse und theoretische Ansätze zu immer detaillierteren Erklärungen,

internationale Symposien fanden statt; ein neues Spezialgebiet
zwischen Kristallographie, Festkörperphysik und Geometrie entstand binnen
weniger Jahre. Leider ist diese Literatur für Nicht-Spezialisten fast
unzugänglich, da sie oft komplizierte mathematische Formalismen verwendet,
und - wie bei jedem in rascher Entwicklung befindlichen Gebiet - auch
(vorläufige) Widersprüche aufweist. Außerdem klafft weitgehend eine Lücke
zwischen zwei beteiligten Gebieten: In geometrisch orientierten Werken
(wie in dem von mir oft zitierten Buch von Grünbaum & Shephard, 1987)
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wird nur ganz am Rande auf physikalische Fragestellungen hingewiesen: es

geht um materielose Strukturen. In der kristallographischen Literatur
andererseits wird die Geometrie nur insofern berücksichtigt, als sie für die
Beschreibung experimenteller Befunde anwendbar scheint.

Dieser Artikel verfolgt somit eine doppelte Absicht: Als einführendes
Kompendium auf elementarer Basis soll er interessierten NichtSpezialisten
den Zugang zu einem faszinierenden Forschungsgebiet öffnen. Als «Brük-
kenschlag» zwischen zwei Disziplinen möge er dem Mathematiker ein Fenster

auf die Anwendung eines fundamentalen geometrischen Konzeptes
öffnen, den Kristallographien zu einem Blick in die phantasievolle, ja gar
phantastische Welt der Mathematik verlocken, die -jenseits aller Anwendung -
Geburtsort seiner geistigen Werkzeuge («Denkzeuge») ist.

Schließlich sei daraufhingewiesen, daß die Idee, mich mit dieser Materie
zu beschäftigen, aufeine Anregung meines Vaters, Erwin Nickel, anläßlich
seiner Abschiedsvorlesung «Symmetrie - Schönheit und Notwendigkeit»
zurückgeht. In Civitas 1989) erschienen Gedanken zu dieser Vorlesung, und
ich ergänzte diese Veröffentlichung mit einem Kapitel «Subversive Ideen für
die Kristallographie». Anregungen und Literaturhinweise dazu erhielt ich
von Herrn H.-U. Nissen (ETH Zürich), dem ich für seine Hilfe danke. Nach
kritischer Diskussion mit meinem Vater liegt nun die ausführliche Darstellung

der betreffenden Probleme vor, und wir beide hoffen, der Text habe eine
lesbare Form gefunden!

2. Kristalle - Aufstieg und Krisis einer Theorie

2.1. Der klassische Kristall...

Leider gehören - im Gegensatz zu beispielsweise Zoologie und Botanik -
die Fächer Geologie und Mineralogie nicht oder kaum zum Unterrichtsstoff
der allgemeinbildenden Schulen. Nur in den Fächern Physik und Chemie
einerseits, Mathematik andererseits wird in geringem Umfang aufdie Strukturen

der festen Materie hingewiesen. Daher bleibt, obschon doch jeder sie

kennt, das Verständnis der Kristalle mangelhaft, dieser faszinierenden
Gebilde, die als höchste ästhetische Ausformung der unbelebten Natur
geheimnisvoll verborgene Ordnung offenbaren.

2.1.1. Die Entwicklung des klassischen Kristallbegriffs - Verzerrung, kri-
stallographische Formen, Winkelkonstanz

Der Weg zum «klassischen» Kristallbegriff war lang, denn die sogenannte
Verzerrung der Kristalle verschleiert die innere Ordnung. Kristalle wachsen
ja durch Anlagerung ihrer chemischen Substanz aufder Oberfläche; daher ist
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die Ausbildung der polyedrischen Gestalt sehr von der Stoffzufuhr abhängig,
die nur selten homogen und isotrop erfolgt. Dies bewirkt, daß theoretisch
gleichwertige Elemente des Kristalls im allgemeinen unterschiedlich entwik-
kelt vorliegen. «Verzerrung» bedeutet ein nichtideales Wachstum aufgrund
der äußeren Bedingungen.

Im Reich der Lebewesen ist dies anders. Gleiche Elemente entwickeln sich
hier stets mehr oder weniger gleich: zum Beispiel die zwei Beine des
Menschen. Und weiter sind auch die Beine aller Menschen recht ähnlich -
zumindest vom biologischen Standpunkt her.

Einem möglichen Mißverständnis sei noch vorgebeugt: Der Ausdruck
«Verzerrung» suggeriert eine Art von Verbiegung des Kristalls. Dies ist aber
nicht der Fall! Die Abweichung von der idealen Gestalt kommt nur durch
verdrehungsfreie Verschiebungen der Flächen zustande, senkrecht zu ihren
Flächenloten, die man sich durch die Mitte des Kristalls denkt.

Kristalle bedürfen also einer konstruktiven Entzerrung. Erst wenn
gleichwertige Flächen am Individuum die gleiche Größe haben - und damit auch
den gleichen Umriß -, zeigt sich die wahre Symmetrie des Körpers. Nur so

können die diversen Kristallindividuen der gleichen Kristallsorte verglichen
werden.

Alle gleichwertigen Flächen werden zu kristallographischen Formen1
zusammengefaßt, z. B. die 6 Flächen des Würfels, die 8 Flächen des
Oktaeders, die 6 Flächen des Rhomboeders usw. Ein Kristall besteht demnach aus
einer einfachen (kristallographischen) Form oder aus einer Kombination
(von Formen). Ein Fluoritkristall kann z. B. Würfel und Oktaeder kombinieren.

Aber vielleicht sind am gegebenen Individuum nur zwei der 6
Oktaederecken «abgeschnitten» - d. h., die Form des Würfels zeigt sich nur durch
2 Flächen! Bei der Entzerrung muß man aber davon ausgehen, daß an allen
6 Oktaederspitzen (gleich große) Würfelflächen sitzen.

Theoretische Grundlage aller Entzerrungen bildet das Gesetz der
Winkelkonstanz (Nicolaus Steno, 1669), das besagt: Für jede Kristallsorte haben die
Winkel zwischen entsprechenden Flächen feste Werte, unabhängig von der
Größe der Flächen. Damit ließen sich die Flächenlagen leicht auf Achsenkreuze

beziehen, die man der Symmetrie der betreffenden Kristallsorte

1 Man beachte, daß somit «Form» in der Kristallographie eine ganz andere Bedeutung

als in der Geometrie hat. Hier ist «Form» ein sehr allgemeiner Ausdruck: Form
eines Dreiecks, einer Kurve usw. - «Form» im geometrischen Sinn kann kristallo-
graphisch etwa als «Gestalt» bezeichnet werden.

In den weiteren Kapiteln benütze ich den Begriff «Form» immer in diesem
allgemeineren Sinn der Geometrie, wenn ich von der Form einer Kachel oder Zelle usw.
spreche.
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anpaßte. Dabei erkannte man folgende erstaunliche Gesetzmäßigkeit: Die
Lage einer Fläche relativ zum Achsenkreuz ergibt sich aus dem Verhältnis
der Achsenabschnitte. Normiert man nun eine (beliebige) Fläche des
Kristalls so, daß ihr Verhältnis 1:1:1 ist, so zeigen die anderen Flächen Verhältnisse

wie 2:1:1 oder4:oo:3 usw. Dies verweist deutlich auf eine quantisierte
innere Ordnung!

In reziproker Notation bilden diese Verhältnisse die Indizes der Flächen.
Es ist klar, daß alle Flächen der selben kristallographischen Form gleiche
Indizes besitzen müssen, bis auf die Vorzeichen. So lauten z. B. die 8

Oktaederflächen-Indizes: (Ul), (ïll), (lïl), (llï), (lïî), (ïlï), (îîl), (IÎÎ),
als Form notiert: {111}.

2.1.2. Die Symmetrien der Kristalle - Kristallklassen, das translatorische
Konzept, Raumgruppen

Zunächst aber führte die Betrachtung an entzerrten, also idealisierten
Kristallen zur vollständigen Symmetrieanalyse im Kontinuum. Gefunden
wurden bestimmte Symmetrie(dreh)achsen, Spiegelebenen und das
Symmetriezentrum sowie gewisse Kombinationen dieser Symmetrieelemente.
Insgesamt können 32 sogenannte Punktgruppen definiert werden: die 32
Kristallklassen als abgeschlossenes Ordnungssystem der makroskopisch
betrachteten Kristallwelt.

Warum aber bildet die feste Materie gerade diese Formen, besitzt sie diese

Symmetrien, diese konstanten Winkel? Warum tritt beispielsweise keine
Punktgruppe mit fünfzähliger Drehachse auf? Grund dafür ist, wie oben
angedeutet, der Feinbau der Kristalle, also die Anordnung von Materieteilchen

im Raum. Schon Hauy hatte um 1780 versucht, die große Mannigfaltigkeit

der äußeren Gestalt durch einen Stapelbau aus einfachen «Ziegeln»
zu erklären - d.h. durch ein translatorisches Konzept aus kleinsten Einheiten.

Heute beschreiben wir den Feinbau durch die Anordnung der atomaren
Bausteine im Kristall. Da diese Anordnung translatorisch ist, läßt sich die
Materieverteilung als Repetition einer kleinsten Einheit, der sogenannten
Elementarzelle, beschreiben: Der Gesamtkristall entsteht durch lückenlose
Stapelung solcher Parallélépipède2.

In einfachen Strukturen «belegt» man die 8 Ecken der Elementarzelle mit
atomaren Bausteinen und «füllt» dann weiter auf. So läßt sich z. B. CsCl als
Struktur mit dem Schwerpunkt des Cäsium-Ions an den Ecken eines Würfels

2 Parallélépipède sind die raumlichen Äquivalente der ebenen Parallelogramme; sie
bestehen aus sechs Flächen, von denen je zwei gegenüberliegende zueinander parallel
sind.
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und dem des Chlor-Ions im Würfelzentrum beschreiben (oder umgekehrt, je
nach Wahl des Nullpunktes der Elementarzelle). Bravais hat gezeigt, daß es

nur 14 Bautypen gibt, die dem translatorischen Bauprinzip genügen.
A priori ist es natürlich möglich, einen gegebenen Kristall auf sehr

unterschiedliche Weise in gleiche Parallélépipède zu zerlegen. Der Kristallograph
wählt aber seine Elementarzellen mit Rücksicht auf die Materiefullung des
Raumes: so nämlich, daß sie der gesamten vorhandenen Symmetrie
entsprechen und damit das Kristallsystem wiedergeben. In diesem Falle laufen
die Kanten der Parallélépipède parallel zu den 3 kristallographischen Achsen.

Dies ergibt folgende 7 Zuordnungen:
(a) Triklin; beliebig schiefes Parallelepiped.
(b) Monoklin; in einer Richtung schiefes Parallelepiped.
(c) Orthorhombisch; Quader («Ziegelstein» mit 3 verschieden langen Kan¬

ten).
(d) Tetragonal; Quader, dessen Kanten in 2 Richtungen gleich lang sind.
(e) Kubisch; Würfel Quader mit 3 gleichwertigen Richtungen).
(f) Trimetrisch; 2 Möglichkeiten der Darstellung:

(i) Rhomboeder, das ist ein entlang einer Raumdiagonalen gewisserma¬
ßen «gestauchter» oder «gezerrter» Würfel,

(ii) Parallelepiped mit Basiswinkel 60° und einer 3. Richtung senkrecht
dazu. (3 solche Elemente zusammengestellt bilden eine hexagonale
Säule!)

Die Betrachtung der Symmetrien auf diesem atomaren Niveau führte
(u.a. durch Einbezug kombinierter Symmetrieelemente wie Schraubenachsen

und Gleitspiegelebenen) zur Differenzierung der 32 Klassen in 230
sogenannte Raumgruppen. Damit war die Theorie der Kristalle auch bezüglich
ihrer Feinstruktur zu einem Abschluß gekommen.

1912 konnten von Laue, Friedrich und Knipping die experimentelle
Bestätigung dieser Strukturauffassung liefern : Aufgrund des translatorischen
Stapelbaus atomarer Komponenten wirken Kristalle für Wellen geeigneter
Länge als räumliche Beugungsgitter. Meistens werden - wie schon im
klassischen Versuch - Röntgenstrahlen verwendet, doch sind heute auch
Elektronenstrahlen möglich. Die gewonnenen Beugungsbilder enthalten die
Informationen zum Feinbau des durchstrahlten Kristalls in verschlüsselter
Form (siehe 6.).

Ich fasse zusammen: In klassischer kristallographischer Sicht stellt der
Kristall ein aus Elementarzellen aufgebautes Diskontinuum dar, das durch
atomare Kräfte zusammengehalten wird. Die parallelepipedische Gestalt der
Elementarzellen sowie ihre lücken- und verdrehungsfreie Stapelung im
Raum - und folglich translatorische Anordnung - entspricht der
Kristallsymmetrie. Jede Elementarzelle des selben Kristalls enthält die gleiche Mate-
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riefüllung, die aus einigen wenigen bis mehreren tausend Atomen bestehen
kann. Für die Beschreibung einer bestimmten Kristallsorte ist immer die
selbe Sorte von Parallelepipeden vorzusehen.

Zum leichteren Verständnis soll hier ein zweidimensionales Beispiel
betrachtet werden (Abb. 1 Auch in der Folge werde ich oft die Überlegungen

auf die Ebene reduzieren, wo immer die räumliche Darstellung zu
schwierig wird und das betreffende Prinzip solche Vereinfachung zuläßt.

Abb. 1 : Schema einer ebenen Kristallstruktur.
x und y bezeichnen die beiden Translationsrichtungen (Achsen), tx und ty
die entsprechenden Translationsvektoren. Z ist der Mittelpunkt der
Baueinheit («Kachel»), die in der Ebene ein Parallelogramm ABCD ist. Das

Aneinanderlegen der Kacheln erfüllt die Ebene lückenlos.

2.1.3 Begriffe und Anmerkungen - Zellen, Symmetrieelemente, Gitter

Da ich in den folgenden Kapiteln statt der kristallographischen Sicht eine
rein geometrische Betrachtungsweise verwenden werde, sind noch einige
Begriffe zu präzisieren sowie einige Hinweise anzubringen.

Im weiteren werden folgende Begriffe verwendet:

(i) En bezeichnet den euklidischen Raum mit n Dimensionen; E2 ist also
die Ebene, E3 unser gewöhnlicher Raum, E1 die Gerade. Ein En kann
wahlweise als Punkt- oder als Vektorraum beschrieben werden.
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(ii) Die Baueinheit wird Zelle oder Kachel genannt (engl, cell bzw. tile);
der Nicht-Mathematiker verwendet den Ausdruck «Kachel» eher im
E2, «Zelle» eher im E3.

(iii) Da diese Zellen durch translatorischen Bau den Kristall bilden,
bezeichne ich sie als Translationszellen (tZ).

Ich verwende hier nicht den kristallographischen Begriff
Elementarzellen, da die Zellen in der Folge rein geometrisch und somit
allgemeiner als in der Kristallographie verwendet werden sollen.
Beispielsweise wird zugelassen, daß man für die translatorische Beschreibung

andere als die kristallsystembezogenen Zellen (s.o.) wählt.
(iv) So, wie die repetitive materielle Füllung des Kristalls zur (Transla¬

tions-) Zelle abstrahiert wird, können die «Kräfte zwischen den
Zellen» als geometrische Passungsregeln beschrieben werden: sie legen
fest, wie die Zellen räumlich zusammenzufügen sind.

(v) Wenn nötig, kann - z. B. für Betrachtungen der Symmetrie einer Ein¬
zelzelle - der Zeil-Inhalt geometrisch als Muster (auch Motiv oder
Dekoration genannt) berücksichtigt werden.

Die rein geometrische Betrachtungsweise erlaubt es, uns bei den Symmetrien

auf die Makro-Elemente zu beschränken, also auf: (1) Symmetrie-
Ebenen (Spiegelebenen), (2) Symmetrie-Zentrum (Inversionszentrum), (3)
Symmetrie-Achsen (Rotationssymmetrien, Gyren). Bei translatorischem
Aufbau sind nur zwei-, drei-, vier- und sechszählige Achsen möglich d. h. Di-,
Tri-, Tetra- und Hexagyren. Außerdem können diese Symmetrieelemente
nur in bestimmten Richtungen auftreten, und nur bestimmte Kombinationen

sind möglich. Insbesondere sind anderszählige Achsen ausgeschlossen -
dies ist besonders wichtig im Hinblick auf die Quasikristalle.

Diese Symmetrieanalyse liefert, wie oben erwähnt, insgesamt 32

Kombinationen, die kristallographischen Punktgruppen - rein geometrisch gesehen
diejenigen Punktgruppen, die mit dem translatorischen Aufbau kompatibel
sind. Alle anderen Punktgruppen - es gibt deren unendlich viele - sind
kristallographisch «verboten».

Auch hier soll wieder eine kristallographisch mögliche Symmetrie, auf
zwei Dimensionen reduziert, die Verhältnisse verdeutlichen (Abb. 2).
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Abb. 2: Eine ebene Symmetrie.
Die Baueinheit ist in diesem Fall ein Rhombus, dessen spitzer Winkel 60°

mißt; somit kann man die Kachel in zwei gleichseitige Dreiecke zerlegen.
Man gibt eine 3zählige Achse (Trigyre. Symbol an der spitzen Ecke der
Kachel vor. Infolge des translativen Aufbaus tritt sie an allen Kachelecken
auf. Setzt man nun einen Punkt in allgemeiner Lage (P) in die Ebene, so

bringen Translation und Drehung ihn an alle angegebenen Stellen. In der
Folge sieht man. daß zwangsläufig weitere Trigyren (A) auftreten: im
Zentrum jeder Halbkachel.

Schließlich muß der Begriff des Gitters kurz diskutiert werden: Leider
verwendet der Kristallograph diesen Ausdruck in einem anderen Sinn als der
Mathematiker.

Das kristallographische Gitter (gemäß einem der 14 Bravais'schen
Translationstypen gebaut) enthält alle Informationen über die Symmetriebeziehungen;

es ist die übliche Darstellung einer Kristallstruktur. Gemeint ist
dabei der repetitive «punktförmige» Aufbau: Kugeln werden im Modell
durch Stäbe verbunden; diese Kugeln zeigen entweder direkt die Verteilung
der Materie (als Schwerpunkte der atomaren Partikel) im Kristall an, oder sie

markieren Fixpunkte, relativ zu denen (mit gegebenen Parametern) die
Partikel lägen.

Das physikalische Gitter nimmt eine gewisse Zwitterstellung ein. Einerseits

bezieht es sich natürlich auf die Massenschwerpunkte im Kristall und
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suggeriert somit Identität mit dem Bravaisgitter. Tatsächlich ist es aber so,
daß das Beugungsgitter, welches Wellennatur und gegebenenfalls Wellenlänge

einer Strahlung zu untersuchen ermöglicht, im ebenen Fall ein Liniengitter

ist3 - im räumlichen Fall entspricht diesem aber ein Ebenengitter! Dies
ist nun tatsächlich die geometrische Gitterdefinition im E3, wie ich in 5.1.1.
näher ausführen werde. Physikalisch maßgeblich ist nämlich, daß die
Massenschwerpunkte sich auf Ebenen anordnen (im klassisch-translatorischen
Fall!) - es sind die «Netzebenen» der Kristallographie. Wenn es die begriffliche

Klarheit erfordert, werde ich die Gitter im kristallographischen Sinn als

Punktgitter bezeichnen: Ein Punktgitter besteht aus den Knoten (Vertizes)
eines Gitters im geometrischen Sinn (cf. 5.1.1.).

2.2. und die Renegaten

2.2.1. Die «verbotenen» Symmetrien

In den Jahren seit 1984 stellten Kristallographen bei (auf spezielle Weise

erzeugten) Legierungen das Auftreten von Kristallen fest, deren
Elektronenbeugungsdiagramme «verbotene» Symmetrien zeigten! Beobachtet wurden
seither Fälle mit (je einer) 8-, 10-, 12-zähligen Achse sowie solche mit 6

Pentagyren, die derart im Raum angeordnet sind, daß die gesamte Beugungsstruktur

ikosaedrische Symmetrie besitzt. Da die Symmetrie dieser
Beugungsstrukturen - wie in Teil 6 erörtert wird - auf bestimmte Weise der
Symmetrie der betreffenden Kristalle entspricht, war klar, daß man neuartige

Kristalle gefunden hatte, die keinen translatorischen Aufbau besitzen
können; sie wurden bald Quasikristalle genannt. Man sprach von einem
«experimentellen Dilemma», bis sich herausstellte, daß die Kristallographen

nur nicht aufgepaßt hatten: Das Dogma, ausschließlich translatorische
Verteilungen von (Massen-)Punkten könnten «gute» Beugungsmuster
erzeugen, stimmte nicht! Tatsächlich war den Mathematikern seit langem
bekannt, daß auch zwei andere Arten von Punktverteilungen - nahezu
periodische und quasiperiodische - ähnliche Beugungsfiguren ergeben mußten;
dies werde ich in 6.2. näher ausführen.

Andererseits kannte man in der Geometrie nichttranslatorische Strukturen,

aperiodische Belegungen oder Tesselationen genannt, die sich als

Modelle für die Zellen der Quasikristalle anboten!

3 Es ist entweder ein pseudo-eindimensionales paralleles Strichgitter oder ein echt
zweidimensionales Kreuzgitter.
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2.2.2. Die aufgeworfenen Probleme

Somit ergaben sich folgende 4 Fragenkomplexe:

(i) Welches sind jene aperiodischen Belegungen, denen nahezu periodische
oder quasiperiodische Punktgitter zugeordnet sind?

(ii) Wie kann man diese Belegungen finden bzw. erzeugen?
(iii) Wie sind sie - als Quasikristall - materiell realisiert («Dekorationspro¬

blem»)?
(iv) Gibt es noch andere aperiodische Punktverteilungen als die oben

erwähnten, welche ebenfalls «gute» Beugungsbilder erzeugen?

Den letzten und vorletzten Punkt werde ich nur kurz streifen, da hier eine
Vielzahl von Problemen noch keineswegs geklärt ist!

Zur Abklärung dieser vier Punkte muß nun zunächst von den klassisch-
kristallographischen Strukturen Abstand genommen werden, um ganz
allgemein zu untersuchen, welche periodischen und aperiodischen Belegungen
(der Ebene oder des Raumes) möglich sind. Dabei werden wir übrigens
sehen, daß Aperiodizität nicht einmal mit «verbotenen» Symmetrien
zusammenhängen muß!

3. Belegungen (Parkettierungen, engl, tilings)

In diesem Teil wird gezeigt, wie, ausgehend von wenigen Grundbegriffen,
ein n-dimensionaler Raum En mit Zellen ausgefüllt werden kann, bzw. wie
eine solche Ausfüllung analysiert wird.

3.1. Belegungen und Basen

Nehmen wir - als Modell eines zweidimensionalen euklidischen Raumes
E2 - ein Blatt Papier und zeichnen darauf beliebige Linien, so entsteht eine
Belegung dieses Raumes mit Zellen bestimmter, mehr oder weniger willkürlicher

Form (cf. Fußnote 1 in 2.1.1!): jedes von einer Linie umschlossene
Flächenstück ist eine solche Zelle. Gemeinsam erfüllen sie das ganze Blatt,
andererseits überlappen sie sich nirgends. Auch die vorliegende Druckseite
zeigt eine Belegung des E2: Eine riesige, kompliziert gebaute Zelle erfüllt den
größten Teil davon, etliche kleine - die Innenflächen von Buchstaben wie a,
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e, g usw. - teilen sich in den Rest4. Ein «kariertes» Blatt Papier andererseits
zeigt eine sehr regelmäßige Erfüllung mit lauter gleichen Zellen (wenn wir
von den am Rand angeschnittenen absehen - die Ebene müßte sich ja
unendlich weit erstrecken).

Eine einfache Belegung des E3 ist seine Ausfüllung mit lückenlos
gestapelten Würfeln oder beliebigen «Ziegeln», wie schon in der Einleitung
ausgeführt.

Wir können nun die allgemeine Definition der Belegung so formulieren:
5

Eine Belegung T des En ist eine nicht-überlappende, lückenlose Überdek-
kung von En mit abzählbar vielen abgeschlossenen Teilmengen T;, die Zellen
oder Kacheln genannt werden; T {T0, Tls T2, }•

Die zwei obigen Beispiele des E2 zeigen einen bedeutenden Unterschied
nicht nur in der Regelmäßigkeit der Belegung, sondern auch in der
Mannigfaltigkeit der Grundformen. Beim karierten Blatt kommt nur eine einzige
Zellenform vor, bei der Druckseite sind es etliche: a, b, d, e, g,... sowie A, B, D
usw. Die Menge der in einer Belegung auftretenden Zellenformen kann als
Basis der Belegung bezeichnet werden; das karierte Blatt hat also die Basis:

B2= {?}, diese Druckseite: Bx {a, A, b, B, d, e, g,..., R, D, B,...}, wobei die
Reihenfolge der Aufzählung nicht wesentlich ist.

Die allgemeine Definition der Basis einer Belegung heißt:
Eine Menge B von Zellen ist eine Basis der Belegung T, wenn B ein Exemplar
jeder in T auftretenden Zellensorte enthält. Genauer: B enthält ein Element
jeder Kongruenzklasse von T, wobei direkte und indirekte Kongruenz zulässig

ist. Die Elemente in B heißen Basiszellen (engl, prototiles).
Dies bedeutet aber nicht, daß jede Basiszelle in jeder von dieser Basis

erzeugten T auftreten muß; insbesondere ist es nicht erforderlich, daß T
Zellen enthält, die zu den Basiszellen indirekt kongruent sind. Dies ist gut an
unserem ersten Beispiel zu sehen: Kein Leser wird erwarten, daß die zu den
Buchstaben a, d und anderen Basiszellen spiegelbildlichen Formen auftre-

4 In diesem Beispiel sollen also reine Linienstücke - insbesondere die Randlinien
der Zellen - nicht als Zellen gelten; genau gesagt werden nur Teilmengen des E2 mit
von Null verschiedenem Flächenmaß zugelassen. Diese Einschränkung wird indes
durch die nachstehend gegebene Definition nicht allgemein gefordert - Leser mit
entsprechenden Mathematikkenntnissen wissen, zu wie exotischen Belegungen dies
fuhren kann. Meine Darstellung vereinfacht hier stillschweigend, um einigermaßen
anschaulich zu bleiben.

5 Genau: (i) T {Tj} ieN

(ii)Ti c En V ìeN; UT, En

ieN

(iii) Int Ti n Int Tj 0 V (i, j) e NxN mit i * j
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ten! Auch wird die Basiszelle D z.B. nicht auf jeder dieser Seiten vorkommen;

dennoch kann man sagen, ßx sei Basis von jeder Druckseite: Auswahl
ist zulässig. Wie groß man eine Basis wählt, hängt dabei natürlich von den

Belegungen ab, die irgendwie gemeinsam erzeugt oder analysiert werden
sollen: Zellen, die dabei nirgends vorkommen, sind überflüssiger Ballast!

Umgekehrt kann man untersuchen, welche Vielfalt von Belegungen
entsteht, wenn man von irgendeiner gegebenen Zellenmenge (als Basis) ausgeht.
Dabei muß natürlich beachtet werden, ob sich die gegebene Menge von Zellen
überhaupt als Basis verwenden läßt. So bildet z. B. das reguläre Fünfeck,
allein genommen, keine Basis des E2: Die Ebene kann damit bekanntlich
nicht lückenlos ausgelegt werden!

Ill IV

VI

• V
Abb. 3: Zellenformen, die keine topologischen Scheiben sind.

(i) Zelle aus zwei getrennten Quadraten, im Abstand einer Quadratseite.
(ii) Zelle aus 4 Quadraten; in der Mitte ergibt sich ein Loch gleicher Größe
wie ein Quadrat, (iii) Zelle ist ein (unbegrenzter) Keil, (iv) Zelle ist ein
(unbegrenzter) Streifen, (v) Die Zelle besteht aus einem einzelnen Quadrat
und einem aus 8 ebensolchen Quadraten zusammengesetzten Teil, in
passendem Abstand, (vi) Zelle in Brezelform (3 Löcher).
Man mache sich Stempel aus den Zellen (i), (ii) und (v): Mit (i) und (v) läßt
sich die Ebene vollständig belegen, bei (ii) jedoch scheitert das Unternehmen!

Ebenso ist keine Belegung mit (vi) möglich, (iii) und (iv) erlauben
ohne weiteres eine Flächenbelegung (der Winkel des Keils mißt 30°).
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Für die weiteren Betrachtungen wollen wir uns auf folgende Sonderfälle
beschränken:
(i) Als Zellen seien nur beschränkte topologische Scheiben zulässig. Dies

schließt z. B. unendlich ausgedehnte Kacheln ebenso aus wie solche,
die aus mehreren Flächenstücken bestehen oder Löcher aufweisen;
siehe Abb. 3.

(ii) Meistens werden nur Zellen verwendet, die einfache Polygone sind
oder ziemlich direkt aus solchen abgeleitet werden können; siehe 4.

3.2. Symmetrien

Nachdem in der Einleitung bereits auf die Symmetrien der klassischen
Kristalle hingewiesen wurde, soll nun das Problem kurz allgemein-geometrisch

umrissen werden. Die folgenden Ausführungen betreffen dabei nicht
nur Belegungen, sondern irgendwelche Strukturen in einem Raum; diese

können mehr oder weniger ausgedehnt sein, sich sogar über den ganzen
Raum erstrecken.

3.2.1. Symmetrieoperationen und -demente

Der Mathematiker spricht von Symmetrieoperationen: ein bestimmtes
Symmetrieelement - z. B. eine Pentagyre in E2 - ist Ergebnis einer
Operationsvorschrift. So kommt z.B. das Streckennetz der Abb. 5 (siehe S. 145)

dadurch zustande, daß der punktiert hervorgehobene Teil einer Operation
unterworfen wird: «drehe, mit Achse in Z, um jeweils 72° weiter». - Das
Nacheinanderausfuhren («Verknüpfen») mehrerer Operationen wird mit
dem Zeichen o notiert. So bedeutet, wenn ich die erwähnte Rotation mit p

bezeichne, pop die Drehung um 144°, popopopop jene um 360°, womit wieder
die Ausgangsposition erreicht ist.

Die im E2 oder E3 möglichen elementaren Symmetrieoperationen sind,
wie schon in der Einleitung aufgezählt: Drehung um eine Achse (mit
beliebigem Drehwinkel und zwei möglichen Drehsinnen), Spiegelung an einer
Ebene, Spiegelung an einem Punkt. Dazu kommt die Translation, die durch
eine Richtung und eine Länge definiert ist, d. h. durch einen (freien) Vektor.

Die diesen Symmetrieoperationen zugeordneten Symmetrieelemente sind
Drehachsen. Spiegelebene und Inversionszentrum: der Translation wird
kein Symmetrieelement zugeordnet.
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Bei dieser Beschreibungsart müssen im E2 die Symmetrieachsen und
-ebenen senkrecht zur Ebene stehen. Stattdessen kann man die
Symmetrieoperationen für den E2 auch so definieren («innere» Beschreibung):
Drehung um einen Punkt (Element: Drehzentrum); Spiegelung an einer Geraden

(Element: Spiegelachse); sonst wie oben.

3.2.2. Symmetriegruppen

Die Menge aller dieser Symmetrieoperationen, mit der Verknüpfung o,

bildet eine Gruppe, die (volle) Symmetriegruppe des E} bzw. des E2. Aber
auch nach Weglassen der Translationen bilden die anderen Symmetrieoperationen

noch eine Gruppe! Diese einfache mathematische Tatsache indes
ist die Wurzel der ganzen hier behandelten Problematik: Belegungen mit
Translationssymmetrie stehen solche ohne sie gegenüber.

3.2.3. Symmetrieklassen

Nimmt man eine bestimmte Symmetrieoperation oder eine mögliche
(«kompatible») Kombination von Operationen, so erhält man - mathematisch

ausgedrückt - eine Symmetrieklasse. «Bestimmte Symmetrieoperation»
heißt dabei, daß alle Parameter festgelegt sind: Lagen von Spiegelebenen,

Rotationszentren usw., Beträge von Drehwinkeln und Translationen,
etc.

Allgemein werden Symmetrieklassen, die keine Translationen enthalten,
als Punktgruppen bezeichnet, solche mit mindestens einer Translation als

Raumgruppen.
Welche Symmetrieoperationen kompatibel sind, hängt ganz wesentlich

davon ab, ob eine Translation mitberücksichtigt werden muß: sie bedeutet
eine starke Einschränkung der Möglichkeiten, wie schon in der Einleitung
erwähnt. Betreffs der Bezeichnungsweise muß beachtet werden, daß in der
Literatur gewöhnlich die Ausdrücke periodisch für t-symmetrisch und
entsprechend aperiodisch für nicht-t-symmetrisch verwendet werden. Auch hier
werde ich meistens diese Kurzbezeichnungen benützen.

3.2.4. Kristallographische vs. mathematische Begriffe

Verwirrend im gesamten Zusammenhang ist, daß die Begriffe Punkt- und
Raumgruppe von Kristallographien und Mathematikern nicht genau gleich
verwendet werden:
(a) Kristallklassen
Die 32 Kristallklassen sind tatsächlich Symmetrieklassen, wenn man den
Feinbau unberücksichtigt läßt, nämlich Punktgruppen. Es handelt sich aber
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um ganz spezielle Punktgruppen: jene, die mit drei Translationen 6 verträglich

sind! Andere Punktgruppen treten eben an (klassischen) Kristallen nicht
auf.
(b) Kristallographische Raumgruppen
Die Raumgruppen der Kristallographie wiederum berücksichtigen nicht nur
Translationen als Gruppenoperation - sie führen zusätzlich Schraubenachsen

und Gleitspiegelebenen ein; daher die große Anzahl von 230 solcher
Raumgruppen. Im Sinne der Definition von 3.2.3. müßte man in der
Kristallographie nur 32 Typen von Raumgruppen zählen. Zum selben Typus
gehören in diesem Falle Strukturen mit unterschiedlichen Längen der
Translationsvektoren bei sonst gleicher Symmetrie.

3.3. Symmetrien in Belegungen

3.3.1. Muster

Als Muster oder Motive werden auf den Kacheln bzw. in den Zellen
befindliche «Markierungen» irgendwelcher Art bezeichnet. Dies darf durchaus

im naiv-geometrischen Sinn aufgefaßt werden: Wir alle kennen aus dem
Alltag gemusterte Kacheln. In der Kristallographie bildet - als geometrische
Abstraktion - die atomare Besetzung (Dekoration) der Zellen das Muster.

3.3.2. Symmetrie-Niveaux

Kehren wir wieder zur Betrachtung einer nicht allzu unregelmäßigen
Belegung zurück (s. 3.1.): Beispiel 1 war eine Heftseite mit Schriftsatz,
Beispiel 2 ein kariertes Blatt. Die Heftseite ist zwar als ganzes symmetrielos,
weist aber dennoch Teile mit gewissen Symmetrien auf: z. B. den Buchstaben

A, der eine Spiegelebene besitzt. Ein Ausschnitt aus dem zweiten
Beispiel, dem karierten Blatt, zeigt auch weiterreichende Symmetrien: diverse
Drehachsen und Spiegelebenen, alle senkrecht zur Blattebene stehend. Doch
auch die Heftseite des Beispiels 1 zeigt andere als ganz lokal begrenzte
Symmetrien: so stehen die Buchstaben nicht irgendwie verdreht auf dem Blatt;
alle gleichen Buchstaben hängen durch reine Translationen (mit variablen
Längen) zusammen.

Wir unterscheiden folgende drei Symmetrieniveaux: Zellsymmetrie,
globale und lokale Symmetrien, Infrasymmetrie.

h Da bei Kristallen (im E3) der Stapelbau in drei Richtungen repetitiv ist, weist jede
einen Kristall beschreibende Raumgruppe - sowohl nach dem Sprachgebrauch der
Kristallographien als auch nach dem der Mathematiker - drei Translationsvektoren
auf.
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3.3.2.1. Kachel- bzw. Zeil-Symmetrie

Dies ist die Symmetrie einer einzelnen Kachel oder Zelle, unabhängig von
ihrer Umgebung, wobei die Umrißform sowie das Kachelinnere zu
berücksichtigen sind. A priori ist hier jedes Symmetrieelement einzeln möglich,
dazu alle kompatiblen Kombinationen. Nicht kompatibel wäre z. B. im E2

cn
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Abb. 4: Symmetrieerniedrigung durch Muster.

Ohne Muster (linke Skizzen) ergeben sich die eingetragenen Gesamtsymmetrien

(Symmetrieachsen: 2, 4, 5; Symmetrieebenen m). Je nach
aufgemaltem Muster (rechts) reduziert sich die Symmetrie aufdie eingetragenen
Elemente.
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eine 3- mit einer 4-zähligen Achse: Hätte eine Kachel beide Symmetrien, so

besäße sie effektiv eine 12-zählige Symmetrieachse! Nur so kann sie beim
Drehen sowohl um 120° als auch um 90° jeweils identisch mit sich selbst
sein.

Man beachte, daß durch ein Muster die Gesamtsymmetrie einer Kachel
erniedrigt werden kann (Abb. 4).

3.3.2.2. Lokale und globale Symmetrien einer Belegung

Dies sind Symmetriestrukturen, die mehr als eine Kachel betreffen, somit
auch mit der Anordnung der Kacheln zu tun haben. Entsprechend der oben
gemachten Unterteilung liegen periodische (t - symmetrische) oder aperiodische

Belegungen vor, mit den beschriebenen Kombinationsmöglichkeiten
der Symmetrieelemente.

Zu unterscheiden ist weiter, ob eine Symmetrie den gesamten Raum
betrifft oder nur einen Teil davon. So zeigt Abb. 5 einen Ausschnitt aus einer
Belegung des E2 mit einer Pentagyre im Punkt Z, die für den ganzen E2 gilt
und daher global genannt wird. Im Gegensatz dazu wird das Beschränktsein
einer Symmetriestruktur auf ein Teilgebiet des Raumes als Lokalität der

Symmetrie bezeichnet. Lokale Punktsymmetrien werden sich als eine
zentrale Eigenheit der aperiodischen Belegungen erweisen (siehe 4., z.B.
Abb. 12).

Abb. 5: Globale Pentagyre.
Die Belegung besteht aus zwei Kacheltypen, einem Hexagon und einem
regulären Pentagon; diese Kacheln bilden die Basis B der Belegung. Durch
Z geht eine Pentagyre (senkrecht zur Ebene), welche für die ganze Belegung
gilt. Rotation mit (ganzen) Vielfachen von 72° erzeugt aus dem punktiert
hervorgehobenen Teil das gesamte Belegungsnetz. Modifiziert nach
Grünbaum & Shephard (1987).
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3.3.2.3. Infrasymmetrie

Mit diesem Begriff bezeichne ich eine Eigenschaft, welche ganz allgemein
für Strukturen in einem Raum En definiert werden kann, in denen ein
Teilbereich («Musterelement») wiederholt auftritt. Es handelt sich dabei um
eine Lagebedingung der Musterelemente bezüglich der Rotation. Dies sei

zunächst an den Beispielen der Abb. 6 gezeigt.

Q.

\/ (©

Qü

Abb. 6: Infrasymmetrie: Bärenmarsch und Froscheteich.
Links ein Muster (Musterelement: Bär) mit 2zähliger, rechts eines (Musterelement:

Frosch auf Seerose) mit 5zähliger Infrasymmetrie. Ihre Richtungen

sind gestrichelt angedeutet. In solchen Fällen drängt sich der Eindruck
einer Zwei- bzw. Fünfzahligkeit «spontan» auf.

Geometrisch hängen bei einer n-zähligen Infrasymmetrie alle gleichen
Musterelemente durch die Kombination einer entsprechenden Rotation mit
einer (beliebigen) Translation zusammen.

Betrachtet man nun statt eines solchen (lockeren) Musters eine (geschlossene)

Belegung, so ist klar, daß entsprechende Richtungseigenschaften für
die Lagen der verschiedenen Zellen bestehen. Bei periodischen Belegungen
fallen jedoch Infrasymmetrie und effektive Symmetrie zusammen; erst bei
den aperiodischen Belegungen erlangt die Infrasymmetrie eigenständige
Bedeutung.
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Für die Analyse der Infrasymmetrie einer Belegung7 in E2 kann man
folgendermaßen vorgehen: Man markiert die Basiskacheln mit je einer
Strecke; in T liegen diese Strecken dann parallel zu bestimmten Richtungen.
Die mit diesen Richtungen korrespondierende Punktsymmetrie ist die
Infrasymmetrie der Belegung. Wenn insbesondere die Kacheln Polygone sind,
erfüllen die Seiten selbst bereits die Rolle der Markierungen. Beispiele dazu
finden sich in den Abbildungen zu 4.

Fur den E3 kann das Prinzip entsprechend formuliert werden. Ein Beispiel
für eine 1-zählige Infrasymmetrie kann man nach dem Start eines
Ballonfahrer-Treffens beobachten: alle Gondeln weisen nach unten!

3.3.3. Translationssymmetrische Belegungen

3.3.3.1. Definition und Beschreibung

Da dies später von Bedeutung ist, sei kurz die mathematische Beschreibung

einer translationssymmetrischen Belegung angegeben (Abb. 7): Eine
Belegung T im En ist t-symmetrisch, wenn n linear unabhängige Vektoren!*
derart existieren, daß jede Z-Linearkombination dieser Vektoren eine
Kongruenzabbildung auf En definiert (Z bedeutet die Menge der ganzen Zahlen:
0, ± 1, ± 2,

Anschaulich ausgedrückt für E2: verschiebt man die Belegung um
ganzzahlige Vielfache von!* und/oder!^, so kommt sie mit sich selbst zur Dek-
kung;~t* und~f* dürfen nicht parallel zueinander sein.

Der Translationsoperator ist t (t*,!*, •••/0- Werden diel*so gewählt, daß

nur Z-Linearkombinationen Kongruenzabbildungen ergeben, so ist t ein
minimaler Translationsoperator. Es ist zu beachten, daß für jede gegebene
t-symmetrische Belegung unendlich viele minimale t definiert werden können,

wie in Abb. 7 gezeigt.

Der gewählte minimale t-Operator definiert ein t-Parallelotop (Parallelogramme

im E2, Parallélépipède im E3), das, wie in der Einleitung definiert,
als Translationszelle (tZ) bezeichnet werden soll (Abb. 7).

7 In der englischsprachigen Literatur findet sich dafür der unschöne Term «underlying

symmetry».
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3.3.3.2. Translationszellen

Schließlich ist es nötig, die Beziehungen zwischen allgemeinen Zellen und
Translationszellen zu untersuchen. Wie z. B. in Abb. 7 ersichtlich, besteht bei
translationssymmetrischen Belegungen eine besondere Situation insofern,
als - nach dem Festlegen des t-Operators - die Translationszelle als Bauelement

der Belegung aufgefaßt werden kann, anstelle der ursprünglichen Zellen

also; deren Grenzlinien bilden nun ein Muster der neuen Zelle. Im Fall
der Abb. 8 wird dies noch deutlicher: aus den 5- und 7-eckigen Zellen baut
sich eine periodische Belegung auf, die am einfachsten mit der angegebenen
tZ beschrieben wird. Diese kann, mit dem entsprechenden Muster versehen,
genauso gut (und einfacher!) dazu verwendet werden, das betreffende Bild zu
legen (unendliche Ausdehnung wie immer vorausgesetzt).

Abb. 7: t-Operatoren im E2 für die ausgezogene Parallelogramm-Kachelung; die
Punkte bezeichnen die Kachelzentren.
Die Translationsoperatoren t (tl512) und t' i[, t?) sind minimal, t" (ti',
t2) jedoch nicht: Kongruenz der Belegung mit sich selbst entsteht bereits bei

Verschiebung mit Vi t2 (sowie mit V21'2\ % t2 usw.), d. h. mit nicht-ganzzahligen

Vielfachen von t2.
Wählt man t (%, t2) als Operator dieser Belegung, so ist die tZ
(Translationszelle) nicht mit der ursprünglichen Kachel identisch, sondern besteht

aus dem punktiert umrandeten Gebiet. Entsprechendes gilt für t'.
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\
Abb. 8: Allgemeine Zellen und Translationszelle (tZ).

Diese Belegung hat zwei Basiskacheln, ein Penta- und ein Heptagon. Dennoch

ist sie periodisch: eine mögliche tZ ist gestrichelt eingetragen. Nach
Grünbaum & Shephard (1987).

Allgemein kann jede translationssymmetrische Struktur eines Raumes so
beschrieben werden, daß sie eine Belegung mit genau einer Basiszelle ist.

Dies ist eine in der Kristallographie übliche Situation, in der die
Gitterstruktur eines Körpers zwar Konfigurationen unterschiedlicher Symmetrie
aufweist (z. B. Tetraeder, Oktaeder usw.), diese «Teilzellen» aber so gestapelt
sind, daß ein translatorischer Bau entsteht (Zusammenfassen zur tZ).

Ein Extremfall sind die Frank-Kasper-Phasen gewisser intermetallischer
Verbindungen, bei denen ikosaedrische Haufen8 schichtweise so gestapelt
sind (bei ähnlicher Orientierung der Haufen), daß sich eine tZ ergibt, die weit
über 1000 Atome enthalten kann: In der sogenannten pentagonalen FK-
Phase von Cu4Cd3 sind es 568 Ikosaederhaufen

Ein Zentralatom besitzt darin 12 Atome als erste Koordinationsschale.
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3.4. Lokale Aiitomorphie und Isomorphic

Alle periodischen, aber auch viele aperiodische Belegungen besitzen
folgende Eigenschaft der lokalen Automorphie: Jedes (beliebig große, aber
endliche) Gebiet aus T ist zu unendlich vielen anderen Gebieten aus T kongruent;

anders gesagt: Jede (endliche) Zellenanordnung tritt in T unendlich oft
auf.

Bei periodischen Belegungen ist diese Eigenschaft trivial. Abb. 5 zeigte
indes eine aperiodische Belegung, die offenbar nicht lokal automorph ist:
Jeder Ausschnitt, der das Pentagon enthält, kommt nur genau 5 mal vor
(entsprechend der Pentagyre!). Aperiodische Belegungen, welche die Eigenschaft

besitzen, werden wir in 4. finden.
Entsprechend heißen zwei Belegungen Tt und T2 lokal isomorph, wenn

jedes (endliche!) Gebiet der einen auch in der anderen auftritt. Daß dies
tatsächlich möglich ist, ohne daß die beiden Belegungen identisch sind, ist
ein fundamentaler Satz aus der Theorie aperiodischer Belegungen! Beispiele
dafür finden sich in 4.

Sei B eine Basis, {T^ j die Familie aller von B erzeugten Belegungen, dann
ist die lokale Isomorphic eine Äquivalenzrelation in {T^} und teilt somit
diese Belegungsfamilie in Klassen ein: Belegungen der selben Klasse sind
lokal isomorph; man spricht von LI-Klassen. Eine Folge ist, daß zwei
Belegungen mit gleicher Basis - d. h. aus gleichen Kacheln -, die nicht derselben
LI-Klasse angehören, lokal unterscheidbar sind: Dies heißt, daß in einer
(oder auch wechselseitig in beiden) dieser Belegungen gewisse
Zellenanordnungen auftreten, die in der anderen nicht vorkommen. Umgekehrt
bedeutet es natürlich, daß zwei zwar verschiedene, jedoch lokal isomorphe
Belegungen nicht unterschieden werden können, solange man nur einen
endlichen Bereich betrachtet, gleichgültig, wie groß er sei - was natürlich in
praxi immer der Fall ist! Zu wissen, ob zwei solche Belegungen identisch sind
oder nicht, bedingt somit Kenntnis der verwendeten Erzeugungsvorschrift
(siehe 4).

3.5. Zwangsläufige Aperiodizität

Eine aperiodische Belegung kann durchaus eine Basis besitzen, welche
auch periodische Belegungen erzeugt. Dies war in Abb. 5 der Fall: wird nur
das Hexagon verwendet, so ist die Konstruktion einer t-symmetrischen
Belegung trivial. Abb. 9 zeigt einen Fall, in dem mit einer einzigen Basiskachel

sowohl periodische als auch aperiodische Belegungen erzeugt werden
können.
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Abb. 9: Periodische und aperiodische Belegungen T mit derselben Basis. Schema

für Belegungen des E2 mit Quadraten der Seitenlänge a; d ist die jeweilige

Versetzung einer Reihe gegen die nächste,

(i) d ist konstant, mit d/a rational. In diesem Fall ist T translatorisch

in x und y1 (bei geeigneter Schrägstellung von y-A, aber auch in x

und y2 (mit entsprechend großer Periode in y2).

(ii) d ist konstant, d/a jedoch nicht rational. T ist nur in x und y1 (bei

entsprechender Neigung) translatorisch, nicht aber in x und y2.

(iii) d ist von einer Reihe zur anderen nichtperiodisch variabel (z. B. den

Dezimalziffern von n proportional). T ist nur in x translatorisch,

d. h. insgesamt nicht periodisch in E2.

Es gibt jedoch Basen, die derart gestaltet sind, daß sich aus ihnen

ausschließlich aperiodische Belegungen aufbauen lassen - sogar dann, wenn

man nur bestimmte Zellen der Basis für die Belegung verwendet, d.h. nur

eine Teilbasis tatsächlich benützt. (Daß derartiges Auswählen erlaubt ist,

wurde schon in 3.1. erwähnt.) Eine solche Basis heißt aperiodische Basis. Die

Basis von Abb. 5 beispielsweise genügt dieser Bedingung nicht, wie eben

gezeigt, ebensowenig jene von Abb. 9. Hingegen besitzen alle Belegungen, die

ich in 4. vorstellen werde, derartige aperiodische Basen.

Anzumerken ist, daß in der englischsprachigen Literatur der Ausdruck

aperiodic prototiles verwendet wird. Dies ist insofern unglücklich, als alle

bekannten aperiodischen Basen mehr als eine Zelle aufweisen. Somit kommt
die Eigenschaft «aperiodisch» eigentlich nicht der einzelnen Basiszelle zu,

sondern nur der Basis als Ganzem.
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Auf dem Gebiet der Belegungen und ihrer Basen gibt es zahlreiche offene
Fragen, wie z.B.: Gibt es eine allgemeine Methode, um zu bestimmen, ob
eine vorgegebene Kachel (allein genommen) Basiszelle einer Belegung ist
(monoedrische T) - siehe Abb. 10? Oder: Gibt es aperiodische Basen mit
einer einzigen Zelle (aperiodische monoedrische Basis)?

z ^>zzz
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Abb. 10: Die 24 Heptiamonds.
Jedes ist aus 7 gleichseitigen Dreiecken zusammengesetzt; bei einem Hep-
tiamond ist die Zerlegung angedeutet. Jede dieser Kacheln kann für sich
allein Basis mindestens einer Belegung des E2 sein - außer einer (*)! Nach
Grünbaum & Shephard (1987).

4. Aperiodische Belegungen Tesselationen

In diesem Teil werden - dem historischen Ansatz folgend - einige mit
direkten topologisch-metrischen Verfahren erzeugte, gewissermaßen schon
klassische aperiodische Belegungen vorgestellt und dabei ein Einblick in jene
Methoden gegeben.

Neben den schon in 2.1.3. erwähnten Passungsregeln stützen sich diese
Verfahren ganz wesentlich auf Prozesse, welche unterschiedlich bezeichnet
worden sind; Begriffe wie Rekombination, Inflation usw. treten auf. Da es

sich immer um eine Generationenabfolge handelt, schlage ich als generellen
Terminus den Ausdruck Deszendenz vor, bzw. Aszendenz für die Umkehrung.

Nachteil dieser Verfahren ist der Mangel an Systematik: Um auf diese
Weise Belegungen zu erzeugen, ist man weitgehend auf intelligentes
Probieren angewiesen. Andererseits aber sind sie von höchstem theoretischem
Interesse: Sie erlauben nämlich, viele metrische wie topologische
Eigenschaften eines gegebenen Belegungstyps zu beweisen.
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4.1. Ammann- Tesselationen

Im Zusammenhang mit den Quasikristallen steht immer wieder das
Auftreten kristallographisch «verbotener» Rotationsachsen im Zentrum,
namentlich von Pentagyren. Daß Aperiodizität indes nicht an exotische Infra-
symmetrien gebunden ist, zeigen die folgenden drei Tesselationen von
Ammann (nach Grünbaum & Shephard, 1987). Eine vierte Ammann-
Tesselation, der Typ AP, wird im Zusammenhang mit den Penrose-Tesse-
lationen zu erwähnen sein.

4.1.1. AI (ohne Abb.)

Diese Tesselation verwendet 6 quadratische Kacheln mit kleinen
Auswüchsen, die in entsprechende Einkerbungen passen müssen. Statt der
Auswüchse können Markierungen auf den Kacheln verwendet werden, welche
die selben Passungen festlegen.
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Abb. 11: Ammann-Tesselationen A3.
Links die 3 Basiskacheln der A3 mit ihren Ammann-Linien (es gibt noch
eine zweite Variante), rechts eine A3-Belegung, welche das Durchlaufen der
Ammann-Linien und die 4zählige Infrasymmetrie zeigt: die Kacheln nehmen

im E2 4 Lagen ein, die durch 90°-Rotationen zusammenhängen. Nach
Grünbaum & Shephard (1987).
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Abb. 12: Ammann-Tesselationen A2.
Links die zwei Basiskacheln mit den Ammann-Linien (auch hier existiert
eine zweite Variante), rechts eine A2-Belegung. Hier ist die nur 2zählige
Infrasymmetrie ersichtlich: Zwar nehmen auch in dieser T die Kacheln 4

Lagen ein, doch hängen nur je zwei davon durch eine 180°-Drehung
zusammen ; die anderen zwei Lagen sind indirekt kongruent zu jenen. Nach
Grünbaum & Shephard (1987).
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Abb. 13: Lokale Tetragyren in A3.

Dieselbe Belegung wie in Abb. 11, nun ohne Ammann-Linien. Stattdessen
sind zwei lokale Tetragyren mit ihren Symmetriebereichen eingetragen
(Symbole ¦; Schraffuren). Modifiziert nach Grünbaum & Shephard
(1987).
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4.1.2. A2, A3 (Abb. 11, 12, 13)

Diese Tesselationstypen verwenden 2 bzw. 3 polygonale Kacheln, deren
Seiten zueinander rechte Winkel bilden. Ihre Passungen können auf
verschiedene Weise festgelegt werden, insbesondere durch Muster in Form
sogenannter Ammann-Linien. Diese sind ein spezieller Fall jener Markierungen,

die in Teil 3 zur Definition der Infrasymmetrie verwendet wurden.
Jede Ammann-Linie besteht aus Strecken, welche den (Basis-) Kacheln derart

aufgemalt sind, daß sie von Rand zu Rand laufen. Abb. 11 zeigt links die
drei Basiskacheln der A3 mit ihren Ammann-Linien. Die Passungsregel
lautet nun: Setze die Kacheln so zusammen, daß die Linien sich von Kachel
zu Kachel ohne Knick fortsetzen Diese Anweisung garantiert den Bau einer
entsprechenden Tesselation.

Wie die Abb. 11 und 12 zeigen, besitzt A3 eine vierzählige Infrasymmetrie,

A 2 eine zweizählige: die Geradenscharen nehmen nach Drehungen um
90° bzw. 180° wieder die selben Richtungen ein.

Abb. 13 zeigt lokale Tetragyren in P 3. In der ganzen Ebene gibt es unendlich

viele davon, mit mehr oder weniger großen Gültigkeitsbereichen.

4.2. Penrose-Tesselationen

R. Penrose konstruierte anfangs der 70er Jahre drei miteinander
zusammenhängende Tesselationen, deren Infrasymmetrie pentagonal ist; nach
Grünbaum & Shephard 1987) sollen sie als PI, P2, P 3 bezeichnet werden.
PI ist die komplizierteste, dafür dekorativ, und wird hier nicht vorgestellt;
ihre Basiskacheln sind 6 Polygone: ein Stern, ein Boot usw.

4.2.1. P2undP3

Für uns interessanter sind hier P2 und P3; ihre Basen zeigt Abb. 14. Wie
man sieht, benötigt P2 weniger Passungsregeln, was damit zusammenhängt,
daß ihre Kacheln von niedrigersymmetrischem Umriß sind. Ersetzt man -
sowohl bei P 2 als auch bei P 3 - die geraden Polygonseiten durch geeignet
geschwungene Linien, so kann auf zusätzliche Regeln überhaupt verzichtet
werden: die Bedingung, lückenlos zu legen, genügt dann schon! Mit
entsprechenden Motiven auf den zwei Kacheln entstehen Tesselationen im Stil
M.C. Eschers; Penrose selbst gab ein derartiges Hühnchen-Motiv an (siehe
Grünbaum & Shephard, 1987).
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Abb. 14: Penrose-Tesseletionen P2 und P3.
Oben: Basis von P2; Drachen und Pfeil. Passungsregel: Ecken gleicher
«Farbe» (hier: schwarze und weiße Kreise) zueinander.
Mitte: Basis von P 3 ; spitzer und stumpfer Rhombus. Passungsregel : Ecken

gleicher «Farbe» zueinander, und die halben Pfeile (k.) müssen sich zu

ganzen zusammensetzen.

v K/s; die Seiten bei P2 verhalten sich wie 1 zu t (1 + V5 )/2. Nach
Grünbaum & Shephard (1987).
Unten: Basis von P3, statt mit «Farben» und Pfeilen mit den Ammann-
Linien; auch sie garantieren das richtige Zusammensetzen, wenn sie ohne
Knick von einer Kachel zur nächsten weiterlaufen (siehe Abb. 24). Nach
Kramer (1985).
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Statt durch Eckenfarben (meistens als «schwarz» und «weiß» wiedergegeben,

siehe Abb. 14 ff) und Halbpfeile können die Passungsregeln auch
durch geeignete Muster auf den Kacheln festgelegt werden. Ein derartiger
Vorschlag verwendet 2 Arten von Kreisbögen, die sich über die Kachelgrenzen

hinweg verbinden müssen; dabei entstehen verschieden große und
unterschiedlich komplexe geschlossene Linienzüge, deren jeder pentagonale
Symmetrie besitzt!

Eine wichtige Möglichkeit, die Passungsregeln auszudrücken, besteht hier
wieder in Ammann-Linien (Abb. 14). Es ergeben sich 5 Scharen von Geraden,

deren Richtungen jene der Seiten des regulären Pentagons sind und die
somit die pentagonale Infrasymmetrie nachzeichnen. Die Abstände innerhalb

jeder Schar bilden eine Fibonacci-Folge (dazu siehe 5.1.).

4.2.2. Erzeugung von Penrose-Tesselationen: die Deszendenzmethode

Das Konstruieren von Ammann- und Penrose-Tesselationen wurde oben
durch eine « naive» Anlegemethode beschrieben: Es hieß, sie garantiere den
Bau der Belegung. Dies ist nun leider nur bedingt richtig: Tatsächlich garantiert

sie, daß jede so entstehende Belegung des E2 aperiodisch ist und zum
entsprechenden Typ gehört - sie garantiert aber im allgemeinen nicht, daß

überhaupt eine Belegung entsteht! Auch regelgerechtes Anlegen kann nicht
verhindern, daß Situationen auftreten, in denen der Weiterbau unmöglich ist
(Abb. 15).

Abb. 15: Baufehler in P3.

Die Passungsregeln gestatten die Anordnung der drei Rhomben I, II, III.
Die Lücke zwischen I und III kann jedoch nicht gefüllt werden: entweder

passen die Eckfarben oder die Halbpfeile nicht! Skizziert ist dieser zweite
Fall. Andererseits kann die Konstellation I, II, III gar nicht entstehen, wenn
die Deszendenzmethode verwendet wird.
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Hier beschreibe ich nun (nach Grünbaum & Shephard, 1987) eine
Methode, welche erstens diesen unendlichen Bau immer ermöglicht, zweitens

eindeutig ist und drittens eine Vielzahl von metrischen und topologi-
schen Implikationen erschließt, die für die Theorie der Tesselationen von
zentraler Bedeutung sind. Wie in der Einleitung zu diesem Teil definiert,
handelt es sich um eine Deszendenzmethode, deren wesentlicher Schritt eine
Rekomposition der Kacheln ist.

Allgemein wird als Rekomposition jedes Verfahren bezeichnet, bei dem -
definiert auf den Basiskacheln - eine Belegung in eine andere verwandelt
wird, indem die Kacheln zerteilt werden, worauf man die Teile in bestimmter

Weise zu neuen Kacheln zusammensetzt.
Abb. 16 zeigt, wie die P3-Kacheln aus jenen der P2 entstehen und umgekehrt.

Diejenigen Teile, welche jeweils über den ursprünglichen Rand hinaus
ergänzt werden müssen, stehen in jeder Tesselation stets zur Verfügung:
dafür sorgen die Passungsregeln!

Abb. 16: Rekomposition der P2-Kacheln zu P 3-Kacheln und umgekehrt.
Bei jedem Rekompositionsschritt werden halbe Kacheln «außen» zu
vollständigen ergänzt; die Passungsregeln garantieren, daß diese Teile immer
verfugbar sind. Nach Grünbaum & Shephard (1987).
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Abb. 17 stellt den Tesselationstyp AP von Ammann dar: Er entsteht als
eine Rekomposition aus P3. Außer der Grundbedingung, lückenlos zu sein,
benötigt AP keine Passungsregeln, obwohl seine Kacheln keine komplizierten

Formen besitzen, sondern recht einfache Polygone sind!
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Abb. 17: Ammann-Tesselation AP.
Eine Belegung mit drei Basiskacheln, die ohne Passungsregeln auskommt.
Im linken Teil ist angedeutet, wie die AP-Tesselation aus einer P3-Tesse-

lation (gestrichelt) entsteht: Die AP-Kachelgrenzen können als Muster auf
den P3-Kacheln aufgefaßt werden! Nach Grünbaum & Shephard
(1987).

Es ist jedoch auch möglich - und damit komme ich zum Kernpunkt dieser
Ausführungen!-, durch Rekomposition einer Belegung eine andere zu erzeugen,

die zum selben Typ gehört. Abb. 18 zeigt die Teilungsvorschrift für die
P3-Basiskacheln.
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Abb. 18: P3-Rekomposition.
Aus jeder P 3-Kachel entstehen durch Teilen und Zusammensetzen neue

(kleinere) P 3-Kacheln. jene der folgenden Generation. Pfeile der Mutter-,
> Pfeile der Tochtergeneration. Nur die weißen Ecken sind markiert, mit O

bzw. O Man sieht, daß von einer Generation zur nächsten alle schon
existierenden Ecken ihre «Farbe» wechseln.

Sehen wir nun, wie mit diesem Prinzip irgendeine der unendlich vielen
möglichen P3-Tesselationen erzeugt wird! Ausgangsmaterial ist eine
erlaubte Anordnung von Kacheln - und damit stehen wir vor dem ersten
Problem: Wie kann ich das feststellen? Die Antwort darauf wollen wir
vorläufig zurückstellen; in Kürze werden wir sie mit Leichtigkeit beantworten.
Abb. 19 zeigt links zwei erlaubte Anordnungen; dies ist die Figur der 0.

Generation. Nun wird die Rekomposition entsprechend Abb. 18 durchgeführt;

wir erhalten die 1. Generation. Als zusätzliche Regel gilt dabei, daß die
außen fehlenden Teile jeweils hinzugefügt werden müssen - hier sind ja
keine Nachbarkacheln vorhanden, die sie liefern könnten. - Abermals wird
rekomponiert, und die 2. Generation entsteht; usw. Die ursprüngliche Figur
wird also immer weiter unterteilt, die Größe der Kacheln schwindet immer
mehr, geht im Grenzfall gegen Null.
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Abb. 19: P 3-Deszendenz.

Links zwei Kachelanordnungen der 0. Generation (ausgezogen) sowie die
1. Tochtergeneration (gestrichelt), entsprechend Abb. 18. Rechts jeweils
wieder die 1. Generation (ausgezogen) und die folgende 2. Generation
(gestrichelt). - Zur Schraffur siehe Abb. 20.
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Abb. 20: Aszendenz in P3.
Die hier dargestellte 3-Kachel-Konfiguration (ausgezogen) kann auf zwei
Arten aus der vorangehenden Generation (gestrichelt) entstehen: entweder

aus zwei stumpfen Rhomben oder aus einem stumpfen und einem spitzen
Rhombus. Beide Fälle treten in Abb. 19 rechts oben auf (schraffiert).
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Nun ist natürlich die «absolute» Größe eine reine Normierungssache der
Metrik. Die Relationen der Kacheln zueinander - sowohl topologisch als

auch metrisch - sind nicht betroffen, wenn wir nach jedem Rekompositions-
schritt eine Inflation einschalten. Darunter versteht man eine Ähnlichkeitsabbildung

des E2 mit einem Vergrößerungsfaktor, der hier so gewählt ist, daß
jede Kachel der Folgegeneration wieder so groß wie ihre entsprechenden
Vorgänger wird. Nun sieht der Vorgang anders aus: die Figur verändert sich
mit jeder Generation und wächst dabei - ähnlich einem knospenden Polypen

- immer weiter nach außen... dem unendlich fernen Rand der Ebene zu,
den sie im Grenzfall - nach unendlich vielen Generationen - erreichen
wird.

Dieser iterative oder rekursive Erzeugungsprozeß einer Tesselation ist, wie
oben erwähnt, immer ad infinitum durchführbar und dabei eindeutig:
Nirgends gibt es die Möglichkeit einer Wahl der Fortsetzung!

Nun können wir auch das Problem der erlaubten Anordnungen lösen.
Führen wir zunächst den eben beschriebenen Prozeß aus, indem wir von
einer einzigen Kachel ausgehen! Wir erhalten eine spezielle P3-Tesselation.
Andererseits kann man beweisen (aufgrund der Rekompositionsregel), daß
die P3-Tesselationen lokal isomorph sind. Dies aber hat zur Folge, daß in
unserer speziellen Belegung schon alle überhaupt möglichen endlichen
Kachelanordnungen vorkommen Jedes aus ihr herausgeschnittene Stück ist
also eine erlaubte Anordnung, und andere gibt es nicht.

Verblüffend daran ist allerdings, daß auf diese Weise nicht jedesmal die
selbe Tesselation erzeugt wird - wieso ergeben Stücke aus einer Belegung bei
der Weiterverarbeitung verschiedene Anordnungen, statt sich wieder zu
jener zu «regenerieren», aus der sie entnommen wurden? Solches Verhalten
indes ist für lokal isomorphe Strukturen normal: wir sind es nur nicht
gewöhnt. Doch lehrt uns der bloße Augenschein auf Abb. 19, daß es sich
tatsächlich so verhält: Die beiden Anfangsanordnungen links können gewiß
aus der selben Tesselation geschnitten werden (es genügt, sich die nächste
Generation rechts daneben anzusehen), doch zeigen die letzten dargestellten
Generationen keine Angleichung aneinander - ihre Ränder sind eben ganz
verschieden, und so entwickeln sie sich in durchaus interschiedliche
Richtungen.

Wie schon oben erwähnt, ist bei unserem Verfahren die Deszendenz
eindeutig: betrachte ich irgendeine Kachelanordnung, so ist völlig festgelegt,
was aus ihr in der Folgegeneration entsteht. Die Umkehrung des Prozesses

jedoch, die Aszendenz, ist mehrdeutig: Eine gegebene Kachelanordnung
kann aus verschiedenen Anordnungen hervorgegangen sein. So zeigt z. B.

Abb. 20, wie die selbe 3-Kachel-Anordnung auf zwei Arten entsteht. Nun
kann man natürlich einwenden, es genüge, die Umgebung der gezeigten
Anordnung zu betrachten: Sie würde sofort zeigen, wie die Muttergeneration
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aussah. Das ist zwar richtig, doch verschiebt man damit einfach das
Problem, denn die nun berücksichtigte, größere Anordnung hat wieder einen
Rand, an dem die Abstammung nicht eindeutig festgelegt ist. Es bleibt dabei :

Der Weg durch die Generationen abwärts ist eindeutig, der Weg aufwärts
nicht. Der nahezu triviale Grund dafür ist, daß (wie Abb. 18 zeigt) die zwei
Rhombentypen der Tochtergeneration auf mehr als eine Art aus den Rhomben

der Muttergeneration entstehen.

4.2.3. Die Penrose-LI-Klasse

Wie schon oben (erlaubte Anordnungen) erwähnt, sind alle P 3-Tessela-
tionen lokal isomorph; jeder - beliebig große, aber endliche - Ausschnitt aus

jeder kommt in jeder anderen vor, und zwar sogar unendlich oft! Nach der
Definition in 3.4. heißt dies, daß alle P 3-Tesselationen zur selben LI-Klasse
gehören. Dabei ist zu beachten, daß «P3»meint: Kacheln und Passungsregeln.

Tesselationen anderer LI-Klassen erhält man nämlich, indem zwar die
selben zwei Basiskacheln verwendet werden, jedoch andere Passungsregeln.
In diesen Belegungen finden sich Kachelanordnungen, die in P3 verboten
sind: Sie können lokal unterschieden werden. Ein Beispiel zeigt Abb. 23 in
5.1.

Eine Folge der lokalen Isomorphic aller P 3-Tesselationen ist, daß jede
dieser Belegungen lokal automorph ist (der Beweis ist trivial!). Diese
Tatsache wird im folgenden oft verwendet werden.

Da weiter P3 und P2 durch Rekombination zusammenhängen, gelten
entsprechende Konstruktionsmethoden und Eigenschaften auch für die P 2-

Tesselationen. Mit einer gewissen einleuchtenden Definitionserweiterung
sagt man, P2 gehöre zum selben LI-Typ wie P3.

4.2.4. Globale und lokale Pentagyren

In P2 und P3 gibt es je genau zwei Tesselationen, die eine globale
Pentagyre besitzen. Sie entstehen durch Deszendenz aus den in Abb. 21 gezeigten

Kachelanordnungen. Die für P 3 dargestellte erste Generation zeigt
übrigens, wie sich - in der Folge mit jeder Generation - die beiden Fälle ineinander

umwandeln! Die nullte Generation der einen Belegung hat das selbe

Zentrum wie die erste der anderen und umgekehrt. Nach erfolgter Iteration
(mit unendlich vielen Schritten!) ist das «Zentrum» - d.h. der Ort der
globalen Pentagyre - in jeder der zwei Belegungen wieder gleich ihrer
Anfangsanordnung.
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Die Existenz dieser speziellen Fälle hat unmittelbar eine erstaunliche
Konsequenz: In jeder F 2-bzw. P 3-Tesselation existieren lokale Pentagyren
mit verschiedenen, ja sogar beliebig großen Reichweiten, undjede von ihnen
kommt unendlich oft vor! Dies garantieren die lokale Isomorphic und
Automorphie der LI-Klasse, wonach jeder - beliebig große, aber endliche -
Ausschnitt aus den betrachteten speziellen Belegungen in jeder anderen und
in ihnen selbst unendlich wiederkehrt. Somit findet man auch beliebig große
Ausschnitte, die symmetrisch um die globale Pentagyre herum vorgenommen

worden sind, in endloser Vielfalt vor.
Betrachten wir nun einen Ausschnitt aus einer der vier speziellen

Belegungen, in dem pentagonale Symmetrie besteht. Es ist uns nicht möglich zu
entscheiden, ob es sich dabei um die globale Pentagyre handelt - genauso
könnte es eine der lokalen sein, deren Bereich eben über das betrachtete
Gebiet hinausragt. Vergrößern des Ausschnittes kann uns bestenfalls zeigen,
daß es sich nicht um die globale handelt- dann nämlich, wenn wir das
Aufhören der Symmetrie finden. Im Symmetriebereich selbst unterscheiden
sich natürlich (aufgrund der oben gegebenen Ableitung) lokale und globale
Pentagyren nicht; in jeder der vier speziellen Belegungen kommen jeweils
beide entsprechenden Pentagyrentypen (lokal) vor. Der ausgezeichnete
Punkt («Zentrum») jener vier Tesselationen ist also nicht a posteriori an der
fertigen Belegung feststellbar - außer durch Betrachten der ganzen unendlich
ausgedehnten Ebene.

Abb. 21 : Globale Pentagyren in P 2 und P 3.

Oben: Ausgangsanordnungen für die zwei P2-Belegungen. die eine globale

Pentagyre besitzen; die linke heißt Sonne, die rechte Stern. Nach

Grünbaum & Shephard (1987).

Mitte: Anfangsanordnungen für die zwei P 3-Belegungen, die eine globale

Pentagyre besitzen (ausgezogene Linien). Wird die Belegung durch

Anlagerung erzeugt, so kann dies symmetrisch erfolgen (aufje genau eine Art).
Die erste derartige Anlagerungsphase ist gestrichelt eingetragen. Man

beachte, daß sich die zwei Anfangsanordnungen nur durch die Lage der

Eckfarben unterscheiden: einmal ist das Zentrum weiß, einmal schwarz.

Der Weiterbau ergibt aber ganz verschiedene Verhältnisse.
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Unten: Wie Mitte, doch erfolgt jetzt der Weiterbau durch Deszendenz: die
erste Generation ist gestrichelt eingetragen (ohne ihre Eckfarben). Da die
Farbe der bestehenden Ecken sich jeweils ändert (cf. Abb. 18), wird aus dem

Typ 1 (weißes Zentrum) der Typ 2 (schwarzes Zentrum) und umgekehrt. In
jeder geraden Generation ist der Zentrumsbereich der entstehenden Belegung

wieder mit der Anfangsanordnung identisch.
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4.2.5. Die Wagenrad-Tesselation

Eine weitere spezielle Tesselation ist die Wagenrad- T (engl, cartwheel)
des Typs P2. Sie wird vom As (ace) erzeugt, einer Kombination aus 2

Drachen und einem Pfeil; siehe Abb. 22. Die folgende Beschreibung ist leicht
vereinfacht (cf. Grünbaum & Shephard, 1987). Das As (0. Generation) hat

As

Abb. 22: Wagenrad-Tesselation.
Dargestellt sind die Generationen 0 bis 2; Beschreibung siehe Text. Nach
Grünbaum & Shephard (1987).

keinen Umriß mit fünfzähliger Symmetrie, ebensowenig die nächste 1.)
Generation. Die 2. Generation, genannt Wagenrad 1. Ordnung, besitzt jedoch
diese Eigenschaft! In der 3. Generation fehlt sie wieder, um abermals in der
4. aufzutreten (Wagenrad 2. Ordnung), und so fort. Das Innere jedes Wagenrads

hat natürlich keine 5-zählige Symmetrie; hingegen besteht eine vom As
geerbte Spiegelebene. In der Wagenrad- T gehörtfast jede Kachel zu irgendeinem

Bereich, der fünfzählige Symmetrie besitzt - daß es unendlich viele
solche (beliebig große) Bereiche geben muß, ist uns mittlerweile ja genügend
vertraut. «Fast jede» Kachel heißt dabei: jede außer den 7 in Abb. 22
schraffierten! In allen anderen P2-Tesselationen gibt es überhaupt keine

166



Kacheln, die nicht in einem Bereich fünfzähliger Symmetrie liegen. Schließlich

gibt es - immer aufgrund der lokalen Isomorphic - in jeder P2-Tesse-
lation Überdeckungen mit Wagenrädern jeder Ordnung (wobei die
überdeckenden Wagenräder sich selbstverständlich überlappen dürfen).

4.2.6. Imperien

Interessant ist die Existenz von Imperien in den P2-Tesselationen: Gegebene

Anordnungen von Kacheln können, wenn von ihnen aus durch
Anlagerung weitergebaut wird - was ja unendlich vieldeutig ist - dennoch die
Lage weiterer Kacheln in der gesamten Tesselation erzwingen, d.h. über
beliebig große Distanzen. Einfach einzusehen ist dies natürlich für
anliegende Kacheln, infolge der Passungsregeln. Bei entfernten Kacheln verblüfft
die Tatsache zunächst, kann aber mittels der oben besprochenen Ammann-
Linien bewiesen werden. Hier zeigt sich also, daß die rein lokal definierten
Passungsregeln eine Fernwirkungbesitzen /Die Imperien verschiedener
Ausgangsanordnungen sind übrigens sehr unterschiedlich: As und Sonne erzwingen

überhaupt keine Kacheln, der Daus (deuce; eine 4-Kachel-Anordnung)
hat ein Imperium, das sich nur entlang einer Geraden erstreckt. Die Imperien

des Königs und des Sterns bedecken jedes einen großen Teil des E2 - nur
für die dazwischenliegenden verbleibenden Felder sind verschiedene
Ausfüllungen möglich.

4.2.7. Verallgemeinerungen

Während ich auf die Existenz anderer LI-Klassen schon zuvor hingewiesen
habe, sei abschließend eine Verallgemeinerung anderer Art erwähnt. Gähler
und Rhyner (in Rivier, 1986) erzeugten mittels der unten zu besprechenden
Multigittermethode einen ebenen Tesselationstyp, der 8 verschieden dicke
Rhomben verwendet und 17-zählige Infrasymmetrie besitzt (17-Gitter,
Anzahl Rhomben 17 - 1 )/2 8).

4.3. Mackay-Tesselationen

Der ursprunglich von Mackay (1982, siehe Levine, 1986) konstruierte
Tesselationstyp ist das E3-Äquivalent der ebenen P3: 4 Rhomboeder (2
Formen mit je zwei unterschiedlichen Passungsmarkierungen) ergeben eine
ikosaedrische Infrasymmetrie. Daher fand dieser Fall besondere Beachtung
bei den Kristallographen, bei denen er weithin als das Modell eines
Quasikristalls schlechthin gilt. Die Rekompositionsregeln sind recht kompliziert.
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Eine bestimmte Rekomposition der Mackay-Rhomboeder - analog der
AP-Rekomposition von Abb. 17 - ergibt einen neuen Tesselationstyp des E3

mit wieder 4 Basiszellen: eines der ursprünglichen Rhomboeder, ein Rhom-
bentriakontaeder, ein Rhombenikosaeder, ein Rhombendodekaeder. Für
die komplexere Form der Basiszellen wird man durch wesentlich einfachere
Rekompositionsregeln entschädigt.

Da beide Mackay'sche Tesselationstypen im Aufbau enge Analogien zu
den Penrose-Tesselationen besitzen, bezeichnet man auch sie, in abermaliger
Verallgemeinerung des Begriffs, als «vom Penrose-Typ».

5. Erzeugungsmethoden für aperiodische Belegungen

Im Laufe der Zeit wurden im wesentlichen folgende drei Verfahren entwickelt:
(i) Die Konstruktion mit Passungs- bzw. Deszendenzregeln wurde anhand eini¬

ger Fälle in Teil 4 gezeigt, in dem ich eingangs ihre Vor- und Nachteile
erwähnte,

(ii) Geometrisch am allgemeinsten ist die Multlgitter- oder £>Ha/methode, mit der
man sämtliche überhaupt möglichen Belegungen mit vorgegebenen
Symmetrieelementen erzeugen kann, d. h. alle LI-Klassen mit bestimmter Infrasymmetrie.

Für die kristallographische Anwendung indes besitzt diese Methode
einen wesentlichen Nachteil: Die so wichtige Fouriertransformierte (siehe
6.1.) ist nicht allgemein berechenbar, d.h. die Bestimmung des Diffrakto-
grammes bereitet Schwierigkeiten,

(iii) Bei der H-Projektionsmethode gewinnt man eine aperiodische Belegung in
einem n-dimensionalen Raum En aus einer periodischen Belegung eines
geeigneten höherdimensionalen Raumes E (h > n) durch Orthogonalprojektion

unter Verwendung eines Projektionsfensters. Diese Methode liefert die
Fouriertransformierte unmittelbar, bietet dafür aber, wie nachher auszuführen

ist, gewisse konstruktive Probleme. - Es muß erwähnt werden, daß die
Idee, gewisse aperiodische Funktionen (nämlich die «nahezu periodischen»,
siehe 6.2.1.) durch periodische in einem höherdimensionalen Raum
darzustellen, in der Mathematik schon altbekannt ist: sie wurde von H. Bohr
(einem Bruder Niels Bohrs) eingeführt.

Ich werde nun die Dual- und die Projektionsmethode näher darstellen, ohne jedoch
viel mathematischen Formalismus zuzuziehen. Dennoch kann dieser Teil vom Leser
notfalls ausgelassen werden, ohne daß dadurch in Kapitel 6. wesentliche
Verständnisschwierigkeiten entstünden.

5.1. Multlgitter- oder Dual-Methoden

5.1.1. Multigitter

In der allgemeinsten Form ist ein Multigitter rm im En (m > n) eine Familie von
(n-l)-Ebenen, allgemein H-Ebenen genannt, welche gewissen Bedingungen genügen
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(die hier nicht näher beschrieben werden sollen). Wie schon in 2.1.3. erwähnt, sind die
«Gitter» der Kristallographie nicht Gitter in diesem mathematischen Sinn, sondern
die Knoten Vertizes) solcher Gitter. Falls der Klarheit halber nötig, bezeichne ich die
kristallographischen Gitter als Punktgitter.

Im gewöhnlichen Raum E3 besteht also ein Multigitter aus Ebenen, die sich teils
schneiden können, teils zueinander parallel sind; sie zerteilen den E3 im Normalfall in
verschiedene Polyeder. In der Ebene ¥? sind die Gitterelemente Geraden; sie zerlegen
die Ebene in diverse Polygone.

Gewöhnlich faßt man die oben erwähnten Bedingungen noch wesentlich enger und
berücksichtigt nur Fälle, in denen das Multigitter rm aus m Scharen von H-Ebenen
besteht.

rm wird also zerlegt in m Unterfamilien fj, I^, H, rm; jedes I] besteht aus
(unendlich vielen) zueinander parallelen H-Ebenen. Wenn speziell die Abstände
innerhalb jeder Schar konstant sind, liegt ein de Bruijn-Gitter vor. bilden sie hingegen
Fibonacci-Folgen. so handelt es sich um ein Ammann-Gitter.

Als Beispielzeigt Abb. 23 ein Multigitter T5 (also ein Pentagitter) des de Bruijn-Typs
in der Ebene. Hier bilden 5 Geradenscharen Fly..., r5 untereinander Winkel, die ganze
Vielfache von 2V, sind; den in 3.3.2.3. definierten Begriff anwendend, besitzt also
dieses Gitter eine 5zählige Infrasymmetrie. Die Versetzungen der 5 Scharen
gegeneinander sind numerisch festgelegt, und zwar derart, daß sich (in ganz E2!) immer nur
zwei Gerade an einem Punkt schneiden.

Solche Gitter heißen regulär. Dabei kann natürlich der Abstand zweier Schnittpunkte

beliebig klein werden - aber eben nicht Null! Auch hier wird deutlich, wie
Aperiodizität mit (infinitesimalen) Irrationalitätsbedingungen zusammenhängt (vgl.
H-Projektion in 5.2).

5.1.2. Dualität

Die Dualität zweier Räume Ejj, Ep ist ein rein topologisches Konzept, das keine
Rücksicht auf metrische Verhältnisse nimmt. In diesem Sinne ist Dualität immer
symmetrisch: E„ ist dual zu E» und umgekehrt. Wo, wie in unserem Falle, die
metrischen Bezüge wesentlich sind, ist diese Symmetrie natürlich nicht mehr direkt
erkennbar.

Allgemeine Verfahren des Dualisierens können hier nicht dargestellt werden ; das

Prinzip sei vielmehr (nach Kramer, 1985) anhand eines sehr einfachen Beispiels
gezeigt (Abb. 23). Hier ist die duale Konstruktion geometrisch elementar durchführbar

und gibt uns gleichzeitig Gelegenheit, eine Belegung zu konstruieren, die - bei

Verwendung der «Penrose-Rhomben», aber mit anderen Passungsregeln - einer
anderen LI-Klasse als P3 zugehört. - Jeder Masche (Polygon) im Multigitter-Raum
E2 entspricht ein Vertex (Ecke) im Belegungs-Raum E^, z.B. der Masche

Xj A1A2A3A4A5 der Vertex X1 B1. Umgekehrt entspricht der Masche

Yj B^B^ (in Ei) der Vertex Yj A3 (in E2 Weiter entspricht jeder Maschenseite
im einen Raum eine ebensolche im anderen, und es sollen (in unserem speziellen Fall)
die zueinander dualen Maschenseiten zueinander senkrecht stehen. Beispielsweise
sind A2A3 und B^ einander dual, und A2A3 1 B^.
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Abb. 23 Multigitter und Dualisierung
Oben: Teil eines de Bruijn-Pentagitters im Multigitter-Raum E2. Nach

Kramer (1985).
Unten links: Multigitter-Raum E2: Ausschnitt aus obigem Pentagitter. A;
sind die Schnittpunkte der Geradenscharen fj bis 1^, d. h. die Knoten (Ver-
tizes) des Pentagitters; X, sind seine Maschen.

Unten rechts: Belegungsraum EJ5; der gezeigte Teil ist dual zum E2-Aus-

schnitt links. 5 bedeutet die Dualisierungsabbildung. ô_1 ihre Umkehrung.
Bj sind die Ecken der Belegung T; Bj 8 (X,) X v Y-t sind die Maschen bzw.

Kacheln von T. Konstruktionsbeschreibung siehe Text; die gestrichelten
Linien deuten an, wie aus 4 Maschen (X, bis X4) in E2 eine Kachel mit den
Ecken B1 bis B4 in Eß entsteht.

Die Konstruktion der Belegung aus dem Pentagitter geht also folgendermaßen vor
sich: Nehmen wir zuerst die Masche Bt A1A2A3A4A5 und zeichnen Punkt Bt; von
ihm gehen 5 Kachelkanten aus, deren Richtungen nach obigem Prinzip gegeben sind:
je senkrecht zu den fünf Seiten A:A2, A2A3,..., A^. Nun legt man auf einer dieser
Richtungen den nächsten Vertex fest, z. B. B2, und wiederholt von hier aus die
Richtungskonstruktion, diesmal bezüglich der Masche B2: 4 Richtungen. Wählen wir - als
einfachsten Fall - alle Kantenlängen der Kacheln gleich lang, so erhalten wir eine
penroseähnliche Belegung aus «dicken» und «schlanken» Rhomben.
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Wie Abb. 23 zeigt, ist es nicht möglich, die Belegung in das Pentagitter einzubetten,
d. h. die Konstruktion direkt auf dem Gitter durchzuführen: die metrischen Verhältnisse

verbieten dies. Diese Möglichkeit besteht hingegen bei den (nicht-aequidistan-
ten) Ammann-Gittern, wie aus den Beispielen in Teil 4 ersichtlich ist: Bei Abb. 11 und
13 ist das 2-Gitter in die Tesselation eingebettet bzw. umgekehrt. Hier wird auch klar,
daß obige Konstruktion nicht allgemein ist: Bei Abb. 11 und 13 stehen die dualen
Maschenseiten offensichtlich nicht zueinander senkrecht. Auch sind dort die
Zuordnungen Masche/Vertex komplexer als in unserem obigen Beispiel.

Ein weiteres Beispiel zur Verwendung der Ammann-Gitter gibt Abb. 24. Wie auch
in Abb. 11 und 13 drückt sich die Dualität so aus, daß einerseits das Ammann-Gitter
als Dekoration der Penrose-Kacheln aufgefaßt werden kann (d.h. als Muster auf
diesen, siehe Abb. 14), umgekehrt aber auch die Kachelumrisse als Dekoration der
Maschen des Ammann-Gitters!

Abb. 24: P 3-Tesselation mit Ammann-Gitter.
Der gezeigte Ausschnitt besitzt eine von links nach rechts verlaufende
Spiegelebene. Man sieht die Geradenscharen fj bis T5 des Ammann-Pen-
tagitters (dünne Linien) und die daraus abgeleiteten Penrose-Kacheln
(dicke Linien). Umgekehrt entsteht das Pentagitter, wenn die Kacheln
korrekt angelegt werden - so nämlich, daß sich ihre Ammann-Linien (siehe
Abb. 14) knickfrei von einer Kachel zur nächsten fortsetzen. Modifiziert
nach Nickel & Nickel (1989).
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Geht die Dualisierung von einem de Bruijn-Gitter aus (wie im Beispiel der Abb. 23),

so bestimmen die gegenseitigen Versetzungen der H-Ebenen-Scharen (im Beispiel: der
5 Geradenscharen), welcher LI-Klasse die erzeugte Belegung angehört. So ist, wie oben

bemerkt, die Tesselation der Abb. 23 nicht vom Penrose-Typ: Die Kombination Yv
Y), Y3 ist in der Penrose-LI verboten - siehe Abb. 15!

5.2. H - Projektion

5.2.1. Prinzip

Diese Methode basiert darauf, daß mit Hilfe von Verfahren der Vektorrechnung
gewissen nicht-periodischen Punktgittern Zn im En periodische Punktgitter Z in
einem geeigneten E (h > n) zugeordnet werden können und daß das ursprüngliche
Gitter aus dem höherdimensionalen durch orthogonale Projektion p: E —-En

zurückgewonnen werden kann, wenn man p auf ein geeignetes Gebiet (Projektionsfenster)
des E beschränkt.

Die Symmetriegruppe eines derartigen Gitters Zn, die keine Raumgruppe des En ist,
wird somit durch eine Raumgruppe des E beschrieben.

Man kann nun das Problem umkehren und ein periodisches Gitter Z im E

vorgeben. E wird zerlegt in irgendeinen Unterraum En und dessen orthogonales
Komplement: E En © E "n

E,/ © Ej_. Die Projektion von Z auf E^ (mit geeignetem
Fenster, siehe unten) ergibt im allgemeinen ein nicht-periodisches Zn, bei spezieller
Wahl der Projektionsrichtung aber ein periodisches.

Folglich können die periodischen Punktgitter im Raum, und somit die Bravaisgitter,

als Grenzfälle aperiodischer Gitter angesehen werden, der klassische Kristall als

Grenzfall eines allgemeineren Kristallbegriffes!
Das periodische Punktgitter Z besteht aus den Ecken irgendeiner translatorischen

Belegung des E (mit einer Polytop-Art). Tatsächlich wurden aber bisher fast nur
hyperkubische Gitter in maximal 6 Dimensionen verwendet: alle experimentell
beobachteten Fälle können so beschrieben werden. Bedenkt man aber, daß h beliebig groß
sein kann und daß schier unendliche Variationen des Projektionsfensters möglich
sind, so wird klar, daß - rein geometrisch - dieses interessante Gebiet bisher nur eben

angekratzt wurde!

5.2.2. Probleme der Projektionsmethode

Das wesentliche Problem der Projektionsmethode liegt nun gerade in der Fenster-
Wahl. Es ist nämlich kein Verfahren bekannt, mit dem man zum voraus feststellen
könnte, ob ein gegebenes Fenster überhaupt eine T ergibt, und noch weniger, ob diese

von einer Art ist, die ein diskretes Diffraktogramm erzeugt. Andererseits sind Fälle
bekannt (siehe z.B. Divincenzo, 1986), in denen das durch eine Projektion erzeugte
Punktgitter Zn zwar aperiodisch ist und ein diskretes Diffraktogramm erzeugt, jedoch
gar nicht als Ecken-Menge einer T interpretiert werden kann. Dies impliziert eine
noch weiter gehende Verallgemeinerung des Kristallbegriffs: ein solcher Körper ist
überhaupt nicht als Packung irgendwelcher Zellen beschreibbar und besitzt dennoch
einem klassischen Kristall ähnliche Diffraktionseigenschaften.
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5.2.3. Beispiel 1 (Abb. 25)

h 2, n 1, Z2 ist ein Quadratgitter mit Kantenlänge 1. Projektionsfenster ist der

Streifen, der durch Parallelverschieben eines Einheitsquadrates entlang E^ entsteht (1

Freiheitsgrad). Man projiziert die Gitterpunkte in diesem Streifen auf E/f und erhält so

die Ecken einer (eindimensionalen) Tt von E1 E-/ mit zwei Kacheln (d. h. Strecken)
der Längen lj und 12 (das sind die Projektionen der «horizontalen» bzw. «vertikalen»
Quadratseiten). Verschiebt man das gesamte Fenster parallel zu sich selbst (in Richtung

E±), so erhält man andere Tesselationen der selben LI-Klasse. Die Neigung von E^

bestimmt das Verhältnis yi2; wenn tg r) t (1 + V5 )/2, so wird Tt durch eine

Fibonacci-Folge beschrieben.
Weiter ist leicht zu sehen, daß Tj periodisch wird, wenn tgû nj/n2 ist, d. h. rational,

da sich dann eine bestimmte Projektionsfolge periodisch wiederholen muß. Die Periode

ist um so länger, je größer die (teilerfremden, ganzen) Zahlen nt und n2 sind.

- -F - H +-4-- F- + - +

\+-
>=EP=fcii

r. i '* i

-I H

u Z 'I
r.

Abb. 25: H-Projektion E2—HE1; Fibonacci-Tesselation.

Beschreibung im Text. Der «Hyperraum» Eh ist hier E2, der «gewöhnliche

Raum» En ist E1. Der Streifen F ist das Projektionsfenster ; es entsteht durch

Verschieben des eingezeichneten Einheitsquadrates entlang E^. Nach Katz
&Duneau(1986).

5.2.4. Beispiel 2

Die Punktgitter Z2, welche aus den Ecken von P3-Tesselationen bestehen, gewinnt

man aus einer Projektion p: E4-*E2 (mit einem einfachen Fenster); das periodische

Gitter Z4 besitzt eine Struktur mit 5 Pentagonen. Abermals entsprechen verschiedene

Tesselationen (alle P3 gehören zur selben LI-Klasse) den Parallelverschiebungen des

Fensters.
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5.2.5. Beispiel 3

Die Mackay-Tesselationen (4 Rhomboeder im E3) entstehen mit einer Projektion
E6—»E3. Dabei sind die 12 Vektoren ±et,..., ±e6, welche im E3 vom Zentrum eines

regulären Ikosaeders zu seinen Ecken weisen, die Projektionen von 12 Vektoren ±s1;
±&6 des E6, welche dort auf den Koordinatenachsen liegen, d. h. alle sechs Sj bilden

untereinander rechte Winkel.
Der Einheits-H-Kubus des E6 wird dabei aufein rhombisches Triakontaeder des E3

projiziert; von dessen 32 Ecken entsprechen 12 jenen des regulären Ikosaeders, die
anderen 20 denen eines gleich orientierten Dodekaeders.

Das gesamte hyperkubische Gitter Z6 besitzt 20 Klassen von 3-Flächen (d.h. Körpern

im gewöhnlichen E3) je gleicher Form, aber unterschiedlicher Orientierung.
Diese 3-Flächen fallen bei der Projektion auf nur 2 unterschiedlich geformte Körper:
auf 2 verschiedene Rhomboeder (bestehend aus lauter gleichen Flächen!) - die beiden
Mackay-Rhomboeder.

Um eine vollständige Mackay-T zu erhalten (bzw. ein ikosaedrisches Quasigitter
des E3), wird (analog Beispiel 1) ein Fenster verwendet, das dadurch entsteht, daß ein
6-Kubus K6 parallel zu sich selbst entlang E3 verschöben wird (3 Freiheitsgrade!).

6. Diffraktogramme

6.1. Die Fouriertransformation

Wie in der Einleitung erwähnt, entstehen beim Durchstrahlen eines
Kristalls mit geeigneten Wellenlängen (wie Röntgenlicht oder Elektronen) die
jedem Kristallographen bekannten Beugungsbilder: gewissermaßen
verschlüsselte Blicke in den Kristall, aus denen mit mathematischen Methoden
Informationen über seinen Aufbau erhalten werden können - insbesondere
über die Symmetrien seines inneren Baues. Diese Beugungsbilder können als

Schnitte - je nach der gewählten Durchstrahlungsrichtung - durch ein
Gebilde im reziproken Raum aufgefaßt werden, das die gesamte überhaupt
mögliche Beugungsinformation des gegebenen Kristalls enthält. Im folgenden

wird dieses Gebilde als das Diffraktogramm des Kristalls bezeichnet.
Eine Fouriertransformation beschreibt den Zusammenhang zwischen

dem Kristall im Normalraum, der daher Kristallraum genannt wird (mit
Koordinaten x, y, z) und dem Diffraktogramm im reziproken Raum, der
deswegen als Fourierraum bezeichnet wird (mit Koordinaten x*, y*, z*).

Folgendes Schema faßt die wichtigsten Begriffe zusammen:
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Realer Raum (x, y, z)
Kristallraum

Reziproker Raum (x*, y*, z*)
Fourierraum

Dichtefunktion
(Materieverteilung)

P (x, y, z)

Di ffraktogram m
Beugungsfunktion

(Intensitätsverteilung)
I (x*, y*,

Fouriertransformation

z*)

Dieses Konzept kann selbstverständlich ohne weiteres auf euklidische
Räume En mit mehr oder weniger Dimensionen als n 3 angewendet
werden; in den Beispielen werden wir Fälle in E1 und E2 sehen.

6.2. Die vier Ordnungsklassen

Die klassische Kristallographie unterschied bezüglich der Diffrakto-
gramme nur zwei Klassen: amorphe Körper, die (im Idealfall) kein
Beugungsbild erzeugen (siehe unten), und Kristalle mit translationsperiodischen
Gittern, die «gute» Diffraktogramme besitzen. «Gut» bedeutet in diesem
Fall, daß das Diffraktogramm diskret ist, d.h. aus voneinander getrennten
Punkten besteht, deren jeder eine bestimmte Intensität besitzt, also in einem
I (x*, y*, z*)-Diagramm mit einem Delta-Peak besetzt ist. Tatsächlich
entstehen mehr oder weniger eng begrenzte Flecke, da ja auch die Gitterepunkte»

nicht ausdehnungslos sind, sondern aus Atomen bestehen. Auf eine
Dimension bezogen sieht ein derartiges Diffraktogramm somit z. B. wie in
Abb. 26 a aus.

Im Gegensatz dazu ist das Diffraktogramm eines amorphen Körpers
kontinuierlich: selbst wenn die Atome aufPunkte reduziert wären, erfüllte es den

gesamten (reziproken) Raum lückenlos stetig. Die in fast allen realen Fällen
zu beobachtenden Intensitätsvariationen - siehe Abb. 26 c - rühren daher,
daß selten ein Stoff ideal amorph vorliegt (Spannungszustände usw.).

Zwischen diesen beiden Fällen stehen nun die zwei Kategorien der nahezu
periodischen und der quasiperiodischen Gitter. Erstaunlich dabei ist, daß die
nahezu periodischen, auch inkommensurabel modulierte genannt, schon seit
einiger Zeit in der Kristallographie durchaus akzeptiert waren. Der Grund
dafür ist wohl, wie wir gleich sehen werden, daß man solche Gitter als

«gestörte» normale Gitter auffassen kann: Sie sind Randerscheinungen,
gefährden jedoch als solche die abgeschlossene Welt der 32 Kristallklassen
nicht. Ganz anders dagegen die echten quasiperiodischen Gitter: Sie können
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ik.

I

Abb. 26: Diffraktogramme in einer Raumrichtung (Schema).

a Für einem Kristall mit normalem Gitter; i ideal (punktförmige Atome),

r real (ausgedehnte Atome).
b Für einen Kristall mit inkommensurabel moduliertem oder Quasi-Git-
ter. If ist eine frei gewählte Schwellenintensität; nur einige der schwächeren
Peaks sind abgebildet.
c Für einen (nicht-ideal) amorphen Körper.
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in keiner vernünftigen Weise als gestörte Normalgitter interpretiert werden,
bedeuten also mathematische Subversion für das etablierte System.

6.2.1. Nahezu periodische Gitter

Bei nahezu periodischen Gittern (almost periodic lattices) sind die
Funktionswerte der Raumdichte - gegeben durch Art und Lage der Atome - im
wesentlichen periodisch, d. h. es liegt ein mittleres Gitter vor. Dieses ist aber
mit einer im Kristallraum periodischen Funktion moduliert - die Atome
sind ein bißchen aus ihrer «Normallage» verschoben. Dabei muß die
Modulationslänge (die Periode der Modulationsfunktion) in mindestens einer
Raumrichtung inkommensurabel zur entsprechenden Gitterkonstante (der
Translationslänge des «mittleren Gitters») sein - daher die Bezeichnung
«inkommensurabel moduliert». Wäre nämlich die Modulationslänge in
allen Raumrichtungen kommensurabel zu den Abständen des mittleren
Gitters, so ergäbe sich insgesamt wieder ein t-symmetrisches Gitter mit einer
größeren tZ, deren Kantenlängen Vielfache der Perioden der Modulationsfunktion

wären. Abb. 27 zeigt die beiden Fälle an einem willkürlichen
zweidimensionalen Beispiel.

Dabei ist es prinzipiell bedeutungslos, wie groß die Amplituden der
Modulationsfunktion sind: Wesentlich ist allein, daß die Abweichungsfunktion
nicht divergiert; kein Knoten des effektiven Gitters kann sich weiter als eine
vorbestimmte Distanz von «seinem» Knoten des periodischen Gitters
entfernen.

Die oft als eindimensionaler Paradefall eines Quasigitters demonstrierte
Fibonaccifolge, wie sie in Abb. 25 gezeigt wurde, ist tatsächlich nur nahezu
periodisch (siehe Aubry & Godreche, 1986): Man kann zu ihr ein mittleres
(eindimensionales) Gitter konstruieren.

6.2.2. Quasiperiodische Gitter

Bei quasiperiodischen Gittern (Quasigittern) ist die Dichtefunktion -
allgemeiner als im vorigen Fall - eine beliebige Summe periodischer (Dichte-)
Funktionen, deren Perioden wieder wenigstens teilweise inkommensurabel
sind. Der Hauptunterschied zum nahezu periodischen Fall ist jedoch
folgender: Wählt man irgendein «mittleres Gitter», so entsteht eine zugehörige
Abweichungsfunktion. Diese divergiert jedoch prinzipiell! Ganz gleich, wie
das mittlere Gitter gewählt wurde, entfernen sich die effektiven Gitterknoten
beliebig weit von «ihrem» mittleren Knoten; diese Distanz ist unbeschränkt.
In irgendeinem begrenzten Gebiet kann man das effektive Gitter tatsächlich
durch ein «mittleres» Gitter annähern, nicht aber im gesamten Raum. Somit
ist es gar nicht mehr sinnvoll, überhaupt von einem mittleren Gitter zu
sprechen, es sei denn lokal.
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Vor allem von den Kristallographen, die es gegen «richtige» Gitter abgrenzen

möchten, wird das Gitter des quasiperiodischen Falls oft als Quasigitter
bezeichnet.

Abb. 27a: Nahezu periodisches Gitter (Schema).
Die ausgezogenen Linien bilden ein periodisches Gitter mit Translationsoperator

t (tx, ty), das mittlere Gitter: lx und ly sind die Langen der
Vektoren tx und tv.

Die gestrichelten Linien bilden das nahezu periodische Gitter. Es entsteht

durch die unten und links skizzierten Modulationsfunktionen (mit
Intensitäten 1,^ und 1^) aus dem mittleren Gitter. Die Perioden der
Modulationsfunktionen sind mx und mv; ihre Amplituden betragen (+dx; 0) und

(+ dy; - dy); die Lagemodulation der Gitterpunkte ist durch die Werte 8X

und 8V gegeben. Die Atome (o) sitzen an den Knoten des so erzeugten
nahezu periodischen Gitters. Die Abweichung der Knoten des modulierten
Gitters von denen des mittleren Gitters ist kleiner als dx + dv, also

beschränkt im ganzen Raum E2.

Die Inkommensurabilitätsbedingung lautet: — sowie —%- sind keine
mx my

rationalen Zahlen.
Abb. 27b: Kommensurabel moduliertes Gitter (Schema).

Auch hier bilden die ausgezogenen Linien ein periodisches Gitter mit dem

Translationsoperator t (tx. tv). die gestrichelten Linien das daraus durch

Modulation entstandene Gitter. Die Modulationsfunktionen selbst sind

nicht dargestellt; es wird aber angenommen, daß die Modulationslängen
mit den Periodenlängen des mittleren Gitters wie folgt kommensurabel
sind:

Jì. | (d.h. 3 lx 5 mx). 21. i (d.h. 7 L 4 my).
mx 3 mv 7

Damit ergibt sich, daß die Verschiebungen in der Zelle q*j*tj*R* denen

in der Zelle P*Q*R*S gleich sind (usw.); somit ist diese Zelle
Translationszelle (tZ) des kommensurabel modulierten Gitters, mit Translationsoperator

t* (t*. t*).
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6.2.3. Beispiele

Beispiel 1: In Aubry & Godreche (1986) (cf. 6.2.1.) wird eine Modifikation

des eindimensionalen Falls angegeben, welche statt der Fibonacci-
Folge eine quasiperiodische Funktion erzeugt. Diese divergiert logarithmisch

gegenüber jedem mittleren Gitter, und die Fibonacci-Folge ist ein
Grenzfall von ihr.

Beispiel 2: Im E2 werden die Ecken einer Penrose-Tesselation - diese sind
also die Knoten des Quasigitters - durch eine quasiperiodische Ortsfunktion
beschrieben. - Dasselbe gilt im E3 für die Mackay-Tesselationen. - Die
Knotenabstände von Penrose- wie Mackay-Gittern sind - in jeder der
«ausgezeichneten» Richtungen - durch Fibonacci-Folgen festgelegt. Es ist daher
interessant, daß - siehe oben - der eindimensionale Fall nahezu periodisch
ist, die zwei- und mehrdimensionalen Fälle jedoch quasiperiodisch: Die
quantitative Überlagerung erzeugt eine neue Qualität!

6.2.4. Diffraktogramme der nahezu periodischen und quasiperiodischen
Gitter

Die Beugungsmuster dieser Gittertypen weichen einerseits auf charakteristische

Weise von jenen der periodischen Gitter ab, gleichen einander
andererseits völlig! Die Fouriertransformation zieht also die Grenze
zwischen «normal» («klassische» Gitter und «gestörte klassische» Gitter) und
«abartig» (Quasigitter) nicht dort, wo es die Kristallographien wohl gern
gesehen hätten.

Diese Diffraktogramme stehen in der Art logischerweise zwischen denen
der klassischen Kategorien «kristallisiert» und «amorph». Im Idealfall
(Atome punktförmig) bestehen sie zwar aus 5 -Peaks, aber diese liegen dicht
im reziproken Raum 9. Die für den Nicht-Mathematiker merkwürdigste
Eigenschaft schließlich ist diese: Wähle ich für die Intensität einen -
beliebigen - Schwellenwert, so gibt es nur abzählbar viele ô-Peaks, die ihn
übertreffen, und diese sind diskret verteilt (Abb. 26 b) - Eigenschaften wie bei
einem normalen Gitter! Die üblichen aperiodischen Gitter weisen dazu auch
noch einen anfänglich raschen Intensitätsabfall auf, das heißt, nur wenige
Peaks sind stark und heben sich so deutlich von einem dichten, schwachen
«Grund» ab.

Diese Beugungseigenschaften von Quasigittern kann man anschaulich so

begreifen: Betrachtet man z. B. die Penrose-Tesselation der Abb. 24, so sieht

man, daß die Kachelränder nur in bestimmten Richtungen liegen, und zwar
in genau fünf. Und geht man senkrecht zu einer dieser Richtungen durch die

9 Es besteht somit eine gewisse Analogie: periodische Gitter/aperiodische
Gitter/amorph versus ganze Zahlen/rationale Zahlen/reelle Zahlen.
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Belegung, so trifft man die Kachelgrenzen nur in einer bestimmten Auswahl
von Abständen an. Diese Umstände genügen, ein «gutes» Diffraktogramm
zu erzeugen, das selbstverständlich die fünf ausgezeichneten und unter sich

gleichwertigen Richtungen zeigt. Allgemein: Das Diffraktogramm eines
aperiodischen Gitters besitzt die Symmetrien, welche im Quasikristall (lokal)
vorkommen! Mit anderen Worten: Die Fouriertransformation unterscheidet
(leider) nicht grundsätzlich zwischen lokalen und globalen Symmetrieachsen.

Zeigt also das Diffraktogramm eines Kristalls «verbotene» Symmetrieelemente,

so ist ohne weiteres klar, daß aperiodischer Bau vorliegen muß.
Umgekehrt aber kann Aperiodizität vorliegen, ohne daß sie sich derart verrät:

Ein Kristall, dessen Basis wie in Abb. 12 aufgebaut wäre (der Bau senkrecht

dazu dürfte translatorisch sein), ergäbe im Diffraktogramm eine

gewöhnliche Tetragyre senkrecht zu dieser Basis!

6.3. Einige Probleme

6.3.1. Tesselationen versus Quasigitter

Ein weiteres rein mathematisches Problem betrifft den Zusammenhang
zwischen Belegungen und Quasigittern. Es ist nämlich keinesfalls so, daß die
Eckpunkte einer im En nichttranslatorischen (aperiodischen) Belegung
notwendigerweise ein Quasigitter des En (im oben definierten Sinn) bilden
müßten! Wir sahen, daß dies für Penrose- und Mackay-Belegungen der Fall
ist. Tatsächlich muß für jede vorgegebene Belegung die Fouriertransformierte

ihrer Ecken berechnet werden, um festzustellen, ob das Diffraktogramm

die entsprechende Darstellung besitzt (wie Abb. 26 b). Umgekehrt
wurden, wie schon in 5.1. erwähnt, Fälle aufgezeigt, in denen das
Diffraktogramm vom Typ der Quasigitter ist, die Gitterknoten jedoch nicht als
Ecken einer (aperiodischen) Belegung interpretiert werden können.

Diese Feststellungen zeigen, daß die Beziehungen zwischen Belegungen
und Quasigittern viel komplexer sind, als man zunächst anzunehmen
geneigt war - und beide Objektkategorien darüber hinaus ein Eigenleben
führen, das noch wenig erforscht ist.

6.3.2. Dekoration und Kräfte

Zum Schluß sei kurz aufeinige physikalische Probleme hingewiesen - hier
erst beginnt die eigentliche Arbeit der Kristallographie und der Festkörperphysik!

Ein realer Quasikristall erfordert eine Dekoration der zugrundegelegten
aperiodischen T, d. h. eine Besetzung der Zellen mit Atomen oder
Atomgruppen. Wie kann diese Dekoration aus dem Diffraktogramm ermittelt
werden?
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Welche Kräfte bewirken, daß die Zellen über große Distanzen immer
wenige gleiche relative Lagen einnehmen, d.h. eine Art Fernordnung
besteht? Genügt dafür eine sogenannte BOO (bond orientational order)?

Wie verhindert der wachsende (Quasi-)Kristall, daß beim Weiterbau
unmögliche Situationen auftreten? Nach Ansicht der meisten Forscher kann
er dies tatsächlich nicht verhindern, da rein lokale Passungsregeln dafür
nicht genügen; somit wäre kein Quasikristall ohne Baufehler möglich. Ich
vermute indes, daß globale quantenmechanische Effekte10 doch eine Art
Fernkontrolle bewirken könnten. In diesem Zusammenhang sind auch die
als Polytypie bekannten Stapelordnungen überlanger Reichweite auffällig,
bei denen ebenfalls irgendeine Art von Fernwirkung erforderlich scheint.

7. Zusammenfassung - Résumé - Summary

Zusammenfassung

Bis vor kurzem fügten sich alle bekannten Kristalle in die klassische Theorie der
translativen Raumordnung. Seit dem Jahre 1984 jedoch zwang die Entdeckung von
Kristallen, deren Röntgenbeugungsbilder «verbotene» Symmetrien zeigen, zur
Erweiterung dieser Theorie: Den Kristallographien wurde bewußt, daß neben dem «klassischen»

Kristall Raumordnungen möglich sind, die ebenfalls «gute» Röntgenbeugung
erzeugen, obwohl sie «aperiodisch» sind. In der mathematisch-physikalischen Theorie

war dies seit Jahrzehnten bekannt, und die Geometrie befaßte sich seit einiger Zeit
mit «aperiodischen Belegungen».

Der Artikel erläutert, meistens an anschaulichen zweidimensionalen Beispielen:

- grundlegende geometrische Eigenschaften translativer und nichttranslativer
Belegungen des Raumes, wobei die sog. Penrose-Belegungen besonders berücksichtigt
werden;

- die wichtigsten Erzeugungsmethoden für nichttranslative Belegungen;

- die Zusammenhänge zwischen Raumordnung und Beugungsbildern.

Résumé

Pendant longtemps tous les cristaux connus se conformaient à la théorie classique:
son concepte central est l'ordre translatif dans l'espace. Depuis 1984 cependant la
découverte de cristaux dont les images de diffraction aux rayons X montrent des

symétries «interdites» exigea une extension de cette théorie: Les cristallographes
devenaient conscients du fait qu'il existe, outre celui des cristaux «classiques», des

types d'ordre spatial qui donnent lieu à de «bons» diffractogrammes tout en étant

10 Man bedenke, daß die entdeckten Quasikristalle allesamt metallischen Bindungscharakter

besitzen

182



«apériodiques». En théorie physico-mathématique ceci fut connu depuis des décennies,

et la géométrie s'occupait depuis quelque temps déjà, de «pavages apériodiques».

L'article explique, en utilisant autant que possible des exemples en deux dimensions:

- des propriétés géométriques fondamentales de pavages translatifs et non-translatifs,
en considérant particulièrement les pavages dits de Penrose:

- les méthodes les plus importantes qui permettent de construire des pavages non-
translatifs;

- les relations entre l'ordre spatial et les diffractogrammes.

Summary

Until a short time ago all known crystals agreed with the classical theory of translative

space order. Since 1984 however the discovery of crystals the X-ray diffracto-
grams of which show «forbidden» symmetries forced an extension of this concept:
Crystallographers became aware of the fact that, besides the «classical» crystal order,
other types of space order despite of being «aperiodic» also generate «good» diffrac-
tograms. In physico-mathematical theory this was known since several decades, and

geometry dealt with «aperiodic tilings» for some time already.
This paper explains, using as far as possible examples in two dimensions:

- fundamental geometrical properties of translative and non-translative tilings of the

space, with particular consideration of the so-called Penrose tilings;
- the most important construction methods for non-translative tilings;
- the relationship between space order and diffractograms.
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