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Eine neue Geometrie fur neue Kristalle:
Einladung zu einer Gratwanderung
zwischen Kristallographie und Geometrie

von ANDREAS NICKEL,
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1. Vorwort: Geordnete Raumerfiillung — was ist das?

Vor nun gerade 7 Jahren wurde die Kristallographie von einer Verunsi-
cherung erfal3t, deren Ursache in einigen merkwiirdigen MefB3ergebnissen lag.
Sie standen in eklatantem Widerspruch zur lange etablierten Theorie. So
herrschte zuniachst Ratlosigkeit, doch zeigte sich bald — wie schon manches
Mal in der Geschichte der Wissenschaften —, daf3 die Trickkiste der Mathe-
matik bereits die Losung enthielt. Was bis dahin eher wie eine nutzlose
Spielere1 erschien, nur gerade amusant fur ein paar Mathematiker, brachte
Licht in den Bau dieser nichtperiodischen Festkorper. Zur Abgrenzung von
den «klassischen» Kristallen erhielten sie die Bezeichnung Quasikristalle.

Die klassische Definition der Kristalle bezieht sich bekanntlich auf ihre
Struktur: sie sind aus atomaren Komponenten periodisch aufgebaut — mit
diesem Begriff meint der Kristallograph, daBB eine Grundeinheit translato-
risch raumfiillend gestapelt 1st. Dies fuhrt zu einer abgeschlossenen Theorie,
in welcher 230 Raumgruppen den Kristall als Diskontinuum beschreiben.
Makroskopisch reduziert sich diese Vielfalt auf 32 K/assen oder Punktgrup-
pen, die sich auf die 6 bzw. 7 Kristallsysteme (je nach Darstellung) vertei-
len.

Da sich bislang alle bekannten FestkOorper — anorganische wie organische
Kristalle — in diese Theorie fugten, dachte kein Kristallograph daran, dal3 -

rein geometrisch betrachtet — raumfillende Stapelungen auch nicht-transla-
torisch erfolgen konnen. Nun aber wurde es notig, von der sehr speziellen

Vorgabe der translatorischen Stapelung abzusehen und zunachst einmal
festzustellen, wie sich Raumerfullung mit beliebig erdachten Bausteinen
gestalten a3t — ohne daf3 dabei jedoch alle Ordnung verloren geht. Sonst
namlich fielen wir in den altbekannten Glaszustand zuruck, und mit ihm
haben die Quasikristalle, wie noch auszufiihren ist, wenig gemein!

Als Fazit dieser Untersuchungen erscheint heute der klassische Kristall -
Regelfall der Natur - als mathematischer Sonderfall einer weitergefalBBten
Kategorie von Strukturen, die teilweise aullerst fremdartige Eigenschaften
besitzen.

In den Jahren nach 1984 jagten sich die Veroffentlichungen uber neue
MeBergebnisse und theoretische Ansatze zu immer detaillierteren Erklarun-
gen, internationale Symposien fanden statt; ein neues Spezialgebiet zwi-
schen Kristallographie, Festkorperphysik und Geometrie entstand binnen
weniger Jahre. Leider ist diese Literatur fur Nicht-Spezialisten fast unzu-
ganglich, da sie oft komplizierte mathematische Formalismen verwendet,
und - wie bei jedem in rascher Entwicklung befindlichen Gebiet — auch
(vorlaufige) Widerspruche aufweist. AuBBerdem klafft weitgehend eine Lucke
zwischen zwei beteiligten Gebieten: In geometrisch orientierten Werken
(wie in dem von mir oft zitierten Buch von GRUNBAUM & SHEPHARD, 1987)
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wird nur ganz am Rande auf physikalische Fragestellungen hingewiesen: es
geht um materielose Strukturen. In der kristallographischen Literatur ande-
rerseits wird die Geometrie nur insofern berucksichtigt, als sie fur die
Beschreibung experimenteller Befunde anwendbar scheint.

Dieser Artikel verfolgt somit eine doppelte Absicht: Als einfihrendes
Kompendium auf elementarer Basis soll er interessierten Nichtspezialisten
den Zugang zu einem faszinierenden Forschungsgebiet 6ffnen. Als «Bruk-
kenschlag» zwischen zwei Disziplinen moge er dem Mathematiker ein Fen-
ster auf die Anwendung eines fundamentalen geometrischen Konzeptes off-
nen, den Kristallographen zu einem Blick in die phantasievolle, ja gar phan-
tastische Welt der Mathematik verlocken, die — jenseits aller Anwendung -
Geburtsort seiner geistigen Werkzeuge («Denkzeuge») ist.

SchlieBlich sei darauf hingewiesen, dal3 die Idee, mich mit dieser Materie
zu beschaftigen, auf eine Anregung meines Vaters, ERWIN NICKEL, anlaBlich
seiner Abschiedsvorlesung «Symmetrie — Schonheit und Notwendigkeit»
zuruckgeht. In Civitas (1989) erschienen Gedanken zu dieser Vorlesung, und
ich ergdnzte diese Veroffentlichung mit einem Kapitel «Subversive Ideen fur
die Kristallographie». Anregungen und Literaturhinweise dazu erhielt ich
von Herrn H.-U. Nissen (ETH Zurich), dem ich fur seine Hilfe danke. Nach
kritischer Diskussion mit meinem Vater liegt nun die ausfiihrliche Darstel-
lung der betreffenden Probleme vor, und wir beide hoffen, der Text habe eine
lesbare Form gefunden!

2. Kristalle — Aufstieg und Krisis einer Theorie

2.1. Der klassische Kristall ...

Leider gehoren — im Gegensatz zu beispielsweise Zoologie und Botanik -
die Facher Geologie und Mineralogie nicht oder kaum zum Unterrichtsstoff
der allgemeinbildenden Schulen. Nur in den Fachern Physik und Chemie
einerseits, Mathematik andererseits wird in geringem Umfang auf die Struk-
turen der festen Materie hingewiesen. Daher bleibt, obschon doch jeder sie
kennt, das Verstindnis der Kristalle mangelhaft, dieser faszinierenden
Gebilde, die als hochste asthetische Ausformung der unbelebten Natur
geheimnisvoll verborgene Ordnung offenbaren.

2.1.1. Die Entwicklung des klassischen Kristallbegriffs — Verzerrung, kri-
stallographische Formen, Winkelkonstanz

Der Weg zum «klassischen» Kristallbegriff war lang, denn die sogenannte
Verzerrung der Kristalle verschleiert die innere Ordnung. Kristalle wachsen
jadurch Anlagerung ihrer chemischen Substanz auf der Oberflidche; daher ist
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die Ausbildung der polyedrischen Gestalt sehr von der Stoffzufuhr abhangig,
die nur selten homogen und isotrop erfolgt. Dies bewirkt, dal3 theoretisch
gleichwertige Elemente des Kristalls im allgemeinen unterschiedlich entwik-
kelt vorliegen. « Verzerrung» bedeutet ein nichtideales Wachstum aufgrund
der auBeren Bedingungen.

Im Reich der Lebewesen ist dies anders. Gleiche Elemente entwickeln sich
hier stets mehr oder weniger gleich: zum Beispiel die zwel Beine des Men-
schen. Und weiter sind auch die Beine aller Menschen recht dhnlich -
zumindest vom biologischen Standpunkt her.

Einem moglichen MifBlverstandnis sei noch vorgebeugt: Der Ausdruck
«Verzerrung» suggeriert eine Art von Verbiegung des Kristalls. Dies ist aber
nicht der Fall! Die Abweichung von der idealen Gestalt kommt nur durch
verdrehungsfreie Verschiebungen der Flachen zustande, senkrecht zu ihren
Flachenloten, die man sich durch die Mitte des Kristalls denkt.

Kristalle bedurfen also einer konstruktiven Entzerrung. Erst wenn gleich-
wertige Flachen am Individuum die gleiche GroBe haben — und damit auch
den gleichen UmriB -, zeigt sich die wahre Symmetrie des Korpers. Nur so
konnen die diversen Kristallindividuen der gleichen Kristallsorte verglichen
werden.

Alle gleichwertigen Flachen werden zu kristallographischen Formen'!
zusammengefal3t, z. B. die 6 Flachen des Wiirfels, die 8 Flachen des Okta-
eders, die 6 Flichen des Rhomboeders usw. Ein Kristall besteht demnach aus
einer einfachen (kristallographischen) Form oder aus einer Kombination
(von Formen). Ein Fluoritkristall kann z. B. Wurfel und Oktaeder kombi-
nieren. Aber vielleicht sind am gegebenen Individuum nur zwei der 6 Okta-
ederecken «abgeschnitten» — d. h., die Form des Wurfels zeigt sich nur durch
2 Flachen! Bei der Entzerrung muf3 man aber davon ausgehen, daf3 an allen
6 Oktaederspitzen (gleich groBe) Wirfelflichen sitzen.

Theoretische Grundlage aller Entzerrungen bildet das Gesetz der Winkel-
konstanz (Nicolaus Steno, 1669), das besagt: Fur jede Kristallsorte haben die
Winkel zwischen entsprechenden Flachen feste Werte, unabhiangig von der
GroBe der Flachen. Damit lieBen sich die Flachenlagen leicht auf Achsen-
kreuze beziehen, die man der Symmetrie der betreffenden Kristallsorte

I Man beachte, daB somit « Form» in der Kristallographie eine ganz andere Bedeu-
tung als in der Geometrie hat. Hier ist « Form» ein sehr allgemeiner Ausdruck: Form
eines Dreiecks, einer Kurve usw. - «Form» im geometrischen Sinn kann kristallo-
graphisch etwa als «Gestalt» bezeichnet werden.

In den weiteren Kapiteln benutze ich den Begriff « Form» immer in diesem allge-
meineren Sinn der Geometrie, wenn ich von der Form einer Kachel oder Zelle usw.
spreche.
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anpalite. Dabe1 erkannte man folgende erstaunliche GesetzmaBigkeit: Die
Lage einer Flache relativ zum Achsenkreuz ergibt sich aus dem Verhdltnis
der Achsenabschnitte. Normiert man nun eine (beliebige) Flache des Kri-
stalls so, dal ihr Verhaltnis 1:1:1 1st, so zeigen die anderen Flachen Verhalt-
nisse wie 2:1:1 oder 4:00:3 usw. Dies verweist deutlich auf eine quantisierte
innere Ordnung!

In reziproker Notation bilden diese Verhaltnisse die /ndizes der Flachen.
Es ist klar, daB3 alle Flachen der selben kristallographischen Form gleiche
Indizes besitzen mussen, bis auf die Vorzeichen. So lauten z. B. die 8 Okta-
ederflachen-Indizes: (111), (111), (111), (111), (111), (111), (111), (111),
als Form notiert: {111}.

2.1.2. Die Symmetrien der Kristalle — Kristallklassen, das translatorische
Konzept, Raumgruppen

Zunichst aber fuhrte die Betrachtung an entzerrten, also idealisierten
Kristallen zur vollstandigen Symmetrieanalyse im Kontinuum. Gefunden
wurden bestimmte Symmetrie(dreh)achsen, Spiegelebenen und das Symme-
triezentrum sowie gewisse Kombinationen dieser Symmetrieelemente. Ins-
gesamt konnen 32 sogenannte Punktgruppen definiert werden: die 32 Kri-
stallklassen als abgeschlossenes Ordnungssystem der makroskopisch be-
trachteten Kristallwelt.

Warum aber bildet die feste Materie gerade diese Formen, besitzt sie diese
Symmetrien, diese konstanten Winkel? Warum tritt beispielsweise keine
Punktgruppe mit funfzahliger Drehachse auf? Grund dafur ist, wie oben
angedeutet, der Feinbau der Kristalle, also die Anordnung von Materieteil-
chen im Raum. Schon Hauy hatte um 1780 versucht, die grofle Mannigfal-
tigkeit der aulBBeren Gestalt durch einen Stapelbau aus einfachen «Ziegeln»
zu erklaren — d.h. durch ein translatorisches Konzept aus kleinsten Einhei-
ten.

Heute beschreiben wir den Feinbau durch die Anordnung der atomaren
Bausteine im Kristall. Da diese Anordnung translatorisch ist, 1aBt sich die
Materieverteilung als Repetition einer kleinsten Einheit, der sogenannten
Elementarzelle, beschreiben: Der Gesamtkristall entsteht durch lickenlose
Stapelung solcher Parallelepipede 2.

In einfachen Strukturen «belegt» man die 8 Ecken der Elementarzelle mit
atomaren Bausteinen und «fullt» dann weiter auf. So 146t sich z. B. CsCl als
Struktur mit dem Schwerpunkt des Casium-Ions an den Ecken eines Wirfels

2 Parallelepipede sind die raumlichen Aquivalente der ebenen Parallelogramme: sie
bestehen aus sechs Flachen, von denen je zwei gegenuberliegende zueinander parallel
sind.
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und dem des Chlor-lons im Wiirfelzentrum beschreiben (oder umgekehrt, je
nach Wahl des Nullpunktes der Elementarzelle). Bravais hat gezeigt, dal} es
nur 14 Bautypen gibt, die dem translatorischen Bauprinzip gentigen.

A priori ist es natirlich moéglich, einen gegebenen Kristall auf sehr unter-
schiedliche Weise in gleiche Parallelepipede zu zerlegen. Der Kristallograph
wahlt aber seine Elementarzellen mit Rucksicht auf die Materiefiillung des

Raumes: so namlich, da} sie der gesamten vorhandenen Symmetrie ent-
sprechen und damit das Kristallsystem wiedergeben. In diesem Falle laufen

die Kanten der Parallelepipede parallel zu den 3 kristallographischen Ach-
sen. Dies ergibt folgende 7 Zuordnungen:
(a) Triklin; beliebig schiefes Parallelepiped.
(b) Monoklin; in einer Richtung schiefes Parallelepiped.
(¢) Orthorhombisch; Quader («Ziegelstein» mit 3 verschieden langen Kan-
ten).
(d) Tetragonal; Quader, dessen Kanten in 2 Richtungen gleich lang sind.
(e) Kubisch; Wiirfel (= Quader mit 3 gleichwertigen Richtungen).
(f) Trimetrisch; 2 Moglichkeiten der Darstellung:
(1) Rhomboeder, das ist ein entlang einer Raumdiagonalen gewisserma-
Ben «gestauchter» oder «gezerrter» Wirfel.
(i1) Parallelepiped mit Basiswinkel 60° und einer 3. Richtung senkrecht
dazu. (3 solche Elemente zusammengestellt bilden eine hexagonale
Saule!)

Die Betrachtung der Symmetrien auf diesem atomaren Niveau flhrte
(u.a. durch Einbezug kombinierter Symmetrieelemente wie Schraubenach-
sen und Gleitspiegelebenen) zur Differenzierung der 32 Klassen in 230 soge-
nannte Raumgruppen. Damit war die Theorie der Kristalle auch bezuglich
threr Feinstruktur zu einem Abschlull gekommen.

1912 konnten von Laue, Friedrich und Knipping die experimentelle
Bestatigung dieser Strukturauffassung liefern: Aufgrund des translatorischen
Stapelbaus atomarer Komponenten wirken Kristalle fur Wellen geeigneter
Lange als raumliche Beugungsgitter. Meistens werden — wie schon im klas-
sischen Versuch — Rontgenstrahlen verwendet, doch sind heute auch Elek-
tronenstrahlen moglich. Die gewonnenen Beugungsbilder enthalten die
Informationen zum Feinbau des durchstrahlten Kristalls in verschlusselter
Form (siehe 6.).

Ich fasse zusammen: In klassischer kristallographischer Sicht stellt der
Kristall ein aus Elementarzellen aufgebautes Diskontinuum dar, das durch
atomare Krifte zusammengehalten wird. Die parallelepipedische Gestalt der
Elementarzellen sowie ihre lucken- und verdrehungsfreie Stapelung im
Raum - und folglich translatorische Anordnung — entspricht der Kristall-
symmetrie. Jede Elementarzelle des selben Kristalls enthilt die gleiche Mate-
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riefullung, die aus einigen wenigen bis mehreren tausend Atomen bestehen
kann. Fur die Beschreibung einer bestimmten Kristallsorte ist immer die
selbe Sorte von Parallelepipeden vorzusehen.

Zum leichteren Verstindnis soll hier ein zweidimensionales Beispiel
betrachtet werden (Abb. 1). Auch in der Folge werde ich oft die Uberlegun-
gen auf die Ebene reduzieren, wo immer die raumliche Darstellung zu
schwierig wird und das betreffende Prinzip solche Vereinfachung zulafBt.

f

Abb. I:  Schema einer ebenen Kristallstruktur.
x und y bezeichnen die beiden Translationsrichtungen (Achsen),_t; und_t:,
die entsprechenden Translationsvektoren. Z ist der Mittelpunkt der Bau-
einheit («Kachel»), die in der Ebene ein Parallelogramm ABCD ist. Das
Aneinanderlegen der Kacheln erfiillt die Ebene ltiickenlos.

2.1.3 Begriffe und Anmerkungen — Zellen, Symmetrieelemente, Gitter

Da ich in den folgenden Kapiteln statt der kristallographischen Sicht eine
rein geometrische Betrachtungsweise verwenden werde, sind noch einige
Begriffe zu prazisieren sowie einige Hinweise anzubringen.

Im weiteren werden folgende Begriffe verwendet:

(i)  E" bezeichnet den euklidischen Raum mit n Dimensionen; E? ist also
die Ebene, E3 unser gewohnlicher Raum, E! die Gerade. Ein E" kann
wahlweise als Punkt- oder als Vektorraum beschrieben werden.
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(11)  Die Baueinheit wird Zelle oder Kachel genannt (engl. cell bzw. tile);
der Nicht-Mathematiker verwendet den Ausdruck «Kachel» eher im
E2, «Zelle» eher im E3.

(u1) Da diese Zellen durch translatorischen Bau den Kristall bilden,
bezeichne ich sie als Translationszellen (tZ).

Ich verwende hier nicht den kristallographischen Begriff Elemen-
tarzellen, da die Zellen in der Folge rein geometrisch und somit all-
gemeiner als in der Kristallographie verwendet werden sollen. Bei-
spielsweise wird zugelassen, dal3 man fur die translatorische Beschrei-
bung andere als die kristallsystembezogenen Zellen (s.0.) wahlt.

(1v) So, wie die repetitive materielle Fullung des Kristalls zur (Transla-
tions-) Zelle abstrahiert wird, konnen die «Krifte zwischen den Zel-
len» als geometrische Passungsregeln beschrieben werden: sie legen
fest, wie die Zellen rdumlich zusammenzufiigen sind.

(v)  Wenn notig, kann - z. B. fur Betrachtungen der Symmetrie einer Ein-
zelzelle — der Zell-Inhalt geometrisch als Muster (auch Motiv oder
Dekoration genannt) berucksichtigt werden.

Die rein geometrische Betrachtungsweise erlaubt es, uns bei den Symme-
trien auf die Makro-Elemente zu beschrinken, also auf: (1) Symmetrie-
Ebenen (Spiegelebenen), (2) Symmetrie-Zentrum (Inversionszentrum), (3)
Symmetrie-Achsen (Rotationssymmetrien, Gyren). Bei translatorischem
Aufbau sind nur zwei-, drei-, vier- und sechszdhlige Achsen moglich d. h. Di-,
Tri-, Tetra- und Hexagyren. AuBBerdem konnen diese Symmetrieelemente
nur in bestimmten Richtungen auftreten, und nur bestimmte Kombinatio-
nen sind moglich. Insbesondere sind anderszahlige Achsen ausgeschlossen —
dies ist besonders wichtig im Hinblick auf die Quasikristalle.

Diese Symmetrieanalyse liefert, wie oben erwahnt, insgesamt 32 Kombi-
nationen, die kristallographischen Punktgruppen — rein geometrisch gesehen
diejenigen Punktgruppen, die mit dem translatorischen Aufbau kompatibel
sind. Alle anderen Punktgruppen - es gibt deren unendlich viele — sind
kristallographisch «verboten».

Auch hier soll wieder eine kristallographisch mogliche Symmetrie, auf
zwel Dimensionen reduziert, die Verhaltnisse verdeutlichen (Abb. 2).
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Abb. 2:  Eine ebene Symmetrie.
Die Baueinheit ist in diesem Fall ein Rhombus, dessen spitzer Winkel 60°
miBt; somit kann man die Kachel in zwei gleichseitige Dreiecke zerlegen.
Man gibt eine 3zdhlige Achse (Trigyre, Symbol &) an der spitzen Ecke der
Kachel vor. Infolge des translativen Aufbaus tritt sie an allen Kachelecken
auf. Setzt man nun einen Punkt in allgemeiner Lage (P) in die Ebene, so
bringen Translation und Drehung ihn an alle angegebenen Stellen. In der
Folge sicht man, da3 zwangslaufig weitere Trigyren (A) auftreten: im Zen-
trum jeder Halbkachel.

SchlieBlich mul} der Begriff des Gitters kurz diskutiert werden: Leider
verwendet der Kristallograph diesen Ausdruck in einem anderen Sinn als der
Mathematiker.

Das kristallographische Gitter (gemall einem der 14 Bravais’schen Trans-
lationstypen gebaut) enthdlt alle Informationen uber die Symmetriebezie-
hungen; es ist die ubliche Darstellung einer Kristallstruktur. Gemeint ist
dabei der repetitive «punktformige» Aufbau: Kugeln werden im Modell
durch Stabe verbunden: diese Kugeln zeigen entweder direkt die Verteilung
der Materie (als Schwerpunkte der atomaren Partikel) im Kristall an, oder sie
markieren Fixpunkte, relativ zu denen (mit gegebenen Parametern) die Par-
tikel lagen.

Das physikalische Gitter nimmt eine gewisse Zwitterstellung ein. Einer-
seits bezieht es sich naturlich auf die Massenschwerpunkte im Kristall und
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suggeriert somit Identitit mit dem Bravaisgitter. Tatsachlich ist es aber so,
daB3 das Beugungsgitter, welches Wellennatur und gegebenenfalls Wellen-
lange einer Strahlung zu untersuchen ermoglicht, im ebenen Fall ein Linien-
gitterist 3 —im raumlichen Fall entspricht diesem aber ein Ebenengitter! Dies
ist nun tatsachlich die geometrische Gitterdefinition im E3, wie ich in 5.1.1.
naher ausfiihren werde. Physikalisch mal3geblich ist ndmlich, daf3 die Mas-
senschwerpunkte sich auf Ebenen anordnen (im klassisch-translatorischen
Fall!) — es sind die « Netzebenen» der Kristallographie. Wenn es die begrift-
liche Klarheit erfordert, werde ich die Gitter im kristallographischen Sinn als
Punktgitter bezeichnen: Ein Punktgitter besteht aus den Knoten (Vertizes)
eines Gitters im geometrischen Sinn (cf. 5.1.1.).

2.2. ... und die Renegaten

2.2.1. Die «verbotenen» Symmetrien

In den Jahren seit 1984 stellten Kristallographen bei (auf spezielle Weise
erzeugten) Legierungen das Auftreten von Kristallen fest, deren Elektronen-
beugungsdiagramme «verbotene» Symmetrien zeigten! Beobachtet wurden
seither Falle mit (je einer) 8-, 10-, 12-zdhligen Achse sowie solche mit 6
Pentagyren, die derart im Raum angeordnet sind, dal3 die gesamte Beugungs-
struktur ikosaedrische Symmetrie besitzt. Da die Symmetrie dieser Beu-
gungsstrukturen — wie in Teil 6 erortert wird — auf bestimmte Weise der
Symmetrie der betreffenden Kristalle entspricht, war klar, dall man neuar-
tige Kristalle gefunden hatte, die keinen translatorischen Aufbau besitzen
konnen; sie wurden bald Quasikristalle genannt. Man sprach von einem
«experimentellen Dilemmay, bis sich herausstellte, dal3 die Kristallogra-
phen nur nicht aufgepalBt hatten: Das Dogma, ausschlieBlich translatorische
Verteilungen von (Massen-)Punkten konnten «gute» Beugungsmuster er-
zeugen, stimmte nicht! Tatsachlich war den Mathematikern seit langem
bekannt, daB auch zwei andere Arten von Punktverteilungen — nahezu perio-
dische und quasiperiodische — ahnliche Beugungsfiguren ergeben mullten;
dies werde ich in 6.2. ndher ausfihren.

Andererseits kannte man in der Geometrie nichttranslatorische Struktu-
ren, aperiodische Belegungen oder Tesselationen genannt, die sich als
Modelle fur die Zellen der Quasikristalle anboten!

3 Es ist entweder ein pseudo-eindimensionales paralleles Strichgitter oder ein echt
zweidimensionales Kreuzgitter.
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2.2.2. Die aufgeworfenen Probleme
Somit ergaben sich folgende 4 Fragenkomplexe:

(1) Welches sind jene aperiodischen Belegungen, denen nahezu periodische
oder quasiperiodische Punktgitter zugeordnet sind?

(11) Wie kann man diese Belegungen finden bzw. erzeugen?

(111) Wie sind sie — als Quasikristall — materiell realisiert (« Dekorationspro-
blem»)?

(1v) Gibt es noch andere aperiodische Punktverteilungen als die oben
erwidhnten, welche ebenfalls «gute» Beugungsbilder erzeugen?

Den letzten und vorletzten Punkt werde ich nur kurz streifen, da hier eine
Vielzahl von Problemen noch keineswegs geklart ist!

Zur Abklarung dieser vier Punkte muf} nun zunichst von den klassisch-
kristallographischen Strukturen Abstand genommen werden, um ganz all-
gemein zu untersuchen, welche periodischen und aperiodischen Belegungen
(der Ebene oder des Raumes) moglich sind. Dabei werden wir tbrigens
sehen, dal} Aperiodizitat nicht einmal mit «verbotenen» Symmetrien zu-
sammenhiangen muf}!

3. Belegungen (Parkettierungen, engl. tilings)

In diesem Teil wird gezeigt, wie, ausgehend von wenigen Grundbegriffen,
ein n-dimensionaler Raum E" mit Zellen ausgefullt werden kann, bzw. wie
eine solche Ausfullung analysiert wird.

3.1. Belegungen und Basen

Nehmen wir — als Modell eines zweidimensionalen euklidischen Raumes
E? — ein Blatt Papier und zeichnen darauf beliebige Linien, so entsteht eine
Belegung dieses Raumes mit Zellen bestimmter, mehr oder weniger willkir-
licher Form (cf. FuBBnote | in 2.1.1!): jedes von einer Linie umschlossene
Flachenstiick ist eine solche Zelle. Gemeinsam erfillen sie das ganze Blatt,
andererseits uberlappen sie sich nirgends. Auch die vorliegende Druckseite
zeigt eine Belegung des E2: Eine riesige, kompliziert gebaute Zelle erfullt den
grofBten Teil davon, etliche kleine — die Innenflichen von Buchstaben wie a,
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e, g usw. — teilen sich in den Rest *. Ein «kariertes» Blatt Papier andererseits
zeigt eine sehr regelmaBige Erfullung mit lauter gleichen Zellen (wenn wir
von den am Rand angeschnittenen absehen - die Ebene mufte sich ja
unendlich weit erstrecken).

Eine einfache Belegung des E3 ist seine Ausfilllung mit lickenlos gesta-
pelten Wirfeln oder beliebigen «Ziegeln», wie schon in der Einleitung aus-
gefuhrt.

Wir kéonnen nun die allgemeine Definition der Belegung so formulie-
ten;?

Eine Belegung T des E" ist eine nicht-uberlappende, luckenlose Uberdek-
kung von E" mit abzahlbar vielen abgeschlossenen Teilmengen T;, die Zellen
oder Kacheln genannt werden; T = { T, T, T>, ... }.

Die zwei obigen Beispiele des E? zeigen einen bedeutenden Unterschied
nicht nur in der RegelméaBigkeit der Belegung, sondern auch in der Mannig-
faltigkeit der Grundformen. Beim karierten Blatt kommt nur eine einzige
Zellenform vor, bei der Druckseite sind es etliche:a, b,d. e, g, ... sowie A, B,D
usw. Die Menge der in einer Belegung auftretenden Zellenformen kann als
Basis der Belegung bezeichnet werden; das karierte Blatt hat also die Basis:
B,={0}, diese Druckseite: B, ={a, A,b,B,d,e,g,...,R,(0, B, ... }, wobei die
Reihenfolge der Aufzdhlung nicht wesentlich ist.

Die allgemeine Definition der Basis einer Belegung heiB3t:

Eine Menge B von Zellen ist eine Basis der Belegung T, wenn B ein Exemplar
jeder in T auftretenden Zellensorte enthalt. Genauer: B enthalt ein Element
jeder Kongruenzklasse von T, wobei direkte und indirekte Kongruenz zulas-
sig ist. Die Elemente in B heien Basiszellen (engl. prototiles).

Dies bedeutet aber nicht, daBB jede Basiszelle in jeder von dieser Basis
erzeugten T auftreten muB; insbesondere ist es nicht erforderlich, da3 T
Zellen enthélt, die zu den Basiszellen indirekt kongruent sind. Dies ist gut an
unserem ersten Beispiel zu sehen: Kein Leser wird erwarten, dal3 die zu den
Buchstaben a, d und anderen Basiszellen spiegelbildlichen Formen auftre-

4 In diesem Beispiel sollen also reine Linienstiicke - insbesondere die Randlinien
der Zellen - nicht als Zellen gelten; genau gesagt werden nur Teilmengen des E? mit
von Null verschiedenem Flachenmal zugelassen. Diese Einschrankung wird indes
durch die nachstehend gegebene Definition nicht allgemein gefordert - Leser mit
entsprechenden Mathematikkenntnissen wissen, zu wie exotischen Belegungen dies
filhren kann. Meine Darstellung vereinfacht hier stillschweigend, um einigermalen
anschaulich zu bleiben.

SGenau: (1) T={T;} i~
(i) T; c E" V ieN; JT;=E"
ieN
(i) Int T, nInt T; =0 V (i, j) € NxN mit i #j
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ten! Auch wird die Basiszelle (1 z. B. nicht auf jeder dieser Seiten vorkom-
men; dennoch kann man sagen, B, sei Basis von jeder Druckseite: Auswahl
ist zulassig. Wie grol3 man eine Basis wahlt, hangt dabei1 natirlich von den
Belegungen ab, die irgendwie gemeinsam erzeugt oder analysiert werden
sollen: Zellen, die dabei nirgends vorkommen, sind tberflissiger Ballast!

Umgekehrt kann man untersuchen, welche Vielfalt von Belegungen ent-
steht, wenn man von irgendeiner gegebenen Zellenmenge (als Basis) ausgeht.
Dabei muf3 natiirlich beachtet werden, ob sich die gegebene Menge von Zellen
tiberhaupt als Basis verwenden [df3t. So bildet z.B. das reguldre Funfeck,
allein genommen, keine Basis des E?: Die Ebene kann damit bekanntlich
nicht luckenlos ausgelegt werden!

Abb. 3:  Zellenformen, die keine topologischen Scheiben sind.
(1) Zelle aus zwei getrennten Quadraten, im Abstand einer Quadratseite.
(1) Zelle aus 4 Quadraten: in der Mitte ergibt sich ein Loch gleicher GroB3e
wie ein Quadrat. (ii1) Zelle ist ein (unbegrenzter) Keil. (1v) Zelle ist ein
(unbegrenzter) Streifen. (v) Die Zelle besteht aus einem einzelnen Quadrat
und einem aus 8 ebensolchen Quadraten zusammengesetzten Teil, in pas-
sendem Abstand. (vi) Zelle in Brezelform (3 Locher).
Man mache sich Stempel aus den Zellen (i), (i1) und (v): Mit (i) und (v) laB3t
sich die Ebene vollstindig belegen, bei (i1) jedoch scheitert das Unterneh-
men! Ebenso ist keine Belegung mit (vi) moglich. (ii1) und (iv) erlauben
ohne weiteres eine Flichenbelegung (der Winkel des Keils mif3t 30°).
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Fur die weiteren Betrachtungen wollen wir uns auf folgende Sonderfalle
beschranken:

(1) Als Zellen seien nur beschrinkte topologische Scheiben zulassig. Dies
schlieBt z. B. unendlich ausgedehnte Kacheln ebenso aus wie solche,
die aus mehreren Flachenstucken bestehen oder Locher aufweisen;
siche Abb. 3.

(11) Meistens werden nur Zellen verwendet, die einfache Polygone sind
oder ziemlich direkt aus solchen abgeleitet werden kdnnen; siehe 4.

3.2. Symmetrien

Nachdem in der Einleitung bereits auf die Symmetrien der klassischen
Kristalle hingewiesen wurde, soll nun das Problem kurz allgemein-geome-
trisch umrissen werden. Die folgenden Ausfithrungen betreffen dabei nicht
nur Belegungen, sondern irgendwelche Strukturen in einem Raum; diese
konnen mehr oder weniger ausgedehnt sein, sich sogar uber den ganzen
Raum erstrecken.

3.2.1. Symmetrieoperationen und -elemente

Der Mathematiker spricht von Symmetrieoperationen: ein bestimmtes
Symmetrieelement - z.B. eine Pentagyre in E* — ist Ergebnis einer Opera-
tionsvorschrift. So kommt z. B. das Streckennetz der Abb. 5 (siehe S. 145)
dadurch zustande, daB3 der punktiert hervorgehobene Teil einer Operation
unterworfen wird: «drehe, mit Achse in Z, um jeweils 72° weiter». — Das
Nacheinanderausfuhren («Verkniipfen») mehrerer Operationen wird mit
dem Zeichen o notiert. So bedeutet, wenn ich die erwahnte Rotation mit p
bezeichne, pop die Drehung um 144°, popopopop jene um 360°, womit wieder
die Ausgangsposition erreicht ist.

Die im E? oder E3 moglichen elementaren Symmetrieoperationen sind.
wie schon in der Einleitung aufgezahlt: Drehung um eine Achse (mit belie-
bigem Drehwinkel und zwei moglichen Drehsinnen), Spiegelung an einer
Ebene, Spiegelung an einem Punkt. Dazu kommt die Translation, die durch
eine Richtung und eine Lange definiert ist, d.h. durch einen (freien) Vek-
tor.

Die diesen Symmetrieoperationen zugeordneten Symmetrieelemente sind
Drehachsen, Spiegelebene und Inversionszentrum; der Translation wird
kein Symmetrieelement zugeordnet.
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Bei dieser Beschreibungsart missen im E? die Symmetrieachsen und
-ebenen senkrecht zur Ebene stehen. Stattdessen kann man die Symmetrie-
operationen fiir den E? auch so definieren («innere» Beschreibung): Dre-
hung um einen Punkt (Element: Drehzentrum); Spiegelung an einer Gera-
den (Element: Spiegelachse); sonst wie oben.

3.2.2. Symmetriegruppen

Die Menge aller dieser Symmetrieoperationen, mit der Verknupfung o,
bildet eine Gruppe, die (volle) Symmetriegruppe des E3 bzw. des E2. Aber
auch nach Weglassen der Translationen bilden die anderen Symmetricope-
rationen noch eine Gruppe! Diese einfache mathematische Tatsache indes
ist die Wurzel der ganzen hier behandelten Problematik: Belegungen mit
Translationssymmetrie stehen solche o/ine sie gegenuber.

3.2.3. Symmetrieklassen

Nimmt man eine bestimmte Symmetrieoperation oder eine mogliche
(«kompatible») Kombination von Operationen, so erhdlt man — mathema-
tisch ausgedruckt — eine Symmetrieklasse. «Bestimmte Symmetrieopera-
tion» heiBt dabei, daf3 alle Parameter festgelegt sind: Lagen von Spiegelebe-
nen, Rotationszentren usw., Betrage von Drehwinkeln und Translationen,
etlc.

Allgemein werden Symmetrieklassen, die keine Translationen enthalten,
als Punktgruppen bezeichnet, solche mit mindestens einer Translation als
Raumgruppen.

Welche Symmetricoperationen kompatibel sind, hangt ganz wesentlich
davon ab, ob eine Translation mitberucksichtigt werden mul3: sie bedeutet
eine starke Einschrankung der Moglichkeiten, wie schon in der Einleitung
erwiahnt. Betreffs der Bezeichnungsweise mul3 beachtet werden, daB in der
Literatur gewohnlich die Ausdrucke periodisch fur t-symmetrisch und ent-
sprechend aperiodisch fur nicht-t-symmetrisch verwendet werden. Auch hier
werde ich meistens diese Kurzbezeichnungen benutzen.

3.2.4. Kristallographische vs. mathematische Begriffe

Verwirrend im gesamten Zusammenhang ist, dal3 die Begriffe Punkt- und
Raumgruppe von Kristallographen und Mathematikern nicht genau gleich
verwendet werden:

(a) Kristallklassen
Die 32 Kristallklassen sind tatsachlich Symmetrieklassen, wenn man den
Feinbau unberucksichtigt 1a3t, namlich Punktgruppen. Es handelt sich aber
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um ganz spezielle Punktgruppen: jene, die mit drei Translationen © vertrég-
lich sind! Andere Punktgruppen treten eben an (klassischen) Kristallen nicht
auf.

(b) Kristallographische Raumgruppen

Die Raumgruppen der Kristallographie wiederum bertcksichtigen nicht nur
Translationen als Gruppenoperation - sie filhren zusatzlich Schraubenach-
sen und Gleitspiegelebenen ein; daher die groBBe Anzahl von 230 solcher
Raumgruppen. Im Sinne der Definition von 3.2.3. muf3te man in der Kri-
stallographie nur 32 Typen von Raumgruppen zdhlen. Zum selben Typus
gehoren in diesem Falle Strukturen mit unterschiedlichen Langen der Trans-
lationsvektoren bei sonst gleicher Symmetrie.

3.3. Symmetrien in Belegungen

3.3.1. Muster

Als Muster oder Motive werden auf den Kacheln bzw. in den Zellen
befindliche « Markierungen» irgendwelcher Art bezeichnet. Dies darf durch-
aus im naiv-geometrischen Sinn aufgefal3t werden: Wir alle kennen aus dem
Alltag gemusterte Kacheln. In der Kristallographie bildet — als geometrische
Abstraktion — die atomare Besetzung (Dekoration) der Zellen das Muster.

3.3.2. Symmetrie-Niveaux

Kehren wir wieder zur Betrachtung einer nicht allzu unregelmaBigen
Belegung zuriick (s. 3.1.): Beispiel 1 war eine Heftseite mit Schriftsatz, Bei-
spiel 2 ein kariertes Blatt. Die Heftseite ist zwar als ganzes symmetrielos,
weist aber dennoch Teile mit gewissen Symmetrien auf: z. B. den Buchsta-
ben A, der eine Spiegelebene besitzt. Ein Ausschnitt aus dem zweiten Bei-
spiel, dem karierten Blatt, zeigt auch weiterreichende Symmetrien: diverse
Drehachsen und Spiegelebenen, alle senkrecht zur Blattebene stehend. Doch
auch die Heftseite des Beispiels 1 zeigt andere als ganz lokal begrenzte Sym-
metrien: so stehen die Buchstaben nicht irgendwie verdreht auf dem Blatt;
alle gleichen Buchstaben hidngen durch reine Translationen (mit variablen
Langen) zusammen.

Wir unterscheiden folgende drei Symmetrieniveaux: Zellsymmetrie, glo-
bale und lokale Symmetrien, Infrasymmetrie.

¢ Da bei Kristallen (im E*) der Stapelbau in drei Richtungen repetitiv ist, weist jede
einen Kristall beschreibende Raumgruppe - sowohl nach dem Sprachgebrauch der

Kristallographen als auch nach dem der Mathematiker — drei Translationsvektoren
auf.
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3.3.2.1. Kachel- bzw. Zell-Symmetrie

Dies 1st die Symmetrie einer einzelnen Kachel oder Zelle, unabhingig von
ihrer Umgebung, wobei die Umrif3form sowie das Kachelinnere zu beruck-
sichtigen sind. A priori ist hier jedes Symmetrieelement einzeln moglich,
dazu alle kompatiblen Kombinationen. Nicht kompatibel wire z.B. im E-
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Abb. 4:  Symmetrieerniedrigung durch Muster.
Ohne Muster (linke Skizzen) ergeben sich die eingetragenen Gesamtsym-
metrien (Symmetrieachsen: 2, 4, 5; Symmetrieebenen m). Je nach aufge-
maltem Muster (rechts) reduziert sich die Symmetrie auf die eingetragenen
Elemente.
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eine 3- mit einer 4-zdhligen Achse: Hatte eine Kachel beide Symmetrien, so
besaBe sie effektiv eine 12-zdhlige Symmetrieachse! Nur so kann sie beim
Drehen sowohl um 120° als auch um 90° jeweils identisch mit sich selbst
sein

Man beachte, dal3 durch ein Muster die Gesamtsymmetrie einer Kachel
erniedrigt werden kann (Abb. 4). '

3.3.2.2. Lokale und globale Symmetrien einer Belegung

Dies sind Symmetriestrukturen, die mehr als eine Kachel betreffen, somit
auch mit der Anordnung der Kacheln zu tun haben. Entsprechend der oben
gemachten Unterteilung liegen periodische (t - symmetrische) oder aperio-
dische Belegungen vor, mit den beschriebenen Kombinationsmoglichkeiten
der Symmetrieelemente.

Zu unterscheiden ist weiter, ob eine Symmetrie den gesamten Raum
betrifft oder nur einen Teil davon. So zeigt Abb. 5 einen Ausschnitt aus einer
Belegung des E2 mit einer Pentagyre im Punkt Z, die fir den ganzen E? gilt
und daher global genannt wird. Im Gegensatz dazu wird das Beschranktsein
einer Symmetriestruktur auf ein Teilgebiet des Raumes als Lokalitdt der
Symmetrie bezeichnet. Lokale Punktsymmetrien werden sich als eine zen-
trale Eigenheit der aperiodischen Belegungen erweisen (siehe 4., z.B.
Abb. 12).

Abb. 5:  Globale Pentagyre.
Die Belegung besteht aus zwei Kacheltypen, einem Hexagon und einem
regulidren Pentagon; diese Kacheln bilden die Basis B der Belegung. Durch
Z geht eine Pentagyre (senkrecht zur Ebene), welche fiir die ganze Belegung
gilt. Rotation mit (ganzen) Vielfachen von 72° erzeugt aus dem punktiert
hervorgehobenen Teil das gesamte Belegungsnetz. Modifiziert nach
GRUNBAUM & SHEPHARD (1987).
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3.3.2.3. Infrasymmetrie

Mit diesem Begriff bezeichne ich eine Eigenschaft, welche ganz allgemein
fur Strukturen in einem Raum E" definiert werden kann, in denen ein Teil-
bereich («Musterelement») wiederholt auftritt. Es handelt sich dabei um
eine Lagebedingung der Musterelemente bezuglich der Rotation. Dies sei
zunachst an den Beispielen der Abb. 6 gezeigt.

Abb. 6: Infrasymmetrie: Barenmarsch und Froscheteich.
Links ein Muster (Musterelement: Bar) mit 2zahliger, rechts eines (Muster-
element: Frosch auf Seerose) mit S5zahliger Infrasymmetrie. lhre Richtun-
gen sind gestrichelt angedeutet. In solchen Fillen driangt sich der Eindruck
einer Zwei- bzw. Funfzahligkeit «spontan» auf.

Geometrisch hdngen bei einer n-zahligen Infrasymmetrie alle gleichen
Musterelemente durch die Kombination einer entsprechenden Rotation mit
einer (beliebigen) Translation zusammen.

Betrachtet man nun statt eines solchen (lockeren) Musters eine (geschlos-
sene) Belegung, so ist klar, daBB entsprechende Richtungseigenschaften fur
die Lagen der verschiedenen Zellen bestehen. Bei periodischen Belegungen
fallen jedoch Infrasymmetrie und eftektive Symmetrie zusammen; erst bei
den aperiodischen Belegungen erlangt die Infrasymmetrie eigenstindige
Bedeutung.
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Fur die Analyse der Infrasymmetrie einer Belegung’ in E? kann man
folgendermaflen vorgehen: Man markiert die Basiskacheln mit je einer
Strecke; in T liegen diese Strecken dann parallel zu bestimmten Richtungen.
Die mit diesen Richtungen korrespondierende Punktsymmetrie ist die Infra-
symmetrie der Belegung. Wenn insbesondere die Kacheln Polygone sind,
erfullen die Seiten selbst bereits die Rolle der Markierungen. Beispiele dazu
finden sich in den Abbildungen zu 4.

Fur den E3 kann das Prinzip entsprechend formuliert werden. Ein Beispiel
fur eine 1-zahlige Infrasymmetrie kann man nach dem Start eines Ballon-
fahrer-Treffens beobachten: alle Gondeln weisen nach unten!

3.3.3. Translationssymmetrische Belegungen
3.3.3.1. Definition und Beschreibung

Da dies spiter von Bedeutung ist, sei kurz die mathematische Beschrei-
bung einer translationssymmetrischen Belegung angegeben (Abb. 7): Eine
Belegung T im E" ist t-symmetrisch, wenn n linear unabhingige Vektoren_tj*
derart existieren, daB3 jede Z-Linearkombination dieser Vektoren eine Kon-
gruenzabbildung auf E" definiert (Z bedeutet die Menge der ganzen Zahlen:
0, =1, £2,...).

Anschaulich ausgedriickt fir E2: verschiebt man die Belegung um ganz-
zahlige Vielfache von t; und/oder t,, so kommt sie mit sich selbst zur Dek-
kung; t; und t; dirfen nicht parallel zueinander sein.

Der Translationsoperator ist t=(t, 1, ..., t). Werden die t; so gewihlt, daB
nur Z-Linearkombinationen Kongruenzabbildungen ergeben, so ist t ein
minimaler Translationsoperator. Es ist zu beachten, daB3 fur jede gegebene
t-symmetrische Belegung unendlich viele minimale t definiert werden kon-
nen, wie in Abb. 7 gezeigt.

Der gewahlte minimale t-Operator definiert ein t-Parallelotop (Parallelo-
gramme im E2, Parallelepipede im E3), das, wie in der Einleitung definiert,
als Translationszelle (tZ) bezeichnet werden soll (Abb. 7).

" In der englischsprachigen Literatur findet sich dafur der unschone Term «under-
lying symmetry».
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3.3.3.2. Translationszellen

SchlieBlich ist es notig, die Beziehungen zwischen allgemeinen Zellen und
Translationszellen zu untersuchen. Wie z. B. in Abb. 7 ersichtlich, besteht bei
translationssymmetrischen Belegungen eine besondere Situation insofern,
als — nach dem Festlegen des t-Operators — die Translationszelle als Bauele-
ment der Belegung aufgefal3t werden kann, anstelle der urspringlichen Zel-
len also; deren Grenzlinien bilden nun ein Muster der neuen Zelle. Im Fall
der Abb. 8 wird dies noch deutlicher: aus den 5- und 7-eckigen Zellen baut
sich eine periodische Belegung auf, die am einfachsten mit der angegebenen
tZ beschrieben wird. Diese kann, mit dem entsprechenden Muster versehen,
genauso gut (und einfacher!) dazu verwendet werden, das betreffende Bild zu
legen (unendliche Ausdehnung wie immer vorausgesetzt).

Abb. 7:
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t-Operatoren im E2 fir die ausgezogene Parallelogramm-Kachelung; die
Punkte bezeichnen die Kachelzentren.
Die Translationsoperatoren t = (_t;_t;) und t’ :Ti,%) sind minimal, t” = (T"f,
_tZ’) jedoch nicht: Kongruenz der Belegung mit sich selbst entsteht bereits bei
Verschiebung mit ‘/z?ﬁ (sowie mit 3/2_6’, 5/2?2’ usw.), d. h. mit nicht-ganzzah-
ligen Vielfachen VOHE.
Waihlt man t = (_t;—t;) als Operator dieser Belegung, so ist die tZ (Transla-
tionszelle) nicht mit der urspringlichen Kachel identisch, sondern besteht

aus dem punktiert umrandeten Gebiet. Entsprechendes gilt fiir t".



Abb. 8:  Allgemeine Zellen und Translationszelle (tZ).
Diese Belegung hat zwei Basiskacheln, ein Penta- und ein Heptagon. Den-
noch ist sie periodisch: eine mogliche tZ ist gestrichelt eingetragen. Nach
GRUNBAUM & SHEPHARD (1987).

Allgemein kann jede translationssymmetrische Struktur eines Raumes so
beschrieben werden, daB sie eine Belegung mit genau einer Basiszelle ist.

Dies ist eine in der Kristallographie ubliche Situation, in der die Gitter-
struktur eines Korpers zwar Konfigurationen unterschiedlicher Symmetrie
aufweist (z. B. Tetraeder, Oktaeder usw.), diese « Teilzellen» aber so gestapelt
sind, daB} ein translatorischer Bau entsteht (Zusammenfassen zur tZ).

Ein Extremfall sind die Frank-Kasper-Phasen gewisser intermetallischer
Verbindungen, bei denen ikosaedrische (!) Haufen & schichtweise so gestapelt
sind (bei dhnlicher Orientierung der Haufen), daB3 sich eine tZ ergibt, die weit
uber 1000 Atome enthalten kann: In der sogenannten pentagonalen FK-
Phase von Cu,Cd; sind es 568 Ikosaederhaufen!

8 Ein Zentralatom besitzt darin 12 Atome als erste Koordinationsschale.
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3.4. Lokale Automorphie und Isomorphie

Alle periodischen, aber auch viele aperiodische Belegungen besitzen fol-
gende Eigenschaft der lokalen Automorphie: Jedes (beliebig groBBe, aber end-
liche) Gebiet aus T ist zu unendlich vielen anderen Gebieten aus T kongru-
ent; anders gesagt: Jede (endliche) Zellenanordnung tritt in T unendlich oft
auf.

Bei periodischen Belegungen ist diese Eigenschaft trivial. Abb. 5 zeigte
indes eine aperiodische Belegung, die offenbar nicht lokal automorph ist:
Jeder Ausschnitt, der das Pentagon enthilt, kommt nur genau 5 mal vor
(entsprechend der Pentagyre!). Aperiodische Belegungen, welche die Eigen-
schaft besitzen, werden wir in 4. finden.

Entsprechend heien zwei Belegungen T; und T, lokal isomorph, wenn
jedes (endliche!) Gebiet der einen auch in der anderen auftritt. Dal3 dies
tatsachlich moglich ist, ohne dal3 die beiden Belegungen identisch sind, ist
ein fundamentaler Satz aus der Theorie aperiodischer Belegungen! Beispiele
dafur finden sich in 4.

Sei B eine Basis, { T, } die Familie aller von B erzeugten Belegungen, dann
ist die lokale Isomorphie eine Aquivalenzrelation in {T,} und teilt somit
diese Belegungsfamilie in Klassen ein: Belegungen der selben Klasse sind
lokal isomorph; man spricht von LI-Klassen. Eine Folge ist, dall zwei Bele-
gungen mit gleicher Basis — d. h. aus gleichen Kacheln —, die nicht derselben
LI-Klasse angehoren, lokal unterscheidbar sind: Dies heil3t, daf3 in einer
(oder auch wechselseitig in beiden) dieser Belegungen gewisse Zellen-
anordnungen auftreten, die in der anderen nicht vorkommen. Umgekehrt
bedeutet es naturlich, daB3 zwei zwar verschiedene, jedoch lokal isomorphe
Belegungen nicht unterschieden werden konnen, solange man nur einen
endlichen Bereich betrachtet, gleichgultig, wie grol3 er sei — was naturlich in
praxi immer der Fall ist! Zu wissen, ob zwei solche Belegungen identisch sind
oder nicht, bedingt somit Kenntnis der verwendeten Erzeugungsvorschrift
(siehe 4).

3.5. Zwangslaufige Aperiodizitiit

Eine aperiodische Belegung kann durchaus eine Basis besitzen, welche
auch periodische Belegungen erzeugt. Dies war in Abb. 5 der Fall: wird nur
das Hexagon verwendet, so ist die Konstruktion einer t-symmetrischen
Belegung trivial. Abb. 9 zeigt einen Fall, in dem mit einer einzigen Basiska-
chel sowohl periodische als auch aperiodische Belegungen erzeugt werden
konnen.
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Abb. 9:  Periodische und aperiodische Belegungen T mit derselben Basis. Schema
fir Belegungen des E? mit Quadraten der Seitenldnge a; d ist die jeweilige
Versetzung einer Reihe gegen die ndchste.

(1) d ist konstant, mit d/a rational. In diesem Fall ist T translatorisch
in x und y; (bei geeigneter Schragstellung von y;), aber auch in x
und y, (mit entsprechend groBer Periode in y,).

(11) d ist konstant, d/a jedoch nicht rational. T ist nur in X und y; (bei
entsprechender Neigung) translatorisch, nicht aber in x und y,.

(iii) dist von einer Reihe zur anderen nichtperiodisch variabel (z. B. den
Dezimalziffern von & proportional). T ist nur in x translatorisch,
d.h. insgesamt nicht periodisch in E%.

Es gibt jedoch Basen, die derart gestaltet sind, daB sich aus ihnen aqus-
schlieBlich aperiodische Belegungen aufbauen lassen — sogar dann, wenn
man nur bestimmte Zellen der Basis fir die Belegung verwendet, d.h. nur
eine Teilbasis tatsichlich benutzt. (DaB derartiges Auswihlen erlaubt 1st,
wurde schon in 3.1. erwihnt.) Eine solche Basis heiBt aperiodische Basis. Die
Basis von Abb. 5 beispielsweise gentigt dieser Bedingung nicht, wie eben
gezeigt, ebensowenig jene von Abb. 9. Hingegen besitzen alle Belegungen, die
ich in 4. vorstellen werde, derartige aperiodische Basen.

Anzumerken ist, daB in der englischsprachigen Literatur der Ausdruck
aperiodic prototiles verwendet wird. Dies ist insofern unglucklich, als alle
bekannten aperiodischen Basen mehr als eine Zelle aufweisen. Somit kommt
die Eigenschaft «aperiodisch» eigentlich nicht der einzelnen Basiszelle zu,
sondern nur der Basis als Ganzem.
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Auf dem Gebiet der Belegungen und ihrer Basen gibt es zahlreiche offene
Fragen, wie z.B.: Gibt es eine allgemeine Methode, um zu bestimmen, ob
eine vorgegebene Kachel (allein genommen) Basiszelle einer Belegung ist
(monoedrische T) — siehe Abb. 10? Oder: Gibt es aperiodische Basen mit
einer einzigen Zelle (aperiodische monoedrische Basis)?

PG
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Abb. 10: Die 24 Heptiamonds.
Jedes ist aus 7 gleichseitigen Dreiecken zusammengesetzt; bei einem Hep-
tiamond ist die Zerlegung angedeutet. Jede dieser Kacheln kann fur sich
allein Basis mindestens einer Belegung des E” sein — auBer einer (*)! Nach
GRUNBAUM & SHEPHARD (1987).

4. Aperiodische Belegungen = Tesselationen

In diesem Teil werden — dem historischen Ansatz folgend - einige mit
direkten topologisch-metrischen Verfahren erzeugte, gewissermallen schon
klassische aperiodische Belegungen vorgestellt und dabei ein Einblick in jene
Methoden gegeben.

Neben den schon in 2.1.3. erwidhnten Passungsregeln stutzen sich diese
Verfahren ganz wesentlich auf Prozesse, welche unterschiedlich bezeichnet
worden sind; Begriffe wie Rekombination, Inflation usw. treten auf. Da es
sich immer um eine Generationenabfolge handelt, schlage ich als generellen
Terminus den Ausdruck Deszendenz vor, bzw. Aszendenz fur die Umkeh-
rung. Nachteil dieser Verfahren ist der Mangel an Systematik: Um auf diese
Weise Belegungen zu erzeugen, ist man weitgehend auf intelligentes Pro-
bieren angewiesen. Andererseits aber sind sie von hochstem theoretischem
Interesse: Sie erlauben namlich, viele metrische wie topologische Eigen-
schaften eines gegebenen Belegungstyps zu beweisen.
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4.1. Ammann - Tesselationen

Im Zusammenhang mit den Quasikristallen steht immer wieder das Auf-
treten kristallographisch «verbotener» Rotationsachsen im Zentrum, na-
mentlich von Pentagyren. Dal} Aperiodizitit indes nicht an exotische Infra-
symmetrien gebunden ist, zeigen die folgenden drei Tesselationen von
Ammann (nach GRUNBAUM & SHEPHARD, 1987). Eine vierte Ammann-
Tesselation, der Typ AP, wird im Zusammenhang mit den Penrose-Tesse-
lationen zu erwdhnen sein.

4.1.1. A1 (ohne Abb.)

Diese Tesselation verwendet 6 quadratische (!) Kacheln mit kleinen Aus-
wichsen, die in entsprechende Einkerbungen passen mussen. Statt der Aus-
wiichse konnen Markierungen auf den Kacheln verwendet werden, welche
die selben Passungen festlegen.
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Abb. 11: Ammann-Tesselationen A3.
Links die 3 Basiskacheln der A3 mit ihren Ammann-Linien (es gibt noch
eine zweite Variante), rechts eine A3-Belegung, welche das Durchlaufen der
Ammann-Linien und die 4zahlige Infrasymmetrie zeigt: die Kacheln neh-
men im E2 4 Lagen ein, die durch 90°-Rotationen zusammenhingen. Nach
GRUNBAUM & SHEPHARD (1987).
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Abb. 12: Ammann-Tesselationen A2.
Links die zwei Basiskacheln mit den Ammann-Linien (auch hier existiert
eine zweite Variante), rechts eine A2-Belegung. Hier ist die nur 2zahlige
Infrasymmetrie ersichtlich: Zwar nehmen auch in dieser T die Kacheln 4
Lagen ein, doch hdangen nur je zwei davon durch eine 180°-Drehung
zusammen; die anderen zwei Lagen sind indirekt kongruent zu jenen. Nach
GRUNBAUM & SHEPHARD (1987).
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Abb. 13: Lokale Tetragyren in A3.
Dieselbe Belegung wie in Abb. 11, nun ohne Ammann-Linien. Stattdessen
sind zwei lokale Tetragyren mit ihren Symmetriebereichen eingetragen
(Symbole B; Schraffuren). Modifiziert nach GRUNBAUM & SHEPHARD
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4.1.2. A2, A3 (Abb. 11, 12, 13)

Diese Tesselationstypen verwenden 2 bzw. 3 polygonale Kacheln, deren
Seiten zueinander rechte Winkel bilden. Thre Passungen konnen auf ver-
schiedene Weise festgelegt werden, insbesondere durch Muster in Form
sogenannter Ammann-Linien. Diese sind ein spezieller Fall jener Markie-
rungen, die in Teil 3 zur Definition der Infrasymmetrie verwendet wurden.
Jede Ammann-Linie besteht aus Strecken, welche den (Basis-) Kacheln der-
art aufgemalt sind, daB3 sie von Rand zu Rand laufen. Abb. 11 zeigt links die
drei Basiskacheln der A3 mit ihren Ammann-Linien. Die Passungsregel
lautet nun: Setze die Kacheln so zusammen, daf3 die Linien sich von Kachel
zu Kachel ohne Knick fortsetzen! Diese Anweisung garantiert den Bau einer
entsprechenden Tesselation.

Wie die Abb. 11 und 12 zeigen, besitzt A 3 eine vierzdhlige Infrasymme-
trie, A 2 eine zweizahlige: die Geradenscharen nehmen nach Drehungen um
90° bzw. 180° wieder die selben Richtungen ein.

Abb. 13 zeigt lokale Tetragyren in P 3. In der ganzen Ebene gibt es unend-
lich viele davon, mit mehr oder weniger groBen Gultigkeitsbereichen.

4.2. Penrose-Tesselationen

R. Penrose konstruierte anfangs der 70er Jahre drei miteinander zusam-
menhingende Tesselationen, deren Infrasymmetrie pentagonal ist; nach
GRUNBAUM & SHEPHARD (1987) sollen sie als P1, P2, P 3 bezeichnet werden.
P1 ist die komplizierteste, dafur dekorativ, und wird hier nicht vorgestellt;
ihre Basiskacheln sind 6 Polygone: ein Stern, ein Boot usw.

4.2.1. P2 und P3

Fur uns interessanter sind hier P2 und P 3; ihre Basen zeigt Abb. 14. Wie
man sieht, benotigt P2 weniger Passungsregeln, was damit zusammenhangt,
dal3 ihre Kacheln von niedrigersymmetrischem UmriB sind. Ersetzt man —
sowohl be1 P2 als auch bei P 3 - die geraden Polygonseiten durch geeignet
geschwungene Linien, so kann auf zusatzliche Regeln uberhaupt verzichtet
werden: die Bedingung, lickenlos zu legen, gentuigt dann schon! Mit entspre-
chenden Motiven auf den zwei Kacheln entstehen Tesselationen im Stil
M. C. Eschers; Penrose selbst gab ein derartiges Hiihnchen-Motiv an (siehe
GRUNBAUM & SHEPHARD, 1987).
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Abb. 14: Penrose-Tesseletionen P2 und P 3.
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Oben: Basis von P2; Drachen und Pfeil. Passungsregel: Ecken gleicher
«Farbe» (hier: schwarze und weiBle Kreise) zueinander.

Mitte: Basis von P 3 spitzer und stumpfer Rhombus. Passungsregel: Ecken
gleicher «Farbe» zueinander, und die halben Pfeile (w ) mussen sich zu
ganzen zusammensetzen.

U = 7T5; die Seiten bei P2 verhalten sich wie1 zut = (1 + Vg)/Z. Nach
GRUNBAUM & SHEPHARD (1987).

Unten: Basis von P 3, statt mit «Farben» und Pfeilen mit den Ammann-
Linien; auch sie garantieren das richtige Zusammensetzen, wenn sie ohne
Knick von einer Kachel zur nichsten weiterlaufen (siche Abb. 24). Nach
KRAMER (1985).



Statt durch Eckenfarben (meistens als «schwarz» und «weil3» wiederge-
geben, siehe Abb. 14ff) und Halbpfeile konnen die Passungsregeln auch
durch geeignete Muster auf den Kacheln festgelegt werden. Ein derartiger
Vorschlag verwendet 2 Arten von Kreisbogen, die sich uiber die Kachelgren-
zen hinweg verbinden miussen; dabei entstehen verschieden grofle und
unterschiedlich komplexe geschlossene Linienzuge, deren jeder pentagonale
Symmetrie besitzt!

Eine wichtige Moglichkeit, die Passungsregeln auszudrucken, besteht hier
wieder in Ammann-Linien (Abb. 14). Es ergeben sich 5 Scharen von Gera-
den, deren Richtungen jene der Seiten des regularen Pentagons sind und die
somit die pentagonale Infrasymmetrie nachzeichnen. Die Abstinde inner-
halb jeder Schar bilden eine Fibonacci-Folge (dazu siehe 5.1.).

4.2.2. Erzeugung von Penrose-Tesselationen: die Deszendenzmethode

Das Konstruieren von Ammann- und Penrose-Tesselationen wurde oben
durch eine « naive» Anlegemethode beschrieben: Es hiel3, sie garantiere den
Bau der Belegung. Dies ist nun leider nur bedingt richtig: Tatsachlich garan-
tiert sie, daB jede so entstehende Belegung des E? aperiodisch ist und zum
entsprechenden Typ gehort - sie garantiert aber im allgemeinen nicht, daf3
uberhaupt eine Belegung entsteht! Auch regelgerechtes Anlegen kann nicht
verhindern, daB3 Situationen auftreten, in denen der Weiterbau unmaoglich ist
(Abb. 15).

Abb. 15: Baufehler in P3.
Die Passungsregeln gestatten die Anordnung der dret Rhomben I, II, III.
Die Lucke zwischen I und III kann jedoch nicht gefiillt werden: entweder
passen die Eckfarben oder die Halbpfeile nicht! Skizziert ist dieser zweite
Fall. Andererseits kann die Konstellation I, I1, I1I gar nicht entstehen, wenn
die Deszendenzmethode verwendet wird.
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Hier beschreibe ich nun (nach GRUNBAUM & SHEPHARD, 1987) eine
Methode, welche erstens diesen unendlichen Bau immer ermoglicht, zwei-
tens eindeutig ist und drittens eine Vielzahl von metrischen und topologi-
schen Implikationen erschlief3t, die fur die Theorie der Tesselationen von
zentraler Bedeutung sind. Wie in der Einleitung zu diesem Teil definiert,
handelt es sich um eine Deszendenzmethode, deren wesentlicher Schritt eine
Rekomposition der Kacheln ist.

Allgemein wird als Rekomposition jedes Verfahren bezeichnet, bei dem -
definiert auf den Basiskacheln - eine Belegung in eine andere verwandelt
wird, indem die Kacheln zerteilt werden, worauf man die Teile in bestimm-
ter Weise zu neuen Kacheln zusammensetzt.

Abb. 16 zeigt, wie die P3-Kacheln aus jenen der P2 entstehen und umge-
kehrt. Diejenigen Teile, welche jeweils iber den urspriinglichen Rand hinaus
erginzt werden mussen, stehen in jeder Tesselation stets zur Verfugung:
dafiir sorgen die Passungsregeln!

Db -8

Abb. 16: Rekomposition der P 2-Kacheln zu P 3-Kacheln und umgekehrt.
Bei jedem Rekompositionsschritt werden halbe Kacheln «auBen» zu voll-
standigen erganzt; die Passungsregeln garantieren, daB3 diese Teile immer
verfugbar sind. Nach GRUNBAUM & SHEPHARD (1987).
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Abb. 17 stellt den Tesselationstyp AP von Ammann dar: Er entsteht als
eine Rekomposition aus P 3. AuBler der Grundbedingung, liickenlos zu sein,
benotigt AP keine Passungsregeln, obwohl seine Kacheln keine komplizier-
ten Formen besitzen, sondern recht einfache Polygone sind!

Abb. 17: Ammann-Tesselation AP.
Eine Belegung mit drei Basiskacheln, die ohne Passungsregeln auskommt.
Im linken Teil ist angedeutet, wie die AP-Tesselation aus einer P 3-Tesse-
lation (gestrichelt) entsteht: Die AP-Kachelgrenzen konnen als Muster auf
den P3-Kacheln aufgefalBt werden! Nach GRUNBAUM & SHEPHARD
(1987).

Es ist jedoch auch moglich — und damit komme ich zum Kernpunkt dieser
Ausfuhrungen!-, durch Rekomposition einer Belegung eine andere zu erzeu-
gen, die zum selben Typ gehort. Abb. 18 zeigt die Teilungsvorschrift fur die
P 3-Basiskacheln.
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Abb. 18: P 3-Rekomposition.
Aus jeder P 3-Kachel entstehen durch Teilen und Zusammensetzen neue
(kleinere) P 3-Kacheln, jene der folgenden Generation. » Pfeile der Mutter-,
> Pfeile der Tochtergeneration. Nur die weillen Ecken sind markiert, mit O
bzw. <t . Man sieht, dal3 von einer Generation zur nachsten alle schon
existierenden Ecken 1hre «Farbe» wechseln.

Sehen wir nun, wie mit diesem Prinzip irgendeine der unendlich vielen
moglichen P3-Tesselationen erzeugt wird! Ausgangsmaterial ist eine er-
laubte Anordnung von Kacheln - und damit stehen wir vor dem ersten
Problem: Wie kann ich das feststellen? Die Antwort darauf wollen wir vor-
laufig zurickstellen; in Kirze werden wir sie mit Leichtigkeit beantworten.
Abb. 19 zeigt links zwei erlaubte Anordnungen; dies ist die Figur der 0.
Generation. Nun wird die Rekomposition entsprechend Abb. 18 durchge-
fuhrt; wir erhalten die 1. Generation. Als zusatzliche Regel gilt dabei, daB3 die
auBen fehlenden Teile jeweils hinzugefligt werden miissen — hier sind ja
keine Nachbarkacheln vorhanden, die sie liefern konnten. — Abermals wird
rekomponiert, und die 2. Generation entsteht; usw. Die ursprungliche Figur
wird also immer weiter unterteilt, die GroBe der Kacheln schwindet immer
mehr, geht im Grenzfall gegen Null.

160



Abb. 19:

Abb. 20:

P 3-Deszendenz.

Links zwei Kachelanordnungen der 0. Generation (ausgezogen) sowie die
1. Tochtergeneration (gestrichelt), entsprechend Abb. 18. Rechts jeweils
wieder die 1. Generation (ausgezogen) und die folgende 2. Generation (ge-
strichelt). — Zur Schraffur siche Abb. 20.

| VR |
Aszendenz in P 3.
Die hier dargestellte 3-Kachel-Konfiguration (ausgezogen) kann auf zwei
Arten aus der vorangehenden Generation (gestrichelt) entstehen: entweder
aus zwei stumpfen Rhomben oder aus einem stumpfen und einem spitzen
Rhombus. Beide Fille treten in Abb. 19 rechts oben auf (schraffiert).
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Nun ist naturlich die «absolute» Grof3e eine reine Normierungssache der
Metrik. Die Relationen der Kacheln zueinander — sowohl topologisch als
auch metrisch - sind nicht betroffen, wenn wir nach jedem Rekompositions-
schritt eine Inflation einschalten. Darunter versteht man eine Ahnlichkeits-
abbildung des E? mit einem VergroBerungsfaktor, der hier so gewahlt ist, daB3
jede Kachel der Folgegeneration wieder so grofl wie ihre entsprechenden
Vorganger wird. Nun sieht der Vorgang anders aus: die Figur verdandert sich
mit jeder Generation und wachst dabei — dhnlich einem knospenden Poly-
pen — immer weiter nach aullen ... dem unendlich fernen Rand der Ebene zu,
den sie im Grenzfall — nach unendlich vielen Generationen - erreichen
wird.

Dieser iterative oder rekursive Erzeugungsprozef3 einer Tesselation ist, wie
oben erwihnt, immer ad infinitum durchfithrbar und dabei eindeutig: Nir-
gends gibt es die Moglichkeit einer Wahl der Fortsetzung!

Nun koéonnen wir auch das Problem der erlaubten Anordnungen 1osen.
Fuhren wir zunachst den eben beschriebenen ProzeB aus, indem wir von
einer einzigen Kachel ausgehen! Wir erhalten eine spezielle P 3-Tesselation.
Andererseits kann man beweisen (aufgrund der Rekompositionsregel), daf3
die P3-Tesselationen lokal isomorph sind. Dies aber hat zur Folge, dal3 in
unserer speziellen Belegung schon alle tberhaupt moglichen endlichen
Kachelanordnungen vorkommen! Jedes aus ihr herausgeschnittene Stiick ist
also eine erlaubte Anordnung, und andere gibt es nicht.

Verbluffend daran ist allerdings, da auf diese Weise nicht jedesmal die
selbe Tesselation erzeugt wird — wieso ergeben Stiicke aus einer Belegung bei
der Weiterverarbeitung verschiedene Anordnungen, statt sich wieder zu
jener zu «regenerieren», aus der sie entnommen wurden? Solches Verhalten
indes ist fur lokal isomorphe Strukturen normal: wir sind es nur nicht
gewohnt. Doch lehrt uns der blofle Augenschein auf Abb. 19, dal es sich
tatsachlich so verhalt: Die beiden Anfangsanordnungen links konnen gewil3
aus der selben Tesselation geschnitten werden (es gentigt, sich die nachste
Generation rechts daneben anzusehen), doch zeigen die letzten dargestellten
Generationen keine Angleichung aneinander — ithre Rander sind eben ganz
verschieden, und so entwickeln sie sich in durchaus interschiedliche Rich-
tungen.

Wie schon oben erwahnt, ist be1 unserem Verfahren die Deszendenz ein-
deutig: betrachte ich irgendeine Kachelanordnung, so ist vollig festgelegt,
was aus ihr in der Folgegeneration entsteht. Die Umkehrung des Prozesses
jedoch, die Aszendenz, ist mehrdeutig: Eine gegebene Kachelanordnung
kann aus verschiedenen Anordnungen hervorgegangen sein. So zeigt z. B.
Abb. 20, wie die selbe 3-Kachel-Anordnung auf zwei Arten entsteht. Nun
kann man naturlich einwenden, es gentige, die Umgebung der gezeigten
Anordnung zu betrachten: Sie wiirde sofort zeigen, wie die Muttergeneration

162



aussah. Das ist zwar richtig, doch verschiebt man damit einfach das Pro-
blem, denn die nun beriicksichtigte, groBere Anordnung hat wieder einen
Rand, an dem die Abstammung nicht eindeutig festgelegt ist. Es bleibt dabei:
Der Weg durch die Generationen abwirts ist eindeutig, der Weg aufwarts
nicht. Der nahezu triviale Grund dafur ist, dal3 (wie Abb. 18 zeigt) die zwei
Rhombentypen der Tochtergeneration auf mehr als eine Art aus den Rhom-
ben der Muttergeneration entstehen.

4.2.3. Die Penrose-LI-Klasse

Wie schon oben (erlaubte Anordnungen) erwahnt, sind alle P 3-Tessela-
tionen lokal isomorph; jeder — beliebig groBBe, aber endliche — Ausschnitt aus
jeder kommt in jeder anderen vor, und zwar sogar unendlich oft! Nach der
Definition in 3.4. heil3t dies, daB3 alle P 3-Tesselationen zur selben LI-Klasse
gehoren. Dabei ist zu beachten, dall «P 3»meint: Kacheln und Passungsre-
geln. Tesselationen anderer LI-Klassen erhalt man namlich, indem zwar die
selben zwei Basiskacheln verwendet werden, jedoch andere Passungsregeln.
In diesen Belegungen finden sich Kachelanordnungen, die in P 3 verboten
sind: Sie konnen lokal unterschieden werden. Ein Beispiel zeigt Abb. 23 in
5.1.

Eine Folge der lokalen Isomorphie aller P 3-Tesselationen ist, dal3 jede
dieser Belegungen lokal automorph ist (der Beweis ist trivial!). Diese Tat-
sache wird im folgenden oft verwendet werden.

Da weiter P3 und P2 durch Rekombination zusammenhangen, gelten
entsprechende Konstruktionsmethoden und Eigenschaften auch fiir die P 2-
Tesselationen. Mit einer gewissen einleuchtenden Definitionserweiterung
sagt man, P2 gehore zum selben LI-Typ wie P 3.

4.2.4. Globale und lokale Pentagyren

In P2 und P3 gibt es je genau zwei Tesselationen, die eine globale Pen-
tagyre besitzen. Sie entstehen durch Deszendenz aus den in Abb. 21 gezeig-
ten Kachelanordnungen. Die fur P 3 dargestellte erste Generation zeigt tibri-
gens, wie sich — in der Folge mit jeder Generation - die beiden Falle inein-
ander umwandeln! Die nullte Generation der einen Belegung hat das selbe
Zentrum wie die erste der anderen und umgekehrt. Nach erfolgter Iteration
(mit unendlich vielen Schritten!) ist das «Zentrum» — d.h. der Ort der
globalen Pentagyre — in jeder der zwei Belegungen wieder gleich ihrer
Anfangsanordnung.
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Die Existenz dieser speziellen Falle hat unmittelbar eine erstaunliche
Konsequenz: In jeder P2-bzw. P 3-Tesselation existieren lokale Pentagyren
mit verschiedenen, ja sogar beliebig grofen Reichweiten, und jede von ihnen
kommt unendlich oft vor! Dies garantieren die lokale Isomorphie und
Automorphie der LI-Klasse, wonach jeder — beliebig grof3e, aber endliche —
Ausschnitt aus den betrachteten speziellen Belegungen in jeder anderen und
in 1thnen selbst unendlich wiederkehrt. Somit findet man auch beliebig grof3e
Ausschnitte, die symmetrisch um die globale Pentagyre herum vorgenom-
men worden sind, in endloser Vielfalt vor.

Betrachten wir nun einen Ausschnitt aus einer der vier speziellen Bele-
gungen, in dem pentagonale Symmetrie besteht. Es ist uns nicht moglich zu
entscheiden, ob es sich dabei um die globale Pentagyre handelt — genauso
konnte es eine der lokalen sein, deren Bereich eben uber das betrachtete
Gebiet hinausragt. VergroBern des Ausschnittes kann uns bestenfalls zeigen,
daB3 es sich nicht um die globale handelt- dann namlich, wenn wir das
Aufhoren der Symmetrie finden. Im Symmetriebereich selbst unterscheiden
sich naturlich (aufgrund der oben gegebenen Ableitung) lokale und globale
Pentagyren nicht; in jeder der vier speziellen Belegungen kommen jeweils
beide entsprechenden Pentagyrentypen (lokal) vor. Der ausgezeichnete
Punkt («Zentrum») jener vier Tesselationen ist also nicht a posteriori an der
fertigen Belegung feststellbar — auBBer durch Betrachten der ganzen unendlich
ausgedehnten Ebene.

Abb. 21: Globale Pentagyren in P2 und P 3.

Oben: Ausgangsanordnungen fiir die zwei P2-Belegungen, die eine globale
Pentagyre besitzen; die linke heillt Sonne, die rechte Stern. Nach
GRUNBAUM & SHEPHARD (1987).

Mitte: Anfangsanordnungen fur die zwei P 3-Belegungen, die eine globale
Pentagyre besitzen (ausgezogene Linien). Wird die Belegung durch Anla-
gerung erzeugt, so kann dies symmetrisch erfolgen (auf je genau eine Art).
Die erste derartige Anlagerungsphase ist gestrichelt eingetragen. Man
beachte, daB sich die zwei Anfangsanordnungen nur durch die Lage der
Eckfarben unterscheiden: einmal ist das Zentrum weil}, einmal schwarz.
Der Weiterbau ergibt aber ganz verschiedene Verhiltnisse.
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Unten: Wie Mitte, doch erfolgt jetzt der Weiterbau durch Deszendenz; die
erste Generation ist gestrichelt eingetragen (ohne ihre Eckfarben). Da die
Farbe der bestehenden Ecken sich jeweils andert (cf. Abb. 18), wird aus dem
Typ | (weiBes Zentrum) der Typ 2 (schwarzes Zentrum) und umgekehrt. In
jeder geraden Generation ist der Zentrumsbereich der entstehenden Bele-
gung wieder mit der Anfangsanordnung identisch.
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4.2.5. Die Wagenrad-Tesselation

Eine weitere spezielle Tesselation ist die Wagenrad- T (engl. cartwheel)
des Typs P2. Sie wird vom As (ace) erzeugt, einer Kombination aus 2 Dra-
chen und einem Pfeil; siche Abb. 22. Die folgende Beschreibung ist leicht
vereinfacht (cf. GRUNBAUM & SHEPHARD, 1987). Das As (0. Generation) hat

O

Abb. 22: Wagenrad-Tesselation.
Dargestellt sind die Generationen O bis 2; Beschreibung siche Text. Nach
GRUNBAUM & SHEPHARD (1987).

keinen Umrif3 mit fiunfzahliger Symmetrie, ebensowenig die nachste (1.) Ge-
neration. Die 2. Generation, genannt Wagenrad 1. Ordnung, besitzt jedoch
diese Eigenschaft! In der 3. Generation fehlt sie wieder, um abermals in der
4. aufzutreten (Wagenrad 2. Ordnung), und so fort. Das Innere jedes Wagen-
rads hat naturlich keine 5-zdhlige Symmetrie; hingegen besteht eine vom As
geerbte Spiegelebene. In der Wagenrad- T gehort fast jede Kachel zu irgend-
einem Bereich, der funfzahlige Symmetrie besitzt — daB3 es unendlich viele
solche (beliebig groB3e) Bereiche geben mu3, ist uns mittlerweile ja gentugend
vertraut. «Fast jede» Kachel heil3t dabei: jede auBBer den 7 in Abb. 22
schraffierten! In allen anderen P2-Tesselationen gibt es wiberhaupt keine
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Kacheln, die nicht in einem Bereich funfzahliger Symmetrie liegen. Schlie3-
lich gibt es — immer aufgrund der lokalen Isomorphie — in jeder P2-Tesse-
lation Uberdeckungen mit Wagenridern jeder (!) Ordnung (wobei die tiber-
deckenden Wagenrader sich selbstverstandlich uberlappen durfen).

4.2.6. Imperien

Interessant ist die Existenz von Imperien in den P2-Tesselationen: Gege-
bene Anordnungen von Kacheln konnen, wenn von ihnen aus durch Anla-
gerung weitergebaut wird — was ja unendlich vieldeutig ist — dennoch die
Lage weiterer Kacheln in der gesamten Tesselation erzwingen, d.h. iiber
beliebig grofie Distanzen. Einfach einzusehen ist dies naturlich fur anlie-
gende Kacheln, infolge der Passungsregeln. Bei entfernten Kacheln verblufft
die Tatsache zunachst, kann aber mittels der oben besprochenen Ammann-
Linien bewiesen werden. Hier zeigt sich also, daB3 die rein lokal definierten
Passungsregeln eine Fernwirkung besitzen! Die Imperien verschiedener Aus-
gangsanordnungen sind ubrigens sehr unterschiedlich: As und Sonne erzwin-
gen Uberhaupt keine Kacheln, der Daus (deuce; eine 4-Kachel-Anordnung)
hat ein Imperium, das sich nur entlang einer Geraden erstreckt. Die Impe-
rien des Konigs und des Sterns bedecken jedes einen groBen Teil des E? - nur
fur die dazwischenliegenden verbleibenden Felder sind verschiedene Aus-
fullungen moglich.

4.2.7. Verallgemeinerungen

Wihrend ich auf die Existenz anderer LI-Klassen schon zuvor hingewiesen
habe, sei abschlieBend eine Verallgemeinerung anderer Art erwahnt. Gahler
und Rhyner (in R1VIER, 1986) erzeugten mittels der unten zu besprechenden
Multigittermethode einen ebenen Tesselationstyp, der 8 verschieden dicke
Rhomben verwendet und 17-zdhlige Infrasymmetrie besitzt (17-Gitter,
Anzahl Rhomben = (17 - 1)/2 =8).

4.3. Mackay-Tesselationen

Der urspringlich von Mackay (1982, sieche LEVINE, 1986) konstruierte
Tesselationstyp ist das E3-Aquivalent der ebenen P 3: 4 Rhomboeder (2
Formen mit je zwei unterschiedlichen Passungsmarkierungen) ergeben eine
ikosaedrische Infrasymmetrie. Daher fand dieser Fall besondere Beachtung
bei den Kristallographen, bei denen er weithin als das Modell eines Quasi-
kristalls schlechthin gilt. Die Rekompositionsregeln sind recht kompli-
ziert.
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Eine bestimmte Rekomposition der Mackay-Rhomboeder — analog der
AP-Rekomposition von Abb. 17 - ergibt einen neuen Tesselationstyp des E?
mit wieder 4 Basiszellen: eines der urspriinglichen Rhomboeder, ein Rhom-
bentriakontaeder, ein Rhombenikosaeder, ein Rhombendodekaeder. Fur
die komplexere Form der Basiszellen wird man durch wesentlich einfachere
Rekompositionsregeln entschadigt.

Da beide Mackay’sche Tesselationstypen im Aufbau enge Analogien zu
den Penrose-Tesselationen besitzen. bezeichnet man auch sie, in abermaliger
Verallgemeinerung des Begriffs, als «vom Penrose-Typ».

5. Erzeugungsmethoden fiir aperiodische Belegungen

Im Laufe der Zeit wurden im wesentlichen folgende drei Verfahren entwickelt:

(1) Die Konstruktion mit Passungs- bzw. Deszendenzregeln wurde anhand eini-
ger Falle in Teil 4 gezeigt, in dem ich eingangs ihre Vor- und Nachteile
erwahnte.

(11) Geometrisch am allgemeinsten ist die Multigitter- oder Dualmethode, mit der

man samtliche iberhaupt moglichen Belegungen mit vorgegebenen Symme-
tricelementen erzeugen kann, d. h. alle LI-Klassen mit bestimmter Infrasym-
metrie. Fur die kristallographische Anwendung indes besitzt diese Methode
einen wesentlichen Nachteil: Die so wichtige Fouriertransformierte (siehe
6.1.) ist nicht allgemein berechenbar, d.h. die Bestimmung des Diffrakto-
grammes bereitet Schwierigkeiten.

(1i1) Bei der H-Projektionsmethode gewinnt man eine aperiodische Belegung in
einem n-dimensionalen Raum E" aus einer periodischen Belegung eines
geeigneten hoherdimensionalen Raumes E" (h > n) durch Orthogonalprojek-
tion unter Verwendung eines Projektionsfensters. Diese Methode liefert die
Fouriertransformierte unmittelbar, bietet dafiir aber, wie nachher auszufuh-
ren ist, gewisse konstruktive Probleme. - Es muBB erwahnt werden, daf3 die
Idee, gewisse aperiodische Funktionen (namlich die «nahezu periodischen»,
siche 6.2.1.) durch periodische in einem hoherdimensionalen Raum darzu-
stellen, in der Mathematik schon altbekannt ist: sie wurde von H. Bohr
(einem Bruder Niels Bohrs) eingefiihrt.

Ich werde nun die Dual- und die Projektionsmethode naher darstellen, ohne jedoch
viel mathematischen Formalismus zuzuziehen. Dennoch kann dieser Teil vom Leser
notfalls ausgelassen werden, ohne dalB3 dadurch in Kapitel 6. wesentliche Verstiand-
nisschwierigkeiten entstunden.

5.1. Multigitter- oder Dual-Methoden

5.1.1. Multigitter

In der allgemeinsten Form ist ein Multigitter ™ im E" (m > n) eine Familie von
(n-1)-Ebenen, allgemein H-Ebenen genannt, welche gewissen Bedingungen geniigen
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(die hier nicht naher beschrieben werden sollen). Wie schon in 2.1.3. erwahnt, sind die
«Gitter» der Kristallographie nicht Gitter in diesem mathematischen Sinn, sondern
die Knoten (Vertizes) solcher Gitter. Falls der Klarheit halber notig, bezeichne ich die
kristallographischen Gitter als Punktgitter.

Im gewohnlichen Raum E3 besteht also ein Multigitter aus Ebenen, die sich teils
schneiden konnen, teils zueinander parallel sind; sie zerteilen den E3 im Normalfall in
verschiedene Polyeder. In der Ebene E? sind die Gitterelemente Geraden; sie zerlegen
die Ebene in diverse Polygone.

Gewohnlich fa3t man die oben erwdhnten Bedingungen noch wesentlich enger und
berticksichtigt nur Fille, in denen das Multigitter '™ aus m Scharen von H-Ebenen
besteht.

'™ wird also zerlegt in m Unterfamilien | P - l] ey Ly JOAES l] besteht aus
(unendlich vielen) zueinander parallelen H-Ebenen. Wenn speziell die Abstande
innerhalb jeder Schar konstant sind, liegt ein de Bruijn-Gitter vor, bilden sie hingegen
Fibonacci-Folgen, so handelt es sich um ein Ammann-Gitter.

Als Beispiel zeigt Abb. 23 ein Multigitter I3 (also ein Pentagitter) des de Bruijn-Typs
in der Ebene. Hier bilden 5 Geradenscharen I3, ..., I5 untereinander Winkel, die ganze
Vielfache von 2% sind; den in 3.3.2.3. definierten Begriff anwendend, besitzt also
dieses Gitter eine 5zdhlige Infrasymmetrie. Die Versetzungen der 5 Scharen gegen-
einander sind numerisch festgelegt, und zwar derart, daB sich (in ganz E2!) immer nur
zwei Gerade an einem Punkt schneiden.

Solche Gitter heiBBen regular. Dabei kann natirlich der Abstand zweier Schnitt-
punkte beliebig klein werden — aber eben nicht Null! Auch hier wird deutlich, wie
Aperiodizitit mit (infinitesimalen) Irrationalitatsbedingungen zusammenhangt (vgl.
H-Projektion in 5.2).

5.1.2. Dualitat

Die Dualitit zweier Raume EJ, Eg ist ein rein topologisches Konzept, das keine
Rucksicht auf metrische Verhaltnisse nimmt. In diesem Sinne ist Dualitit immer
symmetrisch: Ej ist dual zu E; und umgekehrt. Wo, wie in unserem Falle, die
metrischen Bezuge wesentlich sind, ist diese Symmetrie natiirlich nicht mehr direkt
erkennbar.

Allgemeine Verfahren des Dualisierens konnen hier nicht dargestellt werden; das
Prinzip sei vielmehr (nach KRAMER, 1985) anhand eines sehr einfachen Beispiels
gezeigt (Abb. 23). Hier ist die duale Konstruktion geometrisch elementar durchfiihr-
bar und gibt uns gleichzeitig Gelegenheit, eine Belegung zu konstruieren, die — bei
Verwendung der «Penrose-Rhomben», aber mit anderen Passungsregeln — einer
anderen LI-Klasse als P3 zugehort. - Jeder Masche (Polygon) im Multigitter-Raum
EJ entspricht ein Vertex (Ecke) im Belegungs-Raum E% z.B. der Masche
X1 =A;A)A;AAs der Vertex X,;=B;. Umgekehrt entspricht der Masche
Y1 =B,B,B;B, (in EZ )der Vertex Y1 =A;3(in Ez) Weiter entspricht jeder Maschenseite
im einen Raum eine ebensolche im anderen, und es sollen (in unserem speziellen Fall)
die zueinander dualen Maschenseiten zueinander senkrecht stehen. Beispielsweise
sind A,A; und B;B, einander dual, und A,A; L B,B,.
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X, = AjAAzAAs > 8(Xy) = Xy = By
5_1 (Yl) - Yl = A3 €« Yl S B1B2B3B4
(usw.)

Abb. 23:

Multigitter und Dualisierung
Oben: Teil eines de Bruijn-Pentagitters im Multigitter-Raum E(Zl. Nach
KRAMER (1985).

Unten links: Multigitter-Raum EZ; Ausschnitt aus obigem Pentagitter. A,
sind die Schnittpunkte der Geradenscharen I; bis I3, d. h. die Knoten (Ver-
tizes) des Pentagitters; X, sind seine Maschen.

Unten rechts: Belegungsraum Ef: der gezeigte Teil ist dual zum EZ-Aus-
schnitt links. 8 bedeutet die Dualisierungsabbildung, 6-! ihre Umkehrung.
B, sind die Ecken der Belegung T; B, =8 (X;)=X ;. Y; sind dic Maschen bzw.
Kacheln von T. Konstruktionsbeschreibung siehe Text; die gestrichelten
Linien deuten an, wie aus 4 Maschen (X, bis X,) in EZ eine Kachel mit den
Ecken B, bis B, in Ej entsteht.

Die Konstruktion der Belegung aus dem Pentagitter geht also folgendermaBen vor
sich: Nehmen wir zuerst die Masche B; = A;A;A3A4A5 und zeichnen Punkt B, ; von
ithm gehen 5 Kachelkanten aus, deren Richtungen nach obigem Prinzip gegeben sind:
Je senkrecht zu den funf Seiten AjA,, A5Aj, ..., AsA,. Nun legt man auf einer dieser
Richtungen den nachsten Vertex fest, z. B. B,, und wiederholt von hier aus die Rich-
tungskonstruktion, diesmal beziglich der Masche B : 4 Richtungen. Wihlen wir - als
einfachsten Fall - alle Kantenldngen der Kacheln gleich lang, so erhalten wir eine
penrosedhnliche Belegung aus «dicken» und «schlanken» Rhomben.
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Wie Abb. 23 zeigt, ist es nicht moglich, die Belegung in das Pentagitter einzubetten,
d.h. die Konstruktion direkt auf dem Gitter durchzufihren: die metrischen Verhalt-
nisse verbieten dies. Diese Moglichkeit besteht hingegen bei den (nicht-aequidistan-
ten) Ammann-Gittern, wie aus den Beispielen in Teil 4 ersichtlich ist: Bei Abb. 11 und
13 ist das 2-Gitter in die Tesselation eingebettet bzw. umgekehrt. Hier wird auch klar,
daB obige Konstruktion nicht allgemein ist: Bei Abb. 11 und 13 stehen die dualen
Maschenseiten offensichtlich nicht zueinander senkrecht. Auch sind dort die Zuord-
nungen Masche/Vertex komplexer als in unserem obigen Beispiel.

Ein weiteres Beispiel zur Verwendung der Ammann-Gitter gibt Abb. 24. Wie auch
in Abb. 11 und 13 druckt sich die Dualitat so aus, daf3 einerseits das Ammann-Gitter
als Dekoration der Penrose-Kacheln aufgefaBt werden kann (d.h. als Muster auf
diesen, siche Abb. 14), umgekehrt aber auch die Kachelumrisse als Dekoration der
Maschen des Ammann-Gitters!
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Abb. 24: P 3-Tesselation mit Ammann-Gitter.

Der gezeigte Ausschnitt besitzt eine von links nach rechts verlaufende
Spiegelebene. Man sieht die Geradenscharen Ij bis I[5 des Ammann-Pen-
tagitters (dinne Linien) und die daraus abgeleiteten Penrose-Kacheln
(dicke Linien). Umgekehrt entsteht das Pentagitter, wenn die Kacheln
korrekt angelegt werden - so namlich, daB3 sich ihre Ammann-Linien (siche
Abb. 14) knickfrei von einer Kachel zur nachsten fortsetzen. Modifiziert
nach NICKEL & NICKEL (1989).
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Geht die Dualisierung von einem de Bruijn-Gitter aus (wie im Beispiel der Abb. 23),
so bestimmen die gegenseitigen Versetzungen der H-Ebenen-Scharen (im Beispiel: der
5 Geradenscharen), welcher LI-Klasse die erzeugte Belegung angehort. So ist, wie oben
bemerkt, die Tesselation der Abb. 23 nicht vom Penrose-Typ: Die Kombination Y;,
Y,, Y3 ist in der Penrose-LI verboten - siche Abb. 15!

5.2. H - Projektion

5.2.1. Prinzip

Diese Methode basiert darauf, da3 mit Hilfe von Verfahren der Vektorrechnung
gewissen nicht- perlodlschen Punktgittern Z" im E" periodische Punktgitter 7" in
einem geeigneten E" (h > n) zugeordnet werden konnen und dal3 das ursprunghche
Gitter aus dem hoherdimensionalen durch orthogonale Projektion p: E" >E" zuriick-
gewonnen werden kann, wenn man p auf ein geeignetes Gebiet (Projektionsfenster)
des E" beschrénkt.

Die Symmetriegruppe eines derartigen Gltters Z", die keine Raumgruppe des E" ist,
wird somit durch eine Raumgruppe des E beschneben

Man kann nun das Problem umikehren und ein perlodlsches Gitter Z" im E" vor-
geben. E" w1rd zerlegt 1n irgendeinen Unterraum E" und dessen orthogonales Kom-
plement: E'=EFE"® E"" = E/ ® E . Die Projektion von Z" auf E, (mlt geeignetem
Fenster, sieche unten) ergibt im allgememen ein nicht-periodisches Z", bei spezieller
Wahl der Projektionsrichtung aber ein periodisches.

Folglich konnen die periodischen Punktgitter im Raum, und somit die Bravaisgit-
ter, als Grenzfalle aperiodischer Gitter angesehen werden, der klassische Kristall als
Grenzfall eines allgemeineren Knstallbegrlffes'

Das periodische Punktgitter Z" besteht aus den Ecken irgendeiner translatorischen
Belegung des EP (mit einer Polytop-Art). Tatsachlich wurden aber bisher fast nur
hyperkubische Gitter in maximal 6 Dimensionen verwendet: alle experimentell beob-
achteten Falle konnen so beschrieben werden. Bedenkt man aber, daB3 h beliebig grof3
sein kann und daB schier unendliche Variationen des Projektionsfensters moglich
sind, so wird klar, daB3 - rein geometrisch - dieses interessante Gebiet bisher nur eben
angekratzt wurde!

5.2.2. Probleme der Projektionsmethode

Das wesentliche Problem der Projektionsmethode liegt nun gerade in der Fenster-
Wahl. Es i1st namlich kein Verfahren bekannt, mit dem man zum voraus feststellen
konnte, ob ein gegebenes Fenster iiberhaupt eine T ergibt, und noch weniger, ob diese
von einer Art ist, die ein diskretes Diffraktogramm erzeugt. Andererseits sind Fille
bekannt (siehe z. B. DIVINCENZO, 1986), in denen das durch eine Projektion erzeugte
Punktgitter Z" zwar aperiodisch ist und ein diskretes Diffraktogramm erzeugt, jedoch
gar nicht als Ecken-Menge einer T interpretiert werden kann. Dies impliziert eine
noch weiter gehende Verallgemeinerung des Kristallbegriffs: ein solcher Korper ist
tiberhaupt nicht als Packung irgendwelcher Zellen beschreibbar und besitzt dennoch
einem klassischen Kristall ahnliche Diffraktionseigenschaften.

172



5.2.3. Beispiel | (Abb. 25)

h=2, n=1, Z? ist ein Quadratgitter mit Kantenlinge 1. Projektionsfenster ist der
Streifen, der durch Parallelverschieben eines Einheitsquadrates entlang E, entsteht (1
Freiheitsgrad). Man projiziert die Gitterpunkte in diesem Streifen auf E, und erhalt so
die Ecken einer (eindimensionalen) T, von E! = E, mit zwei Kacheln (d. h. Strecken)
der Langen 1, und 1, (das sind die Projektionen der «horizontalen» bzw. «vertikalen»
Quadratseiten). Verschiebt man das gesamte Fenster parallel zu sich selbst (in Rich-
tung E, ), so erhilt man andere Tesselationen der selben LI-Klasse. Die Neigung von E,
bestimmt das Verhaltnis 1;/1,; wenn tg 9 =1t=(1 + V§)/2, so wird T; durch eine
Fibonacci-Folge beschrieben.

Weiter ist leicht zu sehen, daB Ty periodisch wird, wenn tg ) = ny/n, ist, d. h. rational,
da sich dann eine bestimmte Projektionsfolge periodisch wiederholen muf. Die Peri-
ode ist um so linger, je groBer die (teilerfremden, ganzen) Zahlen ny und n, sind.

— < 5_ T L ' | } } }

Abb. 25: H-Projektion E2—E?; Fibonacci-Tesselation.
Beschreibung im Text. Der « Hyperraum» E" ist hier E2, der « gewohnliche
Raum» E" ist EL. Der Streifen F ist das Projektionsfenster; es entsteht durch
Verschieben des eingezeichneten Einheitsquadrates entlang E,. Nach KA1z
& DUNEAU (1986).

5.2.4. Beispiel 2

Die Punktgitter Z2, welche aus den Ecken von P3-Tesselationen bestehen, gewinnt
man aus einer Projektion p: E*—E? (mit einem einfachen Fenster); das periodische
Gitter Z* besitzt eine Struktur mit 5 Pentagonen. Abermals entsprechen verschiedene
Tesselationen (alle P3 gehoren zur selben LI-Klasse) den Parallelverschiebungen des
Fensters.
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5.2.5. Beispiel 3

Die Mackay-Tesselationen (4 Rhomboeder im E3) entstehen mit einer Projektion
ES—E3. Dabei sind die 12 Vektoren *¢y. ..., +¢g, welche im E3 vom Zentrum eines
regularen Ikosaeders zu seinen Ecken weisen, die Projektionen von 12 Vektoren i_s*l,
... +&¢ des E®, welche dort auf den Koordinatenachsen liegen, d. h. alle sechs_z-:;T bilden
untereinander rechte Winkel.

Der Einheits-H-Kubus des E® wird dabei auf ein rhombisches Triakontaeder des E?
projiziert; von dessen 32 Ecken entsprechen 12 jenen des regularen Ikosaeders, die
anderen 20 denen eines gleich orientierten Dodekaeders.

Das gesamte hyperkubische Gitter Z° besitzt 20 Klassen von 3-Flachen (d. h. Kor-
pern im gewohnlichen E%) je gleicher Form, aber unterschiedlicher Orientierung.
Diese 3-Flachen fallen bei der Projektion auf nur 2 unterschiedlich geformte Korper:
auf 2 verschiedene Rhomboeder (bestehend aus lauter gleichen Flachen!) - die beiden
Mackay-Rhomboeder.

Um eine vollstindige Mackay-T zu erhalten (bzw. ein ikosaedrisches Quasigitter
des E3), wird (analog Beispiel 1) ein Fenster verwendet, das dadurch entsteht, daB ein
6-Kubus K° parallel zu sich selbst entlang E verschoben wird (3 Freiheitsgrade!).

6. Diffraktogramme

6.1. Die Fouriertransformation

Wie in der Einleitung erwahnt, entstehen beim Durchstrahlen eines Kri-
stalls mit geeigneten Wellenldngen (wie Rontgenlicht oder Elektronen) die
jedem Kristallographen bekannten Beugungsbilder: gewissermallen ver-
schlusselte Blicke in den Kristall, aus denen mit mathematischen Methoden
Informationen uber seinen Aufbau erhalten werden kénnen - insbesondere
uber die Symmetrien seines inneren Baues. Diese Beugungsbilder konnen als
Schnitte - je nach der gewahlten Durchstrahlungsrichtung - durch ein
Gebilde 1m reziproken Raum aufgefal3t werden, das die gesamte uberhaupt
mogliche Beugungsinformation des gegebenen Kristalls enthalt. Im folgen-
den wird dieses Gebilde als das Diffraktogramm des Kristalls bezeichnet.

Eine Fouriertransformation beschreibt den Zusammenhang zwischen
dem Kristall im Normalraum, der daher Kristallraum genannt wird (mit
Koordinaten X, y, z) und dem Diffraktogramm im reziproken Raum, der
deswegen als Fourierraum bezeichnet wird (mit Koordinaten x*, y*, z*).

Folgendes Schema faBt die wichtigsten Begriffe zusammen:
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Realer Raum (x, vy, z) Reziproker Raum (x*, y*, z*¥)
= Kristallraum = Fourierraum
Dichtefunktion Diffraktogramm
(Materieverteilung) = Beugungsfunktion
(Intensitatsverteilung)
p(X,Y,2) = 1% y% 2%
Fourier-
transformation

Dieses Konzept kann selbstverstindlich ohne weiteres auf euklidische
Raume E" mit mehr oder weniger Dimensionen als n = 3 angewendet wer-
den; in den Beispielen werden wir Falle in E! und E? sehen.

6.2. Die vier Ordnungsklassen

Die klassische Kristallographie unterschied bezuglich der Diffrakto-
gramme nur zwei Klassen: amorphe Korper, die (im Idealfall) kein Beu-
gungsbild erzeugen (siehe unten), und Kristalle mit translationsperiodischen
Gittern, die «gute» Diffraktogramme besitzen. «Gut» bedeutet in diesem
Fall, da3 das Diffraktogramm diskret ist, d.h. aus voneinander getrennten
Punkten besteht, deren jeder eine bestimmte Intensitit besitzt, also in einem
I (x*, y*, z*)-Diagramm mit einem Delta-Peak besetzt ist. Tatsachlich ent-
stehen mehr oder weniger eng begrenzte Flecke, da ja auch die Gitter«punk-
te» nicht ausdehnungslos sind, sondern aus Atomen bestehen. Auf eine
Dimension bezogen sieht ein derartiges Diffraktogramm somit z. B. wie in
Abb. 26 a aus.

Im Gegensatz dazu ist das Diffraktogramm eines amorphen Korpers kon-
tinuierlich: selbst wenn die Atome auf Punkte reduziert waren, erfillte es den
gesamten (reziproken) Raum luckenlos stetig. Die in fast allen realen Féllen
zu beobachtenden Intensitatsvariationen — siche Abb. 26 ¢ — rihren daher,
daB selten ein Stoff ideal amorph vorliegt (Spannungszustinde usw.).

Zwischen diesen beiden Féllen stehen nun die zwei Kategorien der nahezu
periodischen und der quasiperiodischen Gitter. Erstaunlich dabei ist, daB die
nahezu periodischen, auch inkommensurabel modulierte genannt, schon seit
einiger Zeit in der Kristallographie durchaus akzeptiert waren. Der Grund
dafir 1st wohl, wie wir gleich sehen werden, dal man solche Gitter als
«gestorte» normale Gitter auffassen kann: Sie sind Randerscheinungen,
gefahrden jedoch als solche die abgeschlossene Welt der 32 Kristallklassen
nicht. Ganz anders dagegen die echten quasiperiodischen Gitter: Sie konnen
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Abb. 26: Diffraktogramme in einer Raumrichtung (Schema).
a Fur einem Kiristall mit normalem Gitter; i ideal (punktformige Atome),
r real (ausgedehnte Atome).
b Fur einen Kristall mit inkommensurabel moduliertem oder Quasi-Git-
ter. I, ist eine frei gewahlte Schwellenintensitit; nur einige der schwacheren
Peaks sind abgebildet.
¢ Fur einen (nicht-ideal) amorphen Korper.
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in keiner vernunftigen Weise als gestorte Normalgitter interpretiert werden,
bedeuten also mathematische Subversion fur das etablierte System.

6.2.1. Nahezu periodische Gitter

Bei nahezu periodischen Gittern (almost periodic lattices) sind die Funk-
tionswerte der Raumdichte — gegeben durch Art und Lage der Atome - im
wesentlichen periodisch, d. h. es liegt ein mittleres Gitter vor. Dieses ist aber
mit einer im Kristallraum periodischen Funktion moduliert — die Atome
sind ein biBBchen aus ihrer « Normallage» verschoben. Dabei muf3 die Modu-
lationslange (die Periode der Modulationsfunktion) in mindestens einer
Raumrichtung inkommensurabel zur entsprechenden Gitterkonstante (der
Translationslange des «mittleren Gitters») sein — daher die Bezeichnung
«inkommensurabel moduliert». Ware namlich die Modulationslange in
allen Raumrichtungen kommensurabel zu den Abstinden des mittleren
Gitters, so ergabe sich insgesamt wieder ein t-symmetrisches Gitter mit einer
groBeren tZ, deren Kantenldngen Vielfache der Perioden der Modulations-
funktion waren. Abb. 27 zeigt die beiden Falle an einem willkurlichen zwei-
dimensionalen Beispiel.

Dabei ist es prinzipiell bedeutungslos, wie grof3 die Amplituden der Modu-
lationsfunktion sind: Wesentlich ist allein, dal} die Abweichungsfunktion
nicht divergiert; kein Knoten des effektiven Gitters kann sich weiter als eine
vorbestimmte Distanz von «seinem» Knoten des periodischen Gitters ent-
fernen.

Die oft als eindimensionaler Paradefall eines Quasigitters demonstrierte
Fibonaccifolge, wie sie in Abb. 25 gezeigt wurde, ist tatsichlich nur nahezu
periodisch (siche AUBRY & GODRECHE, 1986): Man kann zu ihr ein mittleres
(eindimensionales) Gitter konstruieren.

6.2.2. Quasiperiodische Gitter

Bei quasiperiodischen Gittern (Quasigittern) ist die Dichtefunktion - all-
gemeiner als im vorigen Fall - eine beliebige Summe periodischer (Dichte-)
Funktionen, deren Perioden wieder wenigstens teilweise inkommensurabel
sind. Der Hauptunterschied zum nahezu periodischen Fall ist jedoch fol-
gender: Wiahlt man irgendein «mittleres Gitter», so entsteht eine zugehorige
Abweichungsfunktion. Diese divergiert jedoch prinzipiell! Ganz gleich, wie
das mittlere Gitter gewahlt wurde, entfernen sich die effektiven Gitterknoten
beliebig weit von «threm» mittleren Knoten; diese Distanz ist unbeschrankt.
In irgendeinem begrenzten Gebiet kann man das effektive Gitter tatsachlich
durch ein «mittleres» Gitter anndhern, nicht aber im gesamten Raum. Somit
ist es gar nicht mehr sinnvoll, iberhaupt von einem mittleren Gitter zu
sprechen, es sei denn lokal.
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Vor allem von den Kristallographen, die es gegen «richtige» Gitter abgren-
zen mochten, wird das Gitter des quasiperiodischen Falls oft als Quasigitter
bezeichnet.

Abb. 27a: Nahezu periodisches Gitter (Schema).
Die ausgezogenen Linien bilden ein periodisches Gitter mit Translations-
operator t = (T:T:) das mittlere Gitter, 1, und 1y sind die Langen der Vek-
toren t, und t,.
Die gestrichelien Linien bilden das nahezu periodische Gitter. Es entsteht
durch die unten und links skizzierten Modulationsfunktionen (mit Inten-
sititen I, und 1) aus dem mittleren Gitter. Die Perioden der Modula-
tionsfunktionen sind m, und m,; ihre Amplituden betragen (+d,: 0) und
(+dy; - d,); die Lagemodulatioﬁ der Gitterpunkte ist durch die Werte 8,
und &, gegeben. Die Atome (o) sitzen an den Knoten des so erzeugten
nahezu periodischen Gitters. Die Abweichung der Knoten des modulierten
Gitters von denen des mittleren Gitters ist kleiner als d,+d,, also

beschrankt im ganzen Raum EZ.

Die Inkommensurabilitatsbedingung lautet: Elll- sowie r]n_y sind keine
rationalen Zahlen. § !

Abb. 27b: Kommensurabel moduliertes Gitter (Schema).
Auch hier bilden die ausgezogenen Linien ein periodisches Gitter mit dem
Translationsoperator t = (t,, t,), die gestrichelten Linien das daraus durch
Modulation entstandene Gitter. Die Modulationsfunktionen selbst sind
nicht dargestellt; es wird aber angenommen, dal3 die Modulationsldngen
mit den Periodenlangen des mittleren Gitters wie folgt kommensurabel
sind:

, 4
l—" = é d:h: 3L =5 m); 1—‘ = — (d.h: Tl =4 m,),
3 : m 7 : ?

X y
Damit ergibt sich, daB3 die Verschiebungen in der Zelle Q*T*U*R* denen
in der Zelle P*Q*R*S gleich sind (usw.); somit ist diese Zelle Transla-
tionszelle (tZ) des kommensurabel modulierten Gitters, mit Translations-

operator t* = (t¥, t’}'f).
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6.2.3. Beispiele

Beispiel 1: In AUBRY & GODRECHE (1986) (cf. 6.2.1.) wird eine Modifi-
kation des eindimensionalen Falls angegeben, welche statt der Fibonacci-
Folge eine quasiperiodische Funktion erzeugt. Diese divergiert logarith-
misch gegenuber jedem mittleren Gitter, und die Fibonacci-Folge ist ein
Grenzfall von ihr.

Beispiel 2: Im EZ werden die Ecken einer Penrose-Tesselation — diese sind
also die Knoten des Quasigitters — durch eine quasiperiodische Ortsfunktion
beschrieben. — Dasselbe gilt im E3 fur die Mackay-Tesselationen. — Die
Knotenabstidnde von Penrose- wie Mackay-Gittern sind - in jeder der «aus-
gezeichneten» Richtungen - durch Fibonacci-Folgen festgelegt. Es ist daher
interessant, dal3 — siche oben — der eindimensionale Fall nahezu periodisch
ist, die zwei- und mehrdimensionalen Félle jedoch quasiperiodisch: Die
quantitative Uberlagerung erzeugt eine neue Qualitat!

6.2.4. Diffraktogramme der nahezu periodischen und quasiperiodischen
Gitter

Die Beugungsmuster dieser Gittertypen weichen einerseits auf charakte-
ristische Weise von jenen der periodischen Gitter ab, gleichen einander
andererseits vollig! Die Fouriertransformation zieht also die Grenze zwi-
schen «normal» («klassische» Gitter und «gestorte klassische» Gitter) und
«abartig» (Quasigitter) nicht dort, wo es die Kristallographen wohl gern
gesehen hétten.

Diese Diffraktogramme stehen in der Art logischerweise zwischen denen
der klassischen Kategorien «kristallisiert» und «amorph». Im Idealfall
(Atome punktformig) bestehen sie zwar aus 6 —Peaks, aber diese liegen dicht
im reziproken Raum . Die fur den Nicht-Mathematiker merkwurdigste
Eigenschaft schlieBlich ist diese: Wihle ich fur die Intensitit einen — belie-
bigen — Schwellenwert, so gibt es nur abzahlbar viele d6-Peaks, die 1hn tiber-
treffen, und diese sind diskret verteilt (Abb. 26 b) — Eigenschaften wie bei
einem normalen Gitter! Die ublichen aperiodischen Gitter weisen dazu auch
noch einen anfinglich raschen Intensitatsabfall auf, das heil3t, nur wenige
Peaks sind stark und heben sich so deutlich von einem dichten, schwachen
«Grund» ab.

Diese Beugungseigenschaften von Quasigittern kann man anschaulich so
begreifen: Betrachtet man z. B. die Penrose-Tesselation der Abb. 24, so sieht
man, dal die Kachelrander nur in bestimmten Richtungen liegen, und zwar
in genau funf. Und geht man senkrecht zu einer dieser Richtungen durch die

? Es besteht somit eine gewisse Analogie: periodische Gitter/aperiodische Git-
ter/amorph versus ganze Zahlen/rationale Zahlen/reelle Zahlen.
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Belegung, so trifft man die Kachelgrenzen nur in einer bestimmten Auswahl
von Abstanden an. Diese Umstande genugen, ein «gutes» Diffraktogramm
zu erzeugen, das selbstverstindlich die fiinf ausgezeichneten und unter sich
gleichwertigen Richtungen zeigt. Allgemein: Das Diffraktogramm eines ape-
riodischen Gitters besitzt die Symmetrien, welche im Quasikristall (lokal)
vorkommen!Mit anderen Worten: Die Fouriertransformation unterscheidet
(leider) nicht grundsatzlich zwischen lokalen und globalen Symmetrieach-
sen. Zeigt also das Diffraktogramm eines Kristalls «verbotene» Symmetrie-
elemente, so ist ohne weiteres klar, daB3 aperiodischer Bau vorliegen mupf3.
Umgekehrt aber kann Aperiodizitat vorliegen, ohne daB sie sich derart ver-
rat: Ein Kristall, dessen Basis wie in Abb. 12 aufgebaut ware (der Bau senk-
recht dazu durfte translatorisch sein), ergdbe im Diffraktogramm eine
gewohnliche Tetragyre senkrecht zu dieser Basis!

6.3. Einige Probleme

6.3.1. Tesselationen versus Quasigitter

Ein weiteres rein mathematisches Problem betrifft den Zusammenhang
zwischen Belegungen und Quasigittern. Es ist namlich keinesfalls so, daB3 die
Eckpunkte einer im E" nichttranslatorischen (aperiodischen) Belegung not-
wendigerweise ein Quasigitter des E" (im oben definierten Sinn) bilden
mubBten! Wir sahen, daB dies fur Penrose- und Mackay-Belegungen der Fall
1st. Tatsdchlich muB} fur jede vorgegebene Belegung die Fouriertransfor-
mierte ithrer Ecken berechnet werden, um festzustellen, ob das Diffrakto-
gramm die entsprechende Darstellung besitzt (wie Abb. 26 b). Umgekehrt
wurden, wie schon in 5.1. erwahnt, Fille aufgezeigt, in denen das Diffrak-
togramm vom Typ der Quasigitter ist, die Gitterknoten jedoch nicht als
Ecken einer (aperiodischen) Belegung interpretiert werden konnen.

Diese Feststellungen zeigen, da3 die Beziehungen zwischen Belegungen
und Quasigittern viel komplexer sind, als man zunichst anzunehmen
geneigt war — und beide Objektkategorien daruber hinaus ein Eigenleben
fuhren, das noch wenig erforscht ist.

6.3.2. Dekoration und Krafte

Zum SchluB sei kurz auf einige physikalische Probleme hingewiesen — hier
erst beginnt die eigentliche Arbeit der Kristallographie und der Festkorper-
physik!

Ein realer Quasikristall erfordert eine Dekoration der zugrundegelegten
aperiodischen T, d.h. eine Besetzung der Zellen mit Atomen oder Atom-
gruppen. Wie kann diese Dekoration aus dem Diffraktogramm ermittelt
werden?
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Welche Krifte bewirken, dal3 die Zellen uber groBe Distanzen immer
wenige gleiche relative Lagen einnehmen, d.h. eine Art Fernordnung
besteht? Genugt dafiir eine sogenannte BOO (bond orientational order)?

Wie verhindert der wachsende (Quasi-)Kristall, dal beim Weiterbau
unmogliche Situationen auftreten? Nach Ansicht der meisten Forscher kann
er dies tatsiachlich nicht verhindern, da rein lokale Passungsregeln dafir
nicht genugen; somit wire kein Quasikristall ohne Baufehler moglich. Ich
vermute indes, daB3 globale quantenmechanische Effekte!® doch eine Art
Fernkontrolle bewirken konnten. In diesem Zusammenhang sind auch die
als Polytypie bekannten Stapelordnungen iiberlanger Reichweite auffallig,
bei denen ebenfalls irgendeine Art von Fernwirkung erforderlich scheint.

7. Zusammenfassung — Résumé — Summary

Zusammenfassung

Bis vor kurzem fugten sich alle bekannten Kristalle in die klassische Theorie der
translativen Raumordnung. Seit dem Jahre 1984 jedoch zwang die Entdeckung von
Kristallen, deren Rontgenbeugungsbilder «verbotene» Symmetrien zeigen, zur Erwei-
terung dieser Theorie: Den Kristallographen wurde bewul3t, da3 neben dem «klassi-
schen» Kristall Raumordnungen moglich sind, die ebenfalls «gute» Rontgenbeugung
erzeugen, obwohl sie «aperiodisch» sind. In der mathematisch-physikalischen Theo-
rie war dies seit Jahrzehnten bekannt, und die Geometrie befaBte sich seit einiger Zeit
mit «aperiodischen Belegungen».

Der Artikel erldutert, meistens an anschaulichen zweidimensionalen Beispielen:
- grundlegende geometrische Eigenschaften translativer und nichttranslativer Bele-

gungen des Raumes, wobei die sog. Penrose-Belegungen besonders berucksichtigt

werden;
- die wichtigsten Erzeugungsmethoden fir nichttranslative Belegungen;
- die Zusammenhange zwischen Raumordnung und Beugungsbildern.

Résumé

Pendant longtemps tous les cristaux connus se conformaient a la théorie classique:
son concepte central est 'ordre translatif dans I’espace. Depuis 1984 cependant la
découverte de cristaux dont les images de diffraction aux rayons X montrent des
symétries «interdites» exigea une extension de cette théorie: Les cristallographes
devenaient conscients du fait qu’il existe, outre celui des cristaux «classiques», des
types d’ordre spatial qui donnent lieu a de «bons» diffractogrammes tout en étant

1" Man bedenke, daB3 die entdeckten Quasikristalle allesamt metallischen Bindungs-
charakter besitzen!
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«apériodiques». En théorie physico-mathématique ceci fut connu depuis des décen-
nies, et la géométrie s’occupait depuis quelque temps déja, de «pavages apériodi-
ques».
L’article explique, en utilisant autant que possible des exemples en deux dimen-
sions:
- des propriétés géométriques fondamentales de pavages translatifs et non-translatifs,
en considérant particuliérement les pavages dits de Penrose;
- les méthodes les plus importantes qui permettent de construire des pavages non-
translatifs;
- les relations entre I'ordre spatial et les diffractogrammes.

Summary

Until a short time ago all known crystals agreed with the classical theory of trans-
lative space order. Since 1984 however the discovery of crystals the X-ray diffracto-
grams of which show «forbidden» symmetries forced an extension of this concept:
Crystallographers became aware of the fact that, besides the «classical» crystal order,
other types of space order despite of being «aperiodic» also generate «good» diffrac-
tograms. In physico-mathematical theory this was known since several decades, and
geometry dealt with «aperiodic tilings» for some time already.

This paper explains, using as far as possible examples in two dimensions:

- fundamental geometrical properties of translative and non—-translative tilings of the
space, with particular consideration of the so-called Penrose tilings;

- the most important construction methods for non-translative tilings;

- the relationship between space order and diffractograms.

8. Literaturverzeichnis

AUBRY, S., & GODRECHE, C.: Incommensurate structure with no average lattice: an
example of one dimensional quasi-crystal. (*)

DivINCENZO, D.P.: Perfect and imperfect icosahedral solids and the projection
method. (*)

GRAMLICH, V.: Quasikristalle: zur Kristallographie von Strukturen mit «nichtkristal-
lographischer» Symmetrie. Fortschr. Miner. 65, 161-171 (1987).

GRrRUNBAUM, B., & SHEPHARD, G.C.: Tilings and patterns. Freeman: New York
1987.

KaTtz, A., & DuUNEAU, M.: Quasiperiodic structures obtained by the projection
method. (*)

KRAMER, P.: Nichtperiodische Kristalle mit funfziahliger Symmetrie. Phys. Bl. 41,
Nr. 4. Physik-Verlag GmbH: Weinheim 1985.

LEVINE, D.: Local isomorphism, Landau theory, and matching rules in quasicrystals.
(*)

NIcKEL, E., & NICKEL, A.: Symmetrie: Schonheit und Notwendigkeit. Civitas 1/,
330-339. Schweizerischer Studentenverband: Luzern 1989.

183



RIVIER, N.: A botanical quasicrystal. (¥)

(*) Diese Artikel erschienen in:
International Workshop on Aperiodic Crystals. Journal de physique, tome 4/,
juillet 1986. Les éditions de physique: Les Ulis, France.

184



	Eine neue Geometrie für neuen Kristalle : Einladung zu einer Gratwanderung zwischen Kristallographie und Geometrie

